forked from OSchip/llvm-project
2228 lines
84 KiB
C++
2228 lines
84 KiB
C++
//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the machine instruction level if-conversion pass, which
|
|
// tries to convert conditional branches into predicated instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "BranchFolding.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SparseSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "if-converter"
|
|
|
|
// Hidden options for help debugging.
|
|
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
|
|
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
|
|
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
|
|
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
STATISTIC(NumSimple, "Number of simple if-conversions performed");
|
|
STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
|
|
STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
|
|
STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
|
|
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
|
|
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
|
|
STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
|
|
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
|
|
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
|
|
STATISTIC(NumDupBBs, "Number of duplicated blocks");
|
|
STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
|
|
|
|
namespace {
|
|
|
|
class IfConverter : public MachineFunctionPass {
|
|
enum IfcvtKind {
|
|
ICNotClassfied, // BB data valid, but not classified.
|
|
ICSimpleFalse, // Same as ICSimple, but on the false path.
|
|
ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
|
|
ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
|
|
ICTriangleRev, // Same as ICTriangle, but true path rev condition.
|
|
ICTriangleFalse, // Same as ICTriangle, but on the false path.
|
|
ICTriangle, // BB is entry of a triangle sub-CFG.
|
|
ICDiamond, // BB is entry of a diamond sub-CFG.
|
|
ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
|
|
// common tail that can be shared.
|
|
};
|
|
|
|
/// One per MachineBasicBlock, this is used to cache the result
|
|
/// if-conversion feasibility analysis. This includes results from
|
|
/// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
|
|
/// classification, and common tail block of its successors (if it's a
|
|
/// diamond shape), its size, whether it's predicable, and whether any
|
|
/// instruction can clobber the 'would-be' predicate.
|
|
///
|
|
/// IsDone - True if BB is not to be considered for ifcvt.
|
|
/// IsBeingAnalyzed - True if BB is currently being analyzed.
|
|
/// IsAnalyzed - True if BB has been analyzed (info is still valid).
|
|
/// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
|
|
/// IsBrAnalyzable - True if analyzeBranch() returns false.
|
|
/// HasFallThrough - True if BB may fallthrough to the following BB.
|
|
/// IsUnpredicable - True if BB is known to be unpredicable.
|
|
/// ClobbersPred - True if BB could modify predicates (e.g. has
|
|
/// cmp, call, etc.)
|
|
/// NonPredSize - Number of non-predicated instructions.
|
|
/// ExtraCost - Extra cost for multi-cycle instructions.
|
|
/// ExtraCost2 - Some instructions are slower when predicated
|
|
/// BB - Corresponding MachineBasicBlock.
|
|
/// TrueBB / FalseBB- See analyzeBranch().
|
|
/// BrCond - Conditions for end of block conditional branches.
|
|
/// Predicate - Predicate used in the BB.
|
|
struct BBInfo {
|
|
bool IsDone : 1;
|
|
bool IsBeingAnalyzed : 1;
|
|
bool IsAnalyzed : 1;
|
|
bool IsEnqueued : 1;
|
|
bool IsBrAnalyzable : 1;
|
|
bool IsBrReversible : 1;
|
|
bool HasFallThrough : 1;
|
|
bool IsUnpredicable : 1;
|
|
bool CannotBeCopied : 1;
|
|
bool ClobbersPred : 1;
|
|
unsigned NonPredSize = 0;
|
|
unsigned ExtraCost = 0;
|
|
unsigned ExtraCost2 = 0;
|
|
MachineBasicBlock *BB = nullptr;
|
|
MachineBasicBlock *TrueBB = nullptr;
|
|
MachineBasicBlock *FalseBB = nullptr;
|
|
SmallVector<MachineOperand, 4> BrCond;
|
|
SmallVector<MachineOperand, 4> Predicate;
|
|
|
|
BBInfo() : IsDone(false), IsBeingAnalyzed(false),
|
|
IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
|
|
IsBrReversible(false), HasFallThrough(false),
|
|
IsUnpredicable(false), CannotBeCopied(false),
|
|
ClobbersPred(false) {}
|
|
};
|
|
|
|
/// Record information about pending if-conversions to attempt:
|
|
/// BBI - Corresponding BBInfo.
|
|
/// Kind - Type of block. See IfcvtKind.
|
|
/// NeedSubsumption - True if the to-be-predicated BB has already been
|
|
/// predicated.
|
|
/// NumDups - Number of instructions that would be duplicated due
|
|
/// to this if-conversion. (For diamonds, the number of
|
|
/// identical instructions at the beginnings of both
|
|
/// paths).
|
|
/// NumDups2 - For diamonds, the number of identical instructions
|
|
/// at the ends of both paths.
|
|
struct IfcvtToken {
|
|
BBInfo &BBI;
|
|
IfcvtKind Kind;
|
|
unsigned NumDups;
|
|
unsigned NumDups2;
|
|
bool NeedSubsumption : 1;
|
|
bool TClobbersPred : 1;
|
|
bool FClobbersPred : 1;
|
|
|
|
IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
|
|
bool tc = false, bool fc = false)
|
|
: BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
|
|
TClobbersPred(tc), FClobbersPred(fc) {}
|
|
};
|
|
|
|
/// Results of if-conversion feasibility analysis indexed by basic block
|
|
/// number.
|
|
std::vector<BBInfo> BBAnalysis;
|
|
TargetSchedModel SchedModel;
|
|
|
|
const TargetLoweringBase *TLI;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
const MachineBranchProbabilityInfo *MBPI;
|
|
MachineRegisterInfo *MRI;
|
|
|
|
LivePhysRegs Redefs;
|
|
|
|
bool PreRegAlloc;
|
|
bool MadeChange;
|
|
int FnNum = -1;
|
|
std::function<bool(const MachineFunction &)> PredicateFtor;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
|
|
: MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
|
|
initializeIfConverterPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<MachineBranchProbabilityInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
private:
|
|
bool reverseBranchCondition(BBInfo &BBI) const;
|
|
bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
|
|
BranchProbability Prediction) const;
|
|
bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
bool FalseBranch, unsigned &Dups,
|
|
BranchProbability Prediction) const;
|
|
bool CountDuplicatedInstructions(
|
|
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
|
|
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
MachineBasicBlock &TBB, MachineBasicBlock &FBB,
|
|
bool SkipUnconditionalBranches) const;
|
|
bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
|
|
bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
|
|
void AnalyzeBranches(BBInfo &BBI);
|
|
void ScanInstructions(BBInfo &BBI,
|
|
MachineBasicBlock::iterator &Begin,
|
|
MachineBasicBlock::iterator &End,
|
|
bool BranchUnpredicable = false) const;
|
|
bool RescanInstructions(
|
|
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
|
|
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
|
|
BBInfo &TrueBBI, BBInfo &FalseBBI) const;
|
|
void AnalyzeBlock(MachineBasicBlock &MBB,
|
|
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
|
|
bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
|
|
bool isTriangle = false, bool RevBranch = false,
|
|
bool hasCommonTail = false);
|
|
void AnalyzeBlocks(MachineFunction &MF,
|
|
std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
|
|
void InvalidatePreds(MachineBasicBlock &MBB);
|
|
bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
|
|
bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
|
|
bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbersPred, bool FClobbersPred,
|
|
bool RemoveBranch, bool MergeAddEdges);
|
|
bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbers, bool FClobbers);
|
|
bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbers, bool FClobbers);
|
|
void PredicateBlock(BBInfo &BBI,
|
|
MachineBasicBlock::iterator E,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
|
|
void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool IgnoreBr = false);
|
|
void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
|
|
|
|
bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
|
|
unsigned Cycle, unsigned Extra,
|
|
BranchProbability Prediction) const {
|
|
return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
|
|
Prediction);
|
|
}
|
|
|
|
bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
|
|
unsigned TCycle, unsigned TExtra,
|
|
MachineBasicBlock &FBB,
|
|
unsigned FCycle, unsigned FExtra,
|
|
BranchProbability Prediction) const {
|
|
return TCycle > 0 && FCycle > 0 &&
|
|
TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
|
|
Prediction);
|
|
}
|
|
|
|
/// Returns true if Block ends without a terminator.
|
|
bool blockAlwaysFallThrough(BBInfo &BBI) const {
|
|
return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
|
|
}
|
|
|
|
/// Used to sort if-conversion candidates.
|
|
static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
|
|
const std::unique_ptr<IfcvtToken> &C2) {
|
|
int Incr1 = (C1->Kind == ICDiamond)
|
|
? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
|
|
int Incr2 = (C2->Kind == ICDiamond)
|
|
? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
|
|
if (Incr1 > Incr2)
|
|
return true;
|
|
else if (Incr1 == Incr2) {
|
|
// Favors subsumption.
|
|
if (!C1->NeedSubsumption && C2->NeedSubsumption)
|
|
return true;
|
|
else if (C1->NeedSubsumption == C2->NeedSubsumption) {
|
|
// Favors diamond over triangle, etc.
|
|
if ((unsigned)C1->Kind < (unsigned)C2->Kind)
|
|
return true;
|
|
else if (C1->Kind == C2->Kind)
|
|
return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char IfConverter::ID = 0;
|
|
|
|
char &llvm::IfConverterID = IfConverter::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
|
|
INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
|
|
|
|
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
|
|
return false;
|
|
|
|
const TargetSubtargetInfo &ST = MF.getSubtarget();
|
|
TLI = ST.getTargetLowering();
|
|
TII = ST.getInstrInfo();
|
|
TRI = ST.getRegisterInfo();
|
|
BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
|
|
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
|
|
MRI = &MF.getRegInfo();
|
|
SchedModel.init(&ST);
|
|
|
|
if (!TII) return false;
|
|
|
|
PreRegAlloc = MRI->isSSA();
|
|
|
|
bool BFChange = false;
|
|
if (!PreRegAlloc) {
|
|
// Tail merge tend to expose more if-conversion opportunities.
