forked from OSchip/llvm-project
2839 lines
96 KiB
C++
2839 lines
96 KiB
C++
//===- ScopInfo.cpp -------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Create a polyhedral description for a static control flow region.
|
|
//
|
|
// The pass creates a polyhedral description of the Scops detected by the Scop
|
|
// detection derived from their LLVM-IR code.
|
|
//
|
|
// This representation is shared among several tools in the polyhedral
|
|
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/LinkAllPasses.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopBuilder.h"
|
|
#include "polly/ScopDetection.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/ISLOStream.h"
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "polly/Support/SCEVAffinator.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/local_space.h"
|
|
#include "isl/map.h"
|
|
#include "isl/options.h"
|
|
#include "isl/set.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-scops"
|
|
|
|
STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken.");
|
|
STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken.");
|
|
STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken.");
|
|
STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken.");
|
|
STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs.");
|
|
STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs.");
|
|
STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken.");
|
|
STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken.");
|
|
STATISTIC(AssumptionsInvariantLoad,
|
|
"Number of invariant loads assumptions taken.");
|
|
STATISTIC(AssumptionsDelinearization,
|
|
"Number of delinearization assumptions taken.");
|
|
|
|
STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo");
|
|
STATISTIC(NumLoopsInScop, "Number of loops in scops");
|
|
STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo");
|
|
STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo");
|
|
|
|
STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
|
|
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
|
|
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
|
|
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
|
|
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
|
|
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
|
|
STATISTIC(NumScopsDepthLarger,
|
|
"Number of scops with maximal loop depth 6 and larger");
|
|
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
|
|
|
|
STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo");
|
|
STATISTIC(
|
|
NumValueWritesInLoops,
|
|
"Number of scalar value writes nested in affine loops after ScopInfo");
|
|
STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo");
|
|
STATISTIC(NumPHIWritesInLoops,
|
|
"Number of scalar phi writes nested in affine loops after ScopInfo");
|
|
STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo");
|
|
STATISTIC(NumSingletonWritesInLoops,
|
|
"Number of singleton writes nested in affine loops after ScopInfo");
|
|
|
|
int const polly::MaxDisjunctsInDomain = 20;
|
|
|
|
// The number of disjunct in the context after which we stop to add more
|
|
// disjuncts. This parameter is there to avoid exponential growth in the
|
|
// number of disjunct when adding non-convex sets to the context.
|
|
static int const MaxDisjunctsInContext = 4;
|
|
|
|
static cl::opt<bool> PollyRemarksMinimal(
|
|
"polly-remarks-minimal",
|
|
cl::desc("Do not emit remarks about assumptions that are known"),
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool>
|
|
IslOnErrorAbort("polly-on-isl-error-abort",
|
|
cl::desc("Abort if an isl error is encountered"),
|
|
cl::init(true), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> PollyPreciseInbounds(
|
|
"polly-precise-inbounds",
|
|
cl::desc("Take more precise inbounds assumptions (do not scale well)"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> PollyIgnoreParamBounds(
|
|
"polly-ignore-parameter-bounds",
|
|
cl::desc(
|
|
"Do not add parameter bounds and do no gist simplify sets accordingly"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> PollyPreciseFoldAccesses(
|
|
"polly-precise-fold-accesses",
|
|
cl::desc("Fold memory accesses to model more possible delinearizations "
|
|
"(does not scale well)"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
bool polly::UseInstructionNames;
|
|
|
|
static cl::opt<bool, true> XUseInstructionNames(
|
|
"polly-use-llvm-names",
|
|
cl::desc("Use LLVM-IR names when deriving statement names"),
|
|
cl::location(UseInstructionNames), cl::Hidden, cl::init(false),
|
|
cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> PollyPrintInstructions(
|
|
"polly-print-instructions", cl::desc("Output instructions per ScopStmt"),
|
|
cl::Hidden, cl::Optional, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range,
|
|
int dim, isl::dim type) {
|
|
isl::val V;
|
|
isl::ctx Ctx = S.get_ctx();
|
|
|
|
// The upper and lower bound for a parameter value is derived either from
|
|
// the data type of the parameter or from the - possibly more restrictive -
|
|
// range metadata.
|
|
V = valFromAPInt(Ctx.get(), Range.getSignedMin(), true);
|
|
S = S.lower_bound_val(type, dim, V);
|
|
V = valFromAPInt(Ctx.get(), Range.getSignedMax(), true);
|
|
S = S.upper_bound_val(type, dim, V);
|
|
|
|
if (Range.isFullSet())
|
|
return S;
|
|
|
|
if (S.n_basic_set() > MaxDisjunctsInContext)
|
|
return S;
|
|
|
|
// In case of signed wrapping, we can refine the set of valid values by
|
|
// excluding the part not covered by the wrapping range.
|
|
if (Range.isSignWrappedSet()) {
|
|
V = valFromAPInt(Ctx.get(), Range.getLower(), true);
|
|
isl::set SLB = S.lower_bound_val(type, dim, V);
|
|
|
|
V = valFromAPInt(Ctx.get(), Range.getUpper(), true);
|
|
V = V.sub_ui(1);
|
|
isl::set SUB = S.upper_bound_val(type, dim, V);
|
|
S = SLB.unite(SUB);
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
|
|
LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
|
|
if (!BasePtrLI)
|
|
return nullptr;
|
|
|
|
if (!S->contains(BasePtrLI))
|
|
return nullptr;
|
|
|
|
ScalarEvolution &SE = *S->getSE();
|
|
|
|
auto *OriginBaseSCEV =
|
|
SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
|
|
if (!OriginBaseSCEV)
|
|
return nullptr;
|
|
|
|
auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
|
|
if (!OriginBaseSCEVUnknown)
|
|
return nullptr;
|
|
|
|
return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
|
|
MemoryKind::Array);
|
|
}
|
|
|
|
ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx,
|
|
ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
|
|
const DataLayout &DL, Scop *S,
|
|
const char *BaseName)
|
|
: BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
|
|
std::string BasePtrName =
|
|
BaseName ? BaseName
|
|
: getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(),
|
|
Kind == MemoryKind::PHI ? "__phi" : "",
|
|
UseInstructionNames);
|
|
Id = isl::id::alloc(Ctx, BasePtrName, this);
|
|
|
|
updateSizes(Sizes);
|
|
|
|
if (!BasePtr || Kind != MemoryKind::Array) {
|
|
BasePtrOriginSAI = nullptr;
|
|
return;
|
|
}
|
|
|
|
BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
|
|
if (BasePtrOriginSAI)
|
|
const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
|
|
}
|
|
|
|
ScopArrayInfo::~ScopArrayInfo() = default;
|
|
|
|
isl::space ScopArrayInfo::getSpace() const {
|
|
auto Space = isl::space(Id.get_ctx(), 0, getNumberOfDimensions());
|
|
Space = Space.set_tuple_id(isl::dim::set, Id);
|
|
return Space;
|
|
}
|
|
|
|
bool ScopArrayInfo::isReadOnly() {
|
|
isl::union_set WriteSet = S.getWrites().range();
|
|
isl::space Space = getSpace();
|
|
WriteSet = WriteSet.extract_set(Space);
|
|
|
|
return bool(WriteSet.is_empty());
|
|
}
|
|
|
|
bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const {
|
|
if (Array->getElementType() != getElementType())
|
|
return false;
|
|
|
|
if (Array->getNumberOfDimensions() != getNumberOfDimensions())
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < getNumberOfDimensions(); i++)
|
|
if (Array->getDimensionSize(i) != getDimensionSize(i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ScopArrayInfo::updateElementType(Type *NewElementType) {
|
|
if (NewElementType == ElementType)
|
|
return;
|
|
|
|
auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType);
|
|
auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType);
|
|
|
|
if (NewElementSize == OldElementSize || NewElementSize == 0)
|
|
return;
|
|
|
|
if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) {
|
|
ElementType = NewElementType;
|
|
} else {
|
|
auto GCD = GreatestCommonDivisor64(NewElementSize, OldElementSize);
|
|
ElementType = IntegerType::get(ElementType->getContext(), GCD);
|
|
}
|
|
}
|
|
|
|
/// Make the ScopArrayInfo model a Fortran Array
|
|
void ScopArrayInfo::applyAndSetFAD(Value *FAD) {
|
|
assert(FAD && "got invalid Fortran array descriptor");
|
|
if (this->FAD) {
|
|
assert(this->FAD == FAD &&
|
|
"receiving different array descriptors for same array");
|
|
return;
|
|
}
|
|
|
|
assert(DimensionSizesPw.size() > 0 && !DimensionSizesPw[0]);
|
|
assert(!this->FAD);
|
|
this->FAD = FAD;
|
|
|
|
isl::space Space(S.getIslCtx(), 1, 0);
|
|
|
|
std::string param_name = getName();
|
|
param_name += "_fortranarr_size";
|
|
isl::id IdPwAff = isl::id::alloc(S.getIslCtx(), param_name, this);
|
|
|
|
Space = Space.set_dim_id(isl::dim::param, 0, IdPwAff);
|
|
isl::pw_aff PwAff =
|
|
isl::aff::var_on_domain(isl::local_space(Space), isl::dim::param, 0);
|
|
|
|
DimensionSizesPw[0] = PwAff;
|
|
}
|
|
|
|
bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes,
|
|
bool CheckConsistency) {
|
|
int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
|
|
int ExtraDimsNew = NewSizes.size() - SharedDims;
|
|
int ExtraDimsOld = DimensionSizes.size() - SharedDims;
|
|
|
|
if (CheckConsistency) {
|
|
for (int i = 0; i < SharedDims; i++) {
|
|
auto *NewSize = NewSizes[i + ExtraDimsNew];
|
|
auto *KnownSize = DimensionSizes[i + ExtraDimsOld];
|
|
if (NewSize && KnownSize && NewSize != KnownSize)
|
|
return false;
|
|
}
|
|
|
|
if (DimensionSizes.size() >= NewSizes.size())
|
|
return true;
|
|
}
|
|
|
|
DimensionSizes.clear();
|
|
DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
|
|
NewSizes.end());
|
|
DimensionSizesPw.clear();
|
|
for (const SCEV *Expr : DimensionSizes) {
|
|
if (!Expr) {
|
|
DimensionSizesPw.push_back(nullptr);
|
|
continue;
|
|
}
|
|
isl::pw_aff Size = S.getPwAffOnly(Expr);
|
|
DimensionSizesPw.push_back(Size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::string ScopArrayInfo::getName() const { return Id.get_name(); }
|
|
|
|
int ScopArrayInfo::getElemSizeInBytes() const {
|
|
return DL.getTypeAllocSize(ElementType);
|
|
}
|
|
|
|
isl::id ScopArrayInfo::getBasePtrId() const { return Id; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(errs()); }
|
|
#endif
|
|
|
|
void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
|
|
OS.indent(8) << *getElementType() << " " << getName();
|
|
unsigned u = 0;
|
|
// If this is a Fortran array, then we can print the outermost dimension
|
|
// as a isl_pw_aff even though there is no SCEV information.
|
|
bool IsOutermostSizeKnown = SizeAsPwAff && FAD;
|
|
|
|
if (!IsOutermostSizeKnown && getNumberOfDimensions() > 0 &&
|
|
!getDimensionSize(0)) {
|
|
OS << "[*]";
|
|
u++;
|
|
}
|
|
for (; u < getNumberOfDimensions(); u++) {
|
|
OS << "[";
|
|
|
|
if (SizeAsPwAff) {
|
|
isl::pw_aff Size = getDimensionSizePw(u);
|
|
OS << " " << Size << " ";
|
|
} else {
|
|
OS << *getDimensionSize(u);
|
|
}
|
|
|
|
OS << "]";
|
|
}
|
|
|
|
OS << ";";
|
|
|
|
if (BasePtrOriginSAI)
|
|
OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
|
|
|
|
OS << " // Element size " << getElemSizeInBytes() << "\n";
|
|
}
|
|
|
|
const ScopArrayInfo *
|
|
ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) {
|
|
isl::id Id = PMA.get_tuple_id(isl::dim::out);
|
|
assert(!Id.is_null() && "Output dimension didn't have an ID");
|
|
return getFromId(Id);
|
|
}
|
|
|
|
const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) {
|
|
void *User = Id.get_user();
|
|
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
|
|
return SAI;
|
|
}
|
|
|
|
void MemoryAccess::wrapConstantDimensions() {
|
|
auto *SAI = getScopArrayInfo();
|
|
isl::space ArraySpace = SAI->getSpace();
|
|
isl::ctx Ctx = ArraySpace.get_ctx();
|
|
unsigned DimsArray = SAI->getNumberOfDimensions();
|
|
|
|
isl::multi_aff DivModAff = isl::multi_aff::identity(
|
|
ArraySpace.map_from_domain_and_range(ArraySpace));
|
|
isl::local_space LArraySpace = isl::local_space(ArraySpace);
|
|
|
|
// Begin with last dimension, to iteratively carry into higher dimensions.
|
|
for (int i = DimsArray - 1; i > 0; i--) {
|
|
auto *DimSize = SAI->getDimensionSize(i);
|
|
auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize);
|
|
|
|
// This transformation is not applicable to dimensions with dynamic size.
