llvm-project/clang-tools-extra/clangd/TUScheduler.cpp

1788 lines
68 KiB
C++

//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// TUScheduler manages a worker per active file. This ASTWorker processes
// updates (modifications to file contents) and reads (actions performed on
// preamble/AST) to the file.
//
// Each ASTWorker owns a dedicated thread to process updates and reads to the
// relevant file. Any request gets queued in FIFO order to be processed by that
// thread.
//
// An update request replaces current praser inputs to ensure any subsequent
// read sees the version of the file they were requested. It will also issue a
// build for new inputs.
//
// ASTWorker processes the file in two parts, a preamble and a main-file
// section. A preamble can be reused between multiple versions of the file until
// invalidated by a modification to a header, compile commands or modification
// to relevant part of the current file. Such a preamble is called compatible.
// An update is considered dead if no read was issued for that version and
// diagnostics weren't requested by client or could be generated for a later
// version of the file. ASTWorker eliminates such requests as they are
// redundant.
//
// In the presence of stale (non-compatible) preambles, ASTWorker won't publish
// diagnostics for update requests. Read requests will be served with ASTs build
// with stale preambles, unless the read is picky and requires a compatible
// preamble. In such cases it will block until new preamble is built.
//
// ASTWorker owns a PreambleThread for building preambles. If the preamble gets
// invalidated by an update request, a new build will be requested on
// PreambleThread. Since PreambleThread only receives requests for newer
// versions of the file, in case of multiple requests it will only build the
// last one and skip requests in between. Unless client force requested
// diagnostics(WantDiagnostics::Yes).
//
// When a new preamble is built, a "golden" AST is immediately built from that
// version of the file. This ensures diagnostics get updated even if the queue
// is full.
//
// Some read requests might just need preamble. Since preambles can be read
// concurrently, ASTWorker runs these requests on their own thread. These
// requests will receive latest build preamble, which might possibly be stale.
#include "TUScheduler.h"
#include "CompileCommands.h"
#include "Compiler.h"
#include "Diagnostics.h"
#include "GlobalCompilationDatabase.h"
#include "ParsedAST.h"
#include "Preamble.h"
#include "index/CanonicalIncludes.h"
#include "support/Cancellation.h"
#include "support/Context.h"
#include "support/Logger.h"
#include "support/MemoryTree.h"
#include "support/Path.h"
#include "support/ThreadCrashReporter.h"
#include "support/Threading.h"
#include "support/Trace.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Tooling/CompilationDatabase.h"
#include "llvm/ADT/FunctionExtras.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <functional>
#include <memory>
#include <mutex>
#include <queue>
#include <string>
#include <thread>
#include <type_traits>
#include <utility>
#include <vector>
namespace clang {
namespace clangd {
using std::chrono::steady_clock;
namespace {
// Tracks latency (in seconds) of FS operations done during a preamble build.
// build_type allows to split by expected VFS cache state (cold on first
// preamble, somewhat warm after that when building first preamble for new file,
// likely ~everything cached on preamble rebuild.
constexpr trace::Metric
PreambleBuildFilesystemLatency("preamble_fs_latency",
trace::Metric::Distribution, "build_type");
// Tracks latency of FS operations done during a preamble build as a ratio of
// preamble build time. build_type is same as above.
constexpr trace::Metric PreambleBuildFilesystemLatencyRatio(
"preamble_fs_latency_ratio", trace::Metric::Distribution, "build_type");
constexpr trace::Metric PreambleBuildSize("preamble_build_size",
trace::Metric::Distribution);
constexpr trace::Metric PreambleSerializedSize("preamble_serialized_size",
trace::Metric::Distribution);
void reportPreambleBuild(const PreambleBuildStats &Stats,
bool IsFirstPreamble) {
auto RecordWithLabel = [&Stats](llvm::StringRef Label) {
PreambleBuildFilesystemLatency.record(Stats.FileSystemTime, Label);
if (Stats.TotalBuildTime > 0) // Avoid division by zero.
PreambleBuildFilesystemLatencyRatio.record(
Stats.FileSystemTime / Stats.TotalBuildTime, Label);
};
static llvm::once_flag OnceFlag;
llvm::call_once(OnceFlag, [&] { RecordWithLabel("first_build"); });
RecordWithLabel(IsFirstPreamble ? "first_build_for_file" : "rebuild");
PreambleBuildSize.record(Stats.BuildSize);
PreambleSerializedSize.record(Stats.SerializedSize);
}
class ASTWorker;
} // namespace
static clang::clangd::Key<std::string> FileBeingProcessed;
llvm::Optional<llvm::StringRef> TUScheduler::getFileBeingProcessedInContext() {
if (auto *File = Context::current().get(FileBeingProcessed))
return llvm::StringRef(*File);
return None;
}
/// An LRU cache of idle ASTs.
/// Because we want to limit the overall number of these we retain, the cache
/// owns ASTs (and may evict them) while their workers are idle.
/// Workers borrow ASTs when active, and return them when done.
class TUScheduler::ASTCache {
public:
using Key = const ASTWorker *;
ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {}
/// Returns result of getUsedBytes() for the AST cached by \p K.
/// If no AST is cached, 0 is returned.
std::size_t getUsedBytes(Key K) {
std::lock_guard<std::mutex> Lock(Mut);
auto It = findByKey(K);
if (It == LRU.end() || !It->second)
return 0;
return It->second->getUsedBytes();
}
/// Store the value in the pool, possibly removing the last used AST.
/// The value should not be in the pool when this function is called.
void put(Key K, std::unique_ptr<ParsedAST> V) {
std::unique_lock<std::mutex> Lock(Mut);
assert(findByKey(K) == LRU.end());
LRU.insert(LRU.begin(), {K, std::move(V)});
if (LRU.size() <= MaxRetainedASTs)
return;
// We're past the limit, remove the last element.
std::unique_ptr<ParsedAST> ForCleanup = std::move(LRU.back().second);
LRU.pop_back();
// Run the expensive destructor outside the lock.
Lock.unlock();
ForCleanup.reset();
}
/// Returns the cached value for \p K, or llvm::None if the value is not in
/// the cache anymore. If nullptr was cached for \p K, this function will
/// return a null unique_ptr wrapped into an optional.
/// If \p AccessMetric is set records whether there was a hit or miss.
llvm::Optional<std::unique_ptr<ParsedAST>>
take(Key K, const trace::Metric *AccessMetric = nullptr) {
// Record metric after unlocking the mutex.
std::unique_lock<std::mutex> Lock(Mut);
auto Existing = findByKey(K);
if (Existing == LRU.end()) {
if (AccessMetric)
AccessMetric->record(1, "miss");
return None;
}
if (AccessMetric)
AccessMetric->record(1, "hit");
std::unique_ptr<ParsedAST> V = std::move(Existing->second);
LRU.erase(Existing);
// GCC 4.8 fails to compile `return V;`, as it tries to call the copy
// constructor of unique_ptr, so we call the move ctor explicitly to avoid
// this miscompile.
return llvm::Optional<std::unique_ptr<ParsedAST>>(std::move(V));
}
private:
using KVPair = std::pair<Key, std::unique_ptr<ParsedAST>>;
std::vector<KVPair>::iterator findByKey(Key K) {
return llvm::find_if(LRU, [K](const KVPair &P) { return P.first == K; });
}
std::mutex Mut;
unsigned MaxRetainedASTs;
/// Items sorted in LRU order, i.e. first item is the most recently accessed
/// one.
std::vector<KVPair> LRU; /* GUARDED_BY(Mut) */
};
/// A map from header files to an opened "proxy" file that includes them.
/// If you open the header, the compile command from the proxy file is used.
///
/// This inclusion information could also naturally live in the index, but there
/// are advantages to using open files instead:
/// - it's easier to achieve a *stable* choice of proxy, which is important
/// to avoid invalidating the preamble
/// - context-sensitive flags for libraries with multiple configurations
/// (e.g. C++ stdlib sensitivity to -std version)
/// - predictable behavior, e.g. guarantees that go-to-def landing on a header
/// will have a suitable command available
/// - fewer scaling problems to solve (project include graphs are big!)
///
/// Implementation details:
/// - We only record this for mainfiles where the command was trustworthy
/// (i.e. not inferred). This avoids a bad inference "infecting" other files.