|
|
BranchFolder BF(true, false, MBFI, *MBPI);
|
|
BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
|
|
getAnalysisIfAvailable<MachineModuleInfo>());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
|
|
<< MF.getName() << "\'");
|
|
|
|
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
|
|
LLVM_DEBUG(dbgs() << " skipped\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
MF.RenumberBlocks();
|
|
BBAnalysis.resize(MF.getNumBlockIDs());
|
|
|
|
std::vector<std::unique_ptr<IfcvtToken>> Tokens;
|
|
MadeChange = false;
|
|
unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
|
|
NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
|
|
while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
|
|
// Do an initial analysis for each basic block and find all the potential
|
|
// candidates to perform if-conversion.
|
|
bool Change = false;
|
|
AnalyzeBlocks(MF, Tokens);
|
|
while (!Tokens.empty()) {
|
|
std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
|
|
Tokens.pop_back();
|
|
BBInfo &BBI = Token->BBI;
|
|
IfcvtKind Kind = Token->Kind;
|
|
unsigned NumDups = Token->NumDups;
|
|
unsigned NumDups2 = Token->NumDups2;
|
|
|
|
// If the block has been evicted out of the queue or it has already been
|
|
// marked dead (due to it being predicated), then skip it.
|
|
if (BBI.IsDone)
|
|
BBI.IsEnqueued = false;
|
|
if (!BBI.IsEnqueued)
|
|
continue;
|
|
|
|
BBI.IsEnqueued = false;
|
|
|
|
bool RetVal = false;
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unexpected!");
|
|
case ICSimple:
|
|
case ICSimpleFalse: {
|
|
bool isFalse = Kind == ICSimpleFalse;
|
|
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
|
|
LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
|
|
<< (Kind == ICSimpleFalse ? " false" : "")
|
|
<< "): " << printMBBReference(*BBI.BB) << " ("
|
|
<< ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
|
|
: BBI.TrueBB->getNumber())
|
|
<< ") ");
|
|
RetVal = IfConvertSimple(BBI, Kind);
|
|
LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
|
|
if (RetVal) {
|
|
if (isFalse) ++NumSimpleFalse;
|
|
else ++NumSimple;
|
|
}
|
|
break;
|
|
}
|
|
case ICTriangle:
|
|
case ICTriangleRev:
|
|
case ICTriangleFalse:
|
|
case ICTriangleFRev: {
|
|
bool isFalse = Kind == ICTriangleFalse;
|
|
bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
|
|
if (DisableTriangle && !isFalse && !isRev) break;
|
|
if (DisableTriangleR && !isFalse && isRev) break;
|
|
if (DisableTriangleF && isFalse && !isRev) break;
|
|
if (DisableTriangleFR && isFalse && isRev) break;
|
|
LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
|
|
if (isFalse)
|
|
LLVM_DEBUG(dbgs() << " false");
|
|
if (isRev)
|
|
LLVM_DEBUG(dbgs() << " rev");
|
|
LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
|
|
<< " (T:" << BBI.TrueBB->getNumber()
|
|
<< ",F:" << BBI.FalseBB->getNumber() << ") ");
|
|
RetVal = IfConvertTriangle(BBI, Kind);
|
|
LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
|
|
if (RetVal) {
|
|
if (isFalse) {
|
|
if (isRev) ++NumTriangleFRev;
|
|
else ++NumTriangleFalse;
|
|
} else {
|
|
if (isRev) ++NumTriangleRev;
|
|
else ++NumTriangle;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ICDiamond:
|
|
if (DisableDiamond) break;
|
|
LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
|
|
<< " (T:" << BBI.TrueBB->getNumber()
|
|
<< ",F:" << BBI.FalseBB->getNumber() << ") ");
|
|
RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
|
|
Token->TClobbersPred,
|
|
Token->FClobbersPred);
|
|
LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
|
|
if (RetVal) ++NumDiamonds;
|
|
break;
|
|
case ICForkedDiamond:
|
|
if (DisableForkedDiamond) break;
|
|
LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
|
|
<< printMBBReference(*BBI.BB)
|
|
<< " (T:" << BBI.TrueBB->getNumber()
|
|
<< ",F:" << BBI.FalseBB->getNumber() << ") ");
|
|
RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
|
|
Token->TClobbersPred,
|
|
Token->FClobbersPred);
|
|
LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
|
|
if (RetVal) ++NumForkedDiamonds;
|
|
break;
|
|
}
|
|
|
|
if (RetVal && MRI->tracksLiveness())
|
|
recomputeLivenessFlags(*BBI.BB);
|
|
|
|
Change |= RetVal;
|
|
|
|
NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
|
|
NumTriangleFalse + NumTriangleFRev + NumDiamonds;
|
|
if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
|
|
break;
|
|
}
|
|
|
|
if (!Change)
|
|
break;
|
|
MadeChange |= Change;
|
|
}
|
|
|
|
Tokens.clear();
|
|
BBAnalysis.clear();
|
|
|
|
if (MadeChange && IfCvtBranchFold) {
|
|
BranchFolder BF(false, false, MBFI, *MBPI);
|
|
BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
|
|
getAnalysisIfAvailable<MachineModuleInfo>());
|
|
}
|
|
|
|
MadeChange |= BFChange;
|
|
return MadeChange;
|
|
}
|
|
|
|
/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
|
|
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
|
|
MachineBasicBlock *TrueBB) {
|
|
for (MachineBasicBlock *SuccBB : BB->successors()) {
|
|
if (SuccBB != TrueBB)
|
|
return SuccBB;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Reverse the condition of the end of the block branch. Swap block's 'true'
|
|
/// and 'false' successors.
|
|
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
|
|
DebugLoc dl; // FIXME: this is nowhere
|
|
if (!TII->reverseBranchCondition(BBI.BrCond)) {
|
|
TII->removeBranch(*BBI.BB);
|
|
TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
|
|
std::swap(BBI.TrueBB, BBI.FalseBB);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns the next block in the function blocks ordering. If it is the end,
|
|
/// returns NULL.
|
|
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
|
|
MachineFunction::iterator I = MBB.getIterator();
|
|
MachineFunction::iterator E = MBB.getParent()->end();
|
|
if (++I == E)
|
|
return nullptr;
|
|
return &*I;
|
|
}
|
|
|
|
/// Returns true if the 'true' block (along with its predecessor) forms a valid
|
|
/// simple shape for ifcvt. It also returns the number of instructions that the
|
|
/// ifcvt would need to duplicate if performed in Dups.
|
|
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
|
|
BranchProbability Prediction) const {
|
|
Dups = 0;
|
|
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
|
|
return false;
|
|
|
|
if (TrueBBI.IsBrAnalyzable)
|
|
return false;
|
|
|
|
if (TrueBBI.BB->pred_size() > 1) {
|
|
if (TrueBBI.CannotBeCopied ||
|
|
!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
|
|
Prediction))
|
|
return false;
|
|
Dups = TrueBBI.NonPredSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the 'true' and 'false' blocks (along with their common
|
|
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
|
|
/// true, it checks if 'true' block's false branch branches to the 'false' block
|
|
/// rather than the other way around. It also returns the number of instructions
|
|
/// that the ifcvt would need to duplicate if performed in 'Dups'.
|
|
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
bool FalseBranch, unsigned &Dups,
|
|
BranchProbability Prediction) const {
|
|
Dups = 0;
|
|
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
|
|
return false;
|
|
|
|
if (TrueBBI.BB->pred_size() > 1) {
|
|
if (TrueBBI.CannotBeCopied)
|
|
return false;
|
|
|
|
unsigned Size = TrueBBI.NonPredSize;
|
|
if (TrueBBI.IsBrAnalyzable) {
|
|
if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
|
|
// Ends with an unconditional branch. It will be removed.
|
|
--Size;
|
|
else {
|
|
MachineBasicBlock *FExit = FalseBranch
|
|
? TrueBBI.TrueBB : TrueBBI.FalseBB;
|
|
if (FExit)
|
|
// Require a conditional branch
|
|
++Size;
|
|
}
|
|
}
|
|
if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
|
|
return false;
|
|
Dups = Size;
|
|
}
|
|
|
|
MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
|
|
if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
|
|
MachineFunction::iterator I = TrueBBI.BB->getIterator();
|
|
if (++I == TrueBBI.BB->getParent()->end())
|
|
return false;
|
|
TExit = &*I;
|
|
}
|
|
return TExit && TExit == FalseBBI.BB;
|
|
}
|
|
|
|
/// Count duplicated instructions and move the iterators to show where they
|
|
/// are.
|
|
/// @param TIB True Iterator Begin
|
|
/// @param FIB False Iterator Begin
|
|
/// These two iterators initially point to the first instruction of the two
|
|
/// blocks, and finally point to the first non-shared instruction.
|
|
/// @param TIE True Iterator End
|
|
/// @param FIE False Iterator End
|
|
/// These two iterators initially point to End() for the two blocks() and
|
|
/// finally point to the first shared instruction in the tail.
|
|
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
|
|
/// two blocks.
|
|
/// @param Dups1 count of duplicated instructions at the beginning of the 2
|
|
/// blocks.
|
|
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
|
|
/// @param SkipUnconditionalBranches if true, Don't make sure that
|
|
/// unconditional branches at the end of the blocks are the same. True is
|
|
/// passed when the blocks are analyzable to allow for fallthrough to be
|
|
/// handled.
|
|
/// @return false if the shared portion prevents if conversion.