|
|
if (!DimSizeCst)
|
|
continue;
|
|
|
|
// This transformation is not applicable to dimensions of size zero.
|
|
if (DimSize->isZero())
|
|
continue;
|
|
|
|
isl::val DimSizeVal =
|
|
valFromAPInt(Ctx.get(), DimSizeCst->getAPInt(), false);
|
|
isl::aff Var = isl::aff::var_on_domain(LArraySpace, isl::dim::set, i);
|
|
isl::aff PrevVar =
|
|
isl::aff::var_on_domain(LArraySpace, isl::dim::set, i - 1);
|
|
|
|
// Compute: index % size
|
|
// Modulo must apply in the divide of the previous iteration, if any.
|
|
isl::aff Modulo = Var.mod(DimSizeVal);
|
|
Modulo = Modulo.pullback(DivModAff);
|
|
|
|
// Compute: floor(index / size)
|
|
isl::aff Divide = Var.div(isl::aff(LArraySpace, DimSizeVal));
|
|
Divide = Divide.floor();
|
|
Divide = Divide.add(PrevVar);
|
|
Divide = Divide.pullback(DivModAff);
|
|
|
|
// Apply Modulo and Divide.
|
|
DivModAff = DivModAff.set_aff(i, Modulo);
|
|
DivModAff = DivModAff.set_aff(i - 1, Divide);
|
|
}
|
|
|
|
// Apply all modulo/divides on the accesses.
|
|
isl::map Relation = AccessRelation;
|
|
Relation = Relation.apply_range(isl::map::from_multi_aff(DivModAff));
|
|
Relation = Relation.detect_equalities();
|
|
AccessRelation = Relation;
|
|
}
|
|
|
|
void MemoryAccess::updateDimensionality() {
|
|
auto *SAI = getScopArrayInfo();
|
|
isl::space ArraySpace = SAI->getSpace();
|
|
isl::space AccessSpace = AccessRelation.get_space().range();
|
|
isl::ctx Ctx = ArraySpace.get_ctx();
|
|
|
|
auto DimsArray = ArraySpace.dim(isl::dim::set);
|
|
auto DimsAccess = AccessSpace.dim(isl::dim::set);
|
|
auto DimsMissing = DimsArray - DimsAccess;
|
|
|
|
auto *BB = getStatement()->getEntryBlock();
|
|
auto &DL = BB->getModule()->getDataLayout();
|
|
unsigned ArrayElemSize = SAI->getElemSizeInBytes();
|
|
unsigned ElemBytes = DL.getTypeAllocSize(getElementType());
|
|
|
|
isl::map Map = isl::map::from_domain_and_range(
|
|
isl::set::universe(AccessSpace), isl::set::universe(ArraySpace));
|
|
|
|
for (unsigned i = 0; i < DimsMissing; i++)
|
|
Map = Map.fix_si(isl::dim::out, i, 0);
|
|
|
|
for (unsigned i = DimsMissing; i < DimsArray; i++)
|
|
Map = Map.equate(isl::dim::in, i - DimsMissing, isl::dim::out, i);
|
|
|
|
AccessRelation = AccessRelation.apply_range(Map);
|
|
|
|
// For the non delinearized arrays, divide the access function of the last
|
|
// subscript by the size of the elements in the array.
|
|
//
|
|
// A stride one array access in C expressed as A[i] is expressed in
|
|
// LLVM-IR as something like A[i * elementsize]. This hides the fact that
|
|
// two subsequent values of 'i' index two values that are stored next to
|
|
// each other in memory. By this division we make this characteristic
|
|
// obvious again. If the base pointer was accessed with offsets not divisible
|
|
// by the accesses element size, we will have chosen a smaller ArrayElemSize
|
|
// that divides the offsets of all accesses to this base pointer.
|
|
if (DimsAccess == 1) {
|
|
isl::val V = isl::val(Ctx, ArrayElemSize);
|
|
AccessRelation = AccessRelation.floordiv_val(V);
|
|
}
|
|
|
|
// We currently do this only if we added at least one dimension, which means
|
|
// some dimension's indices have not been specified, an indicator that some
|
|
// index values have been added together.
|
|
// TODO: Investigate general usefulness; Effect on unit tests is to make index
|
|
// expressions more complicated.
|
|
if (DimsMissing)
|
|
wrapConstantDimensions();
|
|
|
|
if (!isAffine())
|
|
computeBoundsOnAccessRelation(ArrayElemSize);
|
|
|
|
// Introduce multi-element accesses in case the type loaded by this memory
|
|
// access is larger than the canonical element type of the array.
|
|
//
|
|
// An access ((float *)A)[i] to an array char *A is modeled as
|
|
// {[i] -> A[o] : 4 i <= o <= 4 i + 3
|
|
if (ElemBytes > ArrayElemSize) {
|
|
assert(ElemBytes % ArrayElemSize == 0 &&
|
|
"Loaded element size should be multiple of canonical element size");
|
|
isl::map Map = isl::map::from_domain_and_range(
|
|
isl::set::universe(ArraySpace), isl::set::universe(ArraySpace));
|
|
for (unsigned i = 0; i < DimsArray - 1; i++)
|
|
Map = Map.equate(isl::dim::in, i, isl::dim::out, i);
|
|
|
|
isl::constraint C;
|
|
isl::local_space LS;
|
|
|
|
LS = isl::local_space(Map.get_space());
|
|
int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes();
|
|
|
|
C = isl::constraint::alloc_inequality(LS);
|
|
C = C.set_constant_val(isl::val(Ctx, Num - 1));
|
|
C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, 1);
|
|
C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, -1);
|
|
Map = Map.add_constraint(C);
|
|
|
|
C = isl::constraint::alloc_inequality(LS);
|
|
C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, -1);
|
|
C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, 1);
|
|
C = C.set_constant_val(isl::val(Ctx, 0));
|
|
Map = Map.add_constraint(C);
|
|
AccessRelation = AccessRelation.apply_range(Map);
|
|
}
|
|
}
|
|
|
|
const std::string
|
|
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
|
|
switch (RT) {
|
|
case MemoryAccess::RT_NONE:
|
|
llvm_unreachable("Requested a reduction operator string for a memory "
|
|
"access which isn't a reduction");
|
|
case MemoryAccess::RT_ADD:
|
|
return "+";
|
|
case MemoryAccess::RT_MUL:
|
|
return "*";
|
|
case MemoryAccess::RT_BOR:
|
|
return "|";
|
|
case MemoryAccess::RT_BXOR:
|
|
return "^";
|
|
case MemoryAccess::RT_BAND:
|
|
return "&";
|
|
}
|
|
llvm_unreachable("Unknown reduction type");
|
|
}
|
|
|
|
const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const {
|
|
isl::id ArrayId = getArrayId();
|
|
void *User = ArrayId.get_user();
|
|
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
|
|
return SAI;
|
|
}
|
|
|
|
const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const {
|
|
isl::id ArrayId = getLatestArrayId();
|
|
void *User = ArrayId.get_user();
|
|
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
|
|
return SAI;
|
|
}
|
|
|
|
isl::id MemoryAccess::getOriginalArrayId() const {
|
|
return AccessRelation.get_tuple_id(isl::dim::out);
|
|
}
|
|
|
|
isl::id MemoryAccess::getLatestArrayId() const {
|
|
if (!hasNewAccessRelation())
|
|
return getOriginalArrayId();
|
|
return NewAccessRelation.get_tuple_id(isl::dim::out);
|
|
}
|
|
|
|
isl::map MemoryAccess::getAddressFunction() const {
|
|
return getAccessRelation().lexmin();
|
|
}
|
|
|
|
isl::pw_multi_aff
|
|
MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const {
|
|
isl::map Schedule, ScheduledAccRel;
|
|
isl::union_set UDomain;
|
|
|
|
UDomain = getStatement()->getDomain();
|
|
USchedule = USchedule.intersect_domain(UDomain);
|
|
Schedule = isl::map::from_union_map(USchedule);
|
|
ScheduledAccRel = getAddressFunction().apply_domain(Schedule);
|
|
return isl::pw_multi_aff::from_map(ScheduledAccRel);
|
|
}
|
|
|
|
isl::map MemoryAccess::getOriginalAccessRelation() const {
|
|
return AccessRelation;
|
|
}
|
|
|
|
std::string MemoryAccess::getOriginalAccessRelationStr() const {
|
|
return AccessRelation.to_str();
|
|
}
|
|
|
|
isl::space MemoryAccess::getOriginalAccessRelationSpace() const {
|
|
return AccessRelation.get_space();
|
|
}
|
|
|
|
isl::map MemoryAccess::getNewAccessRelation() const {
|
|
return NewAccessRelation;
|
|
}
|
|
|
|
std::string MemoryAccess::getNewAccessRelationStr() const {
|
|
return NewAccessRelation.to_str();
|
|
}
|
|
|
|
std::string MemoryAccess::getAccessRelationStr() const {
|
|
return getAccessRelation().to_str();
|
|
}
|
|
|
|
isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
|
|
isl::space Space = isl::space(Statement->getIslCtx(), 0, 1);
|
|
Space = Space.align_params(Statement->getDomainSpace());
|
|
|
|
return isl::basic_map::from_domain_and_range(
|
|
isl::basic_set::universe(Statement->getDomainSpace()),
|
|
isl::basic_set::universe(Space));
|
|
}
|
|
|
|
// Formalize no out-of-bound access assumption
|
|
//
|
|
// When delinearizing array accesses we optimistically assume that the
|
|
// delinearized accesses do not access out of bound locations (the subscript
|
|
// expression of each array evaluates for each statement instance that is
|
|
// executed to a value that is larger than zero and strictly smaller than the
|
|
// size of the corresponding dimension). The only exception is the outermost
|
|
// dimension for which we do not need to assume any upper bound. At this point
|
|
// we formalize this assumption to ensure that at code generation time the
|
|
// relevant run-time checks can be generated.
|
|
//
|
|
// To find the set of constraints necessary to avoid out of bound accesses, we
|
|
// first build the set of data locations that are not within array bounds. We
|
|
// then apply the reverse access relation to obtain the set of iterations that
|
|
// may contain invalid accesses and reduce this set of iterations to the ones
|
|
// that are actually executed by intersecting them with the domain of the
|
|
// statement. If we now project out all loop dimensions, we obtain a set of
|
|
// parameters that may cause statement instances to be executed that may
|
|
// possibly yield out of bound memory accesses. The complement of these
|
|
// constraints is the set of constraints that needs to be assumed to ensure such
|
|
// statement instances are never executed.
|
|
isl::set MemoryAccess::assumeNoOutOfBound() {
|
|
auto *SAI = getScopArrayInfo();
|
|
isl::space Space = getOriginalAccessRelationSpace().range();
|
|
isl::set Outside = isl::set::empty(Space);
|
|
for (int i = 1, Size = Space.dim(isl::dim::set); i < Size; ++i) {
|
|
isl::local_space LS(Space);
|
|
isl::pw_aff Var = isl::pw_aff::var_on_domain(LS, isl::dim::set, i);
|
|
isl::pw_aff Zero = isl::pw_aff(LS);
|
|
|
|
isl::set DimOutside = Var.lt_set(Zero);
|
|
isl::pw_aff SizeE = SAI->getDimensionSizePw(i);
|
|
SizeE = SizeE.add_dims(isl::dim::in, Space.dim(isl::dim::set));
|
|
SizeE = SizeE.set_tuple_id(isl::dim::in, Space.get_tuple_id(isl::dim::set));
|
|
DimOutside = DimOutside.unite(SizeE.le_set(Var));
|
|
|
|
Outside = Outside.unite(DimOutside);
|
|
}
|
|
|
|
Outside = Outside.apply(getAccessRelation().reverse());
|
|
Outside = Outside.intersect(Statement->getDomain());
|
|
Outside = Outside.params();
|
|
|
|
// Remove divs to avoid the construction of overly complicated assumptions.
|
|
// Doing so increases the set of parameter combinations that are assumed to
|
|
// not appear. This is always save, but may make the resulting run-time check
|
|
// bail out more often than strictly necessary.