/// - Once we've picked a proxy file for a header, we stick with it until the
/// proxy file is invalidated *and* a new candidate proxy file is built.
/// Switching proxies is expensive, as the compile flags will (probably)
/// change and therefore we'll end up rebuilding the header's preamble.
/// - We don't capture the actual compile command, but just the filename we
/// should query to get it. This avoids getting out of sync with the CDB.
///
/// All methods are threadsafe. In practice, update() comes from preamble
/// threads, remove()s mostly from the main thread, and get() from ASTWorker.
/// Writes are rare and reads are cheap, so we don't expect much contention.
class TUScheduler::HeaderIncluderCache {
// We should be be a little careful how we store the include graph of open
// files, as each can have a large number of transitive headers.
// This representation is O(unique transitive source files).
llvm::BumpPtrAllocator Arena;
struct Association {
llvm::StringRef MainFile;
// Circular-linked-list of associations with the same mainFile.
// Null indicates that the mainfile was removed.
Association *Next;
};
llvm::StringMap<Association, llvm::BumpPtrAllocator &> HeaderToMain;
llvm::StringMap<Association *, llvm::BumpPtrAllocator &> MainToFirst;
std::atomic<size_t> UsedBytes; // Updated after writes.
mutable std::mutex Mu;
void invalidate(Association *First) {
Association *Current = First;
do {
Association *Next = Current->Next;
Current->Next = nullptr;
Current = Next;
} while (Current != First);
}
// Create the circular list and return the head of it.
Association *associate(llvm::StringRef MainFile,
llvm::ArrayRef<std::string> Headers) {
Association *First = nullptr, *Prev = nullptr;
for (const std::string &Header : Headers) {
auto &Assoc = HeaderToMain[Header];
if (Assoc.Next)
continue; // Already has a valid association.
Assoc.MainFile = MainFile;
Assoc.Next = Prev;
Prev = &Assoc;
if (!First)
First = &Assoc;
}
if (First)
First->Next = Prev;
return First;
}
void updateMemoryUsage() {
auto StringMapHeap = [](const auto &Map) {
// StringMap stores the hashtable on the heap.
// It contains pointers to the entries, and a hashcode for each.
return Map.getNumBuckets() * (sizeof(void *) + sizeof(unsigned));
};
size_t Usage = Arena.getTotalMemory() + StringMapHeap(MainToFirst) +
StringMapHeap(HeaderToMain) + sizeof(*this);
UsedBytes.store(Usage, std::memory_order_release);
}
public:
HeaderIncluderCache() : HeaderToMain(Arena), MainToFirst(Arena) {
updateMemoryUsage();
}
// Associate each header with MainFile (unless already associated).
// Headers not in the list will have their associations removed.
void update(PathRef MainFile, llvm::ArrayRef<std::string> Headers) {
std::lock_guard<std::mutex> Lock(Mu);
auto It = MainToFirst.try_emplace(MainFile, nullptr);
Association *&First = It.first->second;
if (First)
invalidate(First);
First = associate(It.first->first(), Headers);
updateMemoryUsage();
}
// Mark MainFile as gone.
// This will *not* disassociate headers with MainFile immediately, but they
// will be eligible for association with other files that get update()d.
void remove(PathRef MainFile) {
std::lock_guard<std::mutex> Lock(Mu);
Association *&First = MainToFirst[MainFile];
if (First) {
invalidate(First);
First = nullptr;
}
// MainToFirst entry should stay alive, as Associations might be pointing at
// its key.
}
/// Get the mainfile associated with Header, or the empty string if none.
std::string get(PathRef Header) const {
std::lock_guard<std::mutex> Lock(Mu);
return HeaderToMain.lookup(Header).MainFile.str();
}
size_t getUsedBytes() const {
return UsedBytes.load(std::memory_order_acquire);
}
};
namespace {
bool isReliable(const tooling::CompileCommand &Cmd) {
return Cmd.Heuristic.empty();
}
/// Threadsafe manager for updating a TUStatus and emitting it after each
/// update.
class SynchronizedTUStatus {
public:
SynchronizedTUStatus(PathRef FileName, ParsingCallbacks &Callbacks)
: FileName(FileName), Callbacks(Callbacks) {}
void update(llvm::function_ref<void(TUStatus &)> Mutator) {
std::lock_guard<std::mutex> Lock(StatusMu);
Mutator(Status);
emitStatusLocked();
}
/// Prevents emitting of further updates.
void stop() {
std::lock_guard<std::mutex> Lock(StatusMu);
CanPublish = false;
}
private:
void emitStatusLocked() {
if (CanPublish)
Callbacks.onFileUpdated(FileName, Status);
}
const Path FileName;
std::mutex StatusMu;
TUStatus Status;
bool CanPublish = true;
ParsingCallbacks &Callbacks;
};
/// Responsible for building preambles. Whenever the thread is idle and the
/// preamble is outdated, it starts to build a fresh preamble from the latest
/// inputs. If RunSync is true, preambles are built synchronously in update()
/// instead.
class PreambleThread {
public:
PreambleThread(llvm::StringRef FileName, ParsingCallbacks &Callbacks,
bool StorePreambleInMemory, bool RunSync,
SynchronizedTUStatus &Status,
TUScheduler::HeaderIncluderCache &HeaderIncluders,
ASTWorker &AW)
: FileName(FileName), Callbacks(Callbacks),
StoreInMemory(StorePreambleInMemory), RunSync(RunSync), Status(Status),
ASTPeer(AW), HeaderIncluders(HeaderIncluders) {}
/// It isn't guaranteed that each requested version will be built. If there
/// are multiple update requests while building a preamble, only the last one
/// will be built.
void update(std::unique_ptr<CompilerInvocation> CI, ParseInputs PI,
std::vector<Diag> CIDiags, WantDiagnostics WantDiags) {
Request Req = {std::move(CI), std::move(PI), std::move(CIDiags), WantDiags,
Context::current().clone()};
if (RunSync) {
build(std::move(Req));
Status.update([](TUStatus &Status) {
Status.PreambleActivity = PreambleAction::Idle;
});
return;
}
{
std::unique_lock<std::mutex> Lock(Mutex);
// If NextReq was requested with WantDiagnostics::Yes we cannot just drop
// that on the floor. Block until we start building it. This won't
// dead-lock as we are blocking the caller thread, while builds continue
// on preamble thread.
ReqCV.wait(Lock, [this] {
return !NextReq || NextReq->WantDiags != WantDiagnostics::Yes;
});
NextReq = std::move(Req);
}
// Let the worker thread know there's a request, notify_one is safe as there
// should be a single worker thread waiting on it.
ReqCV.notify_all();
}
void run() {
while (true) {
{
std::unique_lock<std::mutex> Lock(Mutex);
assert(!CurrentReq && "Already processing a request?");
// Wait until stop is called or there is a request.
ReqCV.wait(Lock, [this] { return NextReq || Done; });
if (Done)
break;
CurrentReq = std::move(*NextReq);
NextReq.reset();
}
{
WithContext Guard(std::move(CurrentReq->Ctx));
// Note that we don't make use of the ContextProvider here.
// Preamble tasks are always scheduled by ASTWorker tasks, and we
// reuse the context/config that was created at that level.
// Build the preamble and let the waiters know about it.
build(std::move(*CurrentReq));
}
bool IsEmpty = false;
{
std::lock_guard<std::mutex> Lock(Mutex);
CurrentReq.reset();
IsEmpty = !NextReq.hasValue();
}
if (IsEmpty) {
// We don't perform this above, before waiting for a request to make
// tests more deterministic. As there can be a race between this thread
// and client thread(clangdserver).
Status.update([](TUStatus &Status) {
Status.PreambleActivity = PreambleAction::Idle;
});
}
ReqCV.notify_all();
}
dlog("Preamble worker for {0} stopped", FileName);
}
/// Signals the run loop to exit.
void stop() {
dlog("Preamble worker for {0} received stop", FileName);
{
std::lock_guard<std::mutex> Lock(Mutex);
Done = true;
NextReq.reset();
}
// Let the worker thread know that it should stop.
