llvm-project/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp

546 lines
18 KiB
C++

//==- DeadStoresChecker.cpp - Check for stores to dead variables -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DeadStores, a flow-sensitive checker that looks for
// stores to variables that are no longer live.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Lexer.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace ento;
namespace {
/// A simple visitor to record what VarDecls occur in EH-handling code.
class EHCodeVisitor : public RecursiveASTVisitor<EHCodeVisitor> {
public:
bool inEH;
llvm::DenseSet<const VarDecl *> &S;
bool TraverseObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
SaveAndRestore<bool> inFinally(inEH, true);
return ::RecursiveASTVisitor<EHCodeVisitor>::TraverseObjCAtFinallyStmt(S);
}
bool TraverseObjCAtCatchStmt(ObjCAtCatchStmt *S) {
SaveAndRestore<bool> inCatch(inEH, true);
return ::RecursiveASTVisitor<EHCodeVisitor>::TraverseObjCAtCatchStmt(S);
}
bool TraverseCXXCatchStmt(CXXCatchStmt *S) {
SaveAndRestore<bool> inCatch(inEH, true);
return TraverseStmt(S->getHandlerBlock());
}
bool VisitDeclRefExpr(DeclRefExpr *DR) {
if (inEH)
if (const VarDecl *D = dyn_cast<VarDecl>(DR->getDecl()))
S.insert(D);
return true;
}
EHCodeVisitor(llvm::DenseSet<const VarDecl *> &S) :
inEH(false), S(S) {}
};
// FIXME: Eventually migrate into its own file, and have it managed by
// AnalysisManager.
class ReachableCode {
const CFG &cfg;
llvm::BitVector reachable;
public:
ReachableCode(const CFG &cfg)
: cfg(cfg), reachable(cfg.getNumBlockIDs(), false) {}
void computeReachableBlocks();
bool isReachable(const CFGBlock *block) const {
return reachable[block->getBlockID()];
}
};
}
void ReachableCode::computeReachableBlocks() {
if (!cfg.getNumBlockIDs())
return;
SmallVector<const CFGBlock*, 10> worklist;
worklist.push_back(&cfg.getEntry());
while (!worklist.empty()) {
const CFGBlock *block = worklist.pop_back_val();
llvm::BitVector::reference isReachable = reachable[block->getBlockID()];
if (isReachable)
continue;
isReachable = true;
for (CFGBlock::const_succ_iterator i = block->succ_begin(),
e = block->succ_end(); i != e; ++i)
if (const CFGBlock *succ = *i)
worklist.push_back(succ);
}
}
static const Expr *
LookThroughTransitiveAssignmentsAndCommaOperators(const Expr *Ex) {
while (Ex) {
const BinaryOperator *BO =
dyn_cast<BinaryOperator>(Ex->IgnoreParenCasts());
if (!BO)
break;
if (BO->getOpcode() == BO_Assign) {
Ex = BO->getRHS();
continue;
}
if (BO->getOpcode() == BO_Comma) {
Ex = BO->getRHS();
continue;
}
break;
}
return Ex;
}
namespace {
class DeadStoresChecker : public Checker<check::ASTCodeBody> {
public:
bool ShowFixIts = false;
bool WarnForDeadNestedAssignments = true;
void checkASTCodeBody(const Decl *D, AnalysisManager &Mgr,
BugReporter &BR) const;
};
class DeadStoreObs : public LiveVariables::Observer {
const CFG &cfg;
ASTContext &Ctx;
BugReporter& BR;
const DeadStoresChecker *Checker;
AnalysisDeclContext* AC;
ParentMap& Parents;
llvm::SmallPtrSet<const VarDecl*, 20> Escaped;
std::unique_ptr<ReachableCode> reachableCode;
const CFGBlock *currentBlock;
std::unique_ptr<llvm::DenseSet<const VarDecl *>> InEH;
enum DeadStoreKind { Standard, Enclosing, DeadIncrement, DeadInit };
public:
DeadStoreObs(const CFG &cfg, ASTContext &ctx, BugReporter &br,
const DeadStoresChecker *checker, AnalysisDeclContext *ac,
ParentMap &parents,
llvm::SmallPtrSet<const VarDecl *, 20> &escaped,
bool warnForDeadNestedAssignments)
: cfg(cfg), Ctx(ctx), BR(br), Checker(checker), AC(ac), Parents(parents),
Escaped(escaped), currentBlock(nullptr) {}
~DeadStoreObs() override {}
bool isLive(const LiveVariables::LivenessValues &Live, const VarDecl *D) {
if (Live.isLive(D))
return true;
// Lazily construct the set that records which VarDecls are in
// EH code.