|
|
Outside = Outside.remove_divs();
|
|
Outside = Outside.complement();
|
|
|
|
if (!PollyPreciseInbounds)
|
|
Outside = Outside.gist_params(Statement->getDomain().params());
|
|
return Outside;
|
|
}
|
|
|
|
void MemoryAccess::buildMemIntrinsicAccessRelation() {
|
|
assert(isMemoryIntrinsic());
|
|
assert(Subscripts.size() == 2 && Sizes.size() == 1);
|
|
|
|
isl::pw_aff SubscriptPWA = getPwAff(Subscripts[0]);
|
|
isl::map SubscriptMap = isl::map::from_pw_aff(SubscriptPWA);
|
|
|
|
isl::map LengthMap;
|
|
if (Subscripts[1] == nullptr) {
|
|
LengthMap = isl::map::universe(SubscriptMap.get_space());
|
|
} else {
|
|
isl::pw_aff LengthPWA = getPwAff(Subscripts[1]);
|
|
LengthMap = isl::map::from_pw_aff(LengthPWA);
|
|
isl::space RangeSpace = LengthMap.get_space().range();
|
|
LengthMap = LengthMap.apply_range(isl::map::lex_gt(RangeSpace));
|
|
}
|
|
LengthMap = LengthMap.lower_bound_si(isl::dim::out, 0, 0);
|
|
LengthMap = LengthMap.align_params(SubscriptMap.get_space());
|
|
SubscriptMap = SubscriptMap.align_params(LengthMap.get_space());
|
|
LengthMap = LengthMap.sum(SubscriptMap);
|
|
AccessRelation =
|
|
LengthMap.set_tuple_id(isl::dim::in, getStatement()->getDomainId());
|
|
}
|
|
|
|
void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
|
|
ScalarEvolution *SE = Statement->getParent()->getSE();
|
|
|
|
auto MAI = MemAccInst(getAccessInstruction());
|
|
if (isa<MemIntrinsic>(MAI))
|
|
return;
|
|
|
|
Value *Ptr = MAI.getPointerOperand();
|
|
if (!Ptr || !SE->isSCEVable(Ptr->getType()))
|
|
return;
|
|
|
|
auto *PtrSCEV = SE->getSCEV(Ptr);
|
|
if (isa<SCEVCouldNotCompute>(PtrSCEV))
|
|
return;
|
|
|
|
auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
|
|
if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
|
|
PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
|
|
|
|
const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
|
|
if (Range.isFullSet())
|
|
return;
|
|
|
|
if (Range.isUpperWrapped() || Range.isSignWrappedSet())
|
|
return;
|
|
|
|
bool isWrapping = Range.isSignWrappedSet();
|
|
|
|
unsigned BW = Range.getBitWidth();
|
|
const auto One = APInt(BW, 1);
|
|
const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
|
|
const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax();
|
|
|
|
auto Min = LB.sdiv(APInt(BW, ElementSize));
|
|
auto Max = UB.sdiv(APInt(BW, ElementSize)) + One;
|
|
|
|
assert(Min.sle(Max) && "Minimum expected to be less or equal than max");
|
|
|
|
isl::map Relation = AccessRelation;
|
|
isl::set AccessRange = Relation.range();
|
|
AccessRange = addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0,
|
|
isl::dim::set);
|
|
AccessRelation = Relation.intersect_range(AccessRange);
|
|
}
|
|
|
|
void MemoryAccess::foldAccessRelation() {
|
|
if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1]))
|
|
return;
|
|
|
|
int Size = Subscripts.size();
|
|
|
|
isl::map NewAccessRelation = AccessRelation;
|
|
|
|
for (int i = Size - 2; i >= 0; --i) {
|
|
isl::space Space;
|
|
isl::map MapOne, MapTwo;
|
|
isl::pw_aff DimSize = getPwAff(Sizes[i + 1]);
|
|
|
|
isl::space SpaceSize = DimSize.get_space();
|
|
isl::id ParamId = SpaceSize.get_dim_id(isl::dim::param, 0);
|
|
|
|
Space = AccessRelation.get_space();
|
|
Space = Space.range().map_from_set();
|
|
Space = Space.align_params(SpaceSize);
|
|
|
|
int ParamLocation = Space.find_dim_by_id(isl::dim::param, ParamId);
|
|
|
|
MapOne = isl::map::universe(Space);
|
|
for (int j = 0; j < Size; ++j)
|
|
MapOne = MapOne.equate(isl::dim::in, j, isl::dim::out, j);
|
|
MapOne = MapOne.lower_bound_si(isl::dim::in, i + 1, 0);
|
|
|
|
MapTwo = isl::map::universe(Space);
|
|
for (int j = 0; j < Size; ++j)
|
|
if (j < i || j > i + 1)
|
|
MapTwo = MapTwo.equate(isl::dim::in, j, isl::dim::out, j);
|
|
|
|
isl::local_space LS(Space);
|
|
isl::constraint C;
|
|
C = isl::constraint::alloc_equality(LS);
|
|
C = C.set_constant_si(-1);
|
|
C = C.set_coefficient_si(isl::dim::in, i, 1);
|
|
C = C.set_coefficient_si(isl::dim::out, i, -1);
|
|
MapTwo = MapTwo.add_constraint(C);
|
|
C = isl::constraint::alloc_equality(LS);
|
|
C = C.set_coefficient_si(isl::dim::in, i + 1, 1);
|
|
C = C.set_coefficient_si(isl::dim::out, i + 1, -1);
|
|
C = C.set_coefficient_si(isl::dim::param, ParamLocation, 1);
|
|
MapTwo = MapTwo.add_constraint(C);
|
|
MapTwo = MapTwo.upper_bound_si(isl::dim::in, i + 1, -1);
|
|
|
|
MapOne = MapOne.unite(MapTwo);
|
|
NewAccessRelation = NewAccessRelation.apply_range(MapOne);
|
|
}
|
|
|
|
isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId();
|
|
isl::space Space = Statement->getDomainSpace();
|
|
NewAccessRelation = NewAccessRelation.set_tuple_id(
|
|
isl::dim::in, Space.get_tuple_id(isl::dim::set));
|
|
NewAccessRelation = NewAccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
|
|
NewAccessRelation = NewAccessRelation.gist_domain(Statement->getDomain());
|
|
|
|
// Access dimension folding might in certain cases increase the number of
|
|
// disjuncts in the memory access, which can possibly complicate the generated
|
|
// run-time checks and can lead to costly compilation.
|
|
if (!PollyPreciseFoldAccesses &&
|
|
NewAccessRelation.n_basic_map() > AccessRelation.n_basic_map()) {
|
|
} else {
|
|
AccessRelation = NewAccessRelation;
|
|
}
|
|
}
|
|
|
|
void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
|
|
assert(AccessRelation.is_null() && "AccessRelation already built");
|
|
|
|
// Initialize the invalid domain which describes all iterations for which the
|
|
// access relation is not modeled correctly.
|
|
isl::set StmtInvalidDomain = getStatement()->getInvalidDomain();
|
|
InvalidDomain = isl::set::empty(StmtInvalidDomain.get_space());
|
|
|
|
isl::ctx Ctx = Id.get_ctx();
|
|
isl::id BaseAddrId = SAI->getBasePtrId();
|
|
|
|
if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) {
|
|
buildMemIntrinsicAccessRelation();
|
|
AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
|
|
return;
|
|
}
|
|
|
|
if (!isAffine()) {
|
|
// We overapproximate non-affine accesses with a possible access to the
|
|
// whole array. For read accesses it does not make a difference, if an
|
|
// access must or may happen. However, for write accesses it is important to
|
|
// differentiate between writes that must happen and writes that may happen.
|
|
if (AccessRelation.is_null())
|
|
AccessRelation = createBasicAccessMap(Statement);
|
|
|
|
AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
|
|
return;
|
|
}
|
|
|
|
isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0);
|
|
AccessRelation = isl::map::universe(Space);
|
|
|
|
for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
|
|
isl::pw_aff Affine = getPwAff(Subscripts[i]);
|
|
isl::map SubscriptMap = isl::map::from_pw_aff(Affine);
|
|
AccessRelation = AccessRelation.flat_range_product(SubscriptMap);
|
|
}
|
|
|
|
Space = Statement->getDomainSpace();
|
|
AccessRelation = AccessRelation.set_tuple_id(
|
|
isl::dim::in, Space.get_tuple_id(isl::dim::set));
|
|
AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
|
|
|
|
AccessRelation = AccessRelation.gist_domain(Statement->getDomain());
|
|
}
|
|
|
|
MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
|
|
AccessType AccType, Value *BaseAddress,
|
|
Type *ElementType, bool Affine,
|
|
ArrayRef<const SCEV *> Subscripts,
|
|
ArrayRef<const SCEV *> Sizes, Value *AccessValue,
|
|
MemoryKind Kind)
|
|
: Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(nullptr),
|
|
BaseAddr(BaseAddress), ElementType(ElementType),
|
|
Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
|
|
AccessValue(AccessValue), IsAffine(Affine),
|
|
Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
|
|
NewAccessRelation(nullptr), FAD(nullptr) {
|
|
static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
|
|
const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
|
|
|
|
std::string IdName = Stmt->getBaseName() + Access;
|
|
Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
|
|
}
|
|
|
|
MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel)
|
|
: Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt),
|
|
InvalidDomain(nullptr), AccessRelation(nullptr),
|
|
NewAccessRelation(AccRel), FAD(nullptr) {
|
|
isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(isl::dim::out);
|
|
auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId);
|
|
Sizes.push_back(nullptr);
|
|
for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++)
|
|
Sizes.push_back(SAI->getDimensionSize(i));
|
|
ElementType = SAI->getElementType();
|
|
BaseAddr = SAI->getBasePtr();
|
|
static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
|
|
const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
|
|
|
|
std::string IdName = Stmt->getBaseName() + Access;
|
|
Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
|
|
}
|
|
|
|
MemoryAccess::~MemoryAccess() = default;
|
|
|
|
void MemoryAccess::realignParams() {
|
|
isl::set Ctx = Statement->getParent()->getContext();
|
|
InvalidDomain = InvalidDomain.gist_params(Ctx);
|
|
AccessRelation = AccessRelation.gist_params(Ctx);
|
|
|
|
// Predictable parameter order is required for JSON imports. Ensure alignment
|
|
// by explicitly calling align_params.
|
|
isl::space CtxSpace = Ctx.get_space();
|
|
InvalidDomain = InvalidDomain.align_params(CtxSpace);
|
|
AccessRelation = AccessRelation.align_params(CtxSpace);
|
|
}
|
|
|
|
const std::string MemoryAccess::getReductionOperatorStr() const {
|
|
return MemoryAccess::getReductionOperatorStr(getReductionType());
|
|
}
|
|
|
|
isl::id MemoryAccess::getId() const { return Id; }
|
|
|
|
raw_ostream &polly::operator<<(raw_ostream &OS,
|
|
MemoryAccess::ReductionType RT) {
|
|
if (RT == MemoryAccess::RT_NONE)
|
|
OS << "NONE";
|
|
else
|
|
OS << MemoryAccess::getReductionOperatorStr(RT);
|
|
return OS;
|
|
}
|
|
|
|
void MemoryAccess::setFortranArrayDescriptor(Value *FAD) { this->FAD = FAD; }
|
|
|
|
void MemoryAccess::print(raw_ostream &OS) const {
|
|
switch (AccType) {
|
|
case READ:
|
|
OS.indent(12) << "ReadAccess :=\t";
|
|
break;
|
|
case MUST_WRITE:
|
|
OS.indent(12) << "MustWriteAccess :=\t";
|
|
break;
|
|
case MAY_WRITE:
|
|
OS.indent(12) << "MayWriteAccess :=\t";
|
|
break;
|
|
}
|
|
|
|
OS << "[Reduction Type: " << getReductionType() << "] ";
|
|
|
|
if (FAD) {
|
|
OS << "[Fortran array descriptor: " << FAD->getName();
|
|
OS << "] ";
|
|
};
|
|
|
|
OS << "[Scalar: " << isScalarKind() << "]\n";
|
|
OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
|
|
if (hasNewAccessRelation())
|
|
OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(errs()); }
|
|
#endif
|
|
|
|
isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) {
|
|
auto *Stmt = getStatement();
|
|
PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock());
|
|
isl::set StmtDom = getStatement()->getDomain();
|
|
StmtDom = StmtDom.reset_tuple_id();
|
|
isl::set NewInvalidDom = StmtDom.intersect(PWAC.second);
|
|
InvalidDomain = InvalidDomain.unite(NewInvalidDom);
|
|
return PWAC.first;
|
|
}
|
|
|
|
// Create a map in the size of the provided set domain, that maps from the
|
|
// one element of the provided set domain to another element of the provided
|
|
// set domain.
|
|
// The mapping is limited to all points that are equal in all but the last
|
|
// dimension and for which the last dimension of the input is strict smaller
|
|
// than the last dimension of the output.
|
|
//
|
|
// getEqualAndLarger(set[i0, i1, ..., iX]):
|
|
//
|
|
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
|
|
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
|
|
//
|
|
static isl::map getEqualAndLarger(isl::space SetDomain) {
|
|
isl::space Space = SetDomain.map_from_set();
|
|
isl::map Map = isl::map::universe(Space);
|
|
unsigned lastDimension = Map.dim(isl::dim::in) - 1;
|
|
|
|
// Set all but the last dimension to be equal for the input and output
|
|
//
|
|
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
|
|
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
|
|
for (unsigned i = 0; i < lastDimension; ++i)
|
|
Map = Map.equate(isl::dim::in, i, isl::dim::out, i);
|
|
|
|
// Set the last dimension of the input to be strict smaller than the
|
|
// last dimension of the output.