|
|
bool IfConverter::CountDuplicatedInstructions(
|
|
MachineBasicBlock::iterator &TIB,
|
|
MachineBasicBlock::iterator &FIB,
|
|
MachineBasicBlock::iterator &TIE,
|
|
MachineBasicBlock::iterator &FIE,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
MachineBasicBlock &TBB, MachineBasicBlock &FBB,
|
|
bool SkipUnconditionalBranches) const {
|
|
while (TIB != TIE && FIB != FIE) {
|
|
// Skip dbg_value instructions. These do not count.
|
|
TIB = skipDebugInstructionsForward(TIB, TIE);
|
|
FIB = skipDebugInstructionsForward(FIB, FIE);
|
|
if (TIB == TIE || FIB == FIE)
|
|
break;
|
|
if (!TIB->isIdenticalTo(*FIB))
|
|
break;
|
|
// A pred-clobbering instruction in the shared portion prevents
|
|
// if-conversion.
|
|
std::vector<MachineOperand> PredDefs;
|
|
if (TII->DefinesPredicate(*TIB, PredDefs))
|
|
return false;
|
|
// If we get all the way to the branch instructions, don't count them.
|
|
if (!TIB->isBranch())
|
|
++Dups1;
|
|
++TIB;
|
|
++FIB;
|
|
}
|
|
|
|
// Check for already containing all of the block.
|
|
if (TIB == TIE || FIB == FIE)
|
|
return true;
|
|
// Now, in preparation for counting duplicate instructions at the ends of the
|
|
// blocks, switch to reverse_iterators. Note that getReverse() returns an
|
|
// iterator that points to the same instruction, unlike std::reverse_iterator.
|
|
// We have to do our own shifting so that we get the same range.
|
|
MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
|
|
MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
|
|
const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
|
|
const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
|
|
|
|
if (!TBB.succ_empty() || !FBB.succ_empty()) {
|
|
if (SkipUnconditionalBranches) {
|
|
while (RTIE != RTIB && RTIE->isUnconditionalBranch())
|
|
++RTIE;
|
|
while (RFIE != RFIB && RFIE->isUnconditionalBranch())
|
|
++RFIE;
|
|
}
|
|
}
|
|
|
|
// Count duplicate instructions at the ends of the blocks.
|
|
while (RTIE != RTIB && RFIE != RFIB) {
|
|
// Skip dbg_value instructions. These do not count.
|
|
// Note that these are reverse iterators going forward.
|
|
RTIE = skipDebugInstructionsForward(RTIE, RTIB);
|
|
RFIE = skipDebugInstructionsForward(RFIE, RFIB);
|
|
if (RTIE == RTIB || RFIE == RFIB)
|
|
break;
|
|
if (!RTIE->isIdenticalTo(*RFIE))
|
|
break;
|
|
// We have to verify that any branch instructions are the same, and then we
|
|
// don't count them toward the # of duplicate instructions.
|
|
if (!RTIE->isBranch())
|
|
++Dups2;
|
|
++RTIE;
|
|
++RFIE;
|
|
}
|
|
TIE = std::next(RTIE.getReverse());
|
|
FIE = std::next(RFIE.getReverse());
|
|
return true;
|
|
}
|
|
|
|
/// RescanInstructions - Run ScanInstructions on a pair of blocks.
|
|
/// @param TIB - True Iterator Begin, points to first non-shared instruction
|
|
/// @param FIB - False Iterator Begin, points to first non-shared instruction
|
|
/// @param TIE - True Iterator End, points past last non-shared instruction
|
|
/// @param FIE - False Iterator End, points past last non-shared instruction
|
|
/// @param TrueBBI - BBInfo to update for the true block.
|
|
/// @param FalseBBI - BBInfo to update for the false block.
|
|
/// @returns - false if either block cannot be predicated or if both blocks end
|
|
/// with a predicate-clobbering instruction.
|
|
bool IfConverter::RescanInstructions(
|
|
MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
|
|
MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
|
|
BBInfo &TrueBBI, BBInfo &FalseBBI) const {
|
|
bool BranchUnpredicable = true;
|
|
TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
|
|
ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
|
|
if (TrueBBI.IsUnpredicable)
|
|
return false;
|
|
ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
|
|
if (FalseBBI.IsUnpredicable)
|
|
return false;
|
|
if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void verifySameBranchInstructions(
|
|
MachineBasicBlock *MBB1,
|
|
MachineBasicBlock *MBB2) {
|
|
const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
|
|
const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
|
|
MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
|
|
MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
|
|
while (E1 != B1 && E2 != B2) {
|
|
skipDebugInstructionsForward(E1, B1);
|
|
skipDebugInstructionsForward(E2, B2);
|
|
if (E1 == B1 && E2 == B2)
|
|
break;
|
|
|
|
if (E1 == B1) {
|
|
assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
|
|
break;
|
|
}
|
|
if (E2 == B2) {
|
|
assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
|
|
break;
|
|
}
|
|
|
|
if (E1->isBranch() || E2->isBranch())
|
|
assert(E1->isIdenticalTo(*E2) &&
|
|
"Branch mis-match, branch instructions don't match.");
|
|
else
|
|
break;
|
|
++E1;
|
|
++E2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
|
|
/// with their common predecessor) form a diamond if a common tail block is
|
|
/// extracted.
|
|
/// While not strictly a diamond, this pattern would form a diamond if
|
|
/// tail-merging had merged the shared tails.
|
|
/// EBB
|
|
/// _/ \_
|
|
/// | |
|
|
/// TBB FBB
|
|
/// / \ / \
|
|
/// FalseBB TrueBB FalseBB
|
|
/// Currently only handles analyzable branches.
|
|
/// Specifically excludes actual diamonds to avoid overlap.
|
|
bool IfConverter::ValidForkedDiamond(
|
|
BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
|
|
Dups1 = Dups2 = 0;
|
|
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
|
|
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
|
|
return false;
|
|
|
|
if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
|
|
return false;
|
|
// Don't IfConvert blocks that can't be folded into their predecessor.
|
|
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
|
|
return false;
|
|
|
|
// This function is specifically looking for conditional tails, as
|
|
// unconditional tails are already handled by the standard diamond case.
|
|
if (TrueBBI.BrCond.size() == 0 ||
|
|
FalseBBI.BrCond.size() == 0)
|
|
return false;
|
|
|
|
MachineBasicBlock *TT = TrueBBI.TrueBB;
|
|
MachineBasicBlock *TF = TrueBBI.FalseBB;
|
|
MachineBasicBlock *FT = FalseBBI.TrueBB;
|
|
MachineBasicBlock *FF = FalseBBI.FalseBB;
|
|
|
|
if (!TT)
|
|
TT = getNextBlock(*TrueBBI.BB);
|
|
if (!TF)
|
|
TF = getNextBlock(*TrueBBI.BB);
|
|
if (!FT)
|
|
FT = getNextBlock(*FalseBBI.BB);
|
|
if (!FF)
|
|
FF = getNextBlock(*FalseBBI.BB);
|
|
|
|
if (!TT || !TF)
|
|
return false;
|
|
|
|
// Check successors. If they don't match, bail.
|
|
if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
|
|
return false;
|
|
|
|
bool FalseReversed = false;
|
|
if (TF == FT && TT == FF) {
|
|
// If the branches are opposing, but we can't reverse, don't do it.
|
|
if (!FalseBBI.IsBrReversible)
|
|
return false;
|
|
FalseReversed = true;
|
|
reverseBranchCondition(FalseBBI);
|
|
}
|
|
auto UnReverseOnExit = make_scope_exit([&]() {
|
|
if (FalseReversed)
|
|
reverseBranchCondition(FalseBBI);
|
|
});
|
|
|
|
// Count duplicate instructions at the beginning of the true and false blocks.
|
|
MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
|
|
MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
|
|
MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
|
|
MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
|
|
if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
|
|
*TrueBBI.BB, *FalseBBI.BB,
|
|
/* SkipUnconditionalBranches */ true))
|
|
return false;
|
|
|
|
TrueBBICalc.BB = TrueBBI.BB;
|
|
FalseBBICalc.BB = FalseBBI.BB;
|
|
if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
|
|
return false;
|
|
|
|
// The size is used to decide whether to if-convert, and the shared portions
|
|
// are subtracted off. Because of the subtraction, we just use the size that
|
|
// was calculated by the original ScanInstructions, as it is correct.
|
|
TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
|
|
FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
|
|
return true;
|
|
}
|
|
|
|
/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
|
|
/// with their common predecessor) forms a valid diamond shape for ifcvt.
|
|
bool IfConverter::ValidDiamond(
|
|
BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned &Dups1, unsigned &Dups2,
|
|
BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
|
|
Dups1 = Dups2 = 0;
|
|
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
|
|
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
|
|
return false;
|
|
|
|
MachineBasicBlock *TT = TrueBBI.TrueBB;
|
|
MachineBasicBlock *FT = FalseBBI.TrueBB;
|
|
|
|
if (!TT && blockAlwaysFallThrough(TrueBBI))
|
|
TT = getNextBlock(*TrueBBI.BB);
|
|
if (!FT && blockAlwaysFallThrough(FalseBBI))
|
|
FT = getNextBlock(*FalseBBI.BB);
|
|
if (TT != FT)
|
|
return false;
|
|
if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
|
|
return false;
|
|
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
|
|
return false;
|
|
|
|
// FIXME: Allow true block to have an early exit?
|
|
if (TrueBBI.FalseBB || FalseBBI.FalseBB)
|
|
return false;
|
|
|
|
// Count duplicate instructions at the beginning and end of the true and
|
|
// false blocks.
|
|
// Skip unconditional branches only if we are considering an analyzable
|
|
// diamond. Otherwise the branches must be the same.