if (!InEH.get()) {
InEH.reset(new llvm::DenseSet<const VarDecl *>());
EHCodeVisitor V(*InEH.get());
V.TraverseStmt(AC->getBody());
}
// Treat all VarDecls that occur in EH code as being "always live"
// when considering to suppress dead stores. Frequently stores
// are followed by reads in EH code, but we don't have the ability
// to analyze that yet.
return InEH->count(D);
}
bool isSuppressed(SourceRange R) {
SourceManager &SMgr = Ctx.getSourceManager();
SourceLocation Loc = R.getBegin();
if (!Loc.isValid())
return false;
FileID FID = SMgr.getFileID(Loc);
bool Invalid = false;
StringRef Data = SMgr.getBufferData(FID, &Invalid);
if (Invalid)
return false;
// Files autogenerated by DriverKit IIG contain some dead stores that
// we don't want to report.
if (Data.startswith("/* iig"))
return true;
return false;
}
void Report(const VarDecl *V, DeadStoreKind dsk,
PathDiagnosticLocation L, SourceRange R) {
if (Escaped.count(V))
return;
// Compute reachable blocks within the CFG for trivial cases
// where a bogus dead store can be reported because itself is unreachable.
if (!reachableCode.get()) {
reachableCode.reset(new ReachableCode(cfg));
reachableCode->computeReachableBlocks();
}
if (!reachableCode->isReachable(currentBlock))
return;
if (isSuppressed(R))
return;
SmallString<64> buf;
llvm::raw_svector_ostream os(buf);
const char *BugType = nullptr;
SmallVector<FixItHint, 1> Fixits;
switch (dsk) {
case DeadInit: {
BugType = "Dead initialization";
os << "Value stored to '" << *V
<< "' during its initialization is never read";
ASTContext &ACtx = V->getASTContext();
if (Checker->ShowFixIts) {
if (V->getInit()->HasSideEffects(ACtx,
/*IncludePossibleEffects=*/true)) {
break;
}
SourceManager &SM = ACtx.getSourceManager();
const LangOptions &LO = ACtx.getLangOpts();
SourceLocation L1 =
Lexer::findNextToken(
V->getTypeSourceInfo()->getTypeLoc().getEndLoc(),
SM, LO)->getEndLoc();
SourceLocation L2 =
Lexer::getLocForEndOfToken(V->getInit()->getEndLoc(), 1, SM, LO);
Fixits.push_back(FixItHint::CreateRemoval({L1, L2}));
}
break;
}
case DeadIncrement:
BugType = "Dead increment";
LLVM_FALLTHROUGH;
case Standard:
if (!BugType) BugType = "Dead assignment";
os << "Value stored to '" << *V << "' is never read";
break;
// eg.: f((x = foo()))
case Enclosing:
if (!Checker->WarnForDeadNestedAssignments)
return;
BugType = "Dead nested assignment";
os << "Although the value stored to '" << *V
<< "' is used in the enclosing expression, the value is never "
"actually read from '"
<< *V << "'";
break;
}
BR.EmitBasicReport(AC->getDecl(), Checker, BugType, "Dead store", os.str(),
L, R, Fixits);
}
void CheckVarDecl(const VarDecl *VD, const Expr *Ex, const Expr *Val,
DeadStoreKind dsk,
const LiveVariables::LivenessValues &Live) {
if (!VD->hasLocalStorage())
return;
// Reference types confuse the dead stores checker. Skip them
// for now.
