llvm-project/clang/lib/Basic/TargetInfo.cpp

851 lines
27 KiB
C++

//===--- TargetInfo.cpp - Information about Target machine ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInfo and TargetInfoImpl interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include <cstdlib>
using namespace clang;
static const LangASMap DefaultAddrSpaceMap = {0};
// TargetInfo Constructor.
TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
// Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or
// SPARC. These should be overridden by concrete targets as needed.
BigEndian = !T.isLittleEndian();
TLSSupported = true;
VLASupported = true;
NoAsmVariants = false;
HasLegalHalfType = false;
HasFloat128 = false;
HasFloat16 = false;
HasBFloat16 = false;
HasStrictFP = false;
PointerWidth = PointerAlign = 32;
BoolWidth = BoolAlign = 8;
IntWidth = IntAlign = 32;
LongWidth = LongAlign = 32;
LongLongWidth = LongLongAlign = 64;
// Fixed point default bit widths
ShortAccumWidth = ShortAccumAlign = 16;
AccumWidth = AccumAlign = 32;
LongAccumWidth = LongAccumAlign = 64;
ShortFractWidth = ShortFractAlign = 8;
FractWidth = FractAlign = 16;
LongFractWidth = LongFractAlign = 32;
// Fixed point default integral and fractional bit sizes
// We give the _Accum 1 fewer fractional bits than their corresponding _Fract
// types by default to have the same number of fractional bits between _Accum
// and _Fract types.
PaddingOnUnsignedFixedPoint = false;
ShortAccumScale = 7;
AccumScale = 15;
LongAccumScale = 31;
SuitableAlign = 64;
DefaultAlignForAttributeAligned = 128;
MinGlobalAlign = 0;
// From the glibc documentation, on GNU systems, malloc guarantees 16-byte
// alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
// https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
// This alignment guarantee also applies to Windows and Android. On Darwin,
// the alignment is 16 bytes on both 64-bit and 32-bit systems.
if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
else if (T.isOSDarwin())
NewAlign = 128;
else
NewAlign = 0; // Infer from basic type alignment.
HalfWidth = 16;
HalfAlign = 16;
FloatWidth = 32;
FloatAlign = 32;
DoubleWidth = 64;
DoubleAlign = 64;
LongDoubleWidth = 64;
LongDoubleAlign = 64;
Float128Align = 128;
LargeArrayMinWidth = 0;
LargeArrayAlign = 0;
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
MaxVectorAlign = 0;
MaxTLSAlign = 0;
SimdDefaultAlign = 0;
SizeType = UnsignedLong;
PtrDiffType = SignedLong;
IntMaxType = SignedLongLong;
IntPtrType = SignedLong;
WCharType = SignedInt;
WIntType = SignedInt;
Char16Type = UnsignedShort;
Char32Type = UnsignedInt;
Int64Type = SignedLongLong;
SigAtomicType = SignedInt;
ProcessIDType = SignedInt;
UseSignedCharForObjCBool = true;
UseBitFieldTypeAlignment = true;
UseZeroLengthBitfieldAlignment = false;
UseExplicitBitFieldAlignment = true;
ZeroLengthBitfieldBoundary = 0;
HalfFormat = &llvm::APFloat::IEEEhalf();
FloatFormat = &llvm::APFloat::IEEEsingle();
DoubleFormat = &llvm::APFloat::IEEEdouble();
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
Float128Format = &llvm::APFloat::IEEEquad();
MCountName = "mcount";
RegParmMax = 0;
SSERegParmMax = 0;
HasAlignMac68kSupport = false;
HasBuiltinMSVaList = false;
IsRenderScriptTarget = false;
HasAArch64SVETypes = false;
HasRISCVVTypes = false;
AllowAMDGPUUnsafeFPAtomics = false;
ARMCDECoprocMask = 0;
// Default to no types using fpret.