|
|
bool SkipUnconditionalBranches =
|
|
TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
|
|
MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
|
|
MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
|
|
MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
|
|
MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
|
|
if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
|
|
*TrueBBI.BB, *FalseBBI.BB,
|
|
SkipUnconditionalBranches))
|
|
return false;
|
|
|
|
TrueBBICalc.BB = TrueBBI.BB;
|
|
FalseBBICalc.BB = FalseBBI.BB;
|
|
if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
|
|
return false;
|
|
// The size is used to decide whether to if-convert, and the shared portions
|
|
// are subtracted off. Because of the subtraction, we just use the size that
|
|
// was calculated by the original ScanInstructions, as it is correct.
|
|
TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
|
|
FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
|
|
return true;
|
|
}
|
|
|
|
/// AnalyzeBranches - Look at the branches at the end of a block to determine if
|
|
/// the block is predicable.
|
|
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
|
|
if (BBI.IsDone)
|
|
return;
|
|
|
|
BBI.TrueBB = BBI.FalseBB = nullptr;
|
|
BBI.BrCond.clear();
|
|
BBI.IsBrAnalyzable =
|
|
!TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
|
|
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
BBI.IsBrReversible = (RevCond.size() == 0) ||
|
|
!TII->reverseBranchCondition(RevCond);
|
|
BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
|
|
|
|
if (BBI.BrCond.size()) {
|
|
// No false branch. This BB must end with a conditional branch and a
|
|
// fallthrough.
|
|
if (!BBI.FalseBB)
|
|
BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
|
|
if (!BBI.FalseBB) {
|
|
// Malformed bcc? True and false blocks are the same?
|
|
BBI.IsUnpredicable = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ScanInstructions - Scan all the instructions in the block to determine if
|
|
/// the block is predicable. In most cases, that means all the instructions
|
|
/// in the block are isPredicable(). Also checks if the block contains any
|
|
/// instruction which can clobber a predicate (e.g. condition code register).
|
|
/// If so, the block is not predicable unless it's the last instruction.
|
|
void IfConverter::ScanInstructions(BBInfo &BBI,
|
|
MachineBasicBlock::iterator &Begin,
|
|
MachineBasicBlock::iterator &End,
|
|
bool BranchUnpredicable) const {
|
|
if (BBI.IsDone || BBI.IsUnpredicable)
|
|
return;
|
|
|
|
bool AlreadyPredicated = !BBI.Predicate.empty();
|
|
|
|
BBI.NonPredSize = 0;
|
|
BBI.ExtraCost = 0;
|
|
BBI.ExtraCost2 = 0;
|
|
BBI.ClobbersPred = false;
|
|
for (MachineInstr &MI : make_range(Begin, End)) {
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
// It's unsafe to duplicate convergent instructions in this context, so set
|
|
// BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
|
|
// following CFG, which is subject to our "simple" transformation.
|
|
//
|
|
// BB0 // if (c1) goto BB1; else goto BB2;
|
|
// / \
|
|
// BB1 |
|
|
// | BB2 // if (c2) goto TBB; else goto FBB;
|
|
// | / |
|
|
// | / |
|
|
// TBB |
|
|
// | |
|
|
// | FBB
|
|
// |
|
|
// exit
|
|
//
|
|
// Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
|
|
// be unconditional, and in BB2, they'd be predicated upon c2), and suppose
|
|
// TBB contains a convergent instruction. This is safe iff doing so does
|
|
// not add a control-flow dependency to the convergent instruction -- i.e.,
|
|
// it's safe iff the set of control flows that leads us to the convergent
|
|
// instruction does not get smaller after the transformation.
|
|
//
|
|
// Originally we executed TBB if c1 || c2. After the transformation, there
|
|
// are two copies of TBB's instructions. We get to the first if c1, and we
|
|
// get to the second if !c1 && c2.
|
|
//
|
|
// There are clearly fewer ways to satisfy the condition "c1" than
|
|
// "c1 || c2". Since we've shrunk the set of control flows which lead to
|
|
// our convergent instruction, the transformation is unsafe.
|
|
if (MI.isNotDuplicable() || MI.isConvergent())
|
|
BBI.CannotBeCopied = true;
|
|
|
|
bool isPredicated = TII->isPredicated(MI);
|
|
bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
|
|
|
|
if (BranchUnpredicable && MI.isBranch()) {
|
|
BBI.IsUnpredicable = true;
|
|
return;
|
|
}
|
|
|
|
// A conditional branch is not predicable, but it may be eliminated.
|
|
if (isCondBr)
|
|
continue;
|
|
|
|
if (!isPredicated) {
|
|
BBI.NonPredSize++;
|
|
unsigned ExtraPredCost = TII->getPredicationCost(MI);
|
|
unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
|
|
if (NumCycles > 1)
|
|
BBI.ExtraCost += NumCycles-1;
|
|
BBI.ExtraCost2 += ExtraPredCost;
|
|
} else if (!AlreadyPredicated) {
|
|
// FIXME: This instruction is already predicated before the
|
|
// if-conversion pass. It's probably something like a conditional move.
|
|
// Mark this block unpredicable for now.
|
|
BBI.IsUnpredicable = true;
|
|
return;
|
|
}
|
|
|
|
if (BBI.ClobbersPred && !isPredicated) {
|
|
// Predicate modification instruction should end the block (except for
|
|
// already predicated instructions and end of block branches).
|
|
// Predicate may have been modified, the subsequent (currently)
|
|
// unpredicated instructions cannot be correctly predicated.
|
|
BBI.IsUnpredicable = true;
|
|
return;
|
|
}
|
|
|
|
// FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
|
|
// still potentially predicable.
|
|
std::vector<MachineOperand> PredDefs;
|
|
if (TII->DefinesPredicate(MI, PredDefs))
|
|
BBI.ClobbersPred = true;
|
|
|
|
if (!TII->isPredicable(MI)) {
|
|
BBI.IsUnpredicable = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determine if the block is a suitable candidate to be predicated by the
|
|
/// specified predicate.
|
|
/// @param BBI BBInfo for the block to check
|
|
/// @param Pred Predicate array for the branch that leads to BBI
|
|
/// @param isTriangle true if the Analysis is for a triangle
|
|
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
|
|
/// case
|
|
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
|
|
/// contains any instruction that would make the block unpredicable.
|
|
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
|
|
SmallVectorImpl<MachineOperand> &Pred,
|
|
bool isTriangle, bool RevBranch,
|
|
bool hasCommonTail) {
|
|
// If the block is dead or unpredicable, then it cannot be predicated.
|
|
// Two blocks may share a common unpredicable tail, but this doesn't prevent
|
|
// them from being if-converted. The non-shared portion is assumed to have
|
|
// been checked
|
|
if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
|
|
return false;
|
|
|
|
// If it is already predicated but we couldn't analyze its terminator, the
|
|
// latter might fallthrough, but we can't determine where to.
|
|
// Conservatively avoid if-converting again.
|
|
if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
|
|
return false;
|
|
|
|
// If it is already predicated, check if the new predicate subsumes
|
|
// its predicate.
|
|
if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
|
|
return false;
|
|
|
|
if (!hasCommonTail && BBI.BrCond.size()) {
|
|
if (!isTriangle)
|
|
return false;
|
|
|
|
// Test predicate subsumption.
|
|
SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
|
|
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
if (RevBranch) {
|
|
if (TII->reverseBranchCondition(Cond))
|
|
return false;
|
|
}
|
|
if (TII->reverseBranchCondition(RevPred) ||
|
|
!TII->SubsumesPredicate(Cond, RevPred))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Analyze the structure of the sub-CFG starting from the specified block.
|
|
/// Record its successors and whether it looks like an if-conversion candidate.
|
|
void IfConverter::AnalyzeBlock(
|
|
MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
|
|
struct BBState {
|
|
BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
|
|
MachineBasicBlock *MBB;
|
|
|
|
/// This flag is true if MBB's successors have been analyzed.
|
|
bool SuccsAnalyzed;
|
|
};
|
|
|
|
// Push MBB to the stack.
|
|
SmallVector<BBState, 16> BBStack(1, MBB);
|
|
|
|
while (!BBStack.empty()) {
|
|
BBState &State = BBStack.back();
|
|
MachineBasicBlock *BB = State.MBB;
|
|
BBInfo &BBI = BBAnalysis[BB->getNumber()];
|
|
|
|
if (!State.SuccsAnalyzed) {
|
|
if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
|
|
BBStack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
BBI.BB = BB;
|
|
BBI.IsBeingAnalyzed = true;
|
|
|
|
AnalyzeBranches(BBI);
|
|
MachineBasicBlock::iterator Begin = BBI.BB->begin();
|
|
MachineBasicBlock::iterator End = BBI.BB->end();
|
|
ScanInstructions(BBI, Begin, End);
|
|
|
|
// Unanalyzable or ends with fallthrough or unconditional branch, or if is
|
|
// not considered for ifcvt anymore.
|
|
if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
|
|
BBI.IsBeingAnalyzed = false;
|
|
BBI.IsAnalyzed = true;
|
|
BBStack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Do not ifcvt if either path is a back edge to the entry block.
|
|
if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
|
|
BBI.IsBeingAnalyzed = false;
|
|
BBI.IsAnalyzed = true;
|
|
BBStack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Do not ifcvt if true and false fallthrough blocks are the same.
|
|
if (!BBI.FalseBB) {
|
|
BBI.IsBeingAnalyzed = false;
|
|
BBI.IsAnalyzed = true;
|
|
BBStack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Push the False and True blocks to the stack.
