llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp

311 lines
11 KiB
C++

//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "RuntimeDyldMachO.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
uint64_t Offset,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
uint8_t *LocalAddress = Section.Address + Offset;
uint64_t FinalAddress = Section.LoadAddress + Offset;
bool isPCRel = (Type >> 24) & 1;
unsigned MachoType = (Type >> 28) & 0xf;
unsigned Size = 1 << ((Type >> 25) & 3);
DEBUG(dbgs() << "resolveRelocation LocalAddress: "
<< format("%p", LocalAddress)
<< " FinalAddress: " << format("%p", FinalAddress)
<< " Value: " << format("%p", Value)
<< " Addend: " << Addend
<< " isPCRel: " << isPCRel
<< " MachoType: " << MachoType
<< " Size: " << Size
<< "\n");
// This just dispatches to the proper target specific routine.
switch (Arch) {
default: llvm_unreachable("Unsupported CPU type!");
case Triple::x86_64:
resolveX86_64Relocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
MachoType,
Size,
Addend);
break;
case Triple::x86:
resolveI386Relocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
MachoType,
Size,
Addend);
break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(LocalAddress,
FinalAddress,
(uintptr_t)Value,
isPCRel,
MachoType,
Size,
Addend);
break;
}
}
bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
bool isPCRel,
unsigned Type,
unsigned Size,
int64_t Addend) {
if (isPCRel)
Value -= FinalAddress + 4; // see resolveX86_64Relocation
switch (Type) {
default:
llvm_unreachable("Invalid relocation type!");
case macho::RIT_Vanilla: {
uint8_t *p = LocalAddress;
uint64_t ValueToWrite = Value + Addend;
for (unsigned i = 0; i < Size; ++i) {
*p++ = (uint8_t)(ValueToWrite & 0xff);
ValueToWrite >>= 8;
}
}
case macho::RIT_Difference:
case macho::RIT_Generic_LocalDifference:
case macho::RIT_Generic_PreboundLazyPointer:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
bool isPCRel,
unsigned Type,
unsigned Size,
int64_t Addend) {
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (isPCRel)
// FIXME: It seems this value needs to be adjusted by 4 for an effective PC
// address. Is that expected? Only for branches, perhaps?
Value -= FinalAddress + 4;
switch(Type) {
default:
llvm_unreachable("Invalid relocation type!");
case macho::RIT_X86_64_Signed1:
case macho::RIT_X86_64_Signed2:
case macho::RIT_X86_64_Signed4:
case macho::RIT_X86_64_Signed:
case macho::RIT_X86_64_Unsigned:
case macho::RIT_X86_64_Branch: {
Value += Addend;
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
uint8_t *p = (uint8_t*)LocalAddress;
for (unsigned i = 0; i < Size; ++i) {
*p++ = (uint8_t)Value;
Value >>= 8;
}
return false;
}
case macho::RIT_X86_64_GOTLoad:
case macho::RIT_X86_64_GOT:
case macho::RIT_X86_64_Subtractor:
case macho::RIT_X86_64_TLV:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
bool isPCRel,
unsigned Type,
unsigned Size,
int64_t Addend) {
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (isPCRel) {
Value -= FinalAddress;
// ARM PCRel relocations have an effective-PC offset of two instructions
// (four bytes in Thumb mode, 8 bytes in ARM mode).
// FIXME: For now, assume ARM mode.
Value -= 8;
}
switch(Type) {
default:
llvm_unreachable("Invalid relocation type!");
case macho::RIT_Vanilla: {
// Mask in the target value a byte at a time (we don't have an alignment
// guarantee for the target address, so this is safest).
uint8_t *p = (uint8_t*)LocalAddress;
for (unsigned i = 0; i < Size; ++i) {
*p++ = (uint8_t)Value;
Value >>= 8;
}
break;
}
case macho::RIT_ARM_Branch24Bit: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t*)LocalAddress;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 24 bits.
Value &= 0xffffff;
// FIXME: If the destination is a Thumb function (and the instruction
// is a non-predicated BL instruction), we need to change it to a BLX
// instruction instead.
// Insert the value into the instruction.
*p = (*p & ~0xffffff) | Value;
break;
}
case macho::RIT_ARM_ThumbBranch22Bit:
case macho::RIT_ARM_ThumbBranch32Bit:
case macho::RIT_ARM_Half:
case macho::RIT_ARM_HalfDifference:
case macho::RIT_Pair:
case macho::RIT_Difference:
case macho::RIT_ARM_LocalDifference:
case macho::RIT_ARM_PreboundLazyPointer:
return Error("Relocation type not implemented yet!");
}
return false;
}
void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
const SymbolTableMap &Symbols,
StubMap &Stubs) {
uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
RelocationValueRef Value;
SectionEntry &Section = Sections[Rel.SectionID];
bool isExtern = (RelType >> 27) & 1;
if (isExtern) {
// Obtain the symbol name which is referenced in the relocation
StringRef TargetName;
const SymbolRef &Symbol = Rel.Symbol;
Symbol.getName(TargetName);
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second;
} else {
// Search for the symbol in the global symbol table
SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
Value.Addend = gsi->second.second;
} else
Value.SymbolName = TargetName.data();
}
} else {
error_code err;
uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
section_iterator si = Obj.begin_sections(),
se = Obj.end_sections();
for (uint8_t i = 1; i < sectionIndex; i++) {
error_code err;
si.increment(err);
if (si == se)
break;
}
assert(si != se && "No section containing relocation!");
Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
Value.Addend = 0;
// FIXME: The size and type of the relocation determines if we can
// encode an Addend in the target location itself, and if so, how many
// bytes we should read in order to get it. We don't yet support doing
// that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
//Value.Addend = *(const intptr_t *)Target;
if (Value.Addend) {
// The MachO addend is an offset from the current section. We need it
// to be an offset from the destination section
Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
}
}
if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
// This is an ARM branch relocation, need to use a stub function.
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end())
resolveRelocation(Section, Rel.Offset,
(uint64_t)Section.Address + i->second,
RelType, 0);
else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
macho::RIT_Vanilla, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
resolveRelocation(Section, Rel.Offset,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
Section.StubOffset += getMaxStubSize();
}
} else {
RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
}
bool RuntimeDyldMachO::isCompatibleFormat(
const ObjectBuffer *InputBuffer) const {
if (InputBuffer->getBufferSize() < 4)
return false;
StringRef Magic(InputBuffer->getBufferStart(), 4);
if (Magic == "\xFE\xED\xFA\xCE") return true;
if (Magic == "\xCE\xFA\xED\xFE") return true;
if (Magic == "\xFE\xED\xFA\xCF") return true;
if (Magic == "\xCF\xFA\xED\xFE") return true;
return false;
}
} // end namespace llvm