RealTypeUsesObjCFPRet = 0;
// Default to not using fp2ret for __Complex long double
ComplexLongDoubleUsesFP2Ret = false;
// Set the C++ ABI based on the triple.
TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
? TargetCXXABI::Microsoft
: TargetCXXABI::GenericItanium);
// Default to an empty address space map.
AddrSpaceMap = &DefaultAddrSpaceMap;
UseAddrSpaceMapMangling = false;
// Default to an unknown platform name.
PlatformName = "unknown";
PlatformMinVersion = VersionTuple();
MaxOpenCLWorkGroupSize = 1024;
}
// Out of line virtual dtor for TargetInfo.
TargetInfo::~TargetInfo() {}
void TargetInfo::resetDataLayout(StringRef DL) {
DataLayout.reset(new llvm::DataLayout(DL));
}
bool
TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
return false;
}
bool
TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
return false;
}
/// getTypeName - Return the user string for the specified integer type enum.
/// For example, SignedShort -> "short".
const char *TargetInfo::getTypeName(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar: return "signed char";
case UnsignedChar: return "unsigned char";
case SignedShort: return "short";
case UnsignedShort: return "unsigned short";
case SignedInt: return "int";
case UnsignedInt: return "unsigned int";
case SignedLong: return "long int";
case UnsignedLong: return "long unsigned int";
case SignedLongLong: return "long long int";
case UnsignedLongLong: return "long long unsigned int";
}
}
/// getTypeConstantSuffix - Return the constant suffix for the specified
/// integer type enum. For example, SignedLong -> "L".
const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar:
case SignedShort:
case SignedInt: return "";
case SignedLong: return "L";
case SignedLongLong: return "LL";
case UnsignedChar:
if (getCharWidth() < getIntWidth())
return "";
LLVM_FALLTHROUGH;
case UnsignedShort:
if (getShortWidth() < getIntWidth())
return "";
LLVM_FALLTHROUGH;
case UnsignedInt: return "U";
case UnsignedLong: return "UL";
case UnsignedLongLong: return "ULL";
}
}
/// getTypeFormatModifier - Return the printf format modifier for the
/// specified integer type enum. For example, SignedLong -> "l".
const char *TargetInfo::getTypeFormatModifier(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar:
case UnsignedChar: return "hh";
case SignedShort:
case UnsignedShort: return "h";
case SignedInt:
case UnsignedInt: return "";
case SignedLong:
case UnsignedLong: return "l";
case SignedLongLong:
case UnsignedLongLong: return "ll";
}
}
/// getTypeWidth - Return the width (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntWidth().
unsigned TargetInfo::getTypeWidth(IntType T) const {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar:
case UnsignedChar: return getCharWidth();
case SignedShort:
case UnsignedShort: return getShortWidth();
case SignedInt:
case UnsignedInt: return getIntWidth();
case SignedLong:
case UnsignedLong: return getLongWidth();
case SignedLongLong:
case UnsignedLongLong: return getLongLongWidth();
};
}
TargetInfo::IntType TargetInfo::getIntTypeByWidth(
unsigned BitWidth, bool IsSigned) const {
if (getCharWidth() == BitWidth)
return IsSigned ? SignedChar : UnsignedChar;
if (getShortWidth() == BitWidth)
return IsSigned ? SignedShort : UnsignedShort;
if (getIntWidth() == BitWidth)
return IsSigned ? SignedInt : UnsignedInt;
if (getLongWidth() == BitWidth)
return IsSigned ? SignedLong : UnsignedLong;
if (getLongLongWidth() == BitWidth)
return IsSigned ? SignedLongLong : UnsignedLongLong;
return NoInt;
}
TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
bool IsSigned) const {
if (getCharWidth() >= BitWidth)
return IsSigned ? SignedChar : UnsignedChar;
if (getShortWidth() >= BitWidth)
return IsSigned ? SignedShort : UnsignedShort;
if (getIntWidth() >= BitWidth)
return IsSigned ? SignedInt : UnsignedInt;
if (getLongWidth() >= BitWidth)
return IsSigned ? SignedLong : UnsignedLong;
if (getLongLongWidth() >= BitWidth)
return IsSigned ? SignedLongLong : UnsignedLongLong;
return NoInt;
}
TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth,
bool ExplicitIEEE) const {
if (getFloatWidth() == BitWidth)
return Float;
if (getDoubleWidth() == BitWidth)
return Double;
switch (BitWidth) {
case 96:
if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
return LongDouble;
break;
case 128:
// The caller explicitly asked for an IEEE compliant type but we still
// have to check if the target supports it.