|
|
//
|
|
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
|
|
Map = Map.order_lt(isl::dim::in, lastDimension, isl::dim::out, lastDimension);
|
|
return Map;
|
|
}
|
|
|
|
isl::set MemoryAccess::getStride(isl::map Schedule) const {
|
|
isl::map AccessRelation = getAccessRelation();
|
|
isl::space Space = Schedule.get_space().range();
|
|
isl::map NextScatt = getEqualAndLarger(Space);
|
|
|
|
Schedule = Schedule.reverse();
|
|
NextScatt = NextScatt.lexmin();
|
|
|
|
NextScatt = NextScatt.apply_range(Schedule);
|
|
NextScatt = NextScatt.apply_range(AccessRelation);
|
|
NextScatt = NextScatt.apply_domain(Schedule);
|
|
NextScatt = NextScatt.apply_domain(AccessRelation);
|
|
|
|
isl::set Deltas = NextScatt.deltas();
|
|
return Deltas;
|
|
}
|
|
|
|
bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const {
|
|
isl::set Stride, StrideX;
|
|
bool IsStrideX;
|
|
|
|
Stride = getStride(Schedule);
|
|
StrideX = isl::set::universe(Stride.get_space());
|
|
for (unsigned i = 0; i < StrideX.dim(isl::dim::set) - 1; i++)
|
|
StrideX = StrideX.fix_si(isl::dim::set, i, 0);
|
|
StrideX = StrideX.fix_si(isl::dim::set, StrideX.dim(isl::dim::set) - 1,
|
|
StrideWidth);
|
|
IsStrideX = Stride.is_subset(StrideX);
|
|
|
|
return IsStrideX;
|
|
}
|
|
|
|
bool MemoryAccess::isStrideZero(isl::map Schedule) const {
|
|
return isStrideX(Schedule, 0);
|
|
}
|
|
|
|
bool MemoryAccess::isStrideOne(isl::map Schedule) const {
|
|
return isStrideX(Schedule, 1);
|
|
}
|
|
|
|
void MemoryAccess::setAccessRelation(isl::map NewAccess) {
|
|
AccessRelation = NewAccess;
|
|
}
|
|
|
|
void MemoryAccess::setNewAccessRelation(isl::map NewAccess) {
|
|
assert(NewAccess);
|
|
|
|
#ifndef NDEBUG
|
|
// Check domain space compatibility.
|
|
isl::space NewSpace = NewAccess.get_space();
|
|
isl::space NewDomainSpace = NewSpace.domain();
|
|
isl::space OriginalDomainSpace = getStatement()->getDomainSpace();
|
|
assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace));
|
|
|
|
// Reads must be executed unconditionally. Writes might be executed in a
|
|
// subdomain only.
|
|
if (isRead()) {
|
|
// Check whether there is an access for every statement instance.
|
|
isl::set StmtDomain = getStatement()->getDomain();
|
|
StmtDomain =
|
|
StmtDomain.intersect_params(getStatement()->getParent()->getContext());
|
|
isl::set NewDomain = NewAccess.domain();
|
|
assert(StmtDomain.is_subset(NewDomain) &&
|
|
"Partial READ accesses not supported");
|
|
}
|
|
|
|
isl::space NewAccessSpace = NewAccess.get_space();
|
|
assert(NewAccessSpace.has_tuple_id(isl::dim::set) &&
|
|
"Must specify the array that is accessed");
|
|
isl::id NewArrayId = NewAccessSpace.get_tuple_id(isl::dim::set);
|
|
auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user());
|
|
assert(SAI && "Must set a ScopArrayInfo");
|
|
|
|
if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) {
|
|
InvariantEquivClassTy *EqClass =
|
|
getStatement()->getParent()->lookupInvariantEquivClass(
|
|
SAI->getBasePtr());
|
|
assert(EqClass &&
|
|
"Access functions to indirect arrays must have an invariant and "
|
|
"hoisted base pointer");
|
|
}
|
|
|
|
// Check whether access dimensions correspond to number of dimensions of the
|
|
// accesses array.
|
|
auto Dims = SAI->getNumberOfDimensions();
|
|
assert(NewAccessSpace.dim(isl::dim::set) == Dims &&
|
|
"Access dims must match array dims");
|
|
#endif
|
|
|
|
NewAccess = NewAccess.gist_domain(getStatement()->getDomain());
|
|
NewAccessRelation = NewAccess;
|
|
}
|
|
|
|
bool MemoryAccess::isLatestPartialAccess() const {
|
|
isl::set StmtDom = getStatement()->getDomain();
|
|
isl::set AccDom = getLatestAccessRelation().domain();
|
|
|
|
return !StmtDom.is_subset(AccDom);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
isl::map ScopStmt::getSchedule() const {
|
|
isl::set Domain = getDomain();
|
|
if (Domain.is_empty())
|
|
return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
|
|
auto Schedule = getParent()->getSchedule();
|
|
if (!Schedule)
|
|
return nullptr;
|
|
Schedule = Schedule.intersect_domain(isl::union_set(Domain));
|
|
if (Schedule.is_empty())
|
|
return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
|
|
isl::map M = M.from_union_map(Schedule);
|
|
M = M.coalesce();
|
|
M = M.gist_domain(Domain);
|
|
M = M.coalesce();
|
|
return M;
|
|
}
|
|
|
|
void ScopStmt::restrictDomain(isl::set NewDomain) {
|
|
assert(NewDomain.is_subset(Domain) &&
|
|
"New domain is not a subset of old domain!");
|
|
Domain = NewDomain;
|
|
}
|
|
|
|
void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) {
|
|
Instruction *AccessInst = Access->getAccessInstruction();
|
|
|
|
if (Access->isArrayKind()) {
|
|
MemoryAccessList &MAL = InstructionToAccess[AccessInst];
|
|
MAL.emplace_front(Access);
|
|
} else if (Access->isValueKind() && Access->isWrite()) {
|
|
Instruction *AccessVal = cast<Instruction>(Access->getAccessValue());
|
|
assert(!ValueWrites.lookup(AccessVal));
|
|
|
|
ValueWrites[AccessVal] = Access;
|
|
} else if (Access->isValueKind() && Access->isRead()) {
|
|
Value *AccessVal = Access->getAccessValue();
|
|
assert(!ValueReads.lookup(AccessVal));
|
|
|
|
ValueReads[AccessVal] = Access;
|
|
} else if (Access->isAnyPHIKind() && Access->isWrite()) {
|
|
PHINode *PHI = cast<PHINode>(Access->getAccessValue());
|
|
assert(!PHIWrites.lookup(PHI));
|
|
|
|
PHIWrites[PHI] = Access;
|
|
} else if (Access->isAnyPHIKind() && Access->isRead()) {
|
|
PHINode *PHI = cast<PHINode>(Access->getAccessValue());
|
|
assert(!PHIReads.lookup(PHI));
|
|
|
|
PHIReads[PHI] = Access;
|
|
}
|
|
|
|
if (Prepend) {
|
|
MemAccs.insert(MemAccs.begin(), Access);
|
|
return;
|
|
}
|
|
MemAccs.push_back(Access);
|
|
}
|
|
|
|
void ScopStmt::realignParams() {
|
|
for (MemoryAccess *MA : *this)
|
|
MA->realignParams();
|
|
|
|
isl::set Ctx = Parent.getContext();
|
|
InvalidDomain = InvalidDomain.gist_params(Ctx);
|
|
Domain = Domain.gist_params(Ctx);
|
|
|
|
// Predictable parameter order is required for JSON imports. Ensure alignment
|
|
// by explicitly calling align_params.
|
|
isl::space CtxSpace = Ctx.get_space();
|
|
InvalidDomain = InvalidDomain.align_params(CtxSpace);
|
|
Domain = Domain.align_params(CtxSpace);
|
|
}
|
|
|
|
ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name,
|
|
Loop *SurroundingLoop,
|
|
std::vector<Instruction *> EntryBlockInstructions)
|
|
: Parent(parent), InvalidDomain(nullptr), Domain(nullptr), R(&R),
|
|
Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
|
|
Instructions(EntryBlockInstructions) {}
|
|
|
|
ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name,
|
|
Loop *SurroundingLoop,
|
|
std::vector<Instruction *> Instructions)
|
|
: Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(&bb),
|
|
Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
|
|
Instructions(Instructions) {}
|
|
|
|
ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
|
|
isl::set NewDomain)
|
|
: Parent(parent), InvalidDomain(nullptr), Domain(NewDomain),
|
|
Build(nullptr) {
|
|
BaseName = getIslCompatibleName("CopyStmt_", "",
|
|
std::to_string(parent.getCopyStmtsNum()));
|
|
isl::id Id = isl::id::alloc(getIslCtx(), getBaseName(), this);
|
|
Domain = Domain.set_tuple_id(Id);
|
|
TargetRel = TargetRel.set_tuple_id(isl::dim::in, Id);
|
|
auto *Access =
|
|
new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel);
|
|
parent.addAccessFunction(Access);
|
|
addAccess(Access);
|
|
SourceRel = SourceRel.set_tuple_id(isl::dim::in, Id);
|
|
Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel);
|
|
parent.addAccessFunction(Access);
|
|
addAccess(Access);
|
|
}
|
|
|
|
ScopStmt::~ScopStmt() = default;
|
|
|
|
std::string ScopStmt::getDomainStr() const { return Domain.to_str(); }
|
|
|
|
std::string ScopStmt::getScheduleStr() const {
|
|
auto *S = getSchedule().release();
|
|
if (!S)
|
|
return {};
|
|
auto Str = stringFromIslObj(S);
|
|
isl_map_free(S);
|
|
return Str;
|
|
}
|
|
|
|
void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; }
|
|
|
|
BasicBlock *ScopStmt::getEntryBlock() const {
|
|
if (isBlockStmt())
|
|
return getBasicBlock();
|
|
return getRegion()->getEntry();
|
|
}
|
|
|
|
unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
|
|
|
|
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
|
|
|
|
Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
|
|
return NestLoops[Dimension];
|
|
}
|
|
|
|
isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
|
|
|
|
isl::set ScopStmt::getDomain() const { return Domain; }
|
|
|
|
isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); }
|
|
|
|
isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); }
|
|
|
|
void ScopStmt::printInstructions(raw_ostream &OS) const {
|
|
OS << "Instructions {\n";
|
|
|
|
for (Instruction *Inst : Instructions)
|
|
OS.indent(16) << *Inst << "\n";
|
|
|
|
OS.indent(12) << "}\n";
|
|
}
|
|
|
|
void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const {
|
|
OS << "\t" << getBaseName() << "\n";
|
|
OS.indent(12) << "Domain :=\n";
|
|
|
|
if (Domain) {
|
|
OS.indent(16) << getDomainStr() << ";\n";
|
|
} else
|
|
OS.indent(16) << "n/a\n";
|
|
|
|
OS.indent(12) << "Schedule :=\n";
|
|
|
|
if (Domain) {
|
|
OS.indent(16) << getScheduleStr() << ";\n";
|
|
} else
|
|
OS.indent(16) << "n/a\n";
|
|
|
|
for (MemoryAccess *Access : MemAccs)
|
|
Access->print(OS);
|
|
|
|
if (PrintInstructions)
|
|
printInstructions(OS.indent(12));
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void ScopStmt::dump() const { print(dbgs(), true); }
|
|
#endif
|
|
|
|
void ScopStmt::removeAccessData(MemoryAccess *MA) {
|
|
if (MA->isRead() && MA->isOriginalValueKind()) {
|
|
bool Found = ValueReads.erase(MA->getAccessValue());
|
|
(void)Found;
|
|
assert(Found && "Expected access data not found");
|
|
}
|
|
if (MA->isWrite() && MA->isOriginalValueKind()) {
|
|
bool Found = ValueWrites.erase(cast<Instruction>(MA->getAccessValue()));
|
|
(void)Found;
|
|
assert(Found && "Expected access data not found");
|
|
}
|
|
if (MA->isWrite() && MA->isOriginalAnyPHIKind()) {
|
|
bool Found = PHIWrites.erase(cast<PHINode>(MA->getAccessInstruction()));
|
|
(void)Found;
|
|
assert(Found && "Expected access data not found");
|
|
}
|
|
if (MA->isRead() && MA->isOriginalAnyPHIKind()) {
|
|
bool Found = PHIReads.erase(cast<PHINode>(MA->getAccessInstruction()));
|
|
(void)Found;
|
|
assert(Found && "Expected access data not found");
|
|
}
|
|
}
|
|
|
|
void ScopStmt::removeMemoryAccess(MemoryAccess *MA) {
|
|
// Remove the memory accesses from this statement together with all scalar
|
|
// accesses that were caused by it. MemoryKind::Value READs have no access
|
|
// instruction, hence would not be removed by this function. However, it is
|
|
// only used for invariant LoadInst accesses, its arguments are always affine,
|
|
// hence synthesizable, and therefore there are no MemoryKind::Value READ
|
|
// accesses to be removed.