if (VD->getType()->getAs<ReferenceType>())
return;
if (!isLive(Live, VD) &&
!(VD->hasAttr<UnusedAttr>() || VD->hasAttr<BlocksAttr>() ||
VD->hasAttr<ObjCPreciseLifetimeAttr>())) {
PathDiagnosticLocation ExLoc =
PathDiagnosticLocation::createBegin(Ex, BR.getSourceManager(), AC);
Report(VD, dsk, ExLoc, Val->getSourceRange());
}
}
void CheckDeclRef(const DeclRefExpr *DR, const Expr *Val, DeadStoreKind dsk,
const LiveVariables::LivenessValues& Live) {
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
CheckVarDecl(VD, DR, Val, dsk, Live);
}
bool isIncrement(VarDecl *VD, const BinaryOperator* B) {
if (B->isCompoundAssignmentOp())
return true;
const Expr *RHS = B->getRHS()->IgnoreParenCasts();
const BinaryOperator* BRHS = dyn_cast<BinaryOperator>(RHS);
if (!BRHS)
return false;
const DeclRefExpr *DR;
if ((DR = dyn_cast<DeclRefExpr>(BRHS->getLHS()->IgnoreParenCasts())))
if (DR->getDecl() == VD)
return true;
if ((DR = dyn_cast<DeclRefExpr>(BRHS->getRHS()->IgnoreParenCasts())))
if (DR->getDecl() == VD)
return true;
return false;
}
void observeStmt(const Stmt *S, const CFGBlock *block,
const LiveVariables::LivenessValues &Live) override {
currentBlock = block;
// Skip statements in macros.
if (S->getBeginLoc().isMacroID())
return;
// Only cover dead stores from regular assignments. ++/-- dead stores
// have never flagged a real bug.
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
if (!B->isAssignmentOp()) return; // Skip non-assignments.
if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(B->getLHS()))
if (VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
// Special case: check for assigning null to a pointer.
// This is a common form of defensive programming.
const Expr *RHS =
LookThroughTransitiveAssignmentsAndCommaOperators(B->getRHS());
RHS = RHS->IgnoreParenCasts();
QualType T = VD->getType();
if (T.isVolatileQualified())
return;
if (T->isPointerType() || T->isObjCObjectPointerType()) {
if (RHS->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNull))
return;
}
// Special case: self-assignments. These are often used to shut up
// "unused variable" compiler warnings.
if (const DeclRefExpr *RhsDR = dyn_cast<DeclRefExpr>(RHS))
if (VD == dyn_cast<VarDecl>(RhsDR->getDecl()))
return;
// Otherwise, issue a warning.
DeadStoreKind dsk = Parents.isConsumedExpr(B)
? Enclosing
: (isIncrement(VD,B) ? DeadIncrement : Standard);
CheckVarDecl(VD, DR, B->getRHS(), dsk, Live);
}
}
else if (const UnaryOperator* U = dyn_cast<UnaryOperator>(S)) {
if (!U->isIncrementOp() || U->isPrefix())
return;
const Stmt *parent = Parents.getParentIgnoreParenCasts(U);
if (!parent || !isa<ReturnStmt>(parent))
return;
const Expr *Ex = U->getSubExpr()->IgnoreParenCasts();
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex))
CheckDeclRef(DR, U, DeadIncrement, Live);
}
else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S))
// Iterate through the decls. Warn if any initializers are complex
// expressions that are not live (never used).
for (const auto *DI : DS->decls()) {
const auto *V = dyn_cast<VarDecl>(DI);
if (!V)
continue;
if (V->hasLocalStorage()) {
// Reference types confuse the dead stores checker. Skip them
// for now.
if (V->getType()->getAs<ReferenceType>())
return;
if (const Expr *E = V->getInit()) {
while (const FullExpr *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
// Look through transitive assignments, e.g.:
// int x = y = 0;
E = LookThroughTransitiveAssignmentsAndCommaOperators(E);
// Don't warn on C++ objects (yet) until we can show that their
// constructors/destructors don't have side effects.
if (isa<CXXConstructExpr>(E))
return;
// A dead initialization is a variable that is dead after it
// is initialized. We don't flag warnings for those variables
// marked 'unused' or 'objc_precise_lifetime'.
if (!isLive(Live, V) &&
!V->hasAttr<UnusedAttr>() &&
!V->hasAttr<ObjCPreciseLifetimeAttr>()) {
// Special case: check for initializations with constants.
