llvm-project/polly/lib/External/isl/isl_coalesce.c

4263 lines
130 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
* Copyright 2016 INRIA Paris
* Copyright 2020 Cerebras Systems
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
* and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
* CS 42112, 75589 Paris Cedex 12, France
* and Cerebras Systems, 175 S San Antonio Rd, Los Altos, CA, USA
*/
#include <isl_ctx_private.h>
#include "isl_map_private.h"
#include <isl_seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>
#include <isl_val_private.h>
#include <isl_vec_private.h>
#include <isl_aff_private.h>
#include <isl_equalities.h>
#include <isl_constraint_private.h>
#include <set_to_map.c>
#include <set_from_map.c>
#define STATUS_ERROR -1
#define STATUS_REDUNDANT 1
#define STATUS_VALID 2
#define STATUS_SEPARATE 3
#define STATUS_CUT 4
#define STATUS_ADJ_EQ 5
#define STATUS_ADJ_INEQ 6
static int status_in(isl_int *ineq, struct isl_tab *tab)
{
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
switch (type) {
default:
case isl_ineq_error: return STATUS_ERROR;
case isl_ineq_redundant: return STATUS_VALID;
case isl_ineq_separate: return STATUS_SEPARATE;
case isl_ineq_cut: return STATUS_CUT;
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
}
}
/* Compute the position of the equalities of basic map "bmap_i"
* with respect to the basic map represented by "tab_j".
* The resulting array has twice as many entries as the number
* of equalities corresponding to the two inequalities to which
* each equality corresponds.
*/
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_j)
{
int k, l;
int *eq;
isl_size dim;
dim = isl_basic_map_dim(bmap_i, isl_dim_all);
if (dim < 0)
return NULL;
eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
if (!eq)
return NULL;
for (k = 0; k < bmap_i->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
if (eq[2 * k + l] == STATUS_ERROR)
goto error;
}
}
return eq;
error:
free(eq);
return NULL;
}
/* Compute the position of the inequalities of basic map "bmap_i"
* (also represented by "tab_i", if not NULL) with respect to the basic map
* represented by "tab_j".
*/
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_i, struct isl_tab *tab_j)
{
int k;
unsigned n_eq = bmap_i->n_eq;
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
if (!ineq)
return NULL;
for (k = 0; k < bmap_i->n_ineq; ++k) {
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
ineq[k] = STATUS_REDUNDANT;
continue;
}
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
if (ineq[k] == STATUS_ERROR)
goto error;
if (ineq[k] == STATUS_SEPARATE)
break;
}
return ineq;
error:
free(ineq);
return NULL;
}
static int any(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return 1;
return 0;
}
/* Return the first position of "status" in the list "con" of length "len".
* Return -1 if there is no such entry.
*/
static int find(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return i;
return -1;
}
static int count(int *con, unsigned len, int status)
{
int i;
int c = 0;
for (i = 0; i < len ; ++i)
if (con[i] == status)
c++;
return c;
}
static int all(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i) {
if (con[i] == STATUS_REDUNDANT)
continue;
if (con[i] != status)
return 0;
}
return 1;
}
/* Internal information associated to a basic map in a map
* that is to be coalesced by isl_map_coalesce.
*
* "bmap" is the basic map itself (or NULL if "removed" is set)
* "tab" is the corresponding tableau (or NULL if "removed" is set)
* "hull_hash" identifies the affine space in which "bmap" lives.
* "modified" is set if this basic map may not be identical
* to any of the basic maps in the input.
* "removed" is set if this basic map has been removed from the map
* "simplify" is set if this basic map may have some unknown integer
* divisions that were not present in the input basic maps. The basic
* map should then be simplified such that we may be able to find
* a definition among the constraints.
*
* "eq" and "ineq" are only set if we are currently trying to coalesce
* this basic map with another basic map, in which case they represent
* the position of the inequalities of this basic map with respect to
* the other basic map. The number of elements in the "eq" array
* is twice the number of equalities in the "bmap", corresponding
* to the two inequalities that make up each equality.
*/
struct isl_coalesce_info {
isl_basic_map *bmap;
struct isl_tab *tab;
uint32_t hull_hash;
int modified;
int removed;
int simplify;
int *eq;
int *ineq;
};
/* Is there any (half of an) equality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map?
*/
static int any_eq(struct isl_coalesce_info *info, int status)
{
isl_size n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return any(info->eq, 2 * n_eq, status);
}
/* Is there any inequality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map?
*/
static int any_ineq(struct isl_coalesce_info *info, int status)
{
isl_size n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return any(info->ineq, n_ineq, status);
}
/* Return the position of the first half on an equality constraint
* in the description of the basic map represented by "info" that
* has position "status" with respect to the other basic map.
* The returned value is twice the position of the equality constraint
* plus zero for the negative half and plus one for the positive half.
* Return -1 if there is no such entry.
*/
static int find_eq(struct isl_coalesce_info *info, int status)
{
isl_size n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return find(info->eq, 2 * n_eq, status);
}
/* Return the position of the first inequality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map.
* Return -1 if there is no such entry.
*/
static int find_ineq(struct isl_coalesce_info *info, int status)
{
isl_size n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return find(info->ineq, n_ineq, status);
}
/* Return the number of (halves of) equality constraints in the description
* of the basic map represented by "info" that
* have position "status" with respect to the other basic map.
*/
static int count_eq(struct isl_coalesce_info *info, int status)
{
isl_size n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return count(info->eq, 2 * n_eq, status);
}
/* Return the number of inequality constraints in the description
* of the basic map represented by "info" that
* have position "status" with respect to the other basic map.
*/
static int count_ineq(struct isl_coalesce_info *info, int status)
{
isl_size n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return count(info->ineq, n_ineq, status);
}
/* Are all non-redundant constraints of the basic map represented by "info"
* either valid or cut constraints with respect to the other basic map?
*/
static int all_valid_or_cut(struct isl_coalesce_info *info)
{
int i;
for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
if (info->eq[i] == STATUS_REDUNDANT)
continue;
if (info->eq[i] == STATUS_VALID)
continue;
if (info->eq[i] == STATUS_CUT)
continue;
return 0;
}
for (i = 0; i < info->bmap->n_ineq; ++i) {
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
if (info->ineq[i] == STATUS_VALID)
continue;
if (info->ineq[i] == STATUS_CUT)
continue;
return 0;
}
return 1;
}
/* Compute the hash of the (apparent) affine hull of info->bmap (with
* the existentially quantified variables removed) and store it
* in info->hash.
*/
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
{
isl_basic_map *hull;
isl_size n_div;
hull = isl_basic_map_copy(info->bmap);
hull = isl_basic_map_plain_affine_hull(hull);
n_div = isl_basic_map_dim(hull, isl_dim_div);
if (n_div < 0)
hull = isl_basic_map_free(hull);
hull = isl_basic_map_drop_constraints_involving_dims(hull,
isl_dim_div, 0, n_div);
info->hull_hash = isl_basic_map_get_hash(hull);
isl_basic_map_free(hull);
return hull ? 0 : -1;
}
/* Free all the allocated memory in an array
* of "n" isl_coalesce_info elements.
*/
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
{
int i;
if (!info)
return;
for (i = 0; i < n; ++i) {
isl_basic_map_free(info[i].bmap);
isl_tab_free(info[i].tab);
}
free(info);
}
/* Clear the memory associated to "info".
*/
static void clear(struct isl_coalesce_info *info)
{
info->bmap = isl_basic_map_free(info->bmap);
isl_tab_free(info->tab);
info->tab = NULL;
}
/* Drop the basic map represented by "info".
* That is, clear the memory associated to the entry and
* mark it as having been removed.
*/
static void drop(struct isl_coalesce_info *info)
{
clear(info);
info->removed = 1;
}
/* Exchange the information in "info1" with that in "info2".
*/
static void exchange(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
struct isl_coalesce_info info;
info = *info1;
*info1 = *info2;
*info2 = info;
}
/* This type represents the kind of change that has been performed
* while trying to coalesce two basic maps.
*
* isl_change_none: nothing was changed
* isl_change_drop_first: the first basic map was removed
* isl_change_drop_second: the second basic map was removed
* isl_change_fuse: the two basic maps were replaced by a new basic map.
*/
enum isl_change {
isl_change_error = -1,
isl_change_none = 0,
isl_change_drop_first,
isl_change_drop_second,
isl_change_fuse,
};
/* Update "change" based on an interchange of the first and the second
* basic map. That is, interchange isl_change_drop_first and
* isl_change_drop_second.
*/
static enum isl_change invert_change(enum isl_change change)
{
switch (change) {
case isl_change_error:
return isl_change_error;
case isl_change_none:
return isl_change_none;
case isl_change_drop_first:
return isl_change_drop_second;
case isl_change_drop_second:
return isl_change_drop_first;
case isl_change_fuse:
return isl_change_fuse;
}
return isl_change_error;
}
/* Add the valid constraints of the basic map represented by "info"
* to "bmap". "len" is the size of the constraints.
* If only one of the pair of inequalities that make up an equality
* is valid, then add that inequality.
*/
static __isl_give isl_basic_map *add_valid_constraints(
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
unsigned len)
{
int k, l;
if (!bmap)
return NULL;
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_equality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
}
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] != STATUS_VALID)
continue;
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
}
return bmap;
}
/* Is "bmap" defined by a number of (non-redundant) constraints that
* is greater than the number of constraints of basic maps i and j combined?
* Equalities are counted as two inequalities.
*/
static int number_of_constraints_increases(int i, int j,
struct isl_coalesce_info *info,
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
{
int k, n_old, n_new;
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
n_new = 2 * bmap->n_eq;
for (k = 0; k < bmap->n_ineq; ++k)
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
++n_new;
return n_new > n_old;
}
/* Replace the pair of basic maps i and j by the basic map bounded
* by the valid constraints in both basic maps and the constraints
* in extra (if not NULL).
* Place the fused basic map in the position that is the smallest of i and j.
*
* If "detect_equalities" is set, then look for equalities encoded
* as pairs of inequalities.
* If "check_number" is set, then the original basic maps are only
* replaced if the total number of constraints does not increase.
* While the number of integer divisions in the two basic maps
* is assumed to be the same, the actual definitions may be different.
* We only copy the definition from one of the basic maps if it is
* the same as that of the other basic map. Otherwise, we mark
* the integer division as unknown and simplify the basic map
* in an attempt to recover the integer division definition.
* If any extra constraints get introduced, then these may
* involve integer divisions with a unit coefficient.
* Eliminate those that do not appear with any other coefficient
* in other constraints, to ensure they get eliminated completely,
* improving the chances of further coalescing.
*/
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
{
int k, l;
struct isl_basic_map *fused = NULL;
struct isl_tab *fused_tab = NULL;
isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
unsigned extra_rows = extra ? extra->n_row : 0;
unsigned n_eq, n_ineq;
int simplify = 0;
if (total < 0)
return isl_change_error;
if (j < i)
return fuse(j, i, info, extra, detect_equalities, check_number);
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
fused = add_valid_constraints(fused, &info[i], 1 + total);
fused = add_valid_constraints(fused, &info[j], 1 + total);
if (!fused)
goto error;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
for (k = 0; k < info[i].bmap->n_div; ++k) {
int l = isl_basic_map_alloc_div(fused);
if (l < 0)
goto error;
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
1 + 1 + total)) {
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
1 + 1 + total);
} else {
isl_int_set_si(fused->div[l][0], 0);
simplify = 1;
}
}
for (k = 0; k < extra_rows; ++k) {
l = isl_basic_map_alloc_inequality(fused);
if (l < 0)
goto error;
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
}
if (detect_equalities)
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
fused = isl_basic_map_gauss(fused, NULL);
if (simplify || info[j].simplify) {
fused = isl_basic_map_simplify(fused);
info[i].simplify = 0;
} else if (extra_rows > 0) {
fused = isl_basic_map_eliminate_pure_unit_divs(fused);
}
fused = isl_basic_map_finalize(fused);
fused_tab = isl_tab_from_basic_map(fused, 0);
if (isl_tab_detect_redundant(fused_tab) < 0)
goto error;
if (check_number &&
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_none;
}
clear(&info[i]);
info[i].bmap = fused;
info[i].tab = fused_tab;
info[i].modified = 1;
drop(&info[j]);
return isl_change_fuse;
error:
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that all constraints are either
* "valid" or "cut", check if the facets corresponding to the "cut"
* constraints of i lie entirely within basic map j.
* If so, replace the pair by the basic map consisting of the valid
* constraints in both basic maps.