|
|
auto Predicate = [&](MemoryAccess *Acc) {
|
|
return Acc->getAccessInstruction() == MA->getAccessInstruction();
|
|
};
|
|
for (auto *MA : MemAccs) {
|
|
if (Predicate(MA)) {
|
|
removeAccessData(MA);
|
|
Parent.removeAccessData(MA);
|
|
}
|
|
}
|
|
MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
|
|
MemAccs.end());
|
|
InstructionToAccess.erase(MA->getAccessInstruction());
|
|
}
|
|
|
|
void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) {
|
|
if (AfterHoisting) {
|
|
auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA);
|
|
assert(MAIt != MemAccs.end());
|
|
MemAccs.erase(MAIt);
|
|
|
|
removeAccessData(MA);
|
|
Parent.removeAccessData(MA);
|
|
}
|
|
|
|
auto It = InstructionToAccess.find(MA->getAccessInstruction());
|
|
if (It != InstructionToAccess.end()) {
|
|
It->second.remove(MA);
|
|
if (It->second.empty())
|
|
InstructionToAccess.erase(MA->getAccessInstruction());
|
|
}
|
|
}
|
|
|
|
MemoryAccess *ScopStmt::ensureValueRead(Value *V) {
|
|
MemoryAccess *Access = lookupInputAccessOf(V);
|
|
if (Access)
|
|
return Access;
|
|
|
|
ScopArrayInfo *SAI =
|
|
Parent.getOrCreateScopArrayInfo(V, V->getType(), {}, MemoryKind::Value);
|
|
Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(),
|
|
true, {}, {}, V, MemoryKind::Value);
|
|
Parent.addAccessFunction(Access);
|
|
Access->buildAccessRelation(SAI);
|
|
addAccess(Access);
|
|
Parent.addAccessData(Access);
|
|
return Access;
|
|
}
|
|
|
|
raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) {
|
|
S.print(OS, PollyPrintInstructions);
|
|
return OS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Scop class implement
|
|
|
|
void Scop::setContext(isl::set NewContext) {
|
|
Context = NewContext.align_params(Context.get_space());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Remap parameter values but keep AddRecs valid wrt. invariant loads.
|
|
struct SCEVSensitiveParameterRewriter
|
|
: public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> {
|
|
const ValueToValueMap &VMap;
|
|
|
|
public:
|
|
SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap,
|
|
ScalarEvolution &SE)
|
|
: SCEVRewriteVisitor(SE), VMap(VMap) {}
|
|
|
|
static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
|
|
const ValueToValueMap &VMap) {
|
|
SCEVSensitiveParameterRewriter SSPR(VMap, SE);
|
|
return SSPR.visit(E);
|
|
}
|
|
|
|
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
|
|
auto *Start = visit(E->getStart());
|
|
auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
|
|
visit(E->getStepRecurrence(SE)),
|
|
E->getLoop(), SCEV::FlagAnyWrap);
|
|
return SE.getAddExpr(Start, AddRec);
|
|
}
|
|
|
|
const SCEV *visitUnknown(const SCEVUnknown *E) {
|
|
if (auto *NewValue = VMap.lookup(E->getValue()))
|
|
return SE.getUnknown(NewValue);
|
|
return E;
|
|
}
|
|
};
|
|
|
|
/// Check whether we should remap a SCEV expression.
|
|
struct SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> {
|
|
const ValueToValueMap &VMap;
|
|
bool FoundInside = false;
|
|
const Scop *S;
|
|
|
|
public:
|
|
SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE,
|
|
const Scop *S)
|
|
: SCEVTraversal(*this), VMap(VMap), S(S) {}
|
|
|
|
static bool hasVariant(const SCEV *E, ScalarEvolution &SE,
|
|
const ValueToValueMap &VMap, const Scop *S) {
|
|
SCEVFindInsideScop SFIS(VMap, SE, S);
|
|
SFIS.visitAll(E);
|
|
return SFIS.FoundInside;
|
|
}
|
|
|
|
bool follow(const SCEV *E) {
|
|
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(E)) {
|
|
FoundInside |= S->getRegion().contains(AddRec->getLoop());
|
|
} else if (auto *Unknown = dyn_cast<SCEVUnknown>(E)) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Unknown->getValue()))
|
|
FoundInside |= S->getRegion().contains(I) && !VMap.count(I);
|
|
}
|
|
return !FoundInside;
|
|
}
|
|
|
|
bool isDone() { return FoundInside; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const {
|
|
// Check whether it makes sense to rewrite the SCEV. (ScalarEvolution
|
|
// doesn't like addition between an AddRec and an expression that
|
|
// doesn't have a dominance relationship with it.)
|
|
if (SCEVFindInsideScop::hasVariant(E, *SE, InvEquivClassVMap, this))
|
|
return E;
|
|
|
|
// Rewrite SCEV.
|
|
return SCEVSensitiveParameterRewriter::rewrite(E, *SE, InvEquivClassVMap);
|
|
}
|
|
|
|
// This table of function names is used to translate parameter names in more
|
|
// human-readable names. This makes it easier to interpret Polly analysis
|
|
// results.
|
|
StringMap<std::string> KnownNames = {
|
|
{"_Z13get_global_idj", "global_id"},
|
|
{"_Z12get_local_idj", "local_id"},
|
|
{"_Z15get_global_sizej", "global_size"},
|
|
{"_Z14get_local_sizej", "local_size"},
|
|
{"_Z12get_work_dimv", "work_dim"},
|
|
{"_Z17get_global_offsetj", "global_offset"},
|
|
{"_Z12get_group_idj", "group_id"},
|
|
{"_Z14get_num_groupsj", "num_groups"},
|
|
};
|
|
|
|
static std::string getCallParamName(CallInst *Call) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
std::string Name = Call->getCalledFunction()->getName().str();
|
|
|
|
auto Iterator = KnownNames.find(Name);
|
|
if (Iterator != KnownNames.end())
|
|
Name = "__" + Iterator->getValue();
|
|
OS << Name;
|
|
for (auto &Operand : Call->arg_operands()) {
|
|
ConstantInt *Op = cast<ConstantInt>(&Operand);
|
|
OS << "_" << Op->getValue();
|
|
}
|
|
OS.flush();
|
|
return Result;
|
|
}
|
|
|
|
void Scop::createParameterId(const SCEV *Parameter) {
|
|
assert(Parameters.count(Parameter));
|
|
assert(!ParameterIds.count(Parameter));
|
|
|
|
std::string ParameterName = "p_" + std::to_string(getNumParams() - 1);
|
|
|
|
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
|
|
Value *Val = ValueParameter->getValue();
|
|
CallInst *Call = dyn_cast<CallInst>(Val);
|
|
|
|
if (Call && isConstCall(Call)) {
|
|
ParameterName = getCallParamName(Call);
|
|
} else if (UseInstructionNames) {
|
|
// If this parameter references a specific Value and this value has a name
|
|
// we use this name as it is likely to be unique and more useful than just
|
|
// a number.
|
|
if (Val->hasName())
|
|
ParameterName = Val->getName().str();
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
|
|
auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
|
|
if (LoadOrigin->hasName()) {
|
|
ParameterName += "_loaded_from_";
|
|
ParameterName +=
|
|
LI->getPointerOperand()->stripInBoundsOffsets()->getName();
|
|
}
|
|
}
|
|
}
|
|
|
|
ParameterName = getIslCompatibleName("", ParameterName, "");
|
|
}
|
|
|
|
isl::id Id = isl::id::alloc(getIslCtx(), ParameterName,
|
|
const_cast<void *>((const void *)Parameter));
|
|
ParameterIds[Parameter] = Id;
|
|
}
|
|
|
|
void Scop::addParams(const ParameterSetTy &NewParameters) {
|
|
for (const SCEV *Parameter : NewParameters) {
|
|
// Normalize the SCEV to get the representing element for an invariant load.
|
|
Parameter = extractConstantFactor(Parameter, *SE).second;
|
|
Parameter = getRepresentingInvariantLoadSCEV(Parameter);
|
|
|
|
if (Parameters.insert(Parameter))
|
|
createParameterId(Parameter);
|
|
}
|
|
}
|
|
|
|
isl::id Scop::getIdForParam(const SCEV *Parameter) const {
|
|
// Normalize the SCEV to get the representing element for an invariant load.
|
|
Parameter = getRepresentingInvariantLoadSCEV(Parameter);
|
|
return ParameterIds.lookup(Parameter);
|
|
}
|
|
|
|
bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const {
|
|
return DT.dominates(BB, getEntry());
|
|
}
|
|
|
|
void Scop::buildContext() {
|
|
isl::space Space = isl::space::params_alloc(getIslCtx(), 0);
|
|
Context = isl::set::universe(Space);
|
|
InvalidContext = isl::set::empty(Space);
|
|
AssumedContext = isl::set::universe(Space);
|
|
}
|
|
|
|
void Scop::addParameterBounds() {
|
|
unsigned PDim = 0;
|
|
for (auto *Parameter : Parameters) {
|
|
ConstantRange SRange = SE->getSignedRange(Parameter);
|
|
Context = addRangeBoundsToSet(Context, SRange, PDim++, isl::dim::param);
|
|
}
|
|
}
|
|
|
|
static std::vector<isl::id> getFortranArrayIds(Scop::array_range Arrays) {
|
|
std::vector<isl::id> OutermostSizeIds;
|
|
for (auto Array : Arrays) {
|
|
// To check if an array is a Fortran array, we check if it has a isl_pw_aff
|
|
// for its outermost dimension. Fortran arrays will have this since the
|
|
// outermost dimension size can be picked up from their runtime description.
|
|
// TODO: actually need to check if it has a FAD, but for now this works.
|
|
if (Array->getNumberOfDimensions() > 0) {
|
|
isl::pw_aff PwAff = Array->getDimensionSizePw(0);
|
|
if (!PwAff)
|
|
continue;
|
|
|
|
isl::id Id = PwAff.get_dim_id(isl::dim::param, 0);
|
|
assert(!Id.is_null() &&
|
|
"Invalid Id for PwAff expression in Fortran array");
|
|
OutermostSizeIds.push_back(Id);
|
|
}
|
|
}
|
|
return OutermostSizeIds;
|
|
}
|
|
|
|
// The FORTRAN array size parameters are known to be non-negative.
|
|
static isl::set boundFortranArrayParams(isl::set Context,
|
|
Scop::array_range Arrays) {
|
|
std::vector<isl::id> OutermostSizeIds;
|
|
OutermostSizeIds = getFortranArrayIds(Arrays);
|
|
|
|
for (isl::id Id : OutermostSizeIds) {
|
|
int dim = Context.find_dim_by_id(isl::dim::param, Id);
|
|
Context = Context.lower_bound_si(isl::dim::param, dim, 0);
|
|
}
|
|
|
|
return Context;
|
|
}
|
|
|
|
void Scop::realignParams() {
|
|
if (PollyIgnoreParamBounds)
|
|
return;
|
|
|
|
// Add all parameters into a common model.
|
|
isl::space Space = getFullParamSpace();
|
|
|
|
// Align the parameters of all data structures to the model.
|
|
Context = Context.align_params(Space);
|
|
AssumedContext = AssumedContext.align_params(Space);
|
|
InvalidContext = InvalidContext.align_params(Space);
|
|
|
|
// Bound the size of the fortran array dimensions.
|
|
Context = boundFortranArrayParams(Context, arrays());
|
|
|
|
// As all parameters are known add bounds to them.
|
|
addParameterBounds();
|
|
|
|
for (ScopStmt &Stmt : *this)
|
|
Stmt.realignParams();
|
|
// Simplify the schedule according to the context too.
|
|
Schedule = Schedule.gist_domain_params(getContext());
|
|
|
|
// Predictable parameter order is required for JSON imports. Ensure alignment
|
|
// by explicitly calling align_params.
|
|
Schedule = Schedule.align_params(Space);
|
|
}
|
|
|
|
static isl::set simplifyAssumptionContext(isl::set AssumptionContext,
|
|
const Scop &S) {
|
|
// If we have modeled all blocks in the SCoP that have side effects we can
|
|
// simplify the context with the constraints that are needed for anything to
|
|
// be executed at all. However, if we have error blocks in the SCoP we already
|
|
// assumed some parameter combinations cannot occur and removed them from the
|
|
// domains, thus we cannot use the remaining domain to simplify the
|
|
// assumptions.
|
|
if (!S.hasErrorBlock()) {
|
|
auto DomainParameters = S.getDomains().params();
|
|
AssumptionContext = AssumptionContext.gist_params(DomainParameters);
|
|
}
|
|
|
|
AssumptionContext = AssumptionContext.gist_params(S.getContext());
|
|
return AssumptionContext;
|
|
}
|
|
|
|
void Scop::simplifyContexts() {
|
|
// The parameter constraints of the iteration domains give us a set of
|
|
// constraints that need to hold for all cases where at least a single
|
|
// statement iteration is executed in the whole scop. We now simplify the
|
|
// assumed context under the assumption that such constraints hold and at
|
|
// least a single statement iteration is executed. For cases where no
|
|
// statement instances are executed, the assumptions we have taken about
|
|
// the executed code do not matter and can be changed.
|
|
//
|
|
// WARNING: This only holds if the assumptions we have taken do not reduce
|
|
// the set of statement instances that are executed. Otherwise we
|
|
// may run into a case where the iteration domains suggest that
|
|
// for a certain set of parameter constraints no code is executed,
|
|
// but in the original program some computation would have been
|
|
// performed. In such a case, modifying the run-time conditions and
|
|
// possibly influencing the run-time check may cause certain scops
|
|
// to not be executed.
|
|
//
|
|
// Example:
|
|
//
|
|
// When delinearizing the following code:
|
|
//
|
|
// for (long i = 0; i < 100; i++)
|
|
// for (long j = 0; j < m; j++)
|
|
// A[i+p][j] = 1.0;
|
|
//
|
|
// we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
|
|
// otherwise we would access out of bound data. Now, knowing that code is
|
|
// only executed for the case m >= 0, it is sufficient to assume p >= 0.