ReqCV.notify_all();
}
bool blockUntilIdle(Deadline Timeout) const {
std::unique_lock<std::mutex> Lock(Mutex);
return wait(Lock, ReqCV, Timeout, [&] { return !NextReq && !CurrentReq; });
}
private:
/// Holds inputs required for building a preamble. CI is guaranteed to be
/// non-null.
struct Request {
std::unique_ptr<CompilerInvocation> CI;
ParseInputs Inputs;
std::vector<Diag> CIDiags;
WantDiagnostics WantDiags;
Context Ctx;
};
bool isDone() {
std::lock_guard<std::mutex> Lock(Mutex);
return Done;
}
/// Builds a preamble for \p Req, might reuse LatestBuild if possible.
/// Notifies ASTWorker after build finishes.
void build(Request Req);
mutable std::mutex Mutex;
bool Done = false; /* GUARDED_BY(Mutex) */
llvm::Optional<Request> NextReq; /* GUARDED_BY(Mutex) */
llvm::Optional<Request> CurrentReq; /* GUARDED_BY(Mutex) */
// Signaled whenever a thread populates NextReq or worker thread builds a
// Preamble.
mutable std::condition_variable ReqCV; /* GUARDED_BY(Mutex) */
// Accessed only by preamble thread.
std::shared_ptr<const PreambleData> LatestBuild;
const Path FileName;
ParsingCallbacks &Callbacks;
const bool StoreInMemory;
const bool RunSync;
SynchronizedTUStatus &Status;
ASTWorker &ASTPeer;
TUScheduler::HeaderIncluderCache &HeaderIncluders;
};
class ASTWorkerHandle;
/// Owns one instance of the AST, schedules updates and reads of it.
/// Also responsible for building and providing access to the preamble.
/// Each ASTWorker processes the async requests sent to it on a separate
/// dedicated thread.
/// The ASTWorker that manages the AST is shared by both the processing thread
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
/// remove() is called, but its thread may be busy and we don't want to block.
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
/// signals the worker to exit its run loop and gives up shared ownership of the
/// worker.
class ASTWorker {
friend class ASTWorkerHandle;
ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
TUScheduler::ASTCache &LRUCache,
TUScheduler::HeaderIncluderCache &HeaderIncluders,
Semaphore &Barrier, bool RunSync, const TUScheduler::Options &Opts,
ParsingCallbacks &Callbacks);
public:
/// Create a new ASTWorker and return a handle to it.
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
/// is null, all requests will be processed on the calling thread
/// synchronously instead. \p Barrier is acquired when processing each
/// request, it is used to limit the number of actively running threads.
static ASTWorkerHandle
create(PathRef FileName, const GlobalCompilationDatabase &CDB,
TUScheduler::ASTCache &IdleASTs,
TUScheduler::HeaderIncluderCache &HeaderIncluders,
AsyncTaskRunner *Tasks, Semaphore &Barrier,
const TUScheduler::Options &Opts, ParsingCallbacks &Callbacks);
~ASTWorker();
void update(ParseInputs Inputs, WantDiagnostics, bool ContentChanged);
void
runWithAST(llvm::StringRef Name,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action,
TUScheduler::ASTActionInvalidation);
bool blockUntilIdle(Deadline Timeout) const;
std::shared_ptr<const PreambleData> getPossiblyStalePreamble(
std::shared_ptr<const ASTSignals> *ASTSignals = nullptr) const;
/// Used to inform ASTWorker about a new preamble build by PreambleThread.
/// Diagnostics are only published through this callback. This ensures they
/// are always for newer versions of the file, as the callback gets called in
/// the same order as update requests.
void updatePreamble(std::unique_ptr<CompilerInvocation> CI, ParseInputs PI,
std::shared_ptr<const PreambleData> Preamble,
std::vector<Diag> CIDiags, WantDiagnostics WantDiags);
/// Obtain a preamble reflecting all updates so far. Threadsafe.
/// It may be delivered immediately, or later on the worker thread.
void getCurrentPreamble(
llvm::unique_function<void(std::shared_ptr<const PreambleData>)>);
/// Returns compile command from the current file inputs.
tooling::CompileCommand getCurrentCompileCommand() const;
/// Wait for the first build of preamble to finish. Preamble itself can be
/// accessed via getPossiblyStalePreamble(). Note that this function will
/// return after an unsuccessful build of the preamble too, i.e. result of
/// getPossiblyStalePreamble() can be null even after this function returns.
void waitForFirstPreamble() const;
TUScheduler::FileStats stats() const;
bool isASTCached() const;
private:
// Details of an update request that are relevant to scheduling.
struct UpdateType {
// Do we want diagnostics from this version?
// If Yes, we must always build this version.
// If No, we only need to build this version if it's read.
// If Auto, we build if it's read or if the debounce expires.
WantDiagnostics Diagnostics;
// Did the main-file content of the document change?
// If so, we're allowed to cancel certain invalidated preceding reads.
bool ContentChanged;
};
/// Publishes diagnostics for \p Inputs. It will build an AST or reuse the
/// cached one if applicable. Assumes LatestPreamble is compatible for \p
/// Inputs.
void generateDiagnostics(std::unique_ptr<CompilerInvocation> Invocation,
ParseInputs Inputs, std::vector<Diag> CIDiags);
void updateASTSignals(ParsedAST &AST);
// Must be called exactly once on processing thread. Will return after
// stop() is called on a separate thread and all pending requests are
// processed.
void run();
/// Signal that run() should finish processing pending requests and exit.
void stop();
/// Adds a new task to the end of the request queue.
void startTask(llvm::StringRef Name, llvm::unique_function<void()> Task,
llvm::Optional<UpdateType> Update,
TUScheduler::ASTActionInvalidation);
/// Runs a task synchronously.
void runTask(llvm::StringRef Name, llvm::function_ref<void()> Task);
/// Determines the next action to perform.
/// All actions that should never run are discarded.
/// Returns a deadline for the next action. If it's expired, run now.
/// scheduleLocked() is called again at the deadline, or if requests arrive.
Deadline scheduleLocked();
/// Should the first task in the queue be skipped instead of run?
bool shouldSkipHeadLocked() const;
struct Request {
llvm::unique_function<void()> Action;
std::string Name;
steady_clock::time_point AddTime;
Context Ctx;
llvm::Optional<Context> QueueCtx;
llvm::Optional<UpdateType> Update;
TUScheduler::ASTActionInvalidation InvalidationPolicy;
Canceler Invalidate;
};
/// Handles retention of ASTs.
TUScheduler::ASTCache &IdleASTs;
TUScheduler::HeaderIncluderCache &HeaderIncluders;
const bool RunSync;
/// Time to wait after an update to see whether another update obsoletes it.
const DebouncePolicy UpdateDebounce;
/// File that ASTWorker is responsible for.
const Path FileName;
/// Callback to create processing contexts for tasks.
const std::function<Context(llvm::StringRef)> ContextProvider;
const GlobalCompilationDatabase &CDB;
/// Callback invoked when preamble or main file AST is built.
ParsingCallbacks &Callbacks;
Semaphore &Barrier;
/// Whether the 'onMainAST' callback ran for the current FileInputs.
bool RanASTCallback = false;
/// Guards members used by both TUScheduler and the worker thread.
mutable std::mutex Mutex;
/// File inputs, currently being used by the worker.
/// Writes and reads from unknown threads are locked. Reads from the worker
/// thread are not locked, as it's the only writer.
ParseInputs FileInputs; /* GUARDED_BY(Mutex) */
/// Times of recent AST rebuilds, used for UpdateDebounce computation.
llvm::SmallVector<DebouncePolicy::clock::duration>
RebuildTimes; /* GUARDED_BY(Mutex) */
/// Set to true to signal run() to finish processing.
bool Done; /* GUARDED_BY(Mutex) */
std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
llvm::Optional<Request> CurrentRequest; /* GUARDED_BY(Mutex) */
/// Signalled whenever a new request has been scheduled or processing of a
/// request has completed.
mutable std::condition_variable RequestsCV;
std::shared_ptr<const ASTSignals> LatestASTSignals; /* GUARDED_BY(Mutex) */
/// Latest build preamble for current TU.
/// None means no builds yet, null means there was an error while building.