* Checking whether the facet lies entirely within basic map j
* is performed by checking whether the constraints of basic map j
* are valid for the facet. These tests are performed on a rational
* tableau to avoid the theoretical possibility that a constraint
* that was considered to be a cut constraint for the entire basic map i
* happens to be considered to be a valid constraint for the facet,
* even though it cuts off the same rational points.
*
* To see that we are not introducing any extra points, call the
* two basic maps A and B and the resulting map U and let x
* be an element of U \setminus ( A \cup B ).
* A line connecting x with an element of A \cup B meets a facet F
* of either A or B. Assume it is a facet of B and let c_1 be
* the corresponding facet constraint. We have c_1(x) < 0 and
* so c_1 is a cut constraint. This implies that there is some
* (possibly rational) point x' satisfying the constraints of A
* and the opposite of c_1 as otherwise c_1 would have been marked
* valid for A. The line connecting x and x' meets a facet of A
* in a (possibly rational) point that also violates c_1, but this
* is impossible since all cut constraints of B are valid for all
* cut facets of A.
* In case F is a facet of A rather than B, then we can apply the
* above reasoning to find a facet of B separating x from A \cup B first.
*/
static enum isl_change check_facets(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_mark_rational(info[i].tab) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
int stat;
if (info[j].ineq[l] != STATUS_CUT)
continue;
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
if (stat < 0)
return isl_change_error;
if (stat != STATUS_VALID)
break;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (l < info[j].bmap->n_ineq)
break;
}
if (k < info[i].bmap->n_ineq) {
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
return fuse(i, j, info, NULL, 0, 0);
}
/* Check if info->bmap contains the basic map represented
* by the tableau "tab".
* For each equality, we check both the constraint itself
* (as an inequality) and its negation. Make sure the
* equality is returned to its original state before returning.
*/
static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
{
int k;
isl_size dim;
isl_basic_map *bmap = info->bmap;
dim = isl_basic_map_dim(bmap, isl_dim_all);
if (dim < 0)
return isl_bool_error;
for (k = 0; k < bmap->n_eq; ++k) {
int stat;
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
stat = status_in(bmap->eq[k], tab);
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
stat = status_in(bmap->eq[k], tab);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
}
for (k = 0; k < bmap->n_ineq; ++k) {
int stat;
if (info->ineq[k] == STATUS_REDUNDANT)
continue;
stat = status_in(bmap->ineq[k], tab);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
}
return isl_bool_true;
}
/* Basic map "i" has an inequality "k" that is adjacent
* to some inequality of basic map "j". All the other inequalities
* are valid for "j".
* If not NULL, then "extra" contains extra wrapping constraints that are valid
* for both "i" and "j".
* Check if basic map "j" forms an extension of basic map "i",
* taking into account the extra constraints, if any.
*
* Note that this function is only called if some of the equalities or
* inequalities of basic map "j" do cut basic map "i". The function is
* correct even if there are no such cut constraints, but in that case
* the additional checks performed by this function are overkill.
*
* In particular, we replace constraint k, say f >= 0, by constraint
* f <= -1, add the inequalities of "j" that are valid for "i",
* as well as the "extra" constraints, if any,
* and check if the result is a subset of basic map "j".
* To improve the chances of the subset relation being detected,
* any variable that only attains a single integer value
* in the tableau of "i" is first fixed to that value.
* If the result is a subset, then we know that this result is exactly equal
* to basic map "j" since all its constraints are valid for basic map "j".
* By combining the valid constraints of "i" (all equalities and all
* inequalities except "k"), the valid constraints of "j" and
* the "extra" constraints, if any, we therefore
* obtain a basic map that is equal to their union.
* In this case, there is no need to perform a rollback of the tableau
* since it is going to be destroyed in fuse().
*
*
* |\__ |\__
* | \__ | \__
* | \_ => | \__
* |_______| _ |_________\
*
*
* |\ |\
* | \ | \
* | \ | \
* | | | \
* | ||\ => | \
* | || \ | \
* | || | | |
* |__||_/ |_____/
*
*
* _______ _______
* | | __ | \__
* | ||__| => | __|
* |_______| |_______/
*/
static enum isl_change is_adj_ineq_extension_with_wraps(int i, int j, int k,
struct isl_coalesce_info *info, __isl_keep isl_mat *extra)
{
struct isl_tab_undo *snap;
isl_size n_eq_i, n_ineq_j, n_extra;
isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
isl_stat r;
isl_bool super;
if (total < 0)
return isl_change_error;
n_eq_i = isl_basic_map_n_equality(info[i].bmap);
n_ineq_j = isl_basic_map_n_inequality(info[j].bmap);
n_extra = isl_mat_rows(extra);
if (n_eq_i < 0 || n_ineq_j < 0 || n_extra < 0)
return isl_change_error;
if (isl_tab_extend_cons(info[i].tab, 1 + n_ineq_j + n_extra) < 0)
return isl_change_error;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_unrestrict(info[i].tab, n_eq_i + k) < 0)
return isl_change_error;
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
if (r < 0)
return isl_change_error;
for (k = 0; k < n_ineq_j; ++k) {
if (info[j].ineq[k] != STATUS_VALID)
continue;
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
return isl_change_error;
}
for (k = 0; k < n_extra; ++k) {
if (isl_tab_add_ineq(info[i].tab, extra->row[k]) < 0)
return isl_change_error;
}
if (isl_tab_detect_constants(info[i].tab) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
return fuse(i, j, info, extra, 0, 0);
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
/* Given an affine transformation matrix "T", does row "row" represent
* anything other than a unit vector (possibly shifted by a constant)
* that is not involved in any of the other rows?
*
* That is, if a constraint involves the variable corresponding to
* the row, then could its preimage by "T" have any coefficients
* that are different from those in the original constraint?
*/
static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
{
int i, j;
int len = T->n_col - 1;
i = isl_seq_first_non_zero(T->row[row] + 1, len);
if (i < 0)
return 1;
if (!isl_int_is_one(T->row[row][1 + i]) &&
!isl_int_is_negone(T->row[row][1 + i]))
return 1;
j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
if (j >= 0)
return 1;
for (j = 1; j < T->n_row; ++j) {
if (j == row)
continue;
if (!isl_int_is_zero(T->row[j][1 + i]))
return 1;
}
return 0;
}
/* Does inequality constraint "ineq" of "bmap" involve any of
* the variables marked in "affected"?
* "total" is the total number of variables, i.e., the number
* of entries in "affected".
*/
static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
int *affected, int total)
{
int i;
for (i = 0; i < total; ++i) {
if (!affected[i])
continue;
if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
return isl_bool_true;
}
return isl_bool_false;
}
/* Given the compressed version of inequality constraint "ineq"
* of info->bmap in "v", check if the constraint can be tightened,
* where the compression is based on an equality constraint valid
* for info->tab.
* If so, add the tightened version of the inequality constraint
* to info->tab. "v" may be modified by this function.
*
* That is, if the compressed constraint is of the form
*
* m f() + c >= 0
*
* with 0 < c < m, then it is equivalent to
*
* f() >= 0
*
* This means that c can also be subtracted from the original,
* uncompressed constraint without affecting the integer points
* in info->tab. Add this tightened constraint as an extra row
* to info->tab to make this information explicitly available.
*/
static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
int ineq, __isl_take isl_vec *v)
{
isl_ctx *ctx;
isl_stat r;
if (!v)
return NULL;
ctx = isl_vec_get_ctx(v);
isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
if (isl_int_is_zero(ctx->normalize_gcd) ||
isl_int_is_one(ctx->normalize_gcd)) {
return v;
}
v = isl_vec_cow(v);
if (!v)
return NULL;
isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
if (isl_int_is_zero(v->el[0]))
return v;
if (isl_tab_extend_cons(info->tab, 1) < 0)
return isl_vec_free(v);
isl_int_sub(info->bmap->ineq[ineq][0],
info->bmap->ineq[ineq][0], v->el[0]);
r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
isl_int_add(info->bmap->ineq[ineq][0],
info->bmap->ineq[ineq][0], v->el[0]);
if (r < 0)
return isl_vec_free(v);
return v;
}
/* Tighten the (non-redundant) constraints on the facet represented
* by info->tab.
* In particular, on input, info->tab represents the result
* of relaxing the "n" inequality constraints of info->bmap in "relaxed"
* by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
* replacing the one at index "l" by the corresponding equality,
* i.e., f_k + 1 = 0, with k = relaxed[l].
*
* Compute a variable compression from the equality constraint f_k + 1 = 0
* and use it to tighten the other constraints of info->bmap
* (that is, all constraints that have not been relaxed),
* updating info->tab (and leaving info->bmap untouched).
* The compression handles essentially two cases, one where a variable
* is assigned a fixed value and can therefore be eliminated, and one
* where one variable is a shifted multiple of some other variable and
* can therefore be replaced by that multiple.
* Gaussian elimination would also work for the first case, but for
* the second case, the effectiveness would depend on the order
* of the variables.
* After compression, some of the constraints may have coefficients
* with a common divisor. If this divisor does not divide the constant
* term, then the constraint can be tightened.
* The tightening is performed on the tableau info->tab by introducing
* extra (temporary) constraints.
*
* Only constraints that are possibly affected by the compression are
* considered. In particular, if the constraint only involves variables
* that are directly mapped to a distinct set of other variables, then
* no common divisor can be introduced and no tightening can occur.
*
* It is important to only consider the non-redundant constraints
* since the facet constraint has been relaxed prior to the call
* to this function, meaning that the constraints that were redundant
* prior to the relaxation may no longer be redundant.
* These constraints will be ignored in the fused result, so
* the fusion detection should not exploit them.
*/
static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
int n, int *relaxed, int l)
{
isl_size total;
isl_ctx *ctx;
isl_vec *v = NULL;
isl_mat *T;
int i;
int k;
int *affected;
k = relaxed[l];
ctx = isl_basic_map_get_ctx(info->bmap);
total = isl_basic_map_dim(info->bmap, isl_dim_all);
if (total < 0)
return isl_stat_error;
isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
T = isl_mat_variable_compression(T, NULL);
isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
if (!T)
return isl_stat_error;
if (T->n_col == 0) {
isl_mat_free(T);
return isl_stat_ok;
}
affected = isl_alloc_array(ctx, int, total);
if (!affected)
goto error;
for (i = 0; i < total; ++i)
affected[i] = not_unique_unit_row(T, 1 + i);
for (i = 0; i < info->bmap->n_ineq; ++i) {
isl_bool handle;
if (any(relaxed, n, i))
continue;
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
handle = is_affected(info->bmap, i, affected, total);
if (handle < 0)
goto error;
if (!handle)
continue;
v = isl_vec_alloc(ctx, 1 + total);
if (!v)
goto error;
isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
v = isl_vec_mat_product(v, isl_mat_copy(T));
v = try_tightening(info, i, v);
isl_vec_free(v);
if (!v)
goto error;
}
isl_mat_free(T);
free(affected);
return isl_stat_ok;
error:
isl_mat_free(T);
free(affected);
return isl_stat_error;
}
/* Replace the basic maps "i" and "j" by an extension of "i"
* along the "n" inequality constraints in "relax" by one.
* The tableau info[i].tab has already been extended.
* Extend info[i].bmap accordingly by relaxing all constraints in "relax"
* by one.
* Each integer division that does not have exactly the same
* definition in "i" and "j" is marked unknown and the basic map
* is scheduled to be simplified in an attempt to recover
* the integer division definition.
* Place the extension in the position that is the smallest of i and j.
*/
static enum isl_change extend(int i, int j, int n, int *relax,
struct isl_coalesce_info *info)
{
int l;
isl_size total;
info[i].bmap = isl_basic_map_cow(info[i].bmap);
total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
if (total < 0)
return isl_change_error;
for (l = 0; l < info[i].bmap->n_div; ++l)
if (!isl_seq_eq(info[i].bmap->div[l],
info[j].bmap->div[l], 1 + 1 + total)) {
isl_int_set_si(info[i].bmap->div[l][0], 0);
info[i].simplify = 1;
}
for (l = 0; l < n; ++l)
isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
info[i].bmap->ineq[relax[l]][0], 1);
ISL_F_CLR(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
drop(&info[j]);
info[i].modified = 1;
if (j < i)
exchange(&info[i], &info[j]);
return isl_change_fuse;
}
/* Basic map "i" has "n" inequality constraints (collected in "relax")
* that are such that they include basic map "j" if they are relaxed
* by one. All the other inequalities are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* In particular, relax the constraints in "relax", compute the corresponding
* facets one by one and check whether each of these is included
* in the other basic map.
* Before testing for inclusion, the constraints on each facet
* are tightened to increase the chance of an inclusion being detected.