|
|
AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
|
|
InvalidContext = InvalidContext.align_params(getParamSpace());
|
|
}
|
|
|
|
isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const {
|
|
return getDomainConditions(Stmt->getEntryBlock());
|
|
}
|
|
|
|
isl::set Scop::getDomainConditions(BasicBlock *BB) const {
|
|
auto DIt = DomainMap.find(BB);
|
|
if (DIt != DomainMap.end())
|
|
return DIt->getSecond();
|
|
|
|
auto &RI = *R.getRegionInfo();
|
|
auto *BBR = RI.getRegionFor(BB);
|
|
while (BBR->getEntry() == BB)
|
|
BBR = BBR->getParent();
|
|
return getDomainConditions(BBR->getEntry());
|
|
}
|
|
|
|
Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
|
|
DominatorTree &DT, ScopDetection::DetectionContext &DC,
|
|
OptimizationRemarkEmitter &ORE, int ID)
|
|
: IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT),
|
|
R(R), name(None), HasSingleExitEdge(R.getExitingBlock()), DC(DC),
|
|
ORE(ORE), Affinator(this, LI), ID(ID) {
|
|
if (IslOnErrorAbort)
|
|
isl_options_set_on_error(getIslCtx().get(), ISL_ON_ERROR_ABORT);
|
|
buildContext();
|
|
}
|
|
|
|
Scop::~Scop() = default;
|
|
|
|
void Scop::removeFromStmtMap(ScopStmt &Stmt) {
|
|
for (Instruction *Inst : Stmt.getInstructions())
|
|
InstStmtMap.erase(Inst);
|
|
|
|
if (Stmt.isRegionStmt()) {
|
|
for (BasicBlock *BB : Stmt.getRegion()->blocks()) {
|
|
StmtMap.erase(BB);
|
|
// Skip entry basic block, as its instructions are already deleted as
|
|
// part of the statement's instruction list.
|
|
if (BB == Stmt.getEntryBlock())
|
|
continue;
|
|
for (Instruction &Inst : *BB)
|
|
InstStmtMap.erase(&Inst);
|
|
}
|
|
} else {
|
|
auto StmtMapIt = StmtMap.find(Stmt.getBasicBlock());
|
|
if (StmtMapIt != StmtMap.end())
|
|
StmtMapIt->second.erase(std::remove(StmtMapIt->second.begin(),
|
|
StmtMapIt->second.end(), &Stmt),
|
|
StmtMapIt->second.end());
|
|
for (Instruction *Inst : Stmt.getInstructions())
|
|
InstStmtMap.erase(Inst);
|
|
}
|
|
}
|
|
|
|
void Scop::removeStmts(std::function<bool(ScopStmt &)> ShouldDelete,
|
|
bool AfterHoisting) {
|
|
for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
|
|
if (!ShouldDelete(*StmtIt)) {
|
|
StmtIt++;
|
|
continue;
|
|
}
|
|
|
|
// Start with removing all of the statement's accesses including erasing it
|
|
// from all maps that are pointing to them.
|
|
// Make a temporary copy because removing MAs invalidates the iterator.
|
|
SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end());
|
|
for (MemoryAccess *MA : MAList)
|
|
StmtIt->removeSingleMemoryAccess(MA, AfterHoisting);
|
|
|
|
removeFromStmtMap(*StmtIt);
|
|
StmtIt = Stmts.erase(StmtIt);
|
|
}
|
|
}
|
|
|
|
void Scop::removeStmtNotInDomainMap() {
|
|
auto ShouldDelete = [this](ScopStmt &Stmt) -> bool {
|
|
isl::set Domain = DomainMap.lookup(Stmt.getEntryBlock());
|
|
if (!Domain)
|
|
return true;
|
|
return Domain.is_empty();
|
|
};
|
|
removeStmts(ShouldDelete, false);
|
|
}
|
|
|
|
void Scop::simplifySCoP(bool AfterHoisting) {
|
|
auto ShouldDelete = [AfterHoisting](ScopStmt &Stmt) -> bool {
|
|
// Never delete statements that contain calls to debug functions.
|
|
if (hasDebugCall(&Stmt))
|
|
return false;
|
|
|
|
bool RemoveStmt = Stmt.isEmpty();
|
|
|
|
// Remove read only statements only after invariant load hoisting.
|
|
if (!RemoveStmt && AfterHoisting) {
|
|
bool OnlyRead = true;
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isRead())
|
|
continue;
|
|
|
|
OnlyRead = false;
|
|
break;
|
|
}
|
|
|
|
RemoveStmt = OnlyRead;
|
|
}
|
|
return RemoveStmt;
|
|
};
|
|
|
|
removeStmts(ShouldDelete, AfterHoisting);
|
|
}
|
|
|
|
InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) {
|
|
LoadInst *LInst = dyn_cast<LoadInst>(Val);
|
|
if (!LInst)
|
|
return nullptr;
|
|
|
|
if (Value *Rep = InvEquivClassVMap.lookup(LInst))
|
|
LInst = cast<LoadInst>(Rep);
|
|
|
|
Type *Ty = LInst->getType();
|
|
const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
|
|
for (auto &IAClass : InvariantEquivClasses) {
|
|
if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
|
|
continue;
|
|
|
|
auto &MAs = IAClass.InvariantAccesses;
|
|
for (auto *MA : MAs)
|
|
if (MA->getAccessInstruction() == Val)
|
|
return &IAClass;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
|
|
ArrayRef<const SCEV *> Sizes,
|
|
MemoryKind Kind,
|
|
const char *BaseName) {
|
|
assert((BasePtr || BaseName) &&
|
|
"BasePtr and BaseName can not be nullptr at the same time.");
|
|
assert(!(BasePtr && BaseName) && "BaseName is redundant.");
|
|
auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)]
|
|
: ScopArrayNameMap[BaseName];
|
|
if (!SAI) {
|
|
auto &DL = getFunction().getParent()->getDataLayout();
|
|
SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind,
|
|
DL, this, BaseName));
|
|
ScopArrayInfoSet.insert(SAI.get());
|
|
} else {
|
|
SAI->updateElementType(ElementType);
|
|
// In case of mismatching array sizes, we bail out by setting the run-time
|
|
// context to false.
|
|
if (!SAI->updateSizes(Sizes))
|
|
invalidate(DELINEARIZATION, DebugLoc());
|
|
}
|
|
return SAI.get();
|
|
}
|
|
|
|
ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType,
|
|
const std::string &BaseName,
|
|
const std::vector<unsigned> &Sizes) {
|
|
auto *DimSizeType = Type::getInt64Ty(getSE()->getContext());
|
|
std::vector<const SCEV *> SCEVSizes;
|
|
|
|
for (auto size : Sizes)
|
|
if (size)
|
|
SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false));
|
|
else
|
|
SCEVSizes.push_back(nullptr);
|
|
|
|
auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes,
|
|
MemoryKind::Array, BaseName.c_str());
|
|
return SAI;
|
|
}
|
|
|
|
ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind) {
|
|
auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
|
|
return SAI;
|
|
}
|
|
|
|
ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
|
|
auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind);
|
|
assert(SAI && "No ScopArrayInfo available for this base pointer");
|
|
return SAI;
|
|
}
|
|
|
|
std::string Scop::getContextStr() const { return getContext().to_str(); }
|
|
|
|
std::string Scop::getAssumedContextStr() const {
|
|
assert(AssumedContext && "Assumed context not yet built");
|
|
return AssumedContext.to_str();
|
|
}
|
|
|
|
std::string Scop::getInvalidContextStr() const {
|
|
return InvalidContext.to_str();
|
|
}
|
|
|
|
std::string Scop::getNameStr() const {
|
|
std::string ExitName, EntryName;
|
|
std::tie(EntryName, ExitName) = getEntryExitStr();
|
|
return EntryName + "---" + ExitName;
|
|
}
|
|
|
|
std::pair<std::string, std::string> Scop::getEntryExitStr() const {
|
|
std::string ExitName, EntryName;
|
|
raw_string_ostream ExitStr(ExitName);
|
|
raw_string_ostream EntryStr(EntryName);
|
|
|
|
R.getEntry()->printAsOperand(EntryStr, false);
|
|
EntryStr.str();
|
|
|
|
if (R.getExit()) {
|
|
R.getExit()->printAsOperand(ExitStr, false);
|
|
ExitStr.str();
|
|
} else
|
|
ExitName = "FunctionExit";
|
|
|
|
return std::make_pair(EntryName, ExitName);
|
|
}
|
|
|
|
isl::set Scop::getContext() const { return Context; }
|
|
|
|
isl::space Scop::getParamSpace() const { return getContext().get_space(); }
|
|
|
|
isl::space Scop::getFullParamSpace() const {
|
|
std::vector<isl::id> FortranIDs;
|
|
FortranIDs = getFortranArrayIds(arrays());
|
|
|
|
isl::space Space = isl::space::params_alloc(
|
|
getIslCtx(), ParameterIds.size() + FortranIDs.size());
|
|
|
|
unsigned PDim = 0;
|
|
for (const SCEV *Parameter : Parameters) {
|
|
isl::id Id = getIdForParam(Parameter);
|
|
Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
|
|
}
|
|
|
|
for (isl::id Id : FortranIDs)
|
|
Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
|
|
|
|
return Space;
|
|
}
|
|
|
|
isl::set Scop::getAssumedContext() const {
|
|
assert(AssumedContext && "Assumed context not yet built");
|
|
return AssumedContext;
|
|
}
|
|
|
|
bool Scop::isProfitable(bool ScalarsAreUnprofitable) const {
|
|
if (PollyProcessUnprofitable)
|
|
return true;
|
|
|
|
if (isEmpty())
|
|
return false;
|
|
|
|
unsigned OptimizableStmtsOrLoops = 0;
|
|
for (auto &Stmt : *this) {
|
|
if (Stmt.getNumIterators() == 0)
|
|
continue;
|
|
|
|
bool ContainsArrayAccs = false;
|
|
bool ContainsScalarAccs = false;
|
|
for (auto *MA : Stmt) {
|
|
if (MA->isRead())
|
|
continue;
|
|
ContainsArrayAccs |= MA->isLatestArrayKind();
|
|
ContainsScalarAccs |= MA->isLatestScalarKind();
|
|
}
|
|
|
|
if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs))
|
|
OptimizableStmtsOrLoops += Stmt.getNumIterators();
|
|
}
|
|
|
|
return OptimizableStmtsOrLoops > 1;
|
|
}
|
|
|
|
bool Scop::hasFeasibleRuntimeContext() const {
|
|
auto PositiveContext = getAssumedContext();
|
|
auto NegativeContext = getInvalidContext();
|
|
PositiveContext = addNonEmptyDomainConstraints(PositiveContext);
|
|
// addNonEmptyDomainConstraints returns null if ScopStmts have a null domain
|
|
if (!PositiveContext)
|
|
return false;
|
|
|
|
bool IsFeasible = !(PositiveContext.is_empty() ||
|
|
PositiveContext.is_subset(NegativeContext));
|
|
if (!IsFeasible)
|
|
return false;
|
|
|
|
auto DomainContext = getDomains().params();
|
|
IsFeasible = !DomainContext.is_subset(NegativeContext);
|
|
IsFeasible &= !getContext().is_subset(NegativeContext);
|
|
|
|
return IsFeasible;
|
|
}
|
|
|
|
isl::set Scop::addNonEmptyDomainConstraints(isl::set C) const {
|
|
isl::set DomainContext = getDomains().params();
|
|
return C.intersect_params(DomainContext);
|
|
}
|
|
|
|
MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) {
|
|
Value *PointerBase = MA->getOriginalBaseAddr();
|
|
|
|
auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase);
|
|
if (!PointerBaseInst)
|
|
return nullptr;
|
|
|
|
auto *BasePtrStmt = getStmtFor(PointerBaseInst);
|
|
if (!BasePtrStmt)
|
|
return nullptr;
|
|
|
|
return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst);
|
|
}
|
|
|
|
static std::string toString(AssumptionKind Kind) {
|
|
switch (Kind) {
|
|
case ALIASING:
|
|
return "No-aliasing";
|
|
case INBOUNDS:
|
|
return "Inbounds";
|
|
case WRAPPING:
|
|
return "No-overflows";
|
|
case UNSIGNED:
|
|
return "Signed-unsigned";
|
|
case COMPLEXITY:
|
|
return "Low complexity";
|
|
case PROFITABLE:
|
|
return "Profitable";
|
|
case ERRORBLOCK:
|
|
return "No-error";
|
|
case INFINITELOOP:
|
|
return "Finite loop";
|
|
case INVARIANTLOAD:
|
|
return "Invariant load";
|
|
case DELINEARIZATION:
|
|
return "Delinearization";
|
|
}
|
|
llvm_unreachable("Unknown AssumptionKind!");
|
|
}
|
|
|
|
bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) {
|
|
if (Sign == AS_ASSUMPTION) {
|
|
if (Context.is_subset(Set))
|
|
return false;
|
|
|
|
if (AssumedContext.is_subset(Set))
|
|
return false;
|
|
} else {
|
|
if (Set.is_disjoint(Context))
|
|
return false;
|
|
|
|
if (Set.is_subset(InvalidContext))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
|
|
AssumptionSign Sign, BasicBlock *BB) {
|
|
if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign))
|
|
return false;
|
|
|
|
// Do never emit trivial assumptions as they only clutter the output.