if (ExplicitIEEE)
return hasFloat128Type() ? Float128 : NoFloat;
if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
&getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
return LongDouble;
if (hasFloat128Type())
return Float128;
break;
}
return NoFloat;
}
/// getTypeAlign - Return the alignment (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntAlign().
unsigned TargetInfo::getTypeAlign(IntType T) const {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar:
case UnsignedChar: return getCharAlign();
case SignedShort:
case UnsignedShort: return getShortAlign();
case SignedInt:
case UnsignedInt: return getIntAlign();
case SignedLong:
case UnsignedLong: return getLongAlign();
case SignedLongLong:
case UnsignedLongLong: return getLongLongAlign();
};
}
/// isTypeSigned - Return whether an integer types is signed. Returns true if
/// the type is signed; false otherwise.
bool TargetInfo::isTypeSigned(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedChar:
case SignedShort:
case SignedInt:
case SignedLong:
case SignedLongLong:
return true;
case UnsignedChar:
case UnsignedShort:
case UnsignedInt:
case UnsignedLong:
case UnsignedLongLong:
return false;
};
}
/// adjust - Set forced language options.
/// Apply changes to the target information with respect to certain
/// language options which change the target configuration and adjust
/// the language based on the target options where applicable.
void TargetInfo::adjust(LangOptions &Opts) {
if (Opts.NoBitFieldTypeAlign)
UseBitFieldTypeAlignment = false;
switch (Opts.WCharSize) {
default: llvm_unreachable("invalid wchar_t width");
case 0: break;
case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
}
if (Opts.AlignDouble) {
DoubleAlign = LongLongAlign = 64;
LongDoubleAlign = 64;
}
if (Opts.OpenCL) {
// OpenCL C requires specific widths for types, irrespective of
// what these normally are for the target.
// We also define long long and long double here, although the
// OpenCL standard only mentions these as "reserved".
IntWidth = IntAlign = 32;
LongWidth = LongAlign = 64;
LongLongWidth = LongLongAlign = 128;
HalfWidth = HalfAlign = 16;
FloatWidth = FloatAlign = 32;
// Embedded 32-bit targets (OpenCL EP) might have double C type
// defined as float. Let's not override this as it might lead
// to generating illegal code that uses 64bit doubles.
if (DoubleWidth != FloatWidth) {
DoubleWidth = DoubleAlign = 64;
DoubleFormat = &llvm::APFloat::IEEEdouble();
}
LongDoubleWidth = LongDoubleAlign = 128;
unsigned MaxPointerWidth = getMaxPointerWidth();
assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
bool Is32BitArch = MaxPointerWidth == 32;
SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
IntPtrType = Is32BitArch ? SignedInt : SignedLong;
IntMaxType = SignedLongLong;
Int64Type = SignedLong;
HalfFormat = &llvm::APFloat::IEEEhalf();
FloatFormat = &llvm::APFloat::IEEEsingle();
LongDoubleFormat = &llvm::APFloat::IEEEquad();
}
if (Opts.DoubleSize) {
if (Opts.DoubleSize == 32) {
DoubleWidth = 32;
LongDoubleWidth = 32;
DoubleFormat = &llvm::APFloat::IEEEsingle();
LongDoubleFormat = &llvm::APFloat::IEEEsingle();
} else if (Opts.DoubleSize == 64) {
DoubleWidth = 64;
LongDoubleWidth = 64;
DoubleFormat = &llvm::APFloat::IEEEdouble();
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
}
}
if (Opts.LongDoubleSize) {
if (Opts.LongDoubleSize == DoubleWidth) {
LongDoubleWidth = DoubleWidth;
LongDoubleAlign = DoubleAlign;
LongDoubleFormat = DoubleFormat;
} else if (Opts.LongDoubleSize == 128) {
LongDoubleWidth = LongDoubleAlign = 128;
LongDoubleFormat = &llvm::APFloat::IEEEquad();
}
}
if (Opts.NewAlignOverride)
NewAlign = Opts.NewAlignOverride * getCharWidth();
// Each unsigned fixed point type has the same number of fractional bits as
// its corresponding signed type.
PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
CheckFixedPointBits();
}
bool TargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeatureVec) const {
for (const auto &F : FeatureVec) {
StringRef Name = F;
// Apply the feature via the target.
bool Enabled = Name[0] == '+';
setFeatureEnabled(Features, Name.substr(1), Enabled);
}
return true;
}
TargetInfo::CallingConvKind
TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
if (getCXXABI() != TargetCXXABI::Microsoft &&
(ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
return CCK_ClangABI4OrPS4;
return CCK_Default;
}
LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
switch (TK) {
case OCLTK_Image:
case OCLTK_Pipe:
return LangAS::opencl_global;
case OCLTK_Sampler:
return LangAS::opencl_constant;
default:
return LangAS::Default;
}
}
//===----------------------------------------------------------------------===//
static StringRef removeGCCRegisterPrefix(StringRef Name) {
if (Name[0] == '%' || Name[0] == '#')
Name = Name.substr(1);
return Name;
}
/// isValidClobber - Returns whether the passed in string is
/// a valid clobber in an inline asm statement. This is used by
/// Sema.
bool TargetInfo::isValidClobber(StringRef Name) const {
return (isValidGCCRegisterName(Name) ||
Name == "memory" || Name == "cc");
}
/// isValidGCCRegisterName - Returns whether the passed in string
/// is a valid register name according to GCC. This is used by Sema for
/// inline asm statements.
bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
if (Name.empty())
return false;
// Get rid of any register prefix.
Name = removeGCCRegisterPrefix(Name);
if (Name.empty())
return false;
ArrayRef<const char *> Names = getGCCRegNames();
// If we have a number it maps to an entry in the register name array.
if (isDigit(Name[0])) {
unsigned n;
if (!Name.getAsInteger(0, n))
return n < Names.size();
}
// Check register names.
if (llvm::is_contained(Names, Name))
return true;
// Check any additional names that we have.
for (const AddlRegName &ARN : getGCCAddlRegNames())
for (const char *AN : ARN.Names) {
if (!AN)
break;
// Make sure the register that the additional name is for is within
// the bounds of the register names from above.
if (AN == Name && ARN.RegNum < Names.size())
return true;
}
// Now check aliases.
for (const GCCRegAlias &GRA : getGCCRegAliases())
for (const char *A : GRA.Aliases) {
if (!A)
break;
if (A == Name)
return true;
}
return false;
}
StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
bool ReturnCanonical) const {
assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
// Get rid of any register prefix.
Name = removeGCCRegisterPrefix(Name);
ArrayRef<const char *> Names = getGCCRegNames();
// First, check if we have a number.
if (isDigit(Name[0])) {
unsigned n;
if (!Name.getAsInteger(0, n)) {
assert(n < Names.size() && "Out of bounds register number!");
return Names[n];
}
}
// Check any additional names that we have.
for (const AddlRegName &ARN : getGCCAddlRegNames())
for (const char *AN : ARN.Names) {
if (!AN)
break;
// Make sure the register that the additional name is for is within
// the bounds of the register names from above.
if (AN == Name && ARN.RegNum < Names.size())
return ReturnCanonical ? Names[ARN.RegNum] : Name;
}
// Now check aliases.