/// Only written by ASTWorker's thread.
llvm::Optional<std::shared_ptr<const PreambleData>> LatestPreamble;
std::deque<Request> PreambleRequests; /* GUARDED_BY(Mutex) */
/// Signaled whenever LatestPreamble changes state or there's a new
/// PreambleRequest.
mutable std::condition_variable PreambleCV;
/// Guards the callback that publishes results of AST-related computations
/// (diagnostics) and file statuses.
std::mutex PublishMu;
// Used to prevent remove document + add document races that lead to
// out-of-order callbacks for publishing results of onMainAST callback.
//
// The lifetime of the old/new ASTWorkers will overlap, but their handles
// don't. When the old handle is destroyed, the old worker will stop reporting
// any results to the user.
bool CanPublishResults = true; /* GUARDED_BY(PublishMu) */
std::atomic<unsigned> ASTBuildCount = {0};
std::atomic<unsigned> PreambleBuildCount = {0};
SynchronizedTUStatus Status;
PreambleThread PreamblePeer;
};
/// A smart-pointer-like class that points to an active ASTWorker.
/// In destructor, signals to the underlying ASTWorker that no new requests will
/// be sent and the processing loop may exit (after running all pending
/// requests).
class ASTWorkerHandle {
friend class ASTWorker;
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
: Worker(std::move(Worker)) {
assert(this->Worker);
}
public:
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
ASTWorkerHandle(ASTWorkerHandle &&) = default;
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
~ASTWorkerHandle() {
if (Worker)
Worker->stop();
}
ASTWorker &operator*() {
assert(Worker && "Handle was moved from");
return *Worker;
}
ASTWorker *operator->() {
assert(Worker && "Handle was moved from");
return Worker.get();
}
/// Returns an owning reference to the underlying ASTWorker that can outlive
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
/// be schedule via the returned reference, i.e. only reads of the preamble
/// are possible.
std::shared_ptr<const ASTWorker> lock() { return Worker; }
private:
std::shared_ptr<ASTWorker> Worker;
};
ASTWorkerHandle
ASTWorker::create(PathRef FileName, const GlobalCompilationDatabase &CDB,
TUScheduler::ASTCache &IdleASTs,
TUScheduler::HeaderIncluderCache &HeaderIncluders,
AsyncTaskRunner *Tasks, Semaphore &Barrier,
const TUScheduler::Options &Opts,
ParsingCallbacks &Callbacks) {
std::shared_ptr<ASTWorker> Worker(
new ASTWorker(FileName, CDB, IdleASTs, HeaderIncluders, Barrier,
/*RunSync=*/!Tasks, Opts, Callbacks));
if (Tasks) {
Tasks->runAsync("ASTWorker:" + llvm::sys::path::filename(FileName),
[Worker]() { Worker->run(); });
Tasks->runAsync("PreambleWorker:" + llvm::sys::path::filename(FileName),
[Worker]() { Worker->PreamblePeer.run(); });
}
return ASTWorkerHandle(std::move(Worker));
}
ASTWorker::ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
TUScheduler::ASTCache &LRUCache,
TUScheduler::HeaderIncluderCache &HeaderIncluders,
Semaphore &Barrier, bool RunSync,
const TUScheduler::Options &Opts,
ParsingCallbacks &Callbacks)
: IdleASTs(LRUCache), HeaderIncluders(HeaderIncluders), RunSync(RunSync),
UpdateDebounce(Opts.UpdateDebounce), FileName(FileName),
ContextProvider(Opts.ContextProvider), CDB(CDB), Callbacks(Callbacks),
Barrier(Barrier), Done(false), Status(FileName, Callbacks),
PreamblePeer(FileName, Callbacks, Opts.StorePreamblesInMemory, RunSync,
Status, HeaderIncluders, *this) {
// Set a fallback command because compile command can be accessed before
// `Inputs` is initialized. Other fields are only used after initialization
// from client inputs.
FileInputs.CompileCommand = CDB.getFallbackCommand(FileName);
}
ASTWorker::~ASTWorker() {
// Make sure we remove the cached AST, if any.
IdleASTs.take(this);
#ifndef NDEBUG
std::lock_guard<std::mutex> Lock(Mutex);
assert(Done && "handle was not destroyed");
assert(Requests.empty() && !CurrentRequest &&
"unprocessed requests when destroying ASTWorker");
#endif
}
void ASTWorker::update(ParseInputs Inputs, WantDiagnostics WantDiags,
bool ContentChanged) {
llvm::StringLiteral TaskName = "Update";
auto Task = [=]() mutable {
// Get the actual command as `Inputs` does not have a command.
// FIXME: some build systems like Bazel will take time to preparing
// environment to build the file, it would be nice if we could emit a
// "PreparingBuild" status to inform users, it is non-trivial given the
// current implementation.
auto Cmd = CDB.getCompileCommand(FileName);
// If we don't have a reliable command for this file, it may be a header.
// Try to find a file that includes it, to borrow its command.
if (!Cmd || !isReliable(*Cmd)) {
std::string ProxyFile = HeaderIncluders.get(FileName);
if (!ProxyFile.empty()) {
auto ProxyCmd = CDB.getCompileCommand(ProxyFile);
if (!ProxyCmd || !isReliable(*ProxyCmd)) {
// This command is supposed to be reliable! It's probably gone.
HeaderIncluders.remove(ProxyFile);
} else {
// We have a reliable command for an including file, use it.
Cmd = tooling::transferCompileCommand(std::move(*ProxyCmd), FileName);
}
}
}
if (Cmd)
Inputs.CompileCommand = std::move(*Cmd);
else
Inputs.CompileCommand = CDB.getFallbackCommand(FileName);
bool InputsAreTheSame =
std::tie(FileInputs.CompileCommand, FileInputs.Contents) ==
std::tie(Inputs.CompileCommand, Inputs.Contents);
// Cached AST is invalidated.
if (!InputsAreTheSame) {
IdleASTs.take(this);
RanASTCallback = false;
}
// Update current inputs so that subsequent reads can see them.
{
std::lock_guard<std::mutex> Lock(Mutex);
FileInputs = Inputs;
}
log("ASTWorker building file {0} version {1} with command {2}\n[{3}]\n{4}",
FileName, Inputs.Version, Inputs.CompileCommand.Heuristic,
Inputs.CompileCommand.Directory,
printArgv(Inputs.CompileCommand.CommandLine));
StoreDiags CompilerInvocationDiagConsumer;
std::vector<std::string> CC1Args;
std::unique_ptr<CompilerInvocation> Invocation = buildCompilerInvocation(
Inputs, CompilerInvocationDiagConsumer, &CC1Args);
// Log cc1 args even (especially!) if creating invocation failed.
if (!CC1Args.empty())
vlog("Driver produced command: cc1 {0}", printArgv(CC1Args));
std::vector<Diag> CompilerInvocationDiags =
CompilerInvocationDiagConsumer.take();
if (!Invocation) {
elog("Could not build CompilerInvocation for file {0}", FileName);
// Remove the old AST if it's still in cache.
IdleASTs.take(this);
RanASTCallback = false;
// Report the diagnostics we collected when parsing the command line.
Callbacks.onFailedAST(FileName, Inputs.Version,
std::move(CompilerInvocationDiags),
[&](llvm::function_ref<void()> Publish) {
// Ensure we only publish results from the worker
// if the file was not removed, making sure there
// are not race conditions.
std::lock_guard<std::mutex> Lock(PublishMu);
if (CanPublishResults)
Publish();
});
// Note that this might throw away a stale preamble that might still be
// useful, but this is how we communicate a build error.
LatestPreamble.emplace();
// Make sure anyone waiting for the preamble gets notified it could not be
// built.
PreambleCV.notify_all();
return;
}
PreamblePeer.update(std::move(Invocation), std::move(Inputs),
std::move(CompilerInvocationDiags), WantDiags);
std::unique_lock<std::mutex> Lock(Mutex);
PreambleCV.wait(Lock, [this] {
// Block until we reiceve a preamble request, unless a preamble already
// exists, as patching an empty preamble would imply rebuilding it from
// scratch.