|
|
if (!PollyRemarksMinimal) {
|
|
isl::set Univ;
|
|
if (Sign == AS_ASSUMPTION)
|
|
Univ = isl::set::universe(Set.get_space());
|
|
|
|
bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) ||
|
|
(Sign == AS_ASSUMPTION && Univ.is_equal(Set));
|
|
|
|
if (IsTrivial)
|
|
return false;
|
|
}
|
|
|
|
switch (Kind) {
|
|
case ALIASING:
|
|
AssumptionsAliasing++;
|
|
break;
|
|
case INBOUNDS:
|
|
AssumptionsInbounds++;
|
|
break;
|
|
case WRAPPING:
|
|
AssumptionsWrapping++;
|
|
break;
|
|
case UNSIGNED:
|
|
AssumptionsUnsigned++;
|
|
break;
|
|
case COMPLEXITY:
|
|
AssumptionsComplexity++;
|
|
break;
|
|
case PROFITABLE:
|
|
AssumptionsUnprofitable++;
|
|
break;
|
|
case ERRORBLOCK:
|
|
AssumptionsErrorBlock++;
|
|
break;
|
|
case INFINITELOOP:
|
|
AssumptionsInfiniteLoop++;
|
|
break;
|
|
case INVARIANTLOAD:
|
|
AssumptionsInvariantLoad++;
|
|
break;
|
|
case DELINEARIZATION:
|
|
AssumptionsDelinearization++;
|
|
break;
|
|
}
|
|
|
|
auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t";
|
|
std::string Msg = toString(Kind) + Suffix + Set.to_str();
|
|
if (BB)
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, BB)
|
|
<< Msg);
|
|
else
|
|
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc,
|
|
R.getEntry())
|
|
<< Msg);
|
|
return true;
|
|
}
|
|
|
|
void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
|
|
AssumptionSign Sign, BasicBlock *BB) {
|
|
// Simplify the assumptions/restrictions first.
|
|
Set = Set.gist_params(getContext());
|
|
|
|
if (!trackAssumption(Kind, Set, Loc, Sign, BB))
|
|
return;
|
|
|
|
if (Sign == AS_ASSUMPTION)
|
|
AssumedContext = AssumedContext.intersect(Set).coalesce();
|
|
else
|
|
InvalidContext = InvalidContext.unite(Set).coalesce();
|
|
}
|
|
|
|
void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) {
|
|
LLVM_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n");
|
|
addAssumption(Kind, isl::set::empty(getParamSpace()), Loc, AS_ASSUMPTION, BB);
|
|
}
|
|
|
|
isl::set Scop::getInvalidContext() const { return InvalidContext; }
|
|
|
|
void Scop::printContext(raw_ostream &OS) const {
|
|
OS << "Context:\n";
|
|
OS.indent(4) << Context << "\n";
|
|
|
|
OS.indent(4) << "Assumed Context:\n";
|
|
OS.indent(4) << AssumedContext << "\n";
|
|
|
|
OS.indent(4) << "Invalid Context:\n";
|
|
OS.indent(4) << InvalidContext << "\n";
|
|
|
|
unsigned Dim = 0;
|
|
for (const SCEV *Parameter : Parameters)
|
|
OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n";
|
|
}
|
|
|
|
void Scop::printAliasAssumptions(raw_ostream &OS) const {
|
|
int noOfGroups = 0;
|
|
for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
|
|
if (Pair.second.size() == 0)
|
|
noOfGroups += 1;
|
|
else
|
|
noOfGroups += Pair.second.size();
|
|
}
|
|
|
|
OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
|
|
if (MinMaxAliasGroups.empty()) {
|
|
OS.indent(8) << "n/a\n";
|
|
return;
|
|
}
|
|
|
|
for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
|
|
|
|
// If the group has no read only accesses print the write accesses.
|
|
if (Pair.second.empty()) {
|
|
OS.indent(8) << "[[";
|
|
for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
|
|
OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
|
|
<< ">";
|
|
}
|
|
OS << " ]]\n";
|
|
}
|
|
|
|
for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
|
|
OS.indent(8) << "[[";
|
|
OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
|
|
for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
|
|
OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
|
|
<< ">";
|
|
}
|
|
OS << " ]]\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const {
|
|
OS << "Statements {\n";
|
|
|
|
for (const ScopStmt &Stmt : *this) {
|
|
OS.indent(4);
|
|
Stmt.print(OS, PrintInstructions);
|
|
}
|
|
|
|
OS.indent(4) << "}\n";
|
|
}
|
|
|
|
void Scop::printArrayInfo(raw_ostream &OS) const {
|
|
OS << "Arrays {\n";
|
|
|
|
for (auto &Array : arrays())
|
|
Array->print(OS);
|
|
|
|
OS.indent(4) << "}\n";
|
|
|
|
OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
|
|
|
|
for (auto &Array : arrays())
|
|
Array->print(OS, /* SizeAsPwAff */ true);
|
|
|
|
OS.indent(4) << "}\n";
|
|
}
|
|
|
|
void Scop::print(raw_ostream &OS, bool PrintInstructions) const {
|
|
OS.indent(4) << "Function: " << getFunction().getName() << "\n";
|
|
OS.indent(4) << "Region: " << getNameStr() << "\n";
|
|
OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
|
|
OS.indent(4) << "Invariant Accesses: {\n";
|
|
for (const auto &IAClass : InvariantEquivClasses) {
|
|
const auto &MAs = IAClass.InvariantAccesses;
|
|
if (MAs.empty()) {
|
|
OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n";
|
|
} else {
|
|
MAs.front()->print(OS);
|
|
OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext
|
|
<< "\n";
|
|
}
|
|
}
|
|
OS.indent(4) << "}\n";
|
|
printContext(OS.indent(4));
|
|
printArrayInfo(OS.indent(4));
|
|
printAliasAssumptions(OS);
|
|
printStatements(OS.indent(4), PrintInstructions);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void Scop::dump() const { print(dbgs(), true); }
|
|
#endif
|
|
|
|
isl::ctx Scop::getIslCtx() const { return IslCtx.get(); }
|
|
|
|
__isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB,
|
|
bool NonNegative,
|
|
RecordedAssumptionsTy *RecordedAssumptions) {
|
|
// First try to use the SCEVAffinator to generate a piecewise defined
|
|
// affine function from @p E in the context of @p BB. If that tasks becomes to
|
|
// complex the affinator might return a nullptr. In such a case we invalidate
|
|
// the SCoP and return a dummy value. This way we do not need to add error
|
|
// handling code to all users of this function.
|
|
auto PWAC = Affinator.getPwAff(E, BB, RecordedAssumptions);
|
|
if (PWAC.first) {
|
|
// TODO: We could use a heuristic and either use:
|
|
// SCEVAffinator::takeNonNegativeAssumption
|
|
// or
|
|
// SCEVAffinator::interpretAsUnsigned
|
|
// to deal with unsigned or "NonNegative" SCEVs.
|
|
if (NonNegative)
|
|
Affinator.takeNonNegativeAssumption(PWAC, RecordedAssumptions);
|
|
return PWAC;
|
|
}
|
|
|
|
auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
|
|
invalidate(COMPLEXITY, DL, BB);
|
|
return Affinator.getPwAff(SE->getZero(E->getType()), BB, RecordedAssumptions);
|
|
}
|
|
|
|
isl::union_set Scop::getDomains() const {
|
|
isl_space *EmptySpace = isl_space_params_alloc(getIslCtx().get(), 0);
|
|
isl_union_set *Domain = isl_union_set_empty(EmptySpace);
|
|
|
|
for (const ScopStmt &Stmt : *this)
|
|
Domain = isl_union_set_add_set(Domain, Stmt.getDomain().release());
|
|
|
|
return isl::manage(Domain);
|
|
}
|
|
|
|
isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB,
|
|
RecordedAssumptionsTy *RecordedAssumptions) {
|
|
PWACtx PWAC = getPwAff(E, BB, RecordedAssumptions);
|
|
return PWAC.first;
|
|
}
|
|
|
|
isl::union_map
|
|
Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
|
|
isl::union_map Accesses = isl::union_map::empty(getParamSpace());
|
|
|
|
for (ScopStmt &Stmt : *this) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (!Predicate(*MA))
|
|
continue;
|
|
|
|
isl::set Domain = Stmt.getDomain();
|
|
isl::map AccessDomain = MA->getAccessRelation();
|
|
AccessDomain = AccessDomain.intersect_domain(Domain);
|
|
Accesses = Accesses.add_map(AccessDomain);
|
|
}
|
|
}
|
|
|
|
return Accesses.coalesce();
|
|
}
|
|
|
|
isl::union_map Scop::getMustWrites() {
|
|
return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
|
|
}
|
|
|
|
isl::union_map Scop::getMayWrites() {
|
|
return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
|
|
}
|
|
|
|
isl::union_map Scop::getWrites() {
|
|
return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
|
|
}
|
|
|
|
isl::union_map Scop::getReads() {
|
|
return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
|
|
}
|
|
|
|
isl::union_map Scop::getAccesses() {
|
|
return getAccessesOfType([](MemoryAccess &MA) { return true; });
|
|
}
|
|
|
|
isl::union_map Scop::getAccesses(ScopArrayInfo *Array) {
|
|
return getAccessesOfType(
|
|
[Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; });
|
|
}
|
|
|
|
isl::union_map Scop::getSchedule() const {
|
|
auto Tree = getScheduleTree();
|
|
return Tree.get_map();
|
|
}
|
|
|
|
isl::schedule Scop::getScheduleTree() const {
|
|
return Schedule.intersect_domain(getDomains());
|
|
}
|
|
|
|
void Scop::setSchedule(isl::union_map NewSchedule) {
|
|
auto S = isl::schedule::from_domain(getDomains());
|
|
Schedule = S.insert_partial_schedule(
|
|
isl::multi_union_pw_aff::from_union_map(NewSchedule));
|
|
ScheduleModified = true;
|
|
}
|
|
|
|
void Scop::setScheduleTree(isl::schedule NewSchedule) {
|
|
Schedule = NewSchedule;
|
|
ScheduleModified = true;
|
|
}
|
|
|
|
bool Scop::restrictDomains(isl::union_set Domain) {
|
|
bool Changed = false;
|
|
for (ScopStmt &Stmt : *this) {
|
|
isl::union_set StmtDomain = isl::union_set(Stmt.getDomain());
|
|
isl::union_set NewStmtDomain = StmtDomain.intersect(Domain);
|
|
|
|
if (StmtDomain.is_subset(NewStmtDomain))
|
|
continue;
|
|
|
|
Changed = true;
|
|
|
|
NewStmtDomain = NewStmtDomain.coalesce();
|
|
|
|
if (NewStmtDomain.is_empty())
|
|
Stmt.restrictDomain(isl::set::empty(Stmt.getDomainSpace()));
|
|
else
|
|
Stmt.restrictDomain(isl::set(NewStmtDomain));
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
ScalarEvolution *Scop::getSE() const { return SE; }
|
|
|
|
void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
|
|
std::vector<Instruction *> Instructions) {
|
|
assert(BB && "Unexpected nullptr!");
|
|
Stmts.emplace_back(*this, *BB, Name, SurroundingLoop, Instructions);
|
|
auto *Stmt = &Stmts.back();
|
|
StmtMap[BB].push_back(Stmt);
|
|
for (Instruction *Inst : Instructions) {
|
|
assert(!InstStmtMap.count(Inst) &&
|
|
"Unexpected statement corresponding to the instruction.");
|
|
InstStmtMap[Inst] = Stmt;
|
|
}
|
|
}
|
|
|
|
void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
|
|
std::vector<Instruction *> Instructions) {
|
|
assert(R && "Unexpected nullptr!");
|
|
Stmts.emplace_back(*this, *R, Name, SurroundingLoop, Instructions);
|
|
auto *Stmt = &Stmts.back();
|
|
|
|
for (Instruction *Inst : Instructions) {
|
|
assert(!InstStmtMap.count(Inst) &&
|
|
"Unexpected statement corresponding to the instruction.");
|
|
InstStmtMap[Inst] = Stmt;
|
|
}
|
|
|
|
for (BasicBlock *BB : R->blocks()) {
|
|
StmtMap[BB].push_back(Stmt);
|
|
if (BB == R->getEntry())
|
|
continue;
|
|
for (Instruction &Inst : *BB) {
|
|
assert(!InstStmtMap.count(&Inst) &&
|
|
"Unexpected statement corresponding to the instruction.");
|
|
InstStmtMap[&Inst] = Stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel,
|
|
isl::set Domain) {
|
|
#ifndef NDEBUG
|
|
isl::set SourceDomain = SourceRel.domain();
|
|
isl::set TargetDomain = TargetRel.domain();
|
|
assert(Domain.is_subset(TargetDomain) &&
|
|
"Target access not defined for complete statement domain");
|
|
assert(Domain.is_subset(SourceDomain) &&
|
|
"Source access not defined for complete statement domain");
|
|
#endif
|
|
Stmts.emplace_back(*this, SourceRel, TargetRel, Domain);
|
|
CopyStmtsNum++;
|
|
return &(Stmts.back());
|
|
}
|
|
|
|
ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const {
|
|
auto StmtMapIt = StmtMap.find(BB);
|
|
if (StmtMapIt == StmtMap.end())
|
|
return {};
|
|
return StmtMapIt->second;
|
|
}
|
|
|
|
ScopStmt *Scop::getIncomingStmtFor(const Use &U) const {
|
|
auto *PHI = cast<PHINode>(U.getUser());
|
|
BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
|
|
|
|
// If the value is a non-synthesizable from the incoming block, use the
|
|
// statement that contains it as user statement.
