llvm-project/lld/ELF/Target.cpp

359 lines
11 KiB
C++

//===- Target.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "Error.h"
#include "Symbols.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf2 {
std::unique_ptr<TargetInfo> Target;
TargetInfo::~TargetInfo() {}
bool TargetInfo::relocPointsToGot(uint32_t Type) const { return false; }
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
X86TargetInfo::X86TargetInfo() {
PCRelReloc = R_386_PC32;
GotReloc = R_386_GLOB_DAT;
GotRefReloc = R_386_GOT32;
}
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
// jmpl *val; nop; nop
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
memcpy(Buf, Inst, sizeof(Inst));
assert(isUInt<32>(GotEntryAddr));
write32le(Buf + 2, GotEntryAddr);
}
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
}
bool X86TargetInfo::relocPointsToGot(uint32_t Type) const {
return Type == R_386_GOTPC;
}
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return Type == R_386_PLT32;
}
static void add32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) + V); }
static void or16le(uint8_t *L, int16_t V) { write16le(L, read16le(L) | V); }
static void or32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) | V); }
static void or64le(uint8_t *L, int64_t V) { write64le(L, read64le(L) | V); }
void X86TargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA,
uint64_t GotVA) const {
typedef ELFFile<ELF32LE>::Elf_Rel Elf_Rel;
auto &Rel = *reinterpret_cast<const Elf_Rel *>(RelP);
uint32_t Offset = Rel.r_offset;
uint8_t *Loc = Buf + Offset;
switch (Type) {
case R_386_GOT32:
add32le(Loc, SymVA - GotVA);
break;
case R_386_PC32:
add32le(Loc, SymVA - (BaseAddr + Offset));
break;
case R_386_32:
add32le(Loc, SymVA);
break;
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
X86_64TargetInfo::X86_64TargetInfo() {
PCRelReloc = R_X86_64_PC32;
GotReloc = R_X86_64_GLOB_DAT;
GotRefReloc = R_X86_64_PC32;
RelativeReloc = R_X86_64_RELATIVE;
}
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
// jmpq *val(%rip); nop; nop
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
memcpy(Buf, Inst, sizeof(Inst));
uint64_t NextPC = PltEntryAddr + 6;
int64_t Delta = GotEntryAddr - NextPC;
assert(isInt<32>(Delta));
write32le(Buf + 2, Delta);
}
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
}
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
switch (Type) {
default:
return false;
case R_X86_64_PC32:
// This relocation is defined to have a value of (S + A - P).
// The problems start when a non PIC program calls a function in a shared
// library.
// In an ideal world, we could just report an error saying the relocation
// can overflow at runtime.
// In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
// libc.so.
//
// The general idea on how to handle such cases is to create a PLT entry
// and use that as the function value.
//
// For the static linking part, we just return true and everything else
// will use the the PLT entry as the address.
//
// The remaining (unimplemented) problem is making sure pointer equality
// still works. We need the help of the dynamic linker for that. We
// let it know that we have a direct reference to a so symbol by creating
// an undefined symbol with a non zero st_value. Seeing that, the
// dynamic linker resolves the symbol to the value of the symbol we created.
// This is true even for got entries, so pointer equality is maintained.
// To avoid an infinite loop, the only entry that points to the
// real function is a dedicated got entry used by the plt. That is
// identified by special relocation types (R_X86_64_JUMP_SLOT,
// R_386_JMP_SLOT, etc).