* (Adding the valid constraints of "j" to the tableau of "i", as is done
* in is_adj_ineq_extension, may further increase those chances, but this
* is not currently done.)
* If each facet is included, we know that relaxing the constraints extends
* the basic map with exactly the other basic map (we already know that this
* other basic map is included in the extension, because all other
* inequality constraints are valid of "j") and we can replace the
* two basic maps by this extension.
*
* If any of the relaxed constraints turn out to be redundant, then bail out.
* isl_tab_select_facet refuses to handle such constraints. It may be
* possible to handle them anyway by making a distinction between
* redundant constraints with a corresponding facet that still intersects
* the set (allowing isl_tab_select_facet to handle them) and
* those where the facet does not intersect the set (which can be ignored
* because the empty facet is trivially included in the other disjunct).
* However, relaxed constraints that turn out to be redundant should
* be fairly rare and no such instance has been reported where
* coalescing would be successful.
* ____ _____
* / || / |
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*
* \ |\
* |\\ | \
* | \\ | \
* | | => | /
* | / | /
* |/ |/
*/
static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
struct isl_coalesce_info *info)
{
int l;
isl_bool super;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
for (l = 0; l < n; ++l)
if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
return isl_change_none;
snap = isl_tab_snap(info[i].tab);
for (l = 0; l < n; ++l)
if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
return isl_change_error;
for (l = 0; l < n; ++l) {
if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
continue;
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
snap2 = isl_tab_snap(info[i].tab);
for (l = 0; l < n; ++l) {
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
return isl_change_error;
if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
continue;
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
return extend(i, j, n, relax, info);
}
/* Data structure that keeps track of the wrapping constraints
* and of information to bound the coefficients of those constraints.
*
* "failed" is set if wrapping has failed.
* bound is set if we want to apply a bound on the coefficients
* mat contains the wrapping constraints
* max is the bound on the coefficients (if bound is set)
*/
struct isl_wraps {
int failed;
int bound;
isl_mat *mat;
isl_int max;
};
/* Update wraps->max to be greater than or equal to the coefficients
* in the equalities and inequalities of info->bmap that can be removed
* if we end up applying wrapping.
*/
static isl_stat wraps_update_max(struct isl_wraps *wraps,
struct isl_coalesce_info *info)
{
int k;
isl_int max_k;
isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
if (total < 0)
return isl_stat_error;
isl_int_init(max_k);
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID)
continue;
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] == STATUS_VALID ||
info->ineq[k] == STATUS_REDUNDANT)
continue;
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
isl_int_clear(max_k);
return isl_stat_ok;
}
/* Initialize the isl_wraps data structure.
* If we want to bound the coefficients of the wrapping constraints,
* we set wraps->max to the largest coefficient
* in the equalities and inequalities that can be removed if we end up
* applying wrapping.
*/
static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
struct isl_coalesce_info *info, int i, int j)
{
isl_ctx *ctx;
wraps->failed = 0;
wraps->bound = 0;
wraps->mat = mat;
if (!mat)
return isl_stat_error;
wraps->mat->n_row = 0;
ctx = isl_mat_get_ctx(mat);
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
if (!wraps->bound)
return isl_stat_ok;
isl_int_init(wraps->max);
isl_int_set_si(wraps->max, 0);
if (wraps_update_max(wraps, &info[i]) < 0)
return isl_stat_error;
if (wraps_update_max(wraps, &info[j]) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Free the contents of the isl_wraps data structure.
*/
static void wraps_free(struct isl_wraps *wraps)
{
isl_mat_free(wraps->mat);
if (wraps->bound)
isl_int_clear(wraps->max);
}
/* Mark the wrapping as failed.
*/
static isl_stat wraps_mark_failed(struct isl_wraps *wraps)
{
wraps->failed = 1;
return isl_stat_ok;
}
/* Is the wrapping constraint in row "row" allowed?
*
* If wraps->bound is set, we check that none of the coefficients
* is greater than wraps->max.
*/
static int allow_wrap(struct isl_wraps *wraps, int row)
{
int i;
if (!wraps->bound)
return 1;
for (i = 1; i < wraps->mat->n_col; ++i)
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
return 0;
return 1;
}
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
* to include "set" and add the result in position "w" of "wraps".
* "len" is the total number of coefficients in "bound" and "ineq".
* Return 1 on success, 0 on failure and -1 on error.
* Wrapping can fail if the result of wrapping is equal to "bound"
* or if we want to bound the sizes of the coefficients and
* the wrapped constraint does not satisfy this bound.
*/
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
{
isl_seq_cpy(wraps->mat->row[w], bound, len);
if (negate) {
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
ineq = wraps->mat->row[w + 1];
}
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
return -1;
if (isl_seq_eq(wraps->mat->row[w], bound, len))
return 0;
if (!allow_wrap(wraps, w))
return 0;
return 1;
}
/* This function has two modes of operations.
*
* If "add_valid" is set, then all the constraints of info->bmap
* (except the opposite of "bound") are valid for the other basic map.
* In this case, attempts are made to wrap some of these valid constraints
* to more tightly fit around "set". Only successful wrappings are recorded
* and failed wrappings are ignored.
*
* If "add_valid" is not set, then some of the constraints of info->bmap
* are not valid for the other basic map, and only those are considered
* for wrapping. In this case all attempted wrappings need to succeed.
* Otherwise "wraps" is marked as failed.
* Note that the constraints that are valid for the other basic map
* will be added to the combined basic map by default, so there is
* no need to wrap them.
* The caller wrap_in_facets even relies on this function not wrapping
* any constraints that are already valid.
*
* Only consider constraints that are not redundant (as determined
* by info->tab) and that are valid or invalid depending on "add_valid".
* Wrap each constraint around "bound" such that it includes the whole
* set "set" and append the resulting constraint to "wraps".
* "wraps" is assumed to have been pre-allocated to the appropriate size.
* wraps->n_row is the number of actual wrapped constraints that have
* been added.
* If any of the wrapping problems results in a constraint that is
* identical to "bound", then this means that "set" is unbounded in such
* a way that no wrapping is possible.
* Similarly, if we want to bound the coefficients of the wrapping
* constraints and a newly added wrapping constraint does not
* satisfy the bound, then the wrapping is considered to have failed.
* Note though that "wraps" is only marked failed if "add_valid" is not set.
*/
static isl_stat add_selected_wraps(struct isl_wraps *wraps,
struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set,
int add_valid)
{
int l, m;
int w;
int added;
isl_basic_map *bmap = info->bmap;
isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
unsigned len = 1 + total;
if (total < 0)
return isl_stat_error;
w = wraps->mat->n_row;
for (l = 0; l < bmap->n_ineq; ++l) {
int is_valid = info->ineq[l] == STATUS_VALID;
if ((!add_valid && is_valid) ||
info->ineq[l] == STATUS_REDUNDANT)
continue;
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
continue;
if (isl_seq_eq(bound, bmap->ineq[l], len))
continue;
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
continue;
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
if (added < 0)
return isl_stat_error;
if (!added && !is_valid)
goto unbounded;
if (added)
++w;
}
for (l = 0; l < bmap->n_eq; ++l) {
if (isl_seq_is_neg(bound, bmap->eq[l], len))
continue;
if (isl_seq_eq(bound, bmap->eq[l], len))
continue;
for (m = 0; m < 2; ++m) {
if (info->eq[2 * l + m] == STATUS_VALID)
continue;
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
set, !m);
if (added < 0)
return isl_stat_error;
if (!added)
goto unbounded;
++w;
}
}
wraps->mat->n_row = w;
return isl_stat_ok;
unbounded:
return wraps_mark_failed(wraps);
}
/* For each constraint in info->bmap that is not redundant (as determined
* by info->tab) and that is not a valid constraint for the other basic map,
* wrap the constraint around "bound" such that it includes the whole
* set "set" and append the resulting constraint to "wraps".
* Note that the constraints that are valid for the other basic map
* will be added to the combined basic map by default, so there is
* no need to wrap them.
* The caller wrap_in_facets even relies on this function not wrapping
* any constraints that are already valid.
* "wraps" is assumed to have been pre-allocated to the appropriate size.
* wraps->n_row is the number of actual wrapped constraints that have
* been added.
* If any of the wrapping problems results in a constraint that is
* identical to "bound", then this means that "set" is unbounded in such
* a way that no wrapping is possible. If this happens then "wraps"
* is marked as failed.
* Similarly, if we want to bound the coefficients of the wrapping
* constraints and a newly added wrapping constraint does not
* satisfy the bound, then "wraps" is also marked as failed.
*/
static isl_stat add_wraps(struct isl_wraps *wraps,
struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
{
return add_selected_wraps(wraps, info, bound, set, 0);
}
/* Check if the constraints in "wraps" from "first" until the last
* are all valid for the basic set represented by "tab",
* dropping the invalid constraints if "keep" is set and
* marking the wrapping as failed if "keep" is not set and
* any constraint turns out to be invalid.
*/
static isl_stat check_wraps(struct isl_wraps *wraps, int first,
struct isl_tab *tab, int keep)
{
int i;
for (i = wraps->mat->n_row - 1; i >= first; --i) {
enum isl_ineq_type type;
type = isl_tab_ineq_type(tab, wraps->mat->row[i]);
if (type == isl_ineq_error)
return isl_stat_error;
if (type == isl_ineq_redundant)
continue;
if (!keep)
return wraps_mark_failed(wraps);
wraps->mat = isl_mat_drop_rows(wraps->mat, i, 1);
if (!wraps->mat)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Return a set that corresponds to the non-redundant constraints
* (as recorded in tab) of bmap.
*
* It's important to remove the redundant constraints as some
* of the other constraints may have been modified after the
* constraints were marked redundant.
* In particular, a constraint may have been relaxed.
* Redundant constraints are ignored when a constraint is relaxed
* and should therefore continue to be ignored ever after.
* Otherwise, the relaxation might be thwarted by some of
* these constraints.
*
* Update the underlying set to ensure that the dimension doesn't change.
* Otherwise the integer divisions could get dropped if the tab
* turns out to be empty.
*/
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab)
{
isl_basic_set *bset;
bmap = isl_basic_map_copy(bmap);
bset = isl_basic_map_underlying_set(bmap);
bset = isl_basic_set_cow(bset);
bset = isl_basic_set_update_from_tab(bset, tab);
return isl_set_from_basic_set(bset);
}
/* Does "info" have any cut constraints that are redundant?
*/
static isl_bool has_redundant_cuts(struct isl_coalesce_info *info)
{
int l;
isl_size n_eq, n_ineq;
n_eq = isl_basic_map_n_equality(info->bmap);
n_ineq = isl_basic_map_n_inequality(info->bmap);
if (n_eq < 0 || n_ineq < 0)
return isl_bool_error;
for (l = 0; l < n_ineq; ++l) {
int red;
if (info->ineq[l] != STATUS_CUT)
continue;
red = isl_tab_is_redundant(info->tab, n_eq + l);
if (red < 0)
return isl_bool_error;
if (red)
return isl_bool_true;
}
return isl_bool_false;
}
/* Wrap some constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set". "bound" may be used to store the negated inequality.
*
* If "add_valid" is set, then all ridges are already valid and
* the purpose is to wrap "set" more tightly. In this case,
* wrapping doesn't fail, although it is possible that no constraint
* gets wrapped.
*
* If "add_valid" is not set, then some of the ridges are cut constraints
* and only those are wrapped around "set".
*
* Since the wrapped constraints are not guaranteed to contain the whole
* of info->bmap, we check them in check_wraps.
* If any of the wrapped constraints turn out to be invalid, then
* check_wraps will mark "wraps" as failed if "add_valid" is not set.
* If "add_valid" is set, then the offending constraints are
* simply removed.
*
* If the facet turns out to be empty, then no wrapping can be performed.
* This is considered a failure, unless "add_valid" is set.
*
* If any of the cut constraints of info->bmap turn out
* to be redundant with respect to other constraints
* then these will neither be wrapped nor added directly to the result.
* The result may therefore not be correct.
* Skip wrapping and mark "wraps" as failed in this case.
*/
static isl_stat add_selected_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set, int add_valid)
{
isl_bool nowrap;
struct isl_tab_undo *snap;
int n;
isl_size total = isl_basic_map_dim(info->bmap, isl_dim_all);
if (total < 0)
return isl_stat_error;
snap = isl_tab_snap(info->tab);
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
return isl_stat_error;
if (isl_tab_detect_redundant(info->tab) < 0)
return isl_stat_error;
if (info->tab->empty) {
if (!add_valid)
return wraps_mark_failed(wraps);
return isl_stat_ok;
}
nowrap = has_redundant_cuts(info);
if (nowrap < 0)
return isl_stat_error;
n = wraps->mat->n_row;
if (!nowrap) {
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
if (add_selected_wraps(wraps, info, bound, set, add_valid) < 0)
return isl_stat_error;
}
if (isl_tab_rollback(info->tab, snap) < 0)
return isl_stat_error;
if (nowrap)
return wraps_mark_failed(wraps);
if (check_wraps(wraps, n, info->tab, add_valid) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Wrap the constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set". "bound" may be used to store the negated inequality.