|
|
State.SuccsAnalyzed = true;
|
|
BBStack.push_back(*BBI.FalseBB);
|
|
BBStack.push_back(*BBI.TrueBB);
|
|
continue;
|
|
}
|
|
|
|
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
|
|
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
|
|
|
|
if (TrueBBI.IsDone && FalseBBI.IsDone) {
|
|
BBI.IsBeingAnalyzed = false;
|
|
BBI.IsAnalyzed = true;
|
|
BBStack.pop_back();
|
|
continue;
|
|
}
|
|
|
|
SmallVector<MachineOperand, 4>
|
|
RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
bool CanRevCond = !TII->reverseBranchCondition(RevCond);
|
|
|
|
unsigned Dups = 0;
|
|
unsigned Dups2 = 0;
|
|
bool TNeedSub = !TrueBBI.Predicate.empty();
|
|
bool FNeedSub = !FalseBBI.Predicate.empty();
|
|
bool Enqueued = false;
|
|
|
|
BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
|
|
|
|
if (CanRevCond) {
|
|
BBInfo TrueBBICalc, FalseBBICalc;
|
|
auto feasibleDiamond = [&]() {
|
|
bool MeetsSize = MeetIfcvtSizeLimit(
|
|
*TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
|
|
TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
|
|
*FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
|
|
FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
|
|
Prediction);
|
|
bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
|
|
/* IsTriangle */ false, /* RevCond */ false,
|
|
/* hasCommonTail */ true);
|
|
bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
|
|
/* IsTriangle */ false, /* RevCond */ false,
|
|
/* hasCommonTail */ true);
|
|
return MeetsSize && TrueFeasible && FalseFeasible;
|
|
};
|
|
|
|
if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
|
|
TrueBBICalc, FalseBBICalc)) {
|
|
if (feasibleDiamond()) {
|
|
// Diamond:
|
|
// EBB
|
|
// / \_
|
|
// | |
|
|
// TBB FBB
|
|
// \ /
|
|
// TailBB
|
|
// Note TailBB can be empty.
|
|
Tokens.push_back(llvm::make_unique<IfcvtToken>(
|
|
BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
|
|
(bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
|
|
Enqueued = true;
|
|
}
|
|
} else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
|
|
TrueBBICalc, FalseBBICalc)) {
|
|
if (feasibleDiamond()) {
|
|
// ForkedDiamond:
|
|
// if TBB and FBB have a common tail that includes their conditional
|
|
// branch instructions, then we can If Convert this pattern.
|
|
// EBB
|
|
// _/ \_
|
|
// | |
|
|
// TBB FBB
|
|
// / \ / \
|
|
// FalseBB TrueBB FalseBB
|
|
//
|
|
Tokens.push_back(llvm::make_unique<IfcvtToken>(
|
|
BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
|
|
(bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
|
|
Enqueued = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
|
|
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
|
|
TrueBBI.ExtraCost2, Prediction) &&
|
|
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
|
|
// Triangle:
|
|
// EBB
|
|
// | \_
|
|
// | |
|
|
// | TBB
|
|
// | /
|
|
// FBB
|
|
Tokens.push_back(
|
|
llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
|
|
if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
|
|
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
|
|
TrueBBI.ExtraCost2, Prediction) &&
|
|
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
|
|
Tokens.push_back(
|
|
llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
|
|
if (ValidSimple(TrueBBI, Dups, Prediction) &&
|
|
MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
|
|
TrueBBI.ExtraCost2, Prediction) &&
|
|
FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
|
|
// Simple (split, no rejoin):
|
|
// EBB
|
|
// | \_
|
|
// | |
|
|
// | TBB---> exit
|
|
// |
|
|
// FBB
|
|
Tokens.push_back(
|
|
llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
|
|
if (CanRevCond) {
|
|
// Try the other path...
|
|
if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
|
|
Prediction.getCompl()) &&
|
|
MeetIfcvtSizeLimit(*FalseBBI.BB,
|
|
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
|
|
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
|
|
FeasibilityAnalysis(FalseBBI, RevCond, true)) {
|
|
Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
|
|
FNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
|
|
if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
|
|
Prediction.getCompl()) &&
|
|
MeetIfcvtSizeLimit(*FalseBBI.BB,
|
|
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
|
|
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
|
|
FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
|
|
Tokens.push_back(
|
|
llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
|
|
if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
|
|
MeetIfcvtSizeLimit(*FalseBBI.BB,
|
|
FalseBBI.NonPredSize + FalseBBI.ExtraCost,
|
|
FalseBBI.ExtraCost2, Prediction.getCompl()) &&
|
|
FeasibilityAnalysis(FalseBBI, RevCond)) {
|
|
Tokens.push_back(
|
|
llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
|
|
Enqueued = true;
|
|
}
|
|
}
|
|
|
|
BBI.IsEnqueued = Enqueued;
|
|
BBI.IsBeingAnalyzed = false;
|
|
BBI.IsAnalyzed = true;
|
|
BBStack.pop_back();
|
|
}
|
|
}
|
|
|
|
/// Analyze all blocks and find entries for all if-conversion candidates.
|
|
void IfConverter::AnalyzeBlocks(
|
|
MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
|
|
for (MachineBasicBlock &MBB : MF)
|
|
AnalyzeBlock(MBB, Tokens);
|
|
|
|
// Sort to favor more complex ifcvt scheme.
|
|
std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
|
|
}
|
|
|
|
/// Returns true either if ToMBB is the next block after MBB or that all the
|
|
/// intervening blocks are empty (given MBB can fall through to its next block).
|
|
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
|
|
MachineFunction::iterator PI = MBB.getIterator();
|
|
MachineFunction::iterator I = std::next(PI);
|
|
MachineFunction::iterator TI = ToMBB.getIterator();
|
|
MachineFunction::iterator E = MBB.getParent()->end();
|
|
while (I != TI) {
|
|
// Check isSuccessor to avoid case where the next block is empty, but
|
|
// it's not a successor.
|
|
if (I == E || !I->empty() || !PI->isSuccessor(&*I))
|
|
return false;
|
|
PI = I++;
|
|
}
|
|
// Finally see if the last I is indeed a successor to PI.
|
|
return PI->isSuccessor(&*I);
|
|
}
|
|
|
|
/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
|
|
/// can be if-converted. If predecessor is already enqueued, dequeue it!
|
|
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
|
|
for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
|
|
BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
|
|
if (PBBI.IsDone || PBBI.BB == &MBB)
|
|
continue;
|
|
PBBI.IsAnalyzed = false;
|
|
PBBI.IsEnqueued = false;
|
|
}
|
|
}
|
|
|
|
/// Inserts an unconditional branch from \p MBB to \p ToMBB.
|
|
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
|
|
const TargetInstrInfo *TII) {
|
|
DebugLoc dl; // FIXME: this is nowhere
|
|
SmallVector<MachineOperand, 0> NoCond;
|
|
TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
|
|
}
|
|
|
|
/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
|
|
/// values defined in MI which are also live/used by MI.
|
|
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
|
|
const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
|
|
|
|
// Before stepping forward past MI, remember which regs were live
|
|
// before MI. This is needed to set the Undef flag only when reg is
|
|
// dead.
|
|
SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
|
|
LiveBeforeMI.setUniverse(TRI->getNumRegs());
|
|
for (unsigned Reg : Redefs)
|
|
LiveBeforeMI.insert(Reg);
|
|
|
|
SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
|
|
Redefs.stepForward(MI, Clobbers);
|
|
|
|
// Now add the implicit uses for each of the clobbered values.
|
|
for (auto Clobber : Clobbers) {
|
|
// FIXME: Const cast here is nasty, but better than making StepForward
|
|
// take a mutable instruction instead of const.
|
|
unsigned Reg = Clobber.first;
|
|
MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
|
|
MachineInstr *OpMI = Op.getParent();
|
|
MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
|
|
if (Op.isRegMask()) {
|
|
// First handle regmasks. They clobber any entries in the mask which
|
|
// means that we need a def for those registers.
|
|
if (LiveBeforeMI.count(Reg))
|
|
MIB.addReg(Reg, RegState::Implicit);
|
|
|
|
// We also need to add an implicit def of this register for the later
|
|
// use to read from.
|
|
// For the register allocator to have allocated a register clobbered
|
|
// by the call which is used later, it must be the case that
|
|
// the call doesn't return.
|
|
MIB.addReg(Reg, RegState::Implicit | RegState::Define);
|
|
continue;
|
|
}
|
|
if (LiveBeforeMI.count(Reg))
|
|
MIB.addReg(Reg, RegState::Implicit);
|
|
else {
|
|
bool HasLiveSubReg = false;
|
|
for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
|
|
if (!LiveBeforeMI.count(*S))
|
|
continue;
|
|
HasLiveSubReg = true;
|
|
break;
|
|
}
|
|
if (HasLiveSubReg)
|
|
MIB.addReg(Reg, RegState::Implicit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If convert a simple (split, no rejoin) sub-CFG.
|
|
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
|
|
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
|
|
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
|
|
BBInfo *CvtBBI = &TrueBBI;
|
|
BBInfo *NextBBI = &FalseBBI;
|
|
|
|
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
if (Kind == ICSimpleFalse)
|
|
std::swap(CvtBBI, NextBBI);
|
|
|
|
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
|
|
MachineBasicBlock &NextMBB = *NextBBI->BB;
|
|
if (CvtBBI->IsDone ||
|
|
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
|
|
// Something has changed. It's no longer safe to predicate this block.
|
|
BBI.IsAnalyzed = false;
|
|
CvtBBI->IsAnalyzed = false;
|
|
return false;
|
|
}
|
|
|
|
if (CvtMBB.hasAddressTaken())
|
|
// Conservatively abort if-conversion if BB's address is taken.
|
|
return false;
|
|
|
|
if (Kind == ICSimpleFalse)
|
|
if (TII->reverseBranchCondition(Cond))
|
|
llvm_unreachable("Unable to reverse branch condition!");
|
|
|
|
Redefs.init(*TRI);
|
|
|
|
if (MRI->tracksLiveness()) {
|
|
// Initialize liveins to the first BB. These are potentially redefined by
|
|
// predicated instructions.
|
|
Redefs.addLiveIns(CvtMBB);
|
|
Redefs.addLiveIns(NextMBB);
|
|
}
|
|
|
|
// Remove the branches from the entry so we can add the contents of the true
|
|
// block to it.