return S.isShared();
case R_X86_64_PLT32:
return true;
}
}
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_X86_64_PC64:
case R_X86_64_PC32:
case R_X86_64_PC16:
case R_X86_64_PC8:
return true;
}
}
void X86_64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP,
uint32_t Type, uint64_t BaseAddr,
uint64_t SymVA, uint64_t GotVA) const {
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint64_t Offset = Rel.r_offset;
uint8_t *Loc = Buf + Offset;
switch (Type) {
case R_X86_64_PC32:
case R_X86_64_GOTPCREL:
write32le(Loc, SymVA + Rel.r_addend - (BaseAddr + Offset));
break;
case R_X86_64_64:
write64le(Loc, SymVA + Rel.r_addend);
break;
case R_X86_64_32: {
case R_X86_64_32S:
uint64_t VA = SymVA + Rel.r_addend;
if (Type == R_X86_64_32 && !isUInt<32>(VA))
error("R_X86_64_32 out of range");
else if (!isInt<32>(VA))
error("R_X86_64_32S out of range");
write32le(Loc, VA);
break;
}
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
PPC64TargetInfo::PPC64TargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return false;
}
void PPC64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA,
uint64_t GotVA) const {
typedef ELFFile<ELF64BE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint64_t Offset = Rel.r_offset;
uint8_t *Loc = Buf + Offset;
switch (Type) {
case R_PPC64_ADDR64:
write64be(Loc, SymVA + Rel.r_addend);
break;
case R_PPC64_TOC:
// We don't create a TOC yet.
break;
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
PPCTargetInfo::PPCTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void PPCTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool PPCTargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool PPCTargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return false;
}
void PPCTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA,
uint64_t GotVA) const {}
ARMTargetInfo::ARMTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void ARMTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool ARMTargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool ARMTargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return false;
}
void ARMTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA,
uint64_t GotVA) const {}
AArch64TargetInfo::AArch64TargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
}
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
const SymbolBody &S) const {
return false;
}
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
const SymbolBody &S) const {
return false;
}
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
uint32_t ImmLo = (Imm & 0x3) << 29;
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}
// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
static uint64_t getAArch64Page(uint64_t Expr) {
return Expr & (~static_cast<uint64_t>(0xFFF));
}
void AArch64TargetInfo::relocateOne(uint8_t *Buf, const void *RelP,
uint32_t Type, uint64_t BaseAddr,
uint64_t SymVA, uint64_t GotVA) const {
typedef ELFFile<ELF64LE>::Elf_Rela Elf_Rela;
auto &Rel = *reinterpret_cast<const Elf_Rela *>(RelP);
uint8_t *L = Buf + Rel.r_offset;
uint64_t S = SymVA;
int64_t A = Rel.r_addend;
uint64_t P = BaseAddr + Rel.r_offset;
switch (Type) {
case R_AARCH64_ABS16:
if (!isInt<16>(S + A))
error("Relocation R_AARCH64_ABS16 out of range");
or16le(L, S + A);
break;
case R_AARCH64_ABS32:
if (!isInt<32>(S + A))
error("Relocation R_AARCH64_ABS32 out of range");
or32le(L, S + A);
break;
case R_AARCH64_ABS64:
// No overflow check needed.
or64le(L, S + A);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
// No overflow check needed.
or32le(L, ((S + A) & 0xFFF) << 10);
break;
case R_AARCH64_ADR_PREL_LO21: {
uint64_t X = S + A - P;
if (!isInt<21>(X))
error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
updateAArch64Adr(L, X & 0x1FFFFF);
break;
}
case R_AARCH64_ADR_PREL_PG_HI21: {
uint64_t X = getAArch64Page(S + A) - getAArch64Page(P);
if (!isInt<33>(X))
error("Relocation R_AARCH64_ADR_PREL_PG_HI21 out of range");
updateAArch64Adr(L, (X >> 12) & 0x1FFFFF); // X[32:12]
break;
}
default:
error(Twine("unrecognized reloc ") + Twine(Type));
break;
}
}
MipsTargetInfo::MipsTargetInfo() {
// PCRelReloc = FIXME
// GotReloc = FIXME
DefaultEntry = "__start";
}
void MipsTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
bool MipsTargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool MipsTargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return false;
}
void MipsTargetInfo::relocateOne(uint8_t *Buf, const void *RelP, uint32_t Type,
uint64_t BaseAddr, uint64_t SymVA,
uint64_t GotVA) const {}
}
}