* If any of the wrapped constraints turn out to be invalid for info->bmap
* itself, then mark "wraps" as failed.
*/
static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set)
{
return add_selected_wraps_around_facet(wraps, info, k, bound, set, 0);
}
/* Wrap the (valid) constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set" more tightly.
* "bound" may be used to store the negated inequality.
* Remove any wrapping constraints that turn out to be invalid
* for info->bmap itself.
*/
static isl_stat add_valid_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set)
{
return add_selected_wraps_around_facet(wraps, info, k, bound, set, 1);
}
/* Basic map "i" has an inequality (say "k") that is adjacent
* to some inequality of basic map "j". All the other inequalities
* are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* Note that this function is only called if some of the equalities or
* inequalities of basic map "j" do cut basic map "i". The function is
* correct even if there are no such cut constraints, but in that case
* the additional checks performed by this function are overkill.
*
* First try and wrap the ridges of "k" around "j".
* Note that those ridges are already valid for "j",
* but the wrapped versions may wrap "j" more tightly,
* increasing the chances of "j" being detected as an extension of "i"
*/
static enum isl_change is_adj_ineq_extension(int i, int j,
struct isl_coalesce_info *info)
{
int k;
enum isl_change change;
isl_size total;
isl_size n_eq_i, n_ineq_i;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
isl_vec *bound;
isl_set *set_j;
isl_stat r;
k = find_ineq(&info[i], STATUS_ADJ_INEQ);
if (k < 0)
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
return isl_change_error);
total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
n_eq_i = isl_basic_map_n_equality(info[i].bmap);
n_ineq_i = isl_basic_map_n_inequality(info[i].bmap);
if (total < 0 || n_eq_i < 0 || n_ineq_i < 0)
return isl_change_error;
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
bound = isl_vec_alloc(ctx, 1 + total);
mat = isl_mat_alloc(ctx, 2 * n_eq_i + n_ineq_i, 1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
if (!bound || !set_j)
goto error;
r = add_valid_wraps_around_facet(&wraps, &info[i], k, bound->el, set_j);
if (r < 0)
goto error;
change = is_adj_ineq_extension_with_wraps(i, j, k, info, wraps.mat);
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_j);
return change;
error:
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_j);
return isl_change_error;
}
/* Both basic maps have at least one inequality with and adjacent
* (but opposite) inequality in the other basic map.
* Check that there are no cut constraints and that there is only
* a single pair of adjacent inequalities.
* If so, we can replace the pair by a single basic map described
* by all but the pair of adjacent inequalities.
* Any additional points introduced lie strictly between the two
* adjacent hyperplanes and can therefore be integral.
*
* ____ _____
* / ||\ / \
* / || \ / \
* \ || \ => \ \
* \ || / \ /
* \___||_/ \_____/
*
* The test for a single pair of adjacent inequalities is important
* for avoiding the combination of two basic maps like the following
*
* /|
* / |
* /__|
* _____
* | |
* | |
* |___|
*
* If there are some cut constraints on one side, then we may
* still be able to fuse the two basic maps, but we need to perform
* some additional checks in is_adj_ineq_extension.
*/
static enum isl_change check_adj_ineq(int i, int j,
struct isl_coalesce_info *info)
{
int count_i, count_j;
int cut_i, cut_j;
count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);
if (count_i != 1 && count_j != 1)
return isl_change_none;
cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
return fuse(i, j, info, NULL, 0, 0);
if (count_i == 1 && !cut_i)
return is_adj_ineq_extension(i, j, info);
if (count_j == 1 && !cut_j)
return is_adj_ineq_extension(j, i, info);
return isl_change_none;
}
/* Given a basic set i with a constraint k that is adjacent to
* basic set j, check if we can wrap
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
* (always) around their ridges to include the other set.
* If so, replace the pair of basic sets by their union.
*
* All constraints of i (except k) are assumed to be valid or
* cut constraints for j.
* Wrapping the cut constraints to include basic map j may result
* in constraints that are no longer valid of basic map i
* we have to check that the resulting wrapping constraints are valid for i.
* If "wrap_facet" is not set, then all constraints of i (except k)
* are assumed to be valid for j.
* ____ _____
* / | / \
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*/
static enum isl_change can_wrap_in_facet(int i, int j, int k,
struct isl_coalesce_info *info, int wrap_facet)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
if (total < 0)
return isl_change_error;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !bound)
goto error;
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_normalize(ctx, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (wraps.failed)
goto unbounded;
if (wrap_facet) {
if (add_wraps_around_facet(&wraps, &info[i], k,
bound->el, set_j) < 0)
goto error;
if (wraps.failed)
goto unbounded;
}
change = fuse(i, j, info, wraps.mat, 0, 0);
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
error:
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_i);
isl_set_free(set_j);
return isl_change_error;
}
/* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
* of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
* add wrapping constraints to wrap.mat for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
* "set_i" is the underlying set of basic map i.
* If any wrapping fails, then wraps->mat.n_row is reset to zero.
*
* In particular, we first intersect basic map j with t(x) + 1 = 0.
* If the result is empty, then t(x) >= 0 was actually a valid constraint
* (with respect to the integer points), so we add t(x) >= 0 instead.
* Otherwise, we wrap the constraints of basic map j that are not
* redundant in this intersection and that are not already valid
* for basic map i over basic map i.
* Note that it is sufficient to wrap the constraints to include
* basic map i, because we will only wrap the constraints that do
* not include basic map i already. The wrapped constraint will
* therefore be more relaxed compared to the original constraint.
* Since the original constraint is valid for basic map j, so is
* the wrapped constraint.
*/
static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
struct isl_tab_undo *snap)
{
isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
return isl_stat_error;
if (isl_tab_detect_redundant(info_j->tab) < 0)
return isl_stat_error;
if (info_j->tab->empty)
isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
return isl_stat_error;
if (isl_tab_rollback(info_j->tab, snap) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
* "set_i" is the underlying set of basic map i.
* "wraps" has been initialized to be of the right size.
*
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
*
* If any wrapping fails, i.e., if we cannot wrap to touch
* the union, then we give up.
* Otherwise, the pair of basic maps is replaced by their union.
*/
static enum isl_change try_wrap_in_facets(int i, int j,
struct isl_coalesce_info *info, struct isl_wraps *wraps,
__isl_keep isl_set *set_i)
{
int k, l, w;
isl_size total;
struct isl_tab_undo *snap;
total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
if (total < 0)
return isl_change_error;
snap = isl_tab_snap(info[j].tab);
for (k = 0; k < info[i].bmap->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
if (info[i].eq[2 * k + l] != STATUS_CUT)
continue;
w = wraps->mat->n_row++;
if (l == 0)
isl_seq_neg(wraps->mat->row[w],
info[i].bmap->eq[k], 1 + total);
else
isl_seq_cpy(wraps->mat->row[w],
info[i].bmap->eq[k], 1 + total);
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
return isl_change_error;
if (wraps->failed)
return isl_change_none;
}
}
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
w = wraps->mat->n_row++;
isl_seq_cpy(wraps->mat->row[w],
info[i].bmap->ineq[k], 1 + total);
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
return isl_change_error;
if (wraps->failed)
return isl_change_none;
}
return fuse(i, j, info, wraps->mat, 0, 1);
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
*
* The core computation is performed by try_wrap_in_facets.
* This function simply extracts an underlying set representation
* of basic map i and initializes the data structure for keeping
* track of wrapping constraints.
*/
static enum isl_change wrap_in_facets(int i, int j, int n,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
isl_set *set_i = NULL;
isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
int max_wrap;
if (total < 0)
return isl_change_error;
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
return isl_change_error;
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
max_wrap *= n;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
if (!set_i)
goto error;
change = try_wrap_in_facets(i, j, info, &wraps, set_i);
wraps_free(&wraps);
isl_set_free(set_i);
return change;
error:
wraps_free(&wraps);
isl_set_free(set_i);
return isl_change_error;
}
/* Return the effect of inequality "ineq" on the tableau "tab",
* after relaxing the constant term of "ineq" by one.
*/
static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
{
enum isl_ineq_type type;
isl_int_add_ui(ineq[0], ineq[0], 1);
type = isl_tab_ineq_type(tab, ineq);
isl_int_sub_ui(ineq[0], ineq[0], 1);
return type;
}
/* Given two basic sets i and j,
* check if relaxing all the cut constraints of i by one turns
* them into valid constraint for j and check if we can wrap in
* the bits that are sticking out.
* If so, replace the pair by their union.
*
* We first check if all relaxed cut inequalities of i are valid for j
* and then try to wrap in the intersections of the relaxed cut inequalities
* with j.
*
* During this wrapping, we consider the points of j that lie at a distance
* of exactly 1 from i. In particular, we ignore the points that lie in
* between this lower-dimensional space and the basic map i.
* We can therefore only apply this to integer maps.
* ____ _____
* / ___|_ / \
* / | | / |
* \ | | => \ |
* \|____| \ |
* \___| \____/
*
* _____ ______
* | ____|_ | \
* | | | | |
* | | | => | |
* |_| | | |
* |_____| \______|
*
* _______
* | |
* | |\ |
* | | \ |
* | | \ |
* | | \|
* | | \
* | |_____\
* | |
* |_______|
*
* Wrapping can fail if the result of wrapping one of the facets
* around its edges does not produce any new facet constraint.
* In particular, this happens when we try to wrap in unbounded sets.
*
* _______________________________________________________________________
* |
* | ___
* | | |
* |_| |_________________________________________________________________
* |___|
*
* The following is not an acceptable result of coalescing the above two
* sets as it includes extra integer points.
* _______________________________________________________________________
* |
* |
* |
* |
* \______________________________________________________________________
*/
static enum isl_change can_wrap_in_set(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
int n;
isl_size total;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
return isl_change_none;
n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
if (n == 0)
return isl_change_none;
total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
if (total < 0)
return isl_change_error;
for (k = 0; k < info[i].bmap->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
enum isl_ineq_type type;
if (info[i].eq[2 * k + l] != STATUS_CUT)
continue;
if (l == 0)
isl_seq_neg(info[i].bmap->eq[k],
info[i].bmap->eq[k], 1 + total);
type = type_of_relaxed(info[j].tab,
info[i].bmap->eq[k]);
if (l == 0)
isl_seq_neg(info[i].bmap->eq[k],
info[i].bmap->eq[k], 1 + total);
if (type == isl_ineq_error)
return isl_change_error;
if (type != isl_ineq_redundant)
return isl_change_none;
}
}
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
enum isl_ineq_type type;
if (info[i].ineq[k] != STATUS_CUT)
continue;
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
if (type == isl_ineq_error)
return isl_change_error;
if (type != isl_ineq_redundant)
return isl_change_none;
}
return wrap_in_facets(i, j, n, info);
}
/* Check if either i or j has only cut constraints that can
* be used to wrap in (a facet of) the other basic set.
* if so, replace the pair by their union.
*/
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
change = can_wrap_in_set(i, j, info);
if (change != isl_change_none)
return change;
change = can_wrap_in_set(j, i, info);
return change;
}
/* Check if all inequality constraints of "i" that cut "j" cease
* to be cut constraints if they are relaxed by one.
* If so, collect the cut constraints in "list".
* The caller is responsible for allocating "list".
*/
static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
int *list)
{
int l, n;
n = 0;
for (l = 0; l < info[i].bmap->n_ineq; ++l) {
enum isl_ineq_type type;
if (info[i].ineq[l] != STATUS_CUT)
continue;
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
if (type == isl_ineq_error)
return isl_bool_error;
if (type != isl_ineq_redundant)
return isl_bool_false;
list[n++] = l;
}
return isl_bool_true;
}
/* Given two basic maps such that "j" has at least one equality constraint
* that is adjacent to an inequality constraint of "i" and such that "i" has
* exactly one inequality constraint that is adjacent to an equality
* constraint of "j", check whether "i" can be extended to include "j" or
* whether "j" can be wrapped into "i".
* All remaining constraints of "i" and "j" are assumed to be valid
* or cut constraints of the other basic map.
* However, none of the equality constraints of "i" are cut constraints.
*
* If "i" has any "cut" inequality constraints, then check if relaxing
* each of them by one is sufficient for them to become valid.