// We block here instead of the consumer to prevent any deadlocks. Since
// LatestPreamble is only populated by ASTWorker thread.
return LatestPreamble || !PreambleRequests.empty() || Done;
});
};
startTask(TaskName, std::move(Task), UpdateType{WantDiags, ContentChanged},
TUScheduler::NoInvalidation);
}
void ASTWorker::runWithAST(
llvm::StringRef Name,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action,
TUScheduler::ASTActionInvalidation Invalidation) {
// Tracks ast cache accesses for read operations.
static constexpr trace::Metric ASTAccessForRead(
"ast_access_read", trace::Metric::Counter, "result");
auto Task = [=, Action = std::move(Action)]() mutable {
if (auto Reason = isCancelled())
return Action(llvm::make_error<CancelledError>(Reason));
llvm::Optional<std::unique_ptr<ParsedAST>> AST =
IdleASTs.take(this, &ASTAccessForRead);
if (!AST) {
StoreDiags CompilerInvocationDiagConsumer;
std::unique_ptr<CompilerInvocation> Invocation =
buildCompilerInvocation(FileInputs, CompilerInvocationDiagConsumer);
// Try rebuilding the AST.
vlog("ASTWorker rebuilding evicted AST to run {0}: {1} version {2}", Name,
FileName, FileInputs.Version);
// FIXME: We might need to build a patched ast once preamble thread starts
// running async. Currently getPossiblyStalePreamble below will always
// return a compatible preamble as ASTWorker::update blocks.
llvm::Optional<ParsedAST> NewAST;
if (Invocation) {
NewAST = ParsedAST::build(FileName, FileInputs, std::move(Invocation),
CompilerInvocationDiagConsumer.take(),
getPossiblyStalePreamble());
++ASTBuildCount;
}
AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
}
// Make sure we put the AST back into the LRU cache.
auto _ = llvm::make_scope_exit(
[&AST, this]() { IdleASTs.put(this, std::move(*AST)); });
// Run the user-provided action.
if (!*AST)
return Action(error(llvm::errc::invalid_argument, "invalid AST"));
vlog("ASTWorker running {0} on version {2} of {1}", Name, FileName,
FileInputs.Version);
Action(InputsAndAST{FileInputs, **AST});
};
startTask(Name, std::move(Task), /*Update=*/None, Invalidation);
}
/// To be called from ThreadCrashReporter's signal handler.
static void crashDumpCompileCommand(llvm::raw_ostream &OS,
const tooling::CompileCommand &Command) {
OS << " Filename: " << Command.Filename << "\n";
OS << " Directory: " << Command.Directory << "\n";
OS << " Command Line:";
for (auto &Arg : Command.CommandLine) {
OS << " " << Arg;
}
OS << "\n";
}
/// To be called from ThreadCrashReporter's signal handler.
static void crashDumpFileContents(llvm::raw_ostream &OS,
const std::string &Contents) {
// Avoid flooding the terminal with source code by default, but allow clients
// to opt in. Use an env var to preserve backwards compatibility of the
// command line interface, while allowing it to be set outside the clangd
// launch site for more flexibility.
if (getenv("CLANGD_CRASH_DUMP_SOURCE")) {
OS << " Contents:\n";
OS << Contents << "\n";
}
}
/// To be called from ThreadCrashReporter's signal handler.
static void crashDumpParseInputs(llvm::raw_ostream &OS,
const ParseInputs &FileInputs) {
auto &Command = FileInputs.CompileCommand;
crashDumpCompileCommand(OS, Command);
OS << " Version: " << FileInputs.Version << "\n";
crashDumpFileContents(OS, FileInputs.Contents);
}
void PreambleThread::build(Request Req) {
assert(Req.CI && "Got preamble request with null compiler invocation");
const ParseInputs &Inputs = Req.Inputs;
bool ReusedPreamble = false;
Status.update([&](TUStatus &Status) {
Status.PreambleActivity = PreambleAction::Building;
});
auto _ = llvm::make_scope_exit([this, &Req, &ReusedPreamble] {
ASTPeer.updatePreamble(std::move(Req.CI), std::move(Req.Inputs),
LatestBuild, std::move(Req.CIDiags),
std::move(Req.WantDiags));
if (!ReusedPreamble)
Callbacks.onPreamblePublished(FileName);
});
if (!LatestBuild || Inputs.ForceRebuild) {
vlog("Building first preamble for {0} version {1}", FileName,
Inputs.Version);
} else if (isPreambleCompatible(*LatestBuild, Inputs, FileName, *Req.CI)) {
vlog("Reusing preamble version {0} for version {1} of {2}",
LatestBuild->Version, Inputs.Version, FileName);
ReusedPreamble = true;
return;
} else {
vlog("Rebuilding invalidated preamble for {0} version {1} (previous was "
"version {2})",
FileName, Inputs.Version, LatestBuild->Version);
}
ThreadCrashReporter ScopedReporter([&Inputs]() {
llvm::errs() << "Signalled while building preamble\n";
crashDumpParseInputs(llvm::errs(), Inputs);
});
PreambleBuildStats Stats;
bool IsFirstPreamble = !LatestBuild;
LatestBuild = clang::clangd::buildPreamble(
FileName, *Req.CI, Inputs, StoreInMemory,
[this, Version(Inputs.Version)](ASTContext &Ctx, Preprocessor &PP,
const CanonicalIncludes &CanonIncludes) {
Callbacks.onPreambleAST(FileName, Version, Ctx, PP, CanonIncludes);
},
&Stats);
if (!LatestBuild)
return;
reportPreambleBuild(Stats, IsFirstPreamble);
if (isReliable(LatestBuild->CompileCommand))
HeaderIncluders.update(FileName, LatestBuild->Includes.allHeaders());
}
void ASTWorker::updatePreamble(std::unique_ptr<CompilerInvocation> CI,
ParseInputs PI,
std::shared_ptr<const PreambleData> Preamble,
std::vector<Diag> CIDiags,
WantDiagnostics WantDiags) {
llvm::StringLiteral TaskName = "Build AST";
// Store preamble and build diagnostics with new preamble if requested.
auto Task = [this, Preamble = std::move(Preamble), CI = std::move(CI),
PI = std::move(PI), CIDiags = std::move(CIDiags),
WantDiags = std::move(WantDiags)]() mutable {
// Update the preamble inside ASTWorker queue to ensure atomicity. As a task
// running inside ASTWorker assumes internals won't change until it
// finishes.
if (!LatestPreamble || Preamble != *LatestPreamble) {
++PreambleBuildCount;
// Cached AST is no longer valid.
IdleASTs.take(this);
RanASTCallback = false;
std::lock_guard<std::mutex> Lock(Mutex);
// LatestPreamble might be the last reference to old preamble, do not
// trigger destructor while holding the lock.
if (LatestPreamble)
std::swap(*LatestPreamble, Preamble);
else
LatestPreamble = std::move(Preamble);
}
// Notify anyone waiting for a preamble.
PreambleCV.notify_all();
// Give up our ownership to old preamble before starting expensive AST
// build.
Preamble.reset();
// We only need to build the AST if diagnostics were requested.
if (WantDiags == WantDiagnostics::No)
return;
// Report diagnostics with the new preamble to ensure progress. Otherwise
// diagnostics might get stale indefinitely if user keeps invalidating the
// preamble.
generateDiagnostics(std::move(CI), std::move(PI), std::move(CIDiags));
};
if (RunSync) {
runTask(TaskName, Task);
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
PreambleRequests.push_back({std::move(Task), std::string(TaskName),
steady_clock::now(), Context::current().clone(),
llvm::None, llvm::None,
TUScheduler::NoInvalidation, nullptr});
}
PreambleCV.notify_all();
RequestsCV.notify_all();
}
void ASTWorker::updateASTSignals(ParsedAST &AST) {
auto Signals = std::make_shared<const ASTSignals>(ASTSignals::derive(AST));
// Existing readers of ASTSignals will have their copy preserved until the
// read is completed. The last reader deletes the old ASTSignals.
{
std::lock_guard<std::mutex> Lock(Mutex);
std::swap(LatestASTSignals, Signals);
}
}
void ASTWorker::generateDiagnostics(
std::unique_ptr<CompilerInvocation> Invocation, ParseInputs Inputs,
std::vector<Diag> CIDiags) {
// Tracks ast cache accesses for publishing diags.
static constexpr trace::Metric ASTAccessForDiag(
"ast_access_diag", trace::Metric::Counter, "result");
assert(Invocation);
assert(LatestPreamble);
// No need to rebuild the AST if we won't send the diagnostics.