|
|
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
|
|
|
|
if (CvtMBB.pred_size() > 1) {
|
|
// Copy instructions in the true block, predicate them, and add them to
|
|
// the entry block.
|
|
CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
|
|
|
|
// Keep the CFG updated.
|
|
BBI.BB->removeSuccessor(&CvtMBB, true);
|
|
} else {
|
|
// Predicate the instructions in the true block.
|
|
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
|
|
|
|
// Merge converted block into entry block. The BB to Cvt edge is removed
|
|
// by MergeBlocks.
|
|
MergeBlocks(BBI, *CvtBBI);
|
|
}
|
|
|
|
bool IterIfcvt = true;
|
|
if (!canFallThroughTo(*BBI.BB, NextMBB)) {
|
|
InsertUncondBranch(*BBI.BB, NextMBB, TII);
|
|
BBI.HasFallThrough = false;
|
|
// Now ifcvt'd block will look like this:
|
|
// BB:
|
|
// ...
|
|
// t, f = cmp
|
|
// if t op
|
|
// b BBf
|
|
//
|
|
// We cannot further ifcvt this block because the unconditional branch
|
|
// will have to be predicated on the new condition, that will not be
|
|
// available if cmp executes.
|
|
IterIfcvt = false;
|
|
}
|
|
|
|
// Update block info. BB can be iteratively if-converted.
|
|
if (!IterIfcvt)
|
|
BBI.IsDone = true;
|
|
InvalidatePreds(*BBI.BB);
|
|
CvtBBI->IsDone = true;
|
|
|
|
// FIXME: Must maintain LiveIns.
|
|
return true;
|
|
}
|
|
|
|
/// If convert a triangle sub-CFG.
|
|
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
|
|
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
|
|
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
|
|
BBInfo *CvtBBI = &TrueBBI;
|
|
BBInfo *NextBBI = &FalseBBI;
|
|
DebugLoc dl; // FIXME: this is nowhere
|
|
|
|
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
|
|
std::swap(CvtBBI, NextBBI);
|
|
|
|
MachineBasicBlock &CvtMBB = *CvtBBI->BB;
|
|
MachineBasicBlock &NextMBB = *NextBBI->BB;
|
|
if (CvtBBI->IsDone ||
|
|
(CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
|
|
// Something has changed. It's no longer safe to predicate this block.
|
|
BBI.IsAnalyzed = false;
|
|
CvtBBI->IsAnalyzed = false;
|
|
return false;
|
|
}
|
|
|
|
if (CvtMBB.hasAddressTaken())
|
|
// Conservatively abort if-conversion if BB's address is taken.
|
|
return false;
|
|
|
|
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
|
|
if (TII->reverseBranchCondition(Cond))
|
|
llvm_unreachable("Unable to reverse branch condition!");
|
|
|
|
if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
|
|
if (reverseBranchCondition(*CvtBBI)) {
|
|
// BB has been changed, modify its predecessors (except for this
|
|
// one) so they don't get ifcvt'ed based on bad intel.
|
|
for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
|
|
if (PBB == BBI.BB)
|
|
continue;
|
|
BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
|
|
if (PBBI.IsEnqueued) {
|
|
PBBI.IsAnalyzed = false;
|
|
PBBI.IsEnqueued = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize liveins to the first BB. These are potentially redefined by
|
|
// predicated instructions.
|
|
Redefs.init(*TRI);
|
|
if (MRI->tracksLiveness()) {
|
|
Redefs.addLiveIns(CvtMBB);
|
|
Redefs.addLiveIns(NextMBB);
|
|
}
|
|
|
|
bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
|
|
BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
|
|
|
|
if (HasEarlyExit) {
|
|
// Get probabilities before modifying CvtMBB and BBI.BB.
|
|
CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
|
|
CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
|
|
BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
|
|
BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
|
|
}
|
|
|
|
// Remove the branches from the entry so we can add the contents of the true
|
|
// block to it.
|
|
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
|
|
|
|
if (CvtMBB.pred_size() > 1) {
|
|
// Copy instructions in the true block, predicate them, and add them to
|
|
// the entry block.
|
|
CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
|
|
} else {
|
|
// Predicate the 'true' block after removing its branch.
|
|
CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
|
|
PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
|
|
|
|
// Now merge the entry of the triangle with the true block.
|
|
MergeBlocks(BBI, *CvtBBI, false);
|
|
}
|
|
|
|
// Keep the CFG updated.
|
|
BBI.BB->removeSuccessor(&CvtMBB, true);
|
|
|
|
// If 'true' block has a 'false' successor, add an exit branch to it.
|
|
if (HasEarlyExit) {
|
|
SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
|
|
CvtBBI->BrCond.end());
|
|
if (TII->reverseBranchCondition(RevCond))
|
|
llvm_unreachable("Unable to reverse branch condition!");
|
|
|
|
// Update the edge probability for both CvtBBI->FalseBB and NextBBI.
|
|
// NewNext = New_Prob(BBI.BB, NextMBB) =
|
|
// Prob(BBI.BB, NextMBB) +
|
|
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
|
|
// NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
|
|
// Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
|
|
auto NewTrueBB = getNextBlock(*BBI.BB);
|
|
auto NewNext = BBNext + BBCvt * CvtNext;
|
|
auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
|
|
if (NewTrueBBIter != BBI.BB->succ_end())
|
|
BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
|
|
|
|
auto NewFalse = BBCvt * CvtFalse;
|
|
TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
|
|
BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
|
|
}
|
|
|
|
// Merge in the 'false' block if the 'false' block has no other
|
|
// predecessors. Otherwise, add an unconditional branch to 'false'.
|
|
bool FalseBBDead = false;
|
|
bool IterIfcvt = true;
|
|
bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
|
|
if (!isFallThrough) {
|
|
// Only merge them if the true block does not fallthrough to the false
|
|
// block. By not merging them, we make it possible to iteratively
|
|
// ifcvt the blocks.
|
|
if (!HasEarlyExit &&
|
|
NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
|
|
!NextMBB.hasAddressTaken()) {
|
|
MergeBlocks(BBI, *NextBBI);
|
|
FalseBBDead = true;
|
|
} else {
|
|
InsertUncondBranch(*BBI.BB, NextMBB, TII);
|
|
BBI.HasFallThrough = false;
|
|
}
|
|
// Mixed predicated and unpredicated code. This cannot be iteratively
|
|
// predicated.
|
|
IterIfcvt = false;
|
|
}
|
|
|
|
// Update block info. BB can be iteratively if-converted.
|
|
if (!IterIfcvt)
|
|
BBI.IsDone = true;
|
|
InvalidatePreds(*BBI.BB);
|
|
CvtBBI->IsDone = true;
|
|
if (FalseBBDead)
|
|
NextBBI->IsDone = true;
|
|
|
|
// FIXME: Must maintain LiveIns.
|
|
return true;
|
|
}
|
|
|
|
/// Common code shared between diamond conversions.
|
|
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
|
|
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
|
|
/// and FalseBBI
|
|
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
|
|
/// and \p FalseBBI
|
|
/// \p RemoveBranch - Remove the common branch of the two blocks before
|
|
/// predicating. Only false for unanalyzable fallthrough
|
|
/// cases. The caller will replace the branch if necessary.
|
|
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
|
|
/// unanalyzable fallthrough
|
|
bool IfConverter::IfConvertDiamondCommon(
|
|
BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbersPred, bool FClobbersPred,
|
|
bool RemoveBranch, bool MergeAddEdges) {
|
|
|
|
if (TrueBBI.IsDone || FalseBBI.IsDone ||
|
|
TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
|
|
// Something has changed. It's no longer safe to predicate these blocks.
|
|
BBI.IsAnalyzed = false;
|
|
TrueBBI.IsAnalyzed = false;
|
|
FalseBBI.IsAnalyzed = false;
|
|
return false;
|
|
}
|
|
|
|
if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
|
|
// Conservatively abort if-conversion if either BB has its address taken.
|
|
return false;
|
|
|
|
// Put the predicated instructions from the 'true' block before the
|
|
// instructions from the 'false' block, unless the true block would clobber
|
|
// the predicate, in which case, do the opposite.
|
|
BBInfo *BBI1 = &TrueBBI;
|
|
BBInfo *BBI2 = &FalseBBI;
|
|
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
|
|
if (TII->reverseBranchCondition(RevCond))
|
|
llvm_unreachable("Unable to reverse branch condition!");
|
|
SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
|
|
SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
|
|
|
|
// Figure out the more profitable ordering.
|
|
bool DoSwap = false;
|
|
if (TClobbersPred && !FClobbersPred)
|
|
DoSwap = true;
|
|
else if (!TClobbersPred && !FClobbersPred) {
|
|
if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
|
|
DoSwap = true;
|
|
} else if (TClobbersPred && FClobbersPred)
|
|
llvm_unreachable("Predicate info cannot be clobbered by both sides.");
|
|
if (DoSwap) {
|
|
std::swap(BBI1, BBI2);
|
|
std::swap(Cond1, Cond2);
|
|
}
|
|
|
|
// Remove the conditional branch from entry to the blocks.
|
|
BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
|
|
|
|
MachineBasicBlock &MBB1 = *BBI1->BB;
|
|
MachineBasicBlock &MBB2 = *BBI2->BB;
|
|
|
|
// Initialize the Redefs:
|
|
// - BB2 live-in regs need implicit uses before being redefined by BB1
|
|
// instructions.
|
|
// - BB1 live-out regs need implicit uses before being redefined by BB2
|
|
// instructions. We start with BB1 live-ins so we have the live-out regs
|
|
// after tracking the BB1 instructions.