* If so, check if the inequality constraint adjacent to an equality
* constraint of "j" along with all these cut constraints
* can be relaxed by one to contain exactly "j".
* Otherwise, or if this fails, check if "j" can be wrapped into "i".
*/
static enum isl_change check_single_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k;
int n_cut;
int *relax;
isl_ctx *ctx;
isl_bool try_relax;
n_cut = count_ineq(&info[i], STATUS_CUT);
k = find_ineq(&info[i], STATUS_ADJ_EQ);
if (n_cut > 0) {
ctx = isl_basic_map_get_ctx(info[i].bmap);
relax = isl_calloc_array(ctx, int, 1 + n_cut);
if (!relax)
return isl_change_error;
relax[0] = k;
try_relax = all_cut_by_one(i, j, info, relax + 1);
if (try_relax < 0)
change = isl_change_error;
} else {
try_relax = isl_bool_true;
relax = &k;
}
if (try_relax && change == isl_change_none)
change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
if (n_cut > 0)
free(relax);
if (change != isl_change_none)
return change;
change = can_wrap_in_facet(i, j, k, info, n_cut > 0);
return change;
}
/* At least one of the basic maps has an equality that is adjacent
* to an inequality. Make sure that only one of the basic maps has
* such an equality and that the other basic map has exactly one
* inequality adjacent to an equality.
* If the other basic map does not have such an inequality, then
* check if all its constraints are either valid or cut constraints
* and, if so, try wrapping in the first map into the second.
* Otherwise, try to extend one basic map with the other or
* wrap one basic map in the other.
*/
static enum isl_change check_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
any_eq(&info[j], STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
if (any_eq(&info[i], STATUS_ADJ_INEQ))
return check_adj_eq(j, i, info);
/* j has an equality adjacent to an inequality in i */
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
if (all_valid_or_cut(&info[i]))
return can_wrap_in_set(i, j, info);
return isl_change_none;
}
if (any_eq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
any_ineq(&info[i], STATUS_ADJ_INEQ) ||
any_ineq(&info[j], STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
return check_single_adj_eq(i, j, info);
}
/* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
* In particular, disjunct "i" has an inequality constraint that is adjacent
* to a (combination of) equality constraint(s) of disjunct "j",
* but disjunct "j" has no explicit equality constraint adjacent
* to an inequality constraint of disjunct "i".
*
* Disjunct "i" is already known not to have any equality constraints
* that are adjacent to an equality or inequality constraint.
* Check that, other than the inequality constraint mentioned above,
* all other constraints of disjunct "i" are valid for disjunct "j".
* If so, try and wrap in disjunct "j".
*/
static enum isl_change check_ineq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
if (any_eq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[i], STATUS_ADJ_INEQ))
return isl_change_none;
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
return isl_change_none;
k = find_ineq(&info[i], STATUS_ADJ_EQ);
return can_wrap_in_facet(i, j, k, info, 0);
}
/* The two basic maps lie on adjacent hyperplanes. In particular,
* basic map "i" has an equality that lies parallel to basic map "j".
* Check if we can wrap the facets around the parallel hyperplanes
* to include the other set.
*
* We perform basically the same operations as can_wrap_in_facet,
* except that we don't need to select a facet of one of the sets.
* _
* \\ \\
* \\ => \\
* \ \|
*
* If there is more than one equality of "i" adjacent to an equality of "j",
* then the result will satisfy one or more equalities that are a linear
* combination of these equalities. These will be encoded as pairs
* of inequalities in the wrapping constraints and need to be made
* explicit.
*/
static enum isl_change check_eq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
enum isl_change change = isl_change_none;
int detect_equalities = 0;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
isl_size total = isl_basic_map_dim(info[i].bmap, isl_dim_all);
if (total < 0)
return isl_change_error;
if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
detect_equalities = 1;
k = find_eq(&info[i], STATUS_ADJ_EQ);
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !bound)
goto error;
if (k % 2 == 0)
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
else
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (wraps.failed)
goto unbounded;
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
isl_seq_neg(bound->el, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
wraps.mat->n_row++;
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
goto error;
if (wraps.failed)
goto unbounded;
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
if (0) {
error: change = isl_change_error;
}
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
}
/* Initialize the "eq" and "ineq" fields of "info".
*/
static void init_status(struct isl_coalesce_info *info)
{
info->eq = info->ineq = NULL;
}
/* Set info->eq to the positions of the equalities of info->bmap
* with respect to the basic map represented by "tab".
* If info->eq has already been computed, then do not compute it again.
*/
static void set_eq_status_in(struct isl_coalesce_info *info,
struct isl_tab *tab)
{
if (info->eq)
return;
info->eq = eq_status_in(info->bmap, tab);
}
/* Set info->ineq to the positions of the inequalities of info->bmap
* with respect to the basic map represented by "tab".
* If info->ineq has already been computed, then do not compute it again.
*/
static void set_ineq_status_in(struct isl_coalesce_info *info,
struct isl_tab *tab)
{
if (info->ineq)
return;
info->ineq = ineq_status_in(info->bmap, info->tab, tab);
}
/* Free the memory allocated by the "eq" and "ineq" fields of "info".
* This function assumes that init_status has been called on "info" first,
* after which the "eq" and "ineq" fields may or may not have been
* assigned a newly allocated array.
*/
static void clear_status(struct isl_coalesce_info *info)
{
free(info->eq);
free(info->ineq);
}
/* Are all inequality constraints of the basic map represented by "info"
* valid for the other basic map, except for a single constraint
* that is adjacent to an inequality constraint of the other basic map?
*/
static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
{
int i;
int k = -1;
for (i = 0; i < info->bmap->n_ineq; ++i) {
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
if (info->ineq[i] == STATUS_VALID)
continue;
if (info->ineq[i] != STATUS_ADJ_INEQ)
return 0;
if (k != -1)
return 0;
k = i;
}
return k != -1;
}
/* Basic map "i" has one or more equality constraints that separate it
* from basic map "j". Check if it happens to be an extension
* of basic map "j".
* In particular, check that all constraints of "j" are valid for "i",
* except for one inequality constraint that is adjacent
* to an inequality constraints of "i".
* If so, check for "i" being an extension of "j" by calling
* is_adj_ineq_extension.
*
* Clean up the memory allocated for keeping track of the status
* of the constraints before returning.
*/
static enum isl_change separating_equality(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all_ineq_valid_or_single_adj_ineq(&info[j]))
change = is_adj_ineq_extension(j, i, info);
clear_status(&info[i]);
clear_status(&info[j]);
return change;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
* The "eq" and "ineq" fields of info[i] and info[j] are assumed
* to have been initialized by the caller, either to NULL or
* to valid information.
*
* We first check the effect of each constraint of one basic map
* on the other basic map.
* The constraint may be
* redundant the constraint is redundant in its own
* basic map and should be ignore and removed
* in the end
* valid all (integer) points of the other basic map
* satisfy the constraint
* separate no (integer) point of the other basic map
* satisfies the constraint
* cut some but not all points of the other basic map
* satisfy the constraint
* adj_eq the given constraint is adjacent (on the outside)
* to an equality of the other basic map
* adj_ineq the given constraint is adjacent (on the outside)
* to an inequality of the other basic map
*
* We consider seven cases in which we can replace the pair by a single
* basic map. We ignore all "redundant" constraints.
*
* 1. all constraints of one basic map are valid
* => the other basic map is a subset and can be removed
*
* 2. all constraints of both basic maps are either "valid" or "cut"
* and the facets corresponding to the "cut" constraints
* of one of the basic maps lies entirely inside the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 3. there is a single pair of adjacent inequalities
* (all other constraints are "valid")
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 4. one basic map has a single adjacent inequality, while the other
* constraints are "valid". The other basic map has some
* "cut" constraints, but replacing the adjacent inequality by
* its opposite and adding the valid constraints of the other
* basic map results in a subset of the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 5. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, if the inequality the basic map is relaxed
* and then turned into an equality, then resulting facet lies
* entirely inside the other basic map
* => the pair can be replaced by the basic map containing
* the inequality, with the inequality relaxed.
*
* 6. there is a single inequality adjacent to an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, the facets corresponding to both
* the inequality and the equality can be wrapped around their
* ridges to include the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 7. one of the basic maps extends beyond the other by at most one.
* Moreover, the facets corresponding to the cut constraints and
* the pieces of the other basic map at offset one from these cut
* constraints can be wrapped around their ridges to include
* the union of the two basic maps
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 8. the two basic maps live in adjacent hyperplanes. In principle
* such sets can always be combined through wrapping, but we impose
* that there is only one such pair, to avoid overeager coalescing.
*
* Throughout the computation, we maintain a collection of tableaus
* corresponding to the basic maps. When the basic maps are dropped
* or combined, the tableaus are modified accordingly.
*/
static enum isl_change coalesce_local_pair_reuse(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
set_ineq_status_in(&info[i], info[j].tab);
if (info[i].bmap->n_ineq && !info[i].ineq)
goto error;
if (any_ineq(&info[i], STATUS_ERROR))
goto error;
if (any_ineq(&info[i], STATUS_SEPARATE))
goto done;
set_ineq_status_in(&info[j], info[i].tab);
if (info[j].bmap->n_ineq && !info[j].ineq)
goto error;
if (any_ineq(&info[j], STATUS_ERROR))
goto error;
if (any_ineq(&info[j], STATUS_SEPARATE))
goto done;
set_eq_status_in(&info[i], info[j].tab);
if (info[i].bmap->n_eq && !info[i].eq)
goto error;
if (any_eq(&info[i], STATUS_ERROR))
goto error;
set_eq_status_in(&info[j], info[i].tab);
if (info[j].bmap->n_eq && !info[j].eq)
goto error;
if (any_eq(&info[j], STATUS_ERROR))
goto error;
if (any_eq(&info[i], STATUS_SEPARATE))
return separating_equality(i, j, info);
if (any_eq(&info[j], STATUS_SEPARATE))
return separating_equality(j, i, info);
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
drop(&info[i]);
change = isl_change_drop_first;
} else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(i, j, info);
} else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(j, i, info);
} else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
any_eq(&info[j], STATUS_ADJ_INEQ)) {
change = check_adj_eq(i, j, info);
} else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
change = check_ineq_adj_eq(i, j, info);
} else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
change = check_ineq_adj_eq(j, i, info);
} else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
any_ineq(&info[j], STATUS_ADJ_INEQ)) {
change = check_adj_ineq(i, j, info);
} else {
if (!any_eq(&info[i], STATUS_CUT) &&
!any_eq(&info[j], STATUS_CUT))
change = check_facets(i, j, info);
if (change == isl_change_none)
change = check_wrap(i, j, info);
}
done:
clear_status(&info[i]);
clear_status(&info[j]);
return change;
error:
clear_status(&info[i]);
clear_status(&info[j]);
return isl_change_error;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
*/
static enum isl_change coalesce_local_pair(int i, int j,
struct isl_coalesce_info *info)
{
init_status(&info[i]);
init_status(&info[j]);
return coalesce_local_pair_reuse(i, j, info);
}
/* Shift the integer division at position "div" of the basic map
* represented by "info" by "shift".
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static isl_stat shift_div(struct isl_coalesce_info *info, int div,
isl_int shift)
{
isl_size total, n_div;
info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
if (!info->bmap)
return isl_stat_error;
total = isl_basic_map_dim(info->bmap, isl_dim_all);
n_div = isl_basic_map_dim(info->bmap, isl_dim_div);
if (total < 0 || n_div < 0)
return isl_stat_error;
total -= n_div;
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* If the integer division at position "div" is defined by an equality,
* i.e., a stride constraint, then change the integer division expression
* to have a constant term equal to zero.
*
* Let the equality constraint be
*
* c + f + m a = 0
*
* The integer division expression is then typically of the form
*
* a = floor((-f - c')/m)
*
* The integer division is first shifted by t = floor(c/m),
* turning the equality constraint into
*
* c - m floor(c/m) + f + m a' = 0
*
* i.e.,
*
* (c mod m) + f + m a' = 0
*
* That is,
*
* a' = (-f - (c mod m))/m = floor((-f)/m)
*
* because a' is an integer and 0 <= (c mod m) < m.
* The constant term of a' can therefore be zeroed out,
* but only if the integer division expression is of the expected form.