{
std::lock_guard<std::mutex> Lock(PublishMu);
if (!CanPublishResults)
return;
}
// Used to check whether we can update AST cache.
bool InputsAreLatest =
std::tie(FileInputs.CompileCommand, FileInputs.Contents) ==
std::tie(Inputs.CompileCommand, Inputs.Contents);
// Take a shortcut and don't report the diagnostics, since they should be the
// same. All the clients should handle the lack of OnUpdated() call anyway to
// handle empty result from buildAST.
// FIXME: the AST could actually change if non-preamble includes changed,
// but we choose to ignore it.
if (InputsAreLatest && RanASTCallback)
return;
// Get the AST for diagnostics, either build it or use the cached one.
std::string TaskName = llvm::formatv("Build AST ({0})", Inputs.Version);
Status.update([&](TUStatus &Status) {
Status.ASTActivity.K = ASTAction::Building;
Status.ASTActivity.Name = std::move(TaskName);
});
// We might be able to reuse the last we've built for a read request.
// FIXME: It might be better to not reuse this AST. That way queued AST builds
// won't be required for diags.
llvm::Optional<std::unique_ptr<ParsedAST>> AST =
IdleASTs.take(this, &ASTAccessForDiag);
if (!AST || !InputsAreLatest) {
auto RebuildStartTime = DebouncePolicy::clock::now();
llvm::Optional<ParsedAST> NewAST = ParsedAST::build(
FileName, Inputs, std::move(Invocation), CIDiags, *LatestPreamble);
auto RebuildDuration = DebouncePolicy::clock::now() - RebuildStartTime;
++ASTBuildCount;
// Try to record the AST-build time, to inform future update debouncing.
// This is best-effort only: if the lock is held, don't bother.
std::unique_lock<std::mutex> Lock(Mutex, std::try_to_lock);
if (Lock.owns_lock()) {
// Do not let RebuildTimes grow beyond its small-size (i.e.
// capacity).
if (RebuildTimes.size() == RebuildTimes.capacity())
RebuildTimes.erase(RebuildTimes.begin());
RebuildTimes.push_back(RebuildDuration);
Lock.unlock();
}
Status.update([&](TUStatus &Status) {
Status.Details.ReuseAST = false;
Status.Details.BuildFailed = !NewAST.hasValue();
});
AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
} else {
log("Skipping rebuild of the AST for {0}, inputs are the same.", FileName);
Status.update([](TUStatus &Status) {
Status.Details.ReuseAST = true;
Status.Details.BuildFailed = false;
});
}
// Publish diagnostics.
auto RunPublish = [&](llvm::function_ref<void()> Publish) {
// Ensure we only publish results from the worker if the file was not
// removed, making sure there are not race conditions.
std::lock_guard<std::mutex> Lock(PublishMu);
if (CanPublishResults)
Publish();
};
if (*AST) {
trace::Span Span("Running main AST callback");
Callbacks.onMainAST(FileName, **AST, RunPublish);
updateASTSignals(**AST);
} else {
// Failed to build the AST, at least report diagnostics from the
// command line if there were any.
// FIXME: we might have got more errors while trying to build the
// AST, surface them too.
Callbacks.onFailedAST(FileName, Inputs.Version, CIDiags, RunPublish);
}
// AST might've been built for an older version of the source, as ASTWorker
// queue raced ahead while we were waiting on the preamble. In that case the
// queue can't reuse the AST.
if (InputsAreLatest) {
RanASTCallback = *AST != nullptr;
IdleASTs.put(this, std::move(*AST));
}
}
std::shared_ptr<const PreambleData> ASTWorker::getPossiblyStalePreamble(
std::shared_ptr<const ASTSignals> *ASTSignals) const {
std::lock_guard<std::mutex> Lock(Mutex);
if (ASTSignals)
*ASTSignals = LatestASTSignals;
return LatestPreamble ? *LatestPreamble : nullptr;
}
void ASTWorker::waitForFirstPreamble() const {
std::unique_lock<std::mutex> Lock(Mutex);
PreambleCV.wait(Lock, [this] { return LatestPreamble.hasValue() || Done; });
}
tooling::CompileCommand ASTWorker::getCurrentCompileCommand() const {
std::unique_lock<std::mutex> Lock(Mutex);
return FileInputs.CompileCommand;
}
TUScheduler::FileStats ASTWorker::stats() const {
TUScheduler::FileStats Result;
Result.ASTBuilds = ASTBuildCount;
Result.PreambleBuilds = PreambleBuildCount;
// Note that we don't report the size of ASTs currently used for processing
// the in-flight requests. We used this information for debugging purposes
// only, so this should be fine.
Result.UsedBytesAST = IdleASTs.getUsedBytes(this);
if (auto Preamble = getPossiblyStalePreamble())
Result.UsedBytesPreamble = Preamble->Preamble.getSize();
return Result;
}
bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; }
void ASTWorker::stop() {
{
std::lock_guard<std::mutex> Lock(PublishMu);
CanPublishResults = false;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "stop() called twice");
Done = true;
}
PreamblePeer.stop();
// We are no longer going to build any preambles, let the waiters know that.
PreambleCV.notify_all();
Status.stop();
RequestsCV.notify_all();
}
void ASTWorker::runTask(llvm::StringRef Name, llvm::function_ref<void()> Task) {
ThreadCrashReporter ScopedReporter([this, Name]() {
llvm::errs() << "Signalled during AST worker action: " << Name << "\n";
crashDumpParseInputs(llvm::errs(), FileInputs);
});
trace::Span Tracer(Name);
WithContext WithProvidedContext(ContextProvider(FileName));
Task();
}
void ASTWorker::startTask(llvm::StringRef Name,
llvm::unique_function<void()> Task,
llvm::Optional<UpdateType> Update,
TUScheduler::ASTActionInvalidation Invalidation) {
if (RunSync) {
assert(!Done && "running a task after stop()");
runTask(Name, Task);
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "running a task after stop()");
// Cancel any requests invalidated by this request.
if (Update && Update->ContentChanged) {
for (auto &R : llvm::reverse(Requests)) {
if (R.InvalidationPolicy == TUScheduler::InvalidateOnUpdate)
R.Invalidate();
if (R.Update && R.Update->ContentChanged)
break; // Older requests were already invalidated by the older update.
}
}
// Allow this request to be cancelled if invalidated.
Context Ctx = Context::current().derive(FileBeingProcessed, FileName);
Canceler Invalidate = nullptr;
if (Invalidation) {
WithContext WC(std::move(Ctx));
std::tie(Ctx, Invalidate) = cancelableTask(
/*Reason=*/static_cast<int>(ErrorCode::ContentModified));
}
// Trace the time the request spends in the queue, and the requests that
// it's going to wait for.
llvm::Optional<Context> QueueCtx;
if (trace::enabled()) {
// Tracers that follow threads and need strict nesting will see a tiny
// instantaneous event "we're enqueueing", and sometime later it runs.
WithContext WC(Ctx.clone());
trace::Span Tracer("Queued:" + Name);
if (Tracer.Args) {
if (CurrentRequest)
SPAN_ATTACH(Tracer, "CurrentRequest", CurrentRequest->Name);
llvm::json::Array PreambleRequestsNames;
for (const auto &Req : PreambleRequests)
PreambleRequestsNames.push_back(Req.Name);
SPAN_ATTACH(Tracer, "PreambleRequestsNames",
std::move(PreambleRequestsNames));
llvm::json::Array RequestsNames;
for (const auto &Req : Requests)
RequestsNames.push_back(Req.Name);
SPAN_ATTACH(Tracer, "RequestsNames", std::move(RequestsNames));
}
// For tracers that follow contexts, keep the trace span's context alive
// until we dequeue the request, so they see the full duration.