|
|
Redefs.init(*TRI);
|
|
if (MRI->tracksLiveness()) {
|
|
Redefs.addLiveIns(MBB1);
|
|
Redefs.addLiveIns(MBB2);
|
|
}
|
|
|
|
// Remove the duplicated instructions at the beginnings of both paths.
|
|
// Skip dbg_value instructions.
|
|
MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
|
|
MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
|
|
BBI1->NonPredSize -= NumDups1;
|
|
BBI2->NonPredSize -= NumDups1;
|
|
|
|
// Skip past the dups on each side separately since there may be
|
|
// differing dbg_value entries. NumDups1 can include a "return"
|
|
// instruction, if it's not marked as "branch".
|
|
for (unsigned i = 0; i < NumDups1; ++DI1) {
|
|
if (DI1 == MBB1.end())
|
|
break;
|
|
if (!DI1->isDebugInstr())
|
|
++i;
|
|
}
|
|
while (NumDups1 != 0) {
|
|
++DI2;
|
|
if (DI2 == MBB2.end())
|
|
break;
|
|
if (!DI2->isDebugInstr())
|
|
--NumDups1;
|
|
}
|
|
|
|
if (MRI->tracksLiveness()) {
|
|
for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
|
|
SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
|
|
Redefs.stepForward(MI, Dummy);
|
|
}
|
|
}
|
|
|
|
BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
|
|
MBB2.erase(MBB2.begin(), DI2);
|
|
|
|
// The branches have been checked to match, so it is safe to remove the
|
|
// branch in BB1 and rely on the copy in BB2. The complication is that
|
|
// the blocks may end with a return instruction, which may or may not
|
|
// be marked as "branch". If it's not, then it could be included in
|
|
// "dups1", leaving the blocks potentially empty after moving the common
|
|
// duplicates.
|
|
#ifndef NDEBUG
|
|
// Unanalyzable branches must match exactly. Check that now.
|
|
if (!BBI1->IsBrAnalyzable)
|
|
verifySameBranchInstructions(&MBB1, &MBB2);
|
|
#endif
|
|
BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
|
|
// Remove duplicated instructions.
|
|
DI1 = MBB1.end();
|
|
for (unsigned i = 0; i != NumDups2; ) {
|
|
// NumDups2 only counted non-dbg_value instructions, so this won't
|
|
// run off the head of the list.
|
|
assert(DI1 != MBB1.begin());
|
|
--DI1;
|
|
// skip dbg_value instructions
|
|
if (!DI1->isDebugInstr())
|
|
++i;
|
|
}
|
|
MBB1.erase(DI1, MBB1.end());
|
|
|
|
DI2 = BBI2->BB->end();
|
|
// The branches have been checked to match. Skip over the branch in the false
|
|
// block so that we don't try to predicate it.
|
|
if (RemoveBranch)
|
|
BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
|
|
else {
|
|
// Make DI2 point to the end of the range where the common "tail"
|
|
// instructions could be found.
|
|
while (DI2 != MBB2.begin()) {
|
|
MachineBasicBlock::iterator Prev = std::prev(DI2);
|
|
if (!Prev->isBranch() && !Prev->isDebugInstr())
|
|
break;
|
|
DI2 = Prev;
|
|
}
|
|
}
|
|
while (NumDups2 != 0) {
|
|
// NumDups2 only counted non-dbg_value instructions, so this won't
|
|
// run off the head of the list.
|
|
assert(DI2 != MBB2.begin());
|
|
--DI2;
|
|
// skip dbg_value instructions
|
|
if (!DI2->isDebugInstr())
|
|
--NumDups2;
|
|
}
|
|
|
|
// Remember which registers would later be defined by the false block.
|
|
// This allows us not to predicate instructions in the true block that would
|
|
// later be re-defined. That is, rather than
|
|
// subeq r0, r1, #1
|
|
// addne r0, r1, #1
|
|
// generate:
|
|
// sub r0, r1, #1
|
|
// addne r0, r1, #1
|
|
SmallSet<MCPhysReg, 4> RedefsByFalse;
|
|
SmallSet<MCPhysReg, 4> ExtUses;
|
|
if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
|
|
for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
|
|
if (FI.isDebugInstr())
|
|
continue;
|
|
SmallVector<MCPhysReg, 4> Defs;
|
|
for (const MachineOperand &MO : FI.operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isDef()) {
|
|
Defs.push_back(Reg);
|
|
} else if (!RedefsByFalse.count(Reg)) {
|
|
// These are defined before ctrl flow reach the 'false' instructions.
|
|
// They cannot be modified by the 'true' instructions.
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
ExtUses.insert(*SubRegs);
|
|
}
|
|
}
|
|
|
|
for (MCPhysReg Reg : Defs) {
|
|
if (!ExtUses.count(Reg)) {
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
RedefsByFalse.insert(*SubRegs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Predicate the 'true' block.
|
|
PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
|
|
|
|
// After predicating BBI1, if there is a predicated terminator in BBI1 and
|
|
// a non-predicated in BBI2, then we don't want to predicate the one from
|
|
// BBI2. The reason is that if we merged these blocks, we would end up with
|
|
// two predicated terminators in the same block.
|
|
// Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
|
|
// predicate them either. They were checked to be identical, and so the
|
|
// same branch would happen regardless of which path was taken.
|
|
if (!MBB2.empty() && (DI2 == MBB2.end())) {
|
|
MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
|
|
MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
|
|
bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
|
|
bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
|
|
if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
|
|
--DI2;
|
|
}
|
|
|
|
// Predicate the 'false' block.
|
|
PredicateBlock(*BBI2, DI2, *Cond2);
|
|
|
|
// Merge the true block into the entry of the diamond.
|
|
MergeBlocks(BBI, *BBI1, MergeAddEdges);
|
|
MergeBlocks(BBI, *BBI2, MergeAddEdges);
|
|
return true;
|
|
}
|
|
|
|
/// If convert an almost-diamond sub-CFG where the true
|
|
/// and false blocks share a common tail.
|
|
bool IfConverter::IfConvertForkedDiamond(
|
|
BBInfo &BBI, IfcvtKind Kind,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbersPred, bool FClobbersPred) {
|
|
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
|
|
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
|
|
|
|
// Save the debug location for later.
|
|
DebugLoc dl;
|
|
MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
|
|
if (TIE != TrueBBI.BB->end())
|
|
dl = TIE->getDebugLoc();
|
|
// Removing branches from both blocks is safe, because we have already
|
|
// determined that both blocks have the same branch instructions. The branch
|
|
// will be added back at the end, unpredicated.
|
|
if (!IfConvertDiamondCommon(
|
|
BBI, TrueBBI, FalseBBI,
|
|
NumDups1, NumDups2,
|
|
TClobbersPred, FClobbersPred,
|
|
/* RemoveBranch */ true, /* MergeAddEdges */ true))
|
|
return false;
|
|
|
|
// Add back the branch.
|
|
// Debug location saved above when removing the branch from BBI2
|
|
TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
|
|
TrueBBI.BrCond, dl);
|
|
|
|
// Update block info.
|
|
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
|
|
InvalidatePreds(*BBI.BB);
|
|
|
|
// FIXME: Must maintain LiveIns.
|
|
return true;
|
|
}
|
|
|
|
/// If convert a diamond sub-CFG.
|
|
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
|
|
unsigned NumDups1, unsigned NumDups2,
|
|
bool TClobbersPred, bool FClobbersPred) {
|
|
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
|
|
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
|
|
MachineBasicBlock *TailBB = TrueBBI.TrueBB;
|
|
|
|
// True block must fall through or end with an unanalyzable terminator.
|
|
if (!TailBB) {
|
|
if (blockAlwaysFallThrough(TrueBBI))
|
|
TailBB = FalseBBI.TrueBB;
|
|
assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
|
|
}
|
|
|
|
if (!IfConvertDiamondCommon(
|
|
BBI, TrueBBI, FalseBBI,
|
|
NumDups1, NumDups2,
|
|
TClobbersPred, FClobbersPred,
|
|
/* RemoveBranch */ TrueBBI.IsBrAnalyzable,
|
|
/* MergeAddEdges */ TailBB == nullptr))
|
|
return false;
|
|
|
|
// If the if-converted block falls through or unconditionally branches into
|
|
// the tail block, and the tail block does not have other predecessors, then
|
|
// fold the tail block in as well. Otherwise, unless it falls through to the
|
|
// tail, add a unconditional branch to it.
|
|
if (TailBB) {
|
|
// We need to remove the edges to the true and false blocks manually since
|
|
// we didn't let IfConvertDiamondCommon update the CFG.
|
|
BBI.BB->removeSuccessor(TrueBBI.BB);
|
|
BBI.BB->removeSuccessor(FalseBBI.BB, true);
|
|
|
|
BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
|
|
bool CanMergeTail = !TailBBI.HasFallThrough &&
|
|
!TailBBI.BB->hasAddressTaken();
|
|
// The if-converted block can still have a predicated terminator
|
|
// (e.g. a predicated return). If that is the case, we cannot merge
|
|
// it with the tail block.
|
|
MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
|
|
if (TI != BBI.BB->end() && TII->isPredicated(*TI))
|
|
CanMergeTail = false;
|
|
// There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
|
|
// check if there are any other predecessors besides those.
|
|
unsigned NumPreds = TailBB->pred_size();
|
|
if (NumPreds > 1)
|
|
CanMergeTail = false;
|
|
else if (NumPreds == 1 && CanMergeTail) {
|
|
MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
|
|
if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
|
|
CanMergeTail = false;
|
|
}
|
|
if (CanMergeTail) {
|
|
MergeBlocks(BBI, TailBBI);
|
|
TailBBI.IsDone = true;
|
|
} else {
|
|
BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
|
|
InsertUncondBranch(*BBI.BB, *TailBB, TII);
|
|
BBI.HasFallThrough = false;
|
|
}
|
|
}
|
|
|
|
// Update block info.