*/
static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
{
isl_bool defined, valid;
isl_stat r;
isl_constraint *c;
isl_int shift, stride;
defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
div, &c);
if (defined < 0)
return isl_stat_error;
if (!defined)
return isl_stat_ok;
if (!c)
return isl_stat_error;
valid = isl_constraint_is_div_equality(c, div);
isl_int_init(shift);
isl_int_init(stride);
isl_constraint_get_constant(c, &shift);
isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
isl_int_fdiv_q(shift, shift, stride);
r = shift_div(info, div, shift);
isl_int_clear(stride);
isl_int_clear(shift);
isl_constraint_free(c);
if (r < 0 || valid < 0)
return isl_stat_error;
if (!valid)
return isl_stat_ok;
info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
info->bmap, div, 0);
if (!info->bmap)
return isl_stat_error;
return isl_stat_ok;
}
/* The basic maps represented by "info1" and "info2" are known
* to have the same number of integer divisions.
* Check if pairs of integer divisions are equal to each other
* despite the fact that they differ by a rational constant.
*
* In particular, look for any pair of integer divisions that
* only differ in their constant terms.
* If either of these integer divisions is defined
* by stride constraints, then modify it to have a zero constant term.
* If both are defined by stride constraints then in the end they will have
* the same (zero) constant term.
*/
static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
int i;
isl_size n;
n = isl_basic_map_dim(info1->bmap, isl_dim_div);
if (n < 0)
return isl_stat_error;
for (i = 0; i < n; ++i) {
isl_bool known, harmonize;
known = isl_basic_map_div_is_known(info1->bmap, i);
if (known >= 0 && known)
known = isl_basic_map_div_is_known(info2->bmap, i);
if (known < 0)
return isl_stat_error;
if (!known)
continue;
harmonize = isl_basic_map_equal_div_expr_except_constant(
info1->bmap, i, info2->bmap, i);
if (harmonize < 0)
return isl_stat_error;
if (!harmonize)
continue;
if (normalize_stride_div(info1, i) < 0)
return isl_stat_error;
if (normalize_stride_div(info2, i) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* If "shift" is an integer constant, then shift the integer division
* at position "div" of the basic map represented by "info" by "shift".
* If "shift" is not an integer constant, then do nothing.
* If "shift" is equal to zero, then no shift needs to be performed either.
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
__isl_keep isl_aff *shift)
{
isl_bool cst;
isl_stat r;
isl_int d;
isl_val *c;
cst = isl_aff_is_cst(shift);
if (cst < 0 || !cst)
return cst < 0 ? isl_stat_error : isl_stat_ok;
c = isl_aff_get_constant_val(shift);
cst = isl_val_is_int(c);
if (cst >= 0 && cst)
cst = isl_bool_not(isl_val_is_zero(c));
if (cst < 0 || !cst) {
isl_val_free(c);
return cst < 0 ? isl_stat_error : isl_stat_ok;
}
isl_int_init(d);
r = isl_val_get_num_isl_int(c, &d);
if (r >= 0)
r = shift_div(info, div, d);
isl_int_clear(d);
isl_val_free(c);
return r;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2", taking into account the equality constraints "eq1" of "info1"
* and "eq2" of "info2". If so, align them with those of "info2".
* "info1" and "info2" are assumed to have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if, after simplification with respect to the equality
* constraints of the other basic map, one is equal to the other
* plus a constant.
*
* In particular, for each pair of integer divisions, if both are known,
* have the same denominator and are not already equal to each other,
* simplify each with respect to the equality constraints
* of the other basic map. If the difference is an integer constant,
* then move this difference outside.
* That is, if, after simplification, one integer division is of the form
*
* floor((f(x) + c_1)/d)
*
* while the other is of the form
*
* floor((f(x) + c_2)/d)
*
* and n = (c_2 - c_1)/d is an integer, then replace the first
* integer division by
*
* floor((f_1(x) + c_1 + n * d)/d) - n,
*
* where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
* after simplification with respect to the equality constraints.
*/
static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
__isl_keep isl_basic_set *eq2)
{
int i;
isl_size total;
isl_local_space *ls1, *ls2;
total = isl_basic_map_dim(info1->bmap, isl_dim_all);
if (total < 0)
return isl_stat_error;
ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
for (i = 0; i < info1->bmap->n_div; ++i) {
isl_stat r;
isl_aff *div1, *div2;
if (!isl_local_space_div_is_known(ls1, i) ||
!isl_local_space_div_is_known(ls2, i))
continue;
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
continue;
if (isl_seq_eq(info1->bmap->div[i] + 1,
info2->bmap->div[i] + 1, 1 + total))
continue;
div1 = isl_local_space_get_div(ls1, i);
div2 = isl_local_space_get_div(ls2, i);
div1 = isl_aff_substitute_equalities(div1,
isl_basic_set_copy(eq2));
div2 = isl_aff_substitute_equalities(div2,
isl_basic_set_copy(eq1));
div2 = isl_aff_sub(div2, div1);
r = shift_if_cst_int(info1, i, div2);
isl_aff_free(div2);
if (r < 0)
break;
}
isl_local_space_free(ls1);
isl_local_space_free(ls2);
if (i < info1->bmap->n_div)
return isl_stat_error;
return isl_stat_ok;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2". If so, align them with those of "info2".
* Only do this if "info1" and "info2" have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if, after simplification with respect to the equality
* constraints of the other basic map, one is equal to the other
* plus a constant.
*
* First check if pairs of integer divisions are equal to each other
* despite the fact that they differ by a rational constant.
* If so, try and arrange for them to have the same constant term.
*
* Then, extract the equality constraints and continue with
* harmonize_divs_with_hulls.
*
* If the equality constraints of both basic maps are the same,
* then there is no need to perform any shifting since
* the coefficients of the integer divisions should have been
* reduced in the same way.
*/
static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
isl_bool equal;
isl_basic_map *bmap1, *bmap2;
isl_basic_set *eq1, *eq2;
isl_stat r;
if (!info1->bmap || !info2->bmap)
return isl_stat_error;
if (info1->bmap->n_div != info2->bmap->n_div)
return isl_stat_ok;
if (info1->bmap->n_div == 0)
return isl_stat_ok;
if (harmonize_stride_divs(info1, info2) < 0)
return isl_stat_error;
bmap1 = isl_basic_map_copy(info1->bmap);
bmap2 = isl_basic_map_copy(info2->bmap);
eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
equal = isl_basic_set_plain_is_equal(eq1, eq2);
if (equal < 0)
r = isl_stat_error;
else if (equal)
r = isl_stat_ok;
else
r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
isl_basic_set_free(eq1);
isl_basic_set_free(eq2);
return r;
}
/* Do the two basic maps live in the same local space, i.e.,
* do they have the same (known) divs?
* If either basic map has any unknown divs, then we can only assume
* that they do not live in the same local space.
*/
static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
int i;
isl_bool known;
isl_size total;
if (!bmap1 || !bmap2)
return isl_bool_error;
if (bmap1->n_div != bmap2->n_div)
return isl_bool_false;
if (bmap1->n_div == 0)
return isl_bool_true;
known = isl_basic_map_divs_known(bmap1);
if (known < 0 || !known)
return known;
known = isl_basic_map_divs_known(bmap2);
if (known < 0 || !known)
return known;
total = isl_basic_map_dim(bmap1, isl_dim_all);
if (total < 0)
return isl_bool_error;
for (i = 0; i < bmap1->n_div; ++i)
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
return isl_bool_false;
return isl_bool_true;
}
/* Assuming that "tab" contains the equality constraints and
* the initial inequality constraints of "bmap", copy the remaining
* inequality constraints of "bmap" to "Tab".
*/
static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
{
int i, n_ineq;
if (!bmap)
return isl_stat_error;
n_ineq = tab->n_con - tab->n_eq;
for (i = n_ineq; i < bmap->n_ineq; ++i)
if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Description of an integer division that is added
* during an expansion.
* "pos" is the position of the corresponding variable.
* "cst" indicates whether this integer division has a fixed value.
* "val" contains the fixed value, if the value is fixed.
*/
struct isl_expanded {
int pos;
isl_bool cst;
isl_int val;
};
/* For each of the "n" integer division variables "expanded",
* if the variable has a fixed value, then add two inequality
* constraints expressing the fixed value.
* Otherwise, add the corresponding div constraints.
* The caller is responsible for removing the div constraints
* that it added for all these "n" integer divisions.
*
* The div constraints and the pair of inequality constraints
* forcing the fixed value cannot both be added for a given variable
* as the combination may render some of the original constraints redundant.
* These would then be ignored during the coalescing detection,
* while they could remain in the fused result.
*
* The two added inequality constraints are
*
* -a + v >= 0
* a - v >= 0
*
* with "a" the variable and "v" its fixed value.
* The facet corresponding to one of these two constraints is selected
* in the tableau to ensure that the pair of inequality constraints
* is treated as an equality constraint.
*
* The information in info->ineq is thrown away because it was
* computed in terms of div constraints, while some of those
* have now been replaced by these pairs of inequality constraints.
*/
static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
int n, struct isl_expanded *expanded)
{
unsigned o_div;
int i;
isl_vec *ineq;
o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
if (!ineq)
return isl_stat_error;
isl_seq_clr(ineq->el + 1, info->tab->n_var);
for (i = 0; i < n; ++i) {
if (!expanded[i].cst) {
info->bmap = isl_basic_map_extend_constraints(
info->bmap, 0, 2);
info->bmap = isl_basic_map_add_div_constraints(
info->bmap, expanded[i].pos - o_div);
} else {
isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
isl_int_set(ineq->el[0], expanded[i].val);
info->bmap = isl_basic_map_add_ineq(info->bmap,
ineq->el);
isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
isl_int_neg(ineq->el[0], expanded[i].val);
info->bmap = isl_basic_map_add_ineq(info->bmap,
ineq->el);
isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
}
if (copy_ineq(info->tab, info->bmap) < 0)
break;
if (expanded[i].cst &&
isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
break;
}
isl_vec_free(ineq);
clear_status(info);
init_status(info);
return i < n ? isl_stat_error : isl_stat_ok;
}
/* Insert the "n" integer division variables "expanded"
* into info->tab and info->bmap and
* update info->ineq with respect to the redundant constraints
* in the resulting tableau.
* "bmap" contains the result of this insertion in info->bmap,
* while info->bmap is the original version
* of "bmap", i.e., the one that corresponds to the current
* state of info->tab. The number of constraints in info->bmap
* is assumed to be the same as the number of constraints
* in info->tab. This is required to be able to detect
* the extra constraints in "bmap".
*
* In particular, introduce extra variables corresponding
* to the extra integer divisions and add the div constraints
* that were added to "bmap" after info->tab was created
* from info->bmap.
* Furthermore, check if these extra integer divisions happen
* to attain a fixed integer value in info->tab.
* If so, replace the corresponding div constraints by pairs
* of inequality constraints that fix these
* integer divisions to their single integer values.
* Replace info->bmap by "bmap" to match the changes to info->tab.
* info->ineq was computed without a tableau and therefore
* does not take into account the redundant constraints
* in the tableau. Mark them here.
* There is no need to check the newly added div constraints
* since they cannot be redundant.
* The redundancy check is not performed when constants have been discovered
* since info->ineq is completely thrown away in this case.
*/
static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
{
int i, n_ineq;
unsigned n_eq;
struct isl_tab_undo *snap;
int any;
if (!bmap)
return isl_stat_error;
if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
"original tableau does not correspond "
"to original basic map", goto error);
if (isl_tab_extend_vars(info->tab, n) < 0)
goto error;
if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
goto error;
for (i = 0; i < n; ++i) {
if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
goto error;
}
snap = isl_tab_snap(info->tab);
n_ineq = info->tab->n_con - info->tab->n_eq;
if (copy_ineq(info->tab, bmap) < 0)
goto error;
isl_basic_map_free(info->bmap);
info->bmap = bmap;
any = 0;
for (i = 0; i < n; ++i) {
expanded[i].cst = isl_tab_is_constant(info->tab,
expanded[i].pos, &expanded[i].val);
if (expanded[i].cst < 0)
return isl_stat_error;
if (expanded[i].cst)
any = 1;
}
if (any) {
if (isl_tab_rollback(info->tab, snap) < 0)
return isl_stat_error;
info->bmap = isl_basic_map_cow(info->bmap);
info->bmap = isl_basic_map_free_inequality(info->bmap, 2 * n);
if (info->bmap < 0)
return isl_stat_error;
return fix_constant_divs(info, n, expanded);
}
n_eq = info->bmap->n_eq;
for (i = 0; i < n_ineq; ++i) {
if (isl_tab_is_redundant(info->tab, n_eq + i))
info->ineq[i] = STATUS_REDUNDANT;
}
return isl_stat_ok;
error:
isl_basic_map_free(bmap);
return isl_stat_error;
}
/* Expand info->tab and info->bmap in the same way "bmap" was expanded
* in isl_basic_map_expand_divs using the expansion "exp" and
* update info->ineq with respect to the redundant constraints
* in the resulting tableau. info->bmap is the original version
* of "bmap", i.e., the one that corresponds to the current
* state of info->tab. The number of constraints in info->bmap
* is assumed to be the same as the number of constraints
* in info->tab. This is required to be able to detect
* the extra constraints in "bmap".