//
// e.g. : int x = 0;
//
// If x is EVER assigned a new value later, don't issue
// a warning. This is because such initialization can be
// due to defensive programming.
if (E->isEvaluatable(Ctx))
return;
if (const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
// Special case: check for initialization from constant
// variables.
//
// e.g. extern const int MyConstant;
// int x = MyConstant;
//
if (VD->hasGlobalStorage() &&
VD->getType().isConstQualified())
return;
// Special case: check for initialization from scalar
// parameters. This is often a form of defensive
// programming. Non-scalars are still an error since
// because it more likely represents an actual algorithmic
// bug.
if (isa<ParmVarDecl>(VD) && VD->getType()->isScalarType())
return;
}
PathDiagnosticLocation Loc =
PathDiagnosticLocation::create(V, BR.getSourceManager());
Report(V, DeadInit, Loc, E->getSourceRange());
}
}
}
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Driver function to invoke the Dead-Stores checker on a CFG.
//===----------------------------------------------------------------------===//
namespace {
class FindEscaped {
public:
llvm::SmallPtrSet<const VarDecl*, 20> Escaped;
void operator()(const Stmt *S) {
// Check for '&'. Any VarDecl whose address has been taken we treat as
// escaped.
// FIXME: What about references?
if (auto *LE = dyn_cast<LambdaExpr>(S)) {
findLambdaReferenceCaptures(LE);
return;
}
const UnaryOperator *U = dyn_cast<UnaryOperator>(S);
if (!U)
return;
if (U->getOpcode() != UO_AddrOf)
return;
const Expr *E = U->getSubExpr()->IgnoreParenCasts();
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
Escaped.insert(VD);
}
// Treat local variables captured by reference in C++ lambdas as escaped.
void findLambdaReferenceCaptures(const LambdaExpr *LE) {
const CXXRecordDecl *LambdaClass = LE->getLambdaClass();
llvm::DenseMap<const VarDecl *, FieldDecl *> CaptureFields;
FieldDecl *ThisCaptureField;
LambdaClass->getCaptureFields(CaptureFields, ThisCaptureField);
for (const LambdaCapture &C : LE->captures()) {
if (!C.capturesVariable())
continue;
VarDecl *VD = C.getCapturedVar();
const FieldDecl *FD = CaptureFields[VD];
if (!FD)
continue;
// If the capture field is a reference type, it is capture-by-reference.
if (FD->getType()->isReferenceType())
Escaped.insert(VD);
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DeadStoresChecker
//===----------------------------------------------------------------------===//
void DeadStoresChecker::checkASTCodeBody(const Decl *D, AnalysisManager &mgr,
BugReporter &BR) const {
// Don't do anything for template instantiations.
// Proving that code in a template instantiation is "dead"
// means proving that it is dead in all instantiations.
// This same problem exists with -Wunreachable-code.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FD->isTemplateInstantiation())
return;
if (LiveVariables *L = mgr.getAnalysis<LiveVariables>(D)) {
CFG &cfg = *mgr.getCFG(D);
AnalysisDeclContext *AC = mgr.getAnalysisDeclContext(D);
ParentMap &pmap = mgr.getParentMap(D);
FindEscaped FS;
cfg.VisitBlockStmts(FS);
DeadStoreObs A(cfg, BR.getContext(), BR, this, AC, pmap, FS.Escaped,
WarnForDeadNestedAssignments);
L->runOnAllBlocks(A);
}
}
void ento::registerDeadStoresChecker(CheckerManager &Mgr) {
auto *Chk = Mgr.registerChecker<DeadStoresChecker>();
const AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions();
Chk->WarnForDeadNestedAssignments =
AnOpts.getCheckerBooleanOption(Chk, "WarnForDeadNestedAssignments");
Chk->ShowFixIts =
AnOpts.getCheckerBooleanOption(Chk, "ShowFixIts");
}
bool ento::shouldRegisterDeadStoresChecker(const CheckerManager &mgr) {
return true;
}