|
|
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
|
|
InvalidatePreds(*BBI.BB);
|
|
|
|
// FIXME: Must maintain LiveIns.
|
|
return true;
|
|
}
|
|
|
|
static bool MaySpeculate(const MachineInstr &MI,
|
|
SmallSet<MCPhysReg, 4> &LaterRedefs) {
|
|
bool SawStore = true;
|
|
if (!MI.isSafeToMove(nullptr, SawStore))
|
|
return false;
|
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isDef() && !LaterRedefs.count(Reg))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Predicate instructions from the start of the block to the specified end with
|
|
/// the specified condition.
|
|
void IfConverter::PredicateBlock(BBInfo &BBI,
|
|
MachineBasicBlock::iterator E,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
SmallSet<MCPhysReg, 4> *LaterRedefs) {
|
|
bool AnyUnpred = false;
|
|
bool MaySpec = LaterRedefs != nullptr;
|
|
for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
|
|
if (I.isDebugInstr() || TII->isPredicated(I))
|
|
continue;
|
|
// It may be possible not to predicate an instruction if it's the 'true'
|
|
// side of a diamond and the 'false' side may re-define the instruction's
|
|
// defs.
|
|
if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
|
|
AnyUnpred = true;
|
|
continue;
|
|
}
|
|
// If any instruction is predicated, then every instruction after it must
|
|
// be predicated.
|
|
MaySpec = false;
|
|
if (!TII->PredicateInstruction(I, Cond)) {
|
|
#ifndef NDEBUG
|
|
dbgs() << "Unable to predicate " << I << "!\n";
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
|
|
// If the predicated instruction now redefines a register as the result of
|
|
// if-conversion, add an implicit kill.
|
|
UpdatePredRedefs(I, Redefs);
|
|
}
|
|
|
|
BBI.Predicate.append(Cond.begin(), Cond.end());
|
|
|
|
BBI.IsAnalyzed = false;
|
|
BBI.NonPredSize = 0;
|
|
|
|
++NumIfConvBBs;
|
|
if (AnyUnpred)
|
|
++NumUnpred;
|
|
}
|
|
|
|
/// Copy and predicate instructions from source BB to the destination block.
|
|
/// Skip end of block branches if IgnoreBr is true.
|
|
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool IgnoreBr) {
|
|
MachineFunction &MF = *ToBBI.BB->getParent();
|
|
|
|
MachineBasicBlock &FromMBB = *FromBBI.BB;
|
|
for (MachineInstr &I : FromMBB) {
|
|
// Do not copy the end of the block branches.
|
|
if (IgnoreBr && I.isBranch())
|
|
break;
|
|
|
|
MachineInstr *MI = MF.CloneMachineInstr(&I);
|
|
ToBBI.BB->insert(ToBBI.BB->end(), MI);
|
|
ToBBI.NonPredSize++;
|
|
unsigned ExtraPredCost = TII->getPredicationCost(I);
|
|
unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
|
|
if (NumCycles > 1)
|
|
ToBBI.ExtraCost += NumCycles-1;
|
|
ToBBI.ExtraCost2 += ExtraPredCost;
|
|
|
|
if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
|
|
if (!TII->PredicateInstruction(*MI, Cond)) {
|
|
#ifndef NDEBUG
|
|
dbgs() << "Unable to predicate " << I << "!\n";
|
|
#endif
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
|
|
// If the predicated instruction now redefines a register as the result of
|
|
// if-conversion, add an implicit kill.
|
|
UpdatePredRedefs(*MI, Redefs);
|
|
}
|
|
|
|
if (!IgnoreBr) {
|
|
std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
|
|
FromMBB.succ_end());
|
|
MachineBasicBlock *NBB = getNextBlock(FromMBB);
|
|
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
|
|
|
|
for (MachineBasicBlock *Succ : Succs) {
|
|
// Fallthrough edge can't be transferred.
|
|
if (Succ == FallThrough)
|
|
continue;
|
|
ToBBI.BB->addSuccessor(Succ);
|
|
}
|
|
}
|
|
|
|
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
|
|
ToBBI.Predicate.append(Cond.begin(), Cond.end());
|
|
|
|
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
|
|
ToBBI.IsAnalyzed = false;
|
|
|
|
++NumDupBBs;
|
|
}
|
|
|
|
/// Move all instructions from FromBB to the end of ToBB. This will leave
|
|
/// FromBB as an empty block, so remove all of its successor edges except for
|
|
/// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
|
|
/// being moved, add those successor edges to ToBBI and remove the old edge
|
|
/// from ToBBI to FromBBI.
|
|
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
|
|
MachineBasicBlock &FromMBB = *FromBBI.BB;
|
|
assert(!FromMBB.hasAddressTaken() &&
|
|
"Removing a BB whose address is taken!");
|
|
|
|
// In case FromMBB contains terminators (e.g. return instruction),
|
|
// first move the non-terminator instructions, then the terminators.
|
|
MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
|
|
MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
|
|
ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
|
|
|
|
// If FromBB has non-predicated terminator we should copy it at the end.
|
|
if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
|
|
ToTI = ToBBI.BB->end();
|
|
ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
|
|
|
|
// Force normalizing the successors' probabilities of ToBBI.BB to convert all
|
|
// unknown probabilities into known ones.
|
|
// FIXME: This usage is too tricky and in the future we would like to
|
|
// eliminate all unknown probabilities in MBB.
|
|
if (ToBBI.IsBrAnalyzable)
|
|
ToBBI.BB->normalizeSuccProbs();
|
|
|
|
SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
|
|
FromMBB.succ_end());
|
|
MachineBasicBlock *NBB = getNextBlock(FromMBB);
|
|
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
|
|
// The edge probability from ToBBI.BB to FromMBB, which is only needed when
|
|
// AddEdges is true and FromMBB is a successor of ToBBI.BB.
|
|
auto To2FromProb = BranchProbability::getZero();
|
|
if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
|
|
// Remove the old edge but remember the edge probability so we can calculate
|
|
// the correct weights on the new edges being added further down.
|
|
To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
|
|
ToBBI.BB->removeSuccessor(&FromMBB);
|
|
}
|
|
|
|
for (MachineBasicBlock *Succ : FromSuccs) {
|
|
// Fallthrough edge can't be transferred.
|
|
if (Succ == FallThrough)
|
|
continue;
|
|
|
|
auto NewProb = BranchProbability::getZero();
|
|
if (AddEdges) {
|
|
// Calculate the edge probability for the edge from ToBBI.BB to Succ,
|
|
// which is a portion of the edge probability from FromMBB to Succ. The
|
|
// portion ratio is the edge probability from ToBBI.BB to FromMBB (if
|
|
// FromBBI is a successor of ToBBI.BB. See comment below for exception).
|
|
NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
|
|
|
|
// To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
|
|
// only happens when if-converting a diamond CFG and FromMBB is the
|
|
// tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
|
|
// could just use the probabilities on FromMBB's out-edges when adding
|
|
// new successors.
|
|
if (!To2FromProb.isZero())
|
|
NewProb *= To2FromProb;
|
|
}
|
|
|
|
FromMBB.removeSuccessor(Succ);
|
|
|
|
if (AddEdges) {
|
|
// If the edge from ToBBI.BB to Succ already exists, update the
|
|
// probability of this edge by adding NewProb to it. An example is shown
|
|
// below, in which A is ToBBI.BB and B is FromMBB. In this case we
|
|
// don't have to set C as A's successor as it already is. We only need to
|
|
// update the edge probability on A->C. Note that B will not be
|
|
// immediately removed from A's successors. It is possible that B->D is
|
|
// not removed either if D is a fallthrough of B. Later the edge A->D
|
|
// (generated here) and B->D will be combined into one edge. To maintain
|
|
// correct edge probability of this combined edge, we need to set the edge
|
|
// probability of A->B to zero, which is already done above. The edge
|
|
// probability on A->D is calculated by scaling the original probability
|
|
// on A->B by the probability of B->D.
|
|
//
|
|
// Before ifcvt: After ifcvt (assume B->D is kept):
|
|
//
|
|
// A A
|
|
// /| /|\
|
|
// / B / B|
|
|
// | /| | ||
|
|
// |/ | | |/
|
|
// C D C D
|
|
//
|
|
if (ToBBI.BB->isSuccessor(Succ))
|
|
ToBBI.BB->setSuccProbability(
|
|
find(ToBBI.BB->successors(), Succ),
|
|
MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
|
|
else
|
|
ToBBI.BB->addSuccessor(Succ, NewProb);
|
|
}
|
|
}
|
|
|
|
// Move the now empty FromMBB out of the way to the end of the function so
|
|
// it doesn't interfere with fallthrough checks done by canFallThroughTo().
|
|
MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
|
|
if (Last != &FromMBB)
|
|
FromMBB.moveAfter(Last);
|
|
|
|
// Normalize the probabilities of ToBBI.BB's successors with all adjustment
|
|
// we've done above.
|
|
if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
|
|
ToBBI.BB->normalizeSuccProbs();
|
|
|
|
ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
|
|
FromBBI.Predicate.clear();
|
|
|
|
ToBBI.NonPredSize += FromBBI.NonPredSize;
|
|
ToBBI.ExtraCost += FromBBI.ExtraCost;
|
|
ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
|
|
FromBBI.NonPredSize = 0;
|
|
FromBBI.ExtraCost = 0;
|
|
FromBBI.ExtraCost2 = 0;
|
|
|
|
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
|
|
ToBBI.HasFallThrough = FromBBI.HasFallThrough;
|
|
ToBBI.IsAnalyzed = false;
|
|
FromBBI.IsAnalyzed = false;
|
|
}
|
|
|
|
FunctionPass *
|
|
llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
|
|
return new IfConverter(std::move(Ftor));
|
|
}
|