*
* Extract the positions where extra local variables are introduced
* from "exp" and call tab_insert_divs.
*/
static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
__isl_take isl_basic_map *bmap)
{
isl_ctx *ctx;
struct isl_expanded *expanded;
int i, j, k, n;
int extra_var;
isl_size total, n_div;
unsigned pos;
isl_stat r;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
if (total < 0 || n_div < 0)
return isl_stat_error;
pos = total - n_div;
extra_var = total - info->tab->n_var;
n = n_div - extra_var;
ctx = isl_basic_map_get_ctx(bmap);
expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
if (extra_var && !expanded)
goto error;
i = 0;
k = 0;
for (j = 0; j < n_div; ++j) {
if (i < n && exp[i] == j) {
++i;
continue;
}
expanded[k++].pos = pos + j;
}
for (k = 0; k < extra_var; ++k)
isl_int_init(expanded[k].val);
r = tab_insert_divs(info, extra_var, expanded, bmap);
for (k = 0; k < extra_var; ++k)
isl_int_clear(expanded[k].val);
free(expanded);
return r;
error:
isl_basic_map_free(bmap);
return isl_stat_error;
}
/* Check if the union of the basic maps represented by info[i] and info[j]
* can be represented by a single basic map,
* after expanding the divs of info[i] to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* The caller has already checked for info[j] being a subset of info[i].
* If some of the divs of info[j] are unknown, then the expanded info[i]
* will not have the corresponding div constraints. The other patterns
* therefore cannot apply. Skip the computation in this case.
*
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* info[i].bmap has already been expanded and the result is passed in
* as "bmap".
* The "eq" and "ineq" fields of info[i] reflect the status of
* the constraints of the expanded "bmap" with respect to info[j].tab.
* However, inequality constraints that are redundant in info[i].tab
* have not yet been marked as such because no tableau was available.
*
* Replace info[i].bmap by "bmap" and expand info[i].tab as well,
* updating info[i].ineq with respect to the redundant constraints.
* Then try and coalesce the expanded info[i] with info[j],
* reusing the information in info[i].eq and info[i].ineq.
* If this does not result in any coalescing or if it results in info[j]
* getting dropped (which should not happen in practice, since the case
* of info[j] being a subset of info[i] has already been checked by
* the caller), then revert info[i] to its original state.
*/
static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
int *exp)
{
isl_bool known;
isl_basic_map *bmap_i;
struct isl_tab_undo *snap;
enum isl_change change = isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known) {
clear_status(&info[i]);
isl_basic_map_free(bmap);
return known < 0 ? isl_change_error : isl_change_none;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
snap = isl_tab_snap(info[i].tab);
if (expand_tab(&info[i], exp, bmap) < 0)
change = isl_change_error;
init_status(&info[j]);
if (change == isl_change_none)
change = coalesce_local_pair_reuse(i, j, info);
else
clear_status(&info[i]);
if (change != isl_change_none && change != isl_change_drop_second) {
isl_basic_map_free(bmap_i);
} else {
isl_basic_map_free(info[i].bmap);
info[i].bmap = bmap_i;
if (isl_tab_rollback(info[i].tab, snap) < 0)
change = isl_change_error;
}
return change;
}
/* Check if the union of "bmap" and the basic map represented by info[j]
* can be represented by a single basic map,
* after expanding the divs of "bmap" to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* In particular, check if the expanded "bmap" contains the basic map
* represented by the tableau info[j].tab.
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* Then we check if all constraints of the expanded "bmap" are valid for
* info[j].tab.
*
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
* In this case, the positions of the constraints of info[i].bmap
* with respect to the basic map represented by info[j] are stored
* in info[i].
*
* If the expanded "bmap" does not contain the basic map
* represented by the tableau info[j].tab and if "i" is not -1,
* i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
* as well and check if that results in coalescing.
*/
static enum isl_change coalesce_with_expanded_divs(
__isl_keep isl_basic_map *bmap, int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
{
enum isl_change change = isl_change_none;
struct isl_coalesce_info info_local, *info_i;
info_i = i >= 0 ? &info[i] : &info_local;
init_status(info_i);
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
bmap = isl_basic_map_mark_final(bmap);
if (!bmap)
goto error;
info_local.bmap = bmap;
info_i->eq = eq_status_in(bmap, info[j].tab);
if (bmap->n_eq && !info_i->eq)
goto error;
if (any_eq(info_i, STATUS_ERROR))
goto error;
if (any_eq(info_i, STATUS_SEPARATE))
goto done;
info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
if (bmap->n_ineq && !info_i->ineq)
goto error;
if (any_ineq(info_i, STATUS_ERROR))
goto error;
if (any_ineq(info_i, STATUS_SEPARATE))
goto done;
if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
}
if (change == isl_change_none && i != -1)
return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);
done:
isl_basic_map_free(bmap);
clear_status(info_i);
return change;
error:
isl_basic_map_free(bmap);
clear_status(info_i);
return isl_change_error;
}
/* Check if the union of "bmap_i" and the basic map represented by info[j]
* can be represented by a single basic map,
* after aligning the divs of "bmap_i" to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* In particular, check if "bmap_i" contains the basic map represented by
* info[j] after aligning the divs of "bmap_i" to those of info[j].
* Note that this can only succeed if the number of divs of "bmap_i"
* is smaller than (or equal to) the number of divs of info[j].
*
* We first check if the divs of "bmap_i" are all known and form a subset
* of those of info[j].bmap. If so, we pass control over to
* coalesce_with_expanded_divs.
*
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
*/
static enum isl_change coalesce_after_aligning_divs(
__isl_keep isl_basic_map *bmap_i, int i, int j,
struct isl_coalesce_info *info)
{
isl_bool known;
isl_mat *div_i, *div_j, *div;
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
enum isl_change change;
known = isl_basic_map_divs_known(bmap_i);
if (known < 0)
return isl_change_error;
if (!known)
return isl_change_none;
ctx = isl_basic_map_get_ctx(bmap_i);
div_i = isl_basic_map_get_divs(bmap_i);
div_j = isl_basic_map_get_divs(info[j].bmap);
if (!div_i || !div_j)
goto error;
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
goto error;
div = isl_merge_divs(div_i, div_j, exp1, exp2);
if (!div)
goto error;
if (div->n_row == div_j->n_row)
change = coalesce_with_expanded_divs(bmap_i,
i, j, info, div, exp1);
else
change = isl_change_none;
isl_mat_free(div);
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp2);
free(exp1);
return change;
error:
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp1);
free(exp2);
return isl_change_error;
}
/* Check if basic map "j" is a subset of basic map "i" after
* exploiting the extra equalities of "j" to simplify the divs of "i".
* If so, remove basic map "j" and return isl_change_drop_second.
*
* If "j" does not have any equalities or if they are the same
* as those of "i", then we cannot exploit them to simplify the divs.
* Similarly, if there are no divs in "i", then they cannot be simplified.
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
* then "j" cannot be a subset of "i".
*
* Otherwise, we intersect "i" with the affine hull of "j" and then
* check if "j" is a subset of the result after aligning the divs.
* If so, then "j" is definitely a subset of "i" and can be removed.
* Note that if after intersection with the affine hull of "j".
* "i" still has more divs than "j", then there is no way we can
* align the divs of "i" to those of "j".
*/
static enum isl_change coalesce_subset_with_equalities(int i, int j,
struct isl_coalesce_info *info)
{
isl_basic_map *hull_i, *hull_j, *bmap_i;
int equal, empty;
enum isl_change change;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
if (info[i].bmap->n_div == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || equal || empty < 0 || empty) {
isl_basic_map_free(hull_j);
if (equal < 0 || empty < 0)
return isl_change_error;
return isl_change_none;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
if (!bmap_i)
return isl_change_error;
if (bmap_i->n_div > info[j].bmap->n_div) {
isl_basic_map_free(bmap_i);
return isl_change_none;
}
change = coalesce_after_aligning_divs(bmap_i, -1, j, info);
isl_basic_map_free(bmap_i);
return change;
}
/* Check if the union of the basic maps represented by info[i] and info[j]
* can be represented by a single basic map, by aligning or equating
* their integer divisions.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* Note that we only perform any test if the number of divs is different
* in the two basic maps. In case the number of divs is the same,
* we have already established that the divs are different
* in the two basic maps.
* In particular, if the number of divs of basic map i is smaller than
* the number of divs of basic map j, then we check if j is a subset of i
* and vice versa.
*/
static enum isl_change coalesce_divs(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (info[i].bmap->n_div < info[j].bmap->n_div)
change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
if (change != isl_change_none)
return change;
if (info[j].bmap->n_div < info[i].bmap->n_div)
change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
if (change != isl_change_none)
return invert_change(change);
change = coalesce_subset_with_equalities(i, j, info);
if (change != isl_change_none)
return change;
change = coalesce_subset_with_equalities(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Does "bmap" involve any divs that themselves refer to divs?
*/
static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
{
int i;
isl_size total;
isl_size n_div;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
if (total < 0 || n_div < 0)
return isl_bool_error;
total -= n_div;
for (i = 0; i < n_div; ++i)
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
n_div) != -1)
return isl_bool_true;
return isl_bool_false;
}
/* Return a list of affine expressions, one for each integer division
* in "bmap_i". For each integer division that also appears in "bmap_j",
* the affine expression is set to NaN. The number of NaNs in the list
* is equal to the number of integer divisions in "bmap_j".
* For the other integer divisions of "bmap_i", the corresponding
* element in the list is a purely affine expression equal to the integer
* division in "hull".
* If no such list can be constructed, then the number of elements
* in the returned list is smaller than the number of integer divisions
* in "bmap_i".
* The integer division of "bmap_i" and "bmap_j" are assumed to be known and
* not contain any nested divs.
*/
static __isl_give isl_aff_list *set_up_substitutions(
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
__isl_take isl_basic_map *hull)
{
isl_size n_div_i, n_div_j, total;
isl_ctx *ctx;
isl_local_space *ls;
isl_basic_set *wrap_hull;
isl_aff *aff_nan;
isl_aff_list *list;
int i, j;
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
total = isl_basic_map_dim(bmap_i, isl_dim_all);
if (!hull || n_div_i < 0 || n_div_j < 0 || total < 0)
return NULL;
ctx = isl_basic_map_get_ctx(hull);
total -= n_div_i;
ls = isl_basic_map_get_local_space(bmap_i);
ls = isl_local_space_wrap(ls);
wrap_hull = isl_basic_map_wrap(hull);
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
list = isl_aff_list_alloc(ctx, n_div_i);
j = 0;
for (i = 0; i < n_div_i; ++i) {
isl_aff *aff;
isl_size n_div;
if (j < n_div_j &&
isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
0, 2 + total)) {
++j;
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
continue;
}
if (n_div_i - i <= n_div_j - j)
break;
aff = isl_local_space_get_div(ls, i);
aff = isl_aff_substitute_equalities(aff,
isl_basic_set_copy(wrap_hull));
aff = isl_aff_floor(aff);
n_div = isl_aff_dim(aff, isl_dim_div);
if (n_div < 0)
goto error;
if (n_div != 0) {
isl_aff_free(aff);
break;
}
list = isl_aff_list_add(list, aff);
}
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
return list;
error:
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
isl_aff_list_free(list);
return NULL;
}
/* Add variables to info->bmap and info->tab corresponding to the elements
* in "list" that are not set to NaN.
* "extra_var" is the number of these elements.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in "tab"
* is equal to "dim" plus the number of elements in "list".
*
* The newly added existentially quantified variables are not given
* an explicit representation because the corresponding div constraints
* do not appear in info->bmap. These constraints are not added
* to info->bmap because for internal consistency, they would need to
* be added to info->tab as well, where they could combine with the equality
* that is added later to result in constraints that do not hold
* in the original input.