|
|
if (auto *IncomingInst = dyn_cast<Instruction>(U.get())) {
|
|
if (IncomingInst->getParent() == IncomingBB) {
|
|
if (ScopStmt *IncomingStmt = getStmtFor(IncomingInst))
|
|
return IncomingStmt;
|
|
}
|
|
}
|
|
|
|
// Otherwise, use the epilogue/last statement.
|
|
return getLastStmtFor(IncomingBB);
|
|
}
|
|
|
|
ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const {
|
|
ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB);
|
|
if (!StmtList.empty())
|
|
return StmtList.back();
|
|
return nullptr;
|
|
}
|
|
|
|
ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const {
|
|
if (RN->isSubRegion())
|
|
return getStmtListFor(RN->getNodeAs<Region>());
|
|
return getStmtListFor(RN->getNodeAs<BasicBlock>());
|
|
}
|
|
|
|
ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const {
|
|
return getStmtListFor(R->getEntry());
|
|
}
|
|
|
|
int Scop::getRelativeLoopDepth(const Loop *L) const {
|
|
if (!L || !R.contains(L))
|
|
return -1;
|
|
// outermostLoopInRegion always returns nullptr for top level regions
|
|
if (R.isTopLevelRegion()) {
|
|
// LoopInfo's depths start at 1, we start at 0
|
|
return L->getLoopDepth() - 1;
|
|
} else {
|
|
Loop *OuterLoop = R.outermostLoopInRegion(const_cast<Loop *>(L));
|
|
assert(OuterLoop);
|
|
return L->getLoopDepth() - OuterLoop->getLoopDepth();
|
|
}
|
|
}
|
|
|
|
ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) {
|
|
for (auto &SAI : arrays()) {
|
|
if (SAI->getName() == BaseName)
|
|
return SAI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Scop::addAccessData(MemoryAccess *Access) {
|
|
const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo();
|
|
assert(SAI && "can only use after access relations have been constructed");
|
|
|
|
if (Access->isOriginalValueKind() && Access->isRead())
|
|
ValueUseAccs[SAI].push_back(Access);
|
|
else if (Access->isOriginalAnyPHIKind() && Access->isWrite())
|
|
PHIIncomingAccs[SAI].push_back(Access);
|
|
}
|
|
|
|
void Scop::removeAccessData(MemoryAccess *Access) {
|
|
if (Access->isOriginalValueKind() && Access->isWrite()) {
|
|
ValueDefAccs.erase(Access->getAccessValue());
|
|
} else if (Access->isOriginalValueKind() && Access->isRead()) {
|
|
auto &Uses = ValueUseAccs[Access->getScopArrayInfo()];
|
|
auto NewEnd = std::remove(Uses.begin(), Uses.end(), Access);
|
|
Uses.erase(NewEnd, Uses.end());
|
|
} else if (Access->isOriginalPHIKind() && Access->isRead()) {
|
|
PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
|
|
PHIReadAccs.erase(PHI);
|
|
} else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) {
|
|
auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()];
|
|
auto NewEnd = std::remove(Incomings.begin(), Incomings.end(), Access);
|
|
Incomings.erase(NewEnd, Incomings.end());
|
|
}
|
|
}
|
|
|
|
MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const {
|
|
assert(SAI->isValueKind());
|
|
|
|
Instruction *Val = dyn_cast<Instruction>(SAI->getBasePtr());
|
|
if (!Val)
|
|
return nullptr;
|
|
|
|
return ValueDefAccs.lookup(Val);
|
|
}
|
|
|
|
ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const {
|
|
assert(SAI->isValueKind());
|
|
auto It = ValueUseAccs.find(SAI);
|
|
if (It == ValueUseAccs.end())
|
|
return {};
|
|
return It->second;
|
|
}
|
|
|
|
MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const {
|
|
assert(SAI->isPHIKind() || SAI->isExitPHIKind());
|
|
|
|
if (SAI->isExitPHIKind())
|
|
return nullptr;
|
|
|
|
PHINode *PHI = cast<PHINode>(SAI->getBasePtr());
|
|
return PHIReadAccs.lookup(PHI);
|
|
}
|
|
|
|
ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const {
|
|
assert(SAI->isPHIKind() || SAI->isExitPHIKind());
|
|
auto It = PHIIncomingAccs.find(SAI);
|
|
if (It == PHIIncomingAccs.end())
|
|
return {};
|
|
return It->second;
|
|
}
|
|
|
|
bool Scop::isEscaping(Instruction *Inst) {
|
|
assert(contains(Inst) && "The concept of escaping makes only sense for "
|
|
"values defined inside the SCoP");
|
|
|
|
for (Use &Use : Inst->uses()) {
|
|
BasicBlock *UserBB = getUseBlock(Use);
|
|
if (!contains(UserBB))
|
|
return true;
|
|
|
|
// When the SCoP region exit needs to be simplified, PHIs in the region exit
|
|
// move to a new basic block such that its incoming blocks are not in the
|
|
// SCoP anymore.
|
|
if (hasSingleExitEdge() && isa<PHINode>(Use.getUser()) &&
|
|
isExit(cast<PHINode>(Use.getUser())->getParent()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Scop::incrementNumberOfAliasingAssumptions(unsigned step) {
|
|
AssumptionsAliasing += step;
|
|
}
|
|
|
|
Scop::ScopStatistics Scop::getStatistics() const {
|
|
ScopStatistics Result;
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
|
|
auto LoopStat = ScopDetection::countBeneficialLoops(&R, *SE, *getLI(), 0);
|
|
|
|
int NumTotalLoops = LoopStat.NumLoops;
|
|
Result.NumBoxedLoops = getBoxedLoops().size();
|
|
Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops;
|
|
|
|
for (const ScopStmt &Stmt : *this) {
|
|
isl::set Domain = Stmt.getDomain().intersect_params(getContext());
|
|
bool IsInLoop = Stmt.getNumIterators() >= 1;
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (!MA->isWrite())
|
|
continue;
|
|
|
|
if (MA->isLatestValueKind()) {
|
|
Result.NumValueWrites += 1;
|
|
if (IsInLoop)
|
|
Result.NumValueWritesInLoops += 1;
|
|
}
|
|
|
|
if (MA->isLatestAnyPHIKind()) {
|
|
Result.NumPHIWrites += 1;
|
|
if (IsInLoop)
|
|
Result.NumPHIWritesInLoops += 1;
|
|
}
|
|
|
|
isl::set AccSet =
|
|
MA->getAccessRelation().intersect_domain(Domain).range();
|
|
if (AccSet.is_singleton()) {
|
|
Result.NumSingletonWrites += 1;
|
|
if (IsInLoop)
|
|
Result.NumSingletonWritesInLoops += 1;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return Result;
|
|
}
|
|
|
|
raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) {
|
|
scop.print(OS, PollyPrintInstructions);
|
|
return OS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<RegionInfoPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
|
|
AU.addRequiredTransitive<ScopDetectionWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
|
|
Scop::ScopStatistics ScopStats) {
|
|
assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops);
|
|
|
|
NumScops++;
|
|
NumLoopsInScop += Stats.NumLoops;
|
|
MaxNumLoopsInScop =
|
|
std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
|
|
|
|
if (Stats.MaxDepth == 0)
|
|
NumScopsDepthZero++;
|
|
else if (Stats.MaxDepth == 1)
|
|
NumScopsDepthOne++;
|
|
else if (Stats.MaxDepth == 2)
|
|
NumScopsDepthTwo++;
|
|
else if (Stats.MaxDepth == 3)
|
|
NumScopsDepthThree++;
|
|
else if (Stats.MaxDepth == 4)
|
|
NumScopsDepthFour++;
|
|
else if (Stats.MaxDepth == 5)
|
|
NumScopsDepthFive++;
|
|
else
|
|
NumScopsDepthLarger++;
|
|
|
|
NumAffineLoops += ScopStats.NumAffineLoops;
|
|
NumBoxedLoops += ScopStats.NumBoxedLoops;
|
|
|
|
NumValueWrites += ScopStats.NumValueWrites;
|
|
NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
|
|
NumPHIWrites += ScopStats.NumPHIWrites;
|
|
NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
|
|
NumSingletonWrites += ScopStats.NumSingletonWrites;
|
|
NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
|
|
}
|
|
|
|
bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) {
|
|
auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
|
|
|
|
if (!SD.isMaxRegionInScop(*R))
|
|
return false;
|
|
|
|
Function *F = R->getEntry()->getParent();
|
|
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto const &DL = F->getParent()->getDataLayout();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
|
|
S = SB.getScop(); // take ownership of scop object
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
|
|
if (S) {
|
|
ScopDetection::LoopStats Stats =
|
|
ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
|
|
updateLoopCountStatistic(Stats, S->getStatistics());
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const {
|
|
if (S)
|
|
S->print(OS, PollyPrintInstructions);
|
|
else
|
|
OS << "Invalid Scop!\n";
|
|
}
|
|
|
|
char ScopInfoRegionPass::ID = 0;
|
|
|
|
Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops",
|
|
"Polly - Create polyhedral description of Scops", false,
|
|
false);
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
|
|
INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops",
|
|
"Polly - Create polyhedral description of Scops", false,
|
|
false)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
|
|
LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
|
|
AssumptionCache &AC, OptimizationRemarkEmitter &ORE)
|
|
: DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) {
|
|
recompute();
|
|
}
|
|
|
|
void ScopInfo::recompute() {
|
|
RegionToScopMap.clear();
|
|
/// Create polyhedral description of scops for all the valid regions of a
|
|
/// function.
|
|
for (auto &It : SD) {
|
|
Region *R = const_cast<Region *>(It);
|
|
if (!SD.isMaxRegionInScop(*R))
|
|
continue;
|
|
|
|
ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
|
|
std::unique_ptr<Scop> S = SB.getScop();
|
|
if (!S)
|
|
continue;
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
|
|
ScopDetection::LoopStats Stats =
|
|
ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
|
|
updateLoopCountStatistic(Stats, S->getStatistics());
|
|
#endif
|
|
bool Inserted = RegionToScopMap.insert({R, std::move(S)}).second;
|
|
assert(Inserted && "Building Scop for the same region twice!");
|
|
(void)Inserted;
|
|
}
|
|
}
|
|
|
|
bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
// Check whether the analysis, all analyses on functions have been preserved
|
|
// or anything we're holding references to is being invalidated
|
|
auto PAC = PA.getChecker<ScopInfoAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
|
|
Inv.invalidate<ScopAnalysis>(F, PA) ||
|
|
Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
|
|
Inv.invalidate<LoopAnalysis>(F, PA) ||
|
|
Inv.invalidate<AAManager>(F, PA) ||
|
|
Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
|
|
Inv.invalidate<AssumptionAnalysis>(F, PA);
|
|
}
|
|
|
|
AnalysisKey ScopInfoAnalysis::Key;
|
|
|
|
ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
auto &SD = FAM.getResult<ScopAnalysis>(F);
|
|
auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto &LI = FAM.getResult<LoopAnalysis>(F);
|
|
auto &AA = FAM.getResult<AAManager>(F);
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
return {DL, SD, SE, LI, AA, DT, AC, ORE};
|
|
}
|
|
|
|
PreservedAnalyses ScopInfoPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
auto &SI = FAM.getResult<ScopInfoAnalysis>(F);
|
|
// Since the legacy PM processes Scops in bottom up, we print them in reverse
|
|
// order here to keep the output persistent
|
|
for (auto &It : reverse(SI)) {
|
|
if (It.second)
|
|
It.second->print(Stream, PollyPrintInstructions);
|
|
else
|
|
Stream << "Invalid Scop!\n";
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<RegionInfoPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
|
|
AU.addRequiredTransitive<ScopDetectionWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool ScopInfoWrapperPass::runOnFunction(Function &F) {
|
|
auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
|
|
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto const &DL = F.getParent()->getDataLayout();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
Result.reset(new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE});
|
|
return false;
|
|
}
|
|
|
|
void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
for (auto &It : *Result) {
|
|
if (It.second)
|
|
It.second->print(OS, PollyPrintInstructions);
|
|
else
|
|
OS << "Invalid Scop!\n";
|
|
}
|
|
}
|
|
|
|
char ScopInfoWrapperPass::ID = 0;
|
|
|
|
Pass *polly::createScopInfoWrapperPassPass() {
|
|
return new ScopInfoWrapperPass();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(
|
|
ScopInfoWrapperPass, "polly-function-scops",
|
|
"Polly - Create polyhedral description of all Scops of a function", false,
|
|
false);
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
|
|
INITIALIZE_PASS_END(
|
|
ScopInfoWrapperPass, "polly-function-scops",
|
|
"Polly - Create polyhedral description of all Scops of a function", false,
|
|
false)
|