for (const GCCRegAlias &RA : getGCCRegAliases())
for (const char *A : RA.Aliases) {
if (!A)
break;
if (A == Name)
return RA.Register;
}
return Name;
}
bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
const char *Name = Info.getConstraintStr().c_str();
// An output constraint must start with '=' or '+'
if (*Name != '=' && *Name != '+')
return false;
if (*Name == '+')
Info.setIsReadWrite();
Name++;
while (*Name) {
switch (*Name) {
default:
if (!validateAsmConstraint(Name, Info)) {
// FIXME: We temporarily return false
// so we can add more constraints as we hit it.
// Eventually, an unknown constraint should just be treated as 'g'.
return false;
}
break;
case '&': // early clobber.
Info.setEarlyClobber();
break;
case '%': // commutative.
// FIXME: Check that there is a another register after this one.
break;
case 'r': // general register.
Info.setAllowsRegister();
break;
case 'm': // memory operand.
case 'o': // offsetable memory operand.
case 'V': // non-offsetable memory operand.
case '<': // autodecrement memory operand.
case '>': // autoincrement memory operand.
Info.setAllowsMemory();
break;
case 'g': // general register, memory operand or immediate integer.
case 'X': // any operand.
Info.setAllowsRegister();
Info.setAllowsMemory();
break;
case ',': // multiple alternative constraint. Pass it.
// Handle additional optional '=' or '+' modifiers.
if (Name[1] == '=' || Name[1] == '+')
Name++;
break;
case '#': // Ignore as constraint.
while (Name[1] && Name[1] != ',')
Name++;
break;
case '?': // Disparage slightly code.
case '!': // Disparage severely.
case '*': // Ignore for choosing register preferences.
case 'i': // Ignore i,n,E,F as output constraints (match from the other
// chars)
case 'n':
case 'E':
case 'F':
break; // Pass them.
}
Name++;
}
// Early clobber with a read-write constraint which doesn't permit registers
// is invalid.
if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
return false;
// If a constraint allows neither memory nor register operands it contains
// only modifiers. Reject it.
return Info.allowsMemory() || Info.allowsRegister();
}
bool TargetInfo::resolveSymbolicName(const char *&Name,
ArrayRef<ConstraintInfo> OutputConstraints,
unsigned &Index) const {
assert(*Name == '[' && "Symbolic name did not start with '['");
Name++;
const char *Start = Name;
while (*Name && *Name != ']')
Name++;
if (!*Name) {
// Missing ']'
return false;
}
std::string SymbolicName(Start, Name - Start);
for (Index = 0; Index != OutputConstraints.size(); ++Index)
if (SymbolicName == OutputConstraints[Index].getName())
return true;
return false;
}
bool TargetInfo::validateInputConstraint(
MutableArrayRef<ConstraintInfo> OutputConstraints,
ConstraintInfo &Info) const {
const char *Name = Info.ConstraintStr.c_str();
if (!*Name)
return false;
while (*Name) {
switch (*Name) {
default:
// Check if we have a matching constraint
if (*Name >= '0' && *Name <= '9') {
const char *DigitStart = Name;
while (Name[1] >= '0' && Name[1] <= '9')
Name++;
const char *DigitEnd = Name;
unsigned i;
if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
.getAsInteger(10, i))
return false;
// Check if matching constraint is out of bounds.
if (i >= OutputConstraints.size()) return false;
// A number must refer to an output only operand.
if (OutputConstraints[i].isReadWrite())
return false;
// If the constraint is already tied, it must be tied to the
// same operand referenced to by the number.
if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
return false;
// The constraint should have the same info as the respective
// output constraint.