*/
static isl_stat add_sub_vars(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim, int extra_var)
{
int i, j, d;
isl_size n;
info->bmap = isl_basic_map_cow(info->bmap);
info->bmap = isl_basic_map_extend(info->bmap, extra_var, 0, 0);
n = isl_aff_list_n_aff(list);
if (!info->bmap || n < 0)
return isl_stat_error;
for (i = 0; i < n; ++i) {
int is_nan;
isl_aff *aff;
aff = isl_aff_list_get_aff(list, i);
is_nan = isl_aff_is_nan(aff);
isl_aff_free(aff);
if (is_nan < 0)
return isl_stat_error;
if (is_nan)
continue;
if (isl_tab_insert_var(info->tab, dim + i) < 0)
return isl_stat_error;
d = isl_basic_map_alloc_div(info->bmap);
if (d < 0)
return isl_stat_error;
info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
for (j = d; j > i; --j)
info->bmap = isl_basic_map_swap_div(info->bmap,
j - 1, j);
if (!info->bmap)
return isl_stat_error;
}
return isl_stat_ok;
}
/* For each element in "list" that is not set to NaN, fix the corresponding
* variable in "tab" to the purely affine expression defined by the element.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
*
* This function assumes that a sufficient number of rows and
* elements in the constraint array are available in the tableau.
*/
static isl_stat add_sub_equalities(struct isl_tab *tab,
__isl_keep isl_aff_list *list, int dim)
{
int i;
isl_size n;
isl_ctx *ctx;
isl_vec *sub;
isl_aff *aff;
n = isl_aff_list_n_aff(list);
if (n < 0)
return isl_stat_error;
ctx = isl_tab_get_ctx(tab);
sub = isl_vec_alloc(ctx, 1 + dim + n);
if (!sub)
return isl_stat_error;
isl_seq_clr(sub->el + 1 + dim, n);
for (i = 0; i < n; ++i) {
aff = isl_aff_list_get_aff(list, i);
if (!aff)
goto error;
if (isl_aff_is_nan(aff)) {
isl_aff_free(aff);
continue;
}
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
if (isl_tab_add_eq(tab, sub->el) < 0)
goto error;
isl_int_set_si(sub->el[1 + dim + i], 0);
isl_aff_free(aff);
}
isl_vec_free(sub);
return isl_stat_ok;
error:
isl_aff_free(aff);
isl_vec_free(sub);
return isl_stat_error;
}
/* Add variables to info->tab and info->bmap corresponding to the elements
* in "list" that are not set to NaN. The value of the added variable
* in info->tab is fixed to the purely affine expression defined by the element.
* "dim" is the offset in the variables of info->tab where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in info->tab
* is equal to "dim" plus the number of elements in "list".
*/
static isl_stat add_subs(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim)
{
int extra_var;
isl_size n;
n = isl_aff_list_n_aff(list);
if (n < 0)
return isl_stat_error;
extra_var = n - (info->tab->n_var - dim);
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
return isl_stat_error;
if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
return isl_stat_error;
if (add_sub_vars(info, list, dim, extra_var) < 0)
return isl_stat_error;
return add_sub_equalities(info->tab, list, dim);
}
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
* divisions in "i" but not in "j" to basic map "j", with values
* specified by "list". The total number of elements in "list"
* is equal to the number of integer divisions in "i", while the number
* of NaN elements in the list is equal to the number of integer divisions
* in "j".
*
* If no coalescing can be performed, then we need to revert basic map "j"
* to its original state. We do the same if basic map "i" gets dropped
* during the coalescing, even though this should not happen in practice
* since we have already checked for "j" being a subset of "i"
* before we reach this stage.
*/
static enum isl_change coalesce_with_subs(int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
{
isl_basic_map *bmap_j;
struct isl_tab_undo *snap;
isl_size dim, n_div;
enum isl_change change;
bmap_j = isl_basic_map_copy(info[j].bmap);
snap = isl_tab_snap(info[j].tab);
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
n_div = isl_basic_map_dim(bmap_j, isl_dim_div);
if (dim < 0 || n_div < 0)
goto error;
dim -= n_div;
if (add_subs(&info[j], list, dim) < 0)
goto error;
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none && change != isl_change_drop_first) {
isl_basic_map_free(bmap_j);
} else {
isl_basic_map_free(info[j].bmap);
info[j].bmap = bmap_j;
if (isl_tab_rollback(info[j].tab, snap) < 0)
return isl_change_error;
}
return change;
error:
isl_basic_map_free(bmap_j);
return isl_change_error;
}
/* Check if we can coalesce basic map "j" into basic map "i" after copying
* those extra integer divisions in "i" that can be simplified away
* using the extra equalities in "j".
* All divs are assumed to be known and not contain any nested divs.
*
* We first check if there are any extra equalities in "j" that we
* can exploit. Then we check if every integer division in "i"
* either already appears in "j" or can be simplified using the
* extra equalities to a purely affine expression.
* If these tests succeed, then we try to coalesce the two basic maps
* by introducing extra dimensions in "j" corresponding to
* the extra integer divisions "i" fixed to the corresponding
* purely affine expression.
*/
static enum isl_change check_coalesce_into_eq(int i, int j,
struct isl_coalesce_info *info)
{
isl_size n_div_i, n_div_j, n;
isl_basic_map *hull_i, *hull_j;
isl_bool equal, empty;
isl_aff_list *list;
enum isl_change change;
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
if (n_div_i < 0 || n_div_j < 0)
return isl_change_error;
if (n_div_i <= n_div_j)
return isl_change_none;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || empty < 0)
goto error;
if (equal || empty) {
isl_basic_map_free(hull_j);
return isl_change_none;
}
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
if (!list)
return isl_change_error;
n = isl_aff_list_n_aff(list);
if (n < 0)
change = isl_change_error;
else if (n < n_div_i)
change = isl_change_none;
else
change = coalesce_with_subs(i, j, info, list);
isl_aff_list_free(list);
return change;
error:
isl_basic_map_free(hull_j);
return isl_change_error;
}
/* Check if we can coalesce basic maps "i" and "j" after copying
* those extra integer divisions in one of the basic maps that can
* be simplified away using the extra equalities in the other basic map.
* We require all divs to be known in both basic maps.
* Furthermore, to simplify the comparison of div expressions,
* we do not allow any nested integer divisions.
*/
static enum isl_change check_coalesce_eq(int i, int j,
struct isl_coalesce_info *info)
{
isl_bool known, nested;
enum isl_change change;
known = isl_basic_map_divs_known(info[i].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[i].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[j].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
change = check_coalesce_into_eq(i, j, info);
if (change != isl_change_none)
return change;
change = check_coalesce_into_eq(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* We first check if the two basic maps live in the same local space,
* after aligning the divs that differ by only an integer constant.
* If so, we do the complete check. Otherwise, we check if they have
* the same number of integer divisions and can be coalesced, if one is
* an obvious subset of the other or if the extra integer divisions
* of one basic map can be simplified away using the extra equalities
* of the other basic map.
*
* Note that trying to coalesce pairs of disjuncts with the same
* number, but different local variables may drop the explicit
* representation of some of these local variables.
* This operation is therefore not performed when
* the "coalesce_preserve_locals" option is set.
*/
static enum isl_change coalesce_pair(int i, int j,
struct isl_coalesce_info *info)
{
int preserve;
isl_bool same;
enum isl_change change;
isl_ctx *ctx;
if (harmonize_divs(&info[i], &info[j]) < 0)
return isl_change_error;
same = same_divs(info[i].bmap, info[j].bmap);
if (same < 0)
return isl_change_error;
if (same)
return coalesce_local_pair(i, j, info);
ctx = isl_basic_map_get_ctx(info[i].bmap);
preserve = isl_options_get_coalesce_preserve_locals(ctx);
if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none)
return change;
}
change = coalesce_divs(i, j, info);
if (change != isl_change_none)
return change;
return check_coalesce_eq(i, j, info);
}
/* Return the maximum of "a" and "b".
*/
static int isl_max(int a, int b)
{
return a > b ? a : b;
}
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
* with those in the range [start2, end2[, skipping basic maps
* that have been removed (either before or within this function).
*
* For each basic map i in the first range, we check if it can be coalesced
* with respect to any previously considered basic map j in the second range.
* If i gets dropped (because it was a subset of some j), then
* we can move on to the next basic map.
* If j gets dropped, we need to continue checking against the other
* previously considered basic maps.
* If the two basic maps got fused, then we recheck the fused basic map
* against the previously considered basic maps, starting at i + 1
* (even if start2 is greater than i + 1).
*/
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
int start1, int end1, int start2, int end2)
{
int i, j;
for (i = end1 - 1; i >= start1; --i) {
if (info[i].removed)
continue;
for (j = isl_max(i + 1, start2); j < end2; ++j) {
enum isl_change changed;
if (info[j].removed)
continue;
if (info[i].removed)
isl_die(ctx, isl_error_internal,
"basic map unexpectedly removed",
return -1);
changed = coalesce_pair(i, j, info);
switch (changed) {
case isl_change_error:
return -1;
case isl_change_none:
case isl_change_drop_second:
continue;
case isl_change_drop_first:
j = end2;
break;
case isl_change_fuse:
j = i;
break;
}
}
}
return 0;
}
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
*
* We consider groups of basic maps that live in the same apparent
* affine hull and we first coalesce within such a group before we
* coalesce the elements in the group with elements of previously
* considered groups. If a fuse happens during the second phase,
* then we also reconsider the elements within the group.
*/
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
{
int start, end;
for (end = n; end > 0; end = start) {
start = end - 1;
while (start >= 1 &&
info[start - 1].hull_hash == info[start].hull_hash)
start--;
if (coalesce_range(ctx, info, start, end, start, end) < 0)
return -1;
if (coalesce_range(ctx, info, start, end, end, n) < 0)
return -1;
}
return 0;
}
/* Update the basic maps in "map" based on the information in "info".
* In particular, remove the basic maps that have been marked removed and
* update the others based on the information in the corresponding tableau.
* Since we detected implicit equalities without calling
* isl_basic_map_gauss, we need to do it now.
* Also call isl_basic_map_simplify if we may have lost the definition
* of one or more integer divisions.
* If a basic map is still equal to the one from which the corresponding "info"
* entry was created, then redundant constraint and
* implicit equality constraint detection have been performed
* on the corresponding tableau and the basic map can be marked as such.
*/
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
int n, struct isl_coalesce_info *info)
{
int i;
if (!map)
return NULL;
for (i = n - 1; i >= 0; --i) {
if (info[i].removed) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
continue;
}
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
info[i].tab);
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
if (info[i].simplify)
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
if (!info[i].bmap)
return isl_map_free(map);
if (!info[i].modified) {
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
}
isl_basic_map_free(map->p[i]);
map->p[i] = info[i].bmap;
info[i].bmap = NULL;
}
return map;
}
/* For each pair of basic maps in the map, check if the union of the two
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and start over.
*
* We factor out any (hidden) common factor from the constraint
* coefficients to improve the detection of adjacent constraints.
* Note that this function does not call isl_basic_map_gauss,
* but it does make sure that only a single copy of the basic map
* is affected. This means that isl_basic_map_gauss may have
* to be called at the end of the computation (in update_basic_maps)
* on this single copy to ensure that
* the basic maps are not left in an unexpected state.
*
* Since we are constructing the tableaus of the basic maps anyway,
* we exploit them to detect implicit equalities and redundant constraints.
* This also helps the coalescing as it can ignore the redundant constraints.
* In order to avoid confusion, we make all implicit equalities explicit
* in the basic maps. If the basic map only has a single reference
* (this happens in particular if it was modified by
* isl_basic_map_reduce_coefficients), then isl_basic_map_gauss
* does not get called on the result. The call to
* isl_basic_map_gauss in update_basic_maps resolves this as well.
* For each basic map, we also compute the hash of the apparent affine hull
* for use in coalesce.
*/
__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
{
int i;
unsigned n;
isl_ctx *ctx;
struct isl_coalesce_info *info = NULL;
map = isl_map_remove_empty_parts(map);
if (!map)
return NULL;
if (map->n <= 1)
return map;
ctx = isl_map_get_ctx(map);
map = isl_map_sort_divs(map);
map = isl_map_cow(map);
if (!map)
return NULL;
n = map->n;
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
if (!info)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
if (!map->p[i])
goto error;
info[i].bmap = isl_basic_map_copy(map->p[i]);
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
if (!info[i].tab)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
goto error;
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
info[i].bmap);
if (!info[i].bmap)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
if (isl_tab_detect_redundant(info[i].tab) < 0)
goto error;
if (coalesce_info_set_hull_hash(&info[i]) < 0)
goto error;
}
for (i = map->n - 1; i >= 0; --i)
if (info[i].tab->empty)
drop(&info[i]);
if (coalesce(ctx, n, info) < 0)
goto error;
map = update_basic_maps(map, n, info);
clear_coalesce_info(n, info);
return map;
error:
clear_coalesce_info(n, info);
isl_map_free(map);
return NULL;
}
/* For each pair of basic sets in the set, check if the union of the two
* can be represented by a single basic set.
* If so, replace the pair by the single basic set and start over.
*/
__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set)
{
return set_from_map(isl_map_coalesce(set_to_map(set)));
}