QueueCtx = Context::current().clone();
}
Requests.push_back({std::move(Task), std::string(Name), steady_clock::now(),
std::move(Ctx), std::move(QueueCtx), Update,
Invalidation, std::move(Invalidate)});
}
RequestsCV.notify_all();
}
void ASTWorker::run() {
while (true) {
{
std::unique_lock<std::mutex> Lock(Mutex);
assert(!CurrentRequest && "A task is already running, multiple workers?");
for (auto Wait = scheduleLocked(); !Wait.expired();
Wait = scheduleLocked()) {
assert(PreambleRequests.empty() &&
"Preamble updates should be scheduled immediately");
if (Done) {
if (Requests.empty())
return;
// Even though Done is set, finish pending requests.
break; // However, skip delays to shutdown fast.
}
// Tracing: we have a next request, attribute this sleep to it.
llvm::Optional<WithContext> Ctx;
llvm::Optional<trace::Span> Tracer;
if (!Requests.empty()) {
Ctx.emplace(Requests.front().Ctx.clone());
Tracer.emplace("Debounce");
SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
if (!(Wait == Deadline::infinity())) {
Status.update([&](TUStatus &Status) {
Status.ASTActivity.K = ASTAction::Queued;
Status.ASTActivity.Name = Requests.front().Name;
});
SPAN_ATTACH(*Tracer, "sleep_ms",
std::chrono::duration_cast<std::chrono::milliseconds>(
Wait.time() - steady_clock::now())
.count());
}
}
wait(Lock, RequestsCV, Wait);
}
// Any request in ReceivedPreambles is at least as old as the
// Requests.front(), so prefer them first to preserve LSP order.
if (!PreambleRequests.empty()) {
CurrentRequest = std::move(PreambleRequests.front());
PreambleRequests.pop_front();
} else {
CurrentRequest = std::move(Requests.front());
Requests.pop_front();
}
} // unlock Mutex
// Inform tracing that the request was dequeued.
CurrentRequest->QueueCtx.reset();
// It is safe to perform reads to CurrentRequest without holding the lock as
// only writer is also this thread.
{
std::unique_lock<Semaphore> Lock(Barrier, std::try_to_lock);
if (!Lock.owns_lock()) {
Status.update([&](TUStatus &Status) {
Status.ASTActivity.K = ASTAction::Queued;
Status.ASTActivity.Name = CurrentRequest->Name;
});
Lock.lock();
}
WithContext Guard(std::move(CurrentRequest->Ctx));
Status.update([&](TUStatus &Status) {
Status.ASTActivity.K = ASTAction::RunningAction;
Status.ASTActivity.Name = CurrentRequest->Name;
});
runTask(CurrentRequest->Name, CurrentRequest->Action);
}
bool IsEmpty = false;
{
std::lock_guard<std::mutex> Lock(Mutex);
CurrentRequest.reset();
IsEmpty = Requests.empty() && PreambleRequests.empty();
}
if (IsEmpty) {
Status.update([&](TUStatus &Status) {
Status.ASTActivity.K = ASTAction::Idle;
Status.ASTActivity.Name = "";
});
}
RequestsCV.notify_all();
}
}
Deadline ASTWorker::scheduleLocked() {
// Process new preambles immediately.
if (!PreambleRequests.empty())
return Deadline::zero();
if (Requests.empty())
return Deadline::infinity(); // Wait for new requests.
// Handle cancelled requests first so the rest of the scheduler doesn't.
for (auto I = Requests.begin(), E = Requests.end(); I != E; ++I) {
if (!isCancelled(I->Ctx)) {
// Cancellations after the first read don't affect current scheduling.
if (I->Update == None)
break;
continue;
}
// Cancelled reads are moved to the front of the queue and run immediately.
if (I->Update == None) {
Request R = std::move(*I);
Requests.erase(I);
Requests.push_front(std::move(R));
return Deadline::zero();
}
// Cancelled updates are downgraded to auto-diagnostics, and may be elided.
if (I->Update->Diagnostics == WantDiagnostics::Yes)
I->Update->Diagnostics = WantDiagnostics::Auto;
}
while (shouldSkipHeadLocked()) {
vlog("ASTWorker skipping {0} for {1}", Requests.front().Name, FileName);
Requests.pop_front();
}
assert(!Requests.empty() && "skipped the whole queue");
// Some updates aren't dead yet, but never end up being used.
// e.g. the first keystroke is live until obsoleted by the second.
// We debounce "maybe-unused" writes, sleeping in case they become dead.
// But don't delay reads (including updates where diagnostics are needed).
for (const auto &R : Requests)
if (R.Update == None || R.Update->Diagnostics == WantDiagnostics::Yes)
return Deadline::zero();
// Front request needs to be debounced, so determine when we're ready.
Deadline D(Requests.front().AddTime + UpdateDebounce.compute(RebuildTimes));
return D;
}
// Returns true if Requests.front() is a dead update that can be skipped.
bool ASTWorker::shouldSkipHeadLocked() const {
assert(!Requests.empty());
auto Next = Requests.begin();
auto Update = Next->Update;
if (!Update) // Only skip updates.
return false;
++Next;
// An update is live if its AST might still be read.
// That is, if it's not immediately followed by another update.
if (Next == Requests.end() || !Next->Update)
return false;
// The other way an update can be live is if its diagnostics might be used.
switch (Update->Diagnostics) {
case WantDiagnostics::Yes:
return false; // Always used.
case WantDiagnostics::No:
return true; // Always dead.
case WantDiagnostics::Auto:
// Used unless followed by an update that generates diagnostics.
for (; Next != Requests.end(); ++Next)
if (Next->Update && Next->Update->Diagnostics != WantDiagnostics::No)
return true; // Prefer later diagnostics.
return false;
}
llvm_unreachable("Unknown WantDiagnostics");
}
bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
auto WaitUntilASTWorkerIsIdle = [&] {
std::unique_lock<std::mutex> Lock(Mutex);
return wait(Lock, RequestsCV, Timeout, [&] {
return PreambleRequests.empty() && Requests.empty() && !CurrentRequest;
});
};
// Make sure ASTWorker has processed all requests, which might issue new
// updates to PreamblePeer.
if (!WaitUntilASTWorkerIsIdle())
return false;
// Now that ASTWorker processed all requests, ensure PreamblePeer has served
// all update requests. This might create new PreambleRequests for the
// ASTWorker.
if (!PreamblePeer.blockUntilIdle(Timeout))
return false;
assert(Requests.empty() &&
"No new normal tasks can be scheduled concurrently with "
"blockUntilIdle(): ASTWorker isn't threadsafe");
// Finally make sure ASTWorker has processed all of the preamble updates.
return WaitUntilASTWorkerIsIdle();
}
// Render a TUAction to a user-facing string representation.
// TUAction represents clangd-internal states, we don't intend to expose them
// to users (say C++ programmers) directly to avoid confusion, we use terms that
// are familiar by C++ programmers.
std::string renderTUAction(const PreambleAction PA, const ASTAction &AA) {
llvm::SmallVector<std::string, 2> Result;
switch (PA) {
case PreambleAction::Building:
Result.push_back("parsing includes");
break;
case PreambleAction::Idle:
// We handle idle specially below.
break;
}
switch (AA.K) {
case ASTAction::Queued:
Result.push_back("file is queued");
break;
case ASTAction::RunningAction:
Result.push_back("running " + AA.Name);
break;
case ASTAction::Building:
Result.push_back("parsing main file");
break;
case ASTAction::Idle:
// We handle idle specially below.
break;
}
if (Result.empty())
return "idle";
return llvm::join(Result, ", ");
}
} // namespace
unsigned getDefaultAsyncThreadsCount() {
return llvm::heavyweight_hardware_concurrency().compute_thread_count();
}
FileStatus TUStatus::render(PathRef File) const {
FileStatus FStatus;
FStatus.uri = URIForFile::canonicalize(File, /*TUPath=*/File);
FStatus.state = renderTUAction(PreambleActivity, ASTActivity);
return FStatus;
}
struct TUScheduler::FileData {
/// Latest inputs, passed to TUScheduler::update().
std::string Contents;
ASTWorkerHandle Worker;
};
TUScheduler::TUScheduler(const GlobalCompilationDatabase &CDB,
const Options &Opts,
std::unique_ptr<ParsingCallbacks> Callbacks)
: CDB(CDB), Opts(Opts),
Callbacks(Callbacks ? std::move(Callbacks)
: std::make_unique<ParsingCallbacks>()),
Barrier(Opts.AsyncThreadsCount), QuickRunBarrier(Opts.AsyncThreadsCount),
IdleASTs(
std::make_unique<ASTCache>(Opts.RetentionPolicy.MaxRetainedASTs)),
HeaderIncluders(std::make_unique<HeaderIncluderCache>()) {
// Avoid null checks everywhere.
if (!Opts.ContextProvider) {
this->Opts.ContextProvider = [](llvm::StringRef) {
return Context::current().clone();
};
}
if (0 < Opts.AsyncThreadsCount) {
PreambleTasks.emplace();
WorkerThreads.emplace();
}
}
TUScheduler::~TUScheduler() {
// Notify all workers that they need to stop.