Info.setTiedOperand(i, OutputConstraints[i]);
} else if (!validateAsmConstraint(Name, Info)) {
// FIXME: This error return is in place temporarily so we can
// add more constraints as we hit it. Eventually, an unknown
// constraint should just be treated as 'g'.
return false;
}
break;
case '[': {
unsigned Index = 0;
if (!resolveSymbolicName(Name, OutputConstraints, Index))
return false;
// If the constraint is already tied, it must be tied to the
// same operand referenced to by the number.
if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
return false;
// A number must refer to an output only operand.
if (OutputConstraints[Index].isReadWrite())
return false;
Info.setTiedOperand(Index, OutputConstraints[Index]);
break;
}
case '%': // commutative
// FIXME: Fail if % is used with the last operand.
break;
case 'i': // immediate integer.
break;
case 'n': // immediate integer with a known value.
Info.setRequiresImmediate();
break;
case 'I': // Various constant constraints with target-specific meanings.
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
if (!validateAsmConstraint(Name, Info))
return false;
break;
case 'r': // general register.
Info.setAllowsRegister();
break;
case 'm': // memory operand.
case 'o': // offsettable memory operand.
case 'V': // non-offsettable memory operand.
case '<': // autodecrement memory operand.
case '>': // autoincrement memory operand.
Info.setAllowsMemory();
break;
case 'g': // general register, memory operand or immediate integer.
case 'X': // any operand.
Info.setAllowsRegister();
Info.setAllowsMemory();
break;
case 'E': // immediate floating point.
case 'F': // immediate floating point.
case 'p': // address operand.
break;
case ',': // multiple alternative constraint. Ignore comma.
break;
case '#': // Ignore as constraint.
while (Name[1] && Name[1] != ',')
Name++;
break;
case '?': // Disparage slightly code.
case '!': // Disparage severely.
case '*': // Ignore for choosing register preferences.
break; // Pass them.
}
Name++;
}
return true;
}
void TargetInfo::CheckFixedPointBits() const {
// Check that the number of fractional and integral bits (and maybe sign) can
// fit into the bits given for a fixed point type.
assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
ShortAccumWidth);
assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
LongAccumWidth);
assert(getShortFractScale() + 1 <= ShortFractWidth);
assert(getFractScale() + 1 <= FractWidth);
assert(getLongFractScale() + 1 <= LongFractWidth);
assert(getUnsignedShortFractScale() <= ShortFractWidth);
assert(getUnsignedFractScale() <= FractWidth);
assert(getUnsignedLongFractScale() <= LongFractWidth);
// Each unsigned fract type has either the same number of fractional bits
// as, or one more fractional bit than, its corresponding signed fract type.
assert(getShortFractScale() == getUnsignedShortFractScale() ||
getShortFractScale() == getUnsignedShortFractScale() - 1);
assert(getFractScale() == getUnsignedFractScale() ||
getFractScale() == getUnsignedFractScale() - 1);
assert(getLongFractScale() == getUnsignedLongFractScale() ||
getLongFractScale() == getUnsignedLongFractScale() - 1);
// When arranged in order of increasing rank (see 6.3.1.3a), the number of
// fractional bits is nondecreasing for each of the following sets of
// fixed-point types:
// - signed fract types
// - unsigned fract types
// - signed accum types
// - unsigned accum types.
assert(getLongFractScale() >= getFractScale() &&
getFractScale() >= getShortFractScale());
assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
getUnsignedFractScale() >= getUnsignedShortFractScale());
assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
getUnsignedAccumScale() >= getUnsignedShortAccumScale());
// When arranged in order of increasing rank (see 6.3.1.3a), the number of
// integral bits is nondecreasing for each of the following sets of
// fixed-point types:
// - signed accum types
// - unsigned accum types
assert(getLongAccumIBits() >= getAccumIBits() &&
getAccumIBits() >= getShortAccumIBits());
assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
// Each signed accum type has at least as many integral bits as its
// corresponding unsigned accum type.
assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
assert(getAccumIBits() >= getUnsignedAccumIBits());
assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
}
void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
auto *Target = static_cast<TransferrableTargetInfo*>(this);
auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
*Target = *Src;
}