Files.clear();
// Wait for all in-flight tasks to finish.
if (PreambleTasks)
PreambleTasks->wait();
if (WorkerThreads)
WorkerThreads->wait();
}
bool TUScheduler::blockUntilIdle(Deadline D) const {
for (auto &File : Files)
if (!File.getValue()->Worker->blockUntilIdle(D))
return false;
if (PreambleTasks)
if (!PreambleTasks->wait(D))
return false;
return true;
}
bool TUScheduler::update(PathRef File, ParseInputs Inputs,
WantDiagnostics WantDiags) {
std::unique_ptr<FileData> &FD = Files[File];
bool NewFile = FD == nullptr;
bool ContentChanged = false;
if (!FD) {
// Create a new worker to process the AST-related tasks.
ASTWorkerHandle Worker =
ASTWorker::create(File, CDB, *IdleASTs, *HeaderIncluders,
WorkerThreads ? WorkerThreads.getPointer() : nullptr,
Barrier, Opts, *Callbacks);
FD = std::unique_ptr<FileData>(
new FileData{Inputs.Contents, std::move(Worker)});
ContentChanged = true;
} else if (FD->Contents != Inputs.Contents) {
ContentChanged = true;
FD->Contents = Inputs.Contents;
}
FD->Worker->update(std::move(Inputs), WantDiags, ContentChanged);
// There might be synthetic update requests, don't change the LastActiveFile
// in such cases.
if (ContentChanged)
LastActiveFile = File.str();
return NewFile;
}
void TUScheduler::remove(PathRef File) {
bool Removed = Files.erase(File);
if (!Removed)
elog("Trying to remove file from TUScheduler that is not tracked: {0}",
File);
// We don't call HeaderIncluders.remove(File) here.
// If we did, we'd avoid potentially stale header/mainfile associations.
// However, it would mean that closing a mainfile could invalidate the
// preamble of several open headers.
}
void TUScheduler::run(llvm::StringRef Name, llvm::StringRef Path,
llvm::unique_function<void()> Action) {
runWithSemaphore(Name, Path, std::move(Action), Barrier);
}
void TUScheduler::runQuick(llvm::StringRef Name, llvm::StringRef Path,
llvm::unique_function<void()> Action) {
// Use QuickRunBarrier to serialize quick tasks: we are ignoring
// the parallelism level set by the user, don't abuse it
runWithSemaphore(Name, Path, std::move(Action), QuickRunBarrier);
}
void TUScheduler::runWithSemaphore(llvm::StringRef Name, llvm::StringRef Path,
llvm::unique_function<void()> Action,
Semaphore &Sem) {
if (Path.empty())
Path = LastActiveFile;
else
LastActiveFile = Path.str();
if (!PreambleTasks) {
WithContext WithProvidedContext(Opts.ContextProvider(Path));
return Action();
}
PreambleTasks->runAsync(Name, [this, &Sem, Ctx = Context::current().clone(),
Path(Path.str()),
Action = std::move(Action)]() mutable {
std::lock_guard<Semaphore> BarrierLock(Sem);
WithContext WC(std::move(Ctx));
WithContext WithProvidedContext(Opts.ContextProvider(Path));
Action();
});
}
void TUScheduler::runWithAST(
llvm::StringRef Name, PathRef File,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action,
TUScheduler::ASTActionInvalidation Invalidation) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<LSPError>(
"trying to get AST for non-added document", ErrorCode::InvalidParams));
return;
}
LastActiveFile = File.str();
It->second->Worker->runWithAST(Name, std::move(Action), Invalidation);
}
void TUScheduler::runWithPreamble(llvm::StringRef Name, PathRef File,
PreambleConsistency Consistency,
Callback<InputsAndPreamble> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<LSPError>(
"trying to get preamble for non-added document",
ErrorCode::InvalidParams));
return;
}
LastActiveFile = File.str();
if (!PreambleTasks) {
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
std::shared_ptr<const ASTSignals> Signals;
std::shared_ptr<const PreambleData> Preamble =
It->second->Worker->getPossiblyStalePreamble(&Signals);
WithContext WithProvidedContext(Opts.ContextProvider(File));
Action(InputsAndPreamble{It->second->Contents,
It->second->Worker->getCurrentCompileCommand(),
Preamble.get(), Signals.get()});
return;
}
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
auto Task = [Worker, Consistency, Name = Name.str(), File = File.str(),
Contents = It->second->Contents,
Command = Worker->getCurrentCompileCommand(),
Ctx = Context::current().derive(FileBeingProcessed,
std::string(File)),
Action = std::move(Action), this]() mutable {
ThreadCrashReporter ScopedReporter([&Name, &Contents, &Command]() {
llvm::errs() << "Signalled during preamble action: " << Name << "\n";
crashDumpCompileCommand(llvm::errs(), Command);
crashDumpFileContents(llvm::errs(), Contents);
});
std::shared_ptr<const PreambleData> Preamble;
if (Consistency == PreambleConsistency::Stale) {
// Wait until the preamble is built for the first time, if preamble
// is required. This avoids extra work of processing the preamble
// headers in parallel multiple times.
Worker->waitForFirstPreamble();
}
std::shared_ptr<const ASTSignals> Signals;
Preamble = Worker->getPossiblyStalePreamble(&Signals);
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Ctx));
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
WithContext WithProvidedContext(Opts.ContextProvider(File));
Action(InputsAndPreamble{Contents, Command, Preamble.get(), Signals.get()});
};
PreambleTasks->runAsync("task:" + llvm::sys::path::filename(File),
std::move(Task));
}
llvm::StringMap<TUScheduler::FileStats> TUScheduler::fileStats() const {
llvm::StringMap<TUScheduler::FileStats> Result;
for (const auto &PathAndFile : Files)
Result.try_emplace(PathAndFile.first(),
PathAndFile.second->Worker->stats());
return Result;
}
std::vector<Path> TUScheduler::getFilesWithCachedAST() const {
std::vector<Path> Result;
for (auto &&PathAndFile : Files) {
if (!PathAndFile.second->Worker->isASTCached())
continue;
Result.push_back(std::string(PathAndFile.first()));
}
return Result;
}
DebouncePolicy::clock::duration
DebouncePolicy::compute(llvm::ArrayRef<clock::duration> History) const {
assert(Min <= Max && "Invalid policy");
if (History.empty())
return Max; // Arbitrary.
// Base the result on the median rebuild.
// nth_element needs a mutable array, take the chance to bound the data size.
History = History.take_back(15);
llvm::SmallVector<clock::duration, 15> Recent(History.begin(), History.end());
auto *Median = Recent.begin() + Recent.size() / 2;
std::nth_element(Recent.begin(), Median, Recent.end());
clock::duration Target =
std::chrono::duration_cast<clock::duration>(RebuildRatio * *Median);
if (Target > Max)
return Max;
if (Target < Min)
return Min;
return Target;
}
DebouncePolicy DebouncePolicy::fixed(clock::duration T) {
DebouncePolicy P;
P.Min = P.Max = T;
return P;
}
void TUScheduler::profile(MemoryTree &MT) const {
for (const auto &Elem : fileStats()) {
MT.detail(Elem.first())
.child("preamble")
.addUsage(Opts.StorePreamblesInMemory ? Elem.second.UsedBytesPreamble
: 0);
MT.detail(Elem.first()).child("ast").addUsage(Elem.second.UsedBytesAST);
MT.child("header_includer_cache").addUsage(HeaderIncluders->getUsedBytes());
}
}
} // namespace clangd
} // namespace clang