forked from OSchip/llvm-project
317 lines
13 KiB
C++
317 lines
13 KiB
C++
//===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pre-emit peephole for catching opportunities introduced by late passes such
|
|
// as MachineBlockPlacement.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPC.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCSubtarget.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppc-pre-emit-peephole"
|
|
|
|
STATISTIC(NumRRConvertedInPreEmit,
|
|
"Number of r+r instructions converted to r+i in pre-emit peephole");
|
|
STATISTIC(NumRemovedInPreEmit,
|
|
"Number of instructions deleted in pre-emit peephole");
|
|
STATISTIC(NumberOfSelfCopies,
|
|
"Number of self copy instructions eliminated");
|
|
STATISTIC(NumFrameOffFoldInPreEmit,
|
|
"Number of folding frame offset by using r+r in pre-emit peephole");
|
|
|
|
static cl::opt<bool>
|
|
RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
|
|
cl::desc("Run pre-emit peephole optimizations."));
|
|
|
|
namespace {
|
|
class PPCPreEmitPeephole : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
PPCPreEmitPeephole() : MachineFunctionPass(ID) {
|
|
initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
// This function removes any redundant load immediates. It has two level
|
|
// loops - The outer loop finds the load immediates BBI that could be used
|
|
// to replace following redundancy. The inner loop scans instructions that
|
|
// after BBI to find redundancy and update kill/dead flags accordingly. If
|
|
// AfterBBI is the same as BBI, it is redundant, otherwise any instructions
|
|
// that modify the def register of BBI would break the scanning.
|
|
// DeadOrKillToUnset is a pointer to the previous operand that had the
|
|
// kill/dead flag set. It keeps track of the def register of BBI, the use
|
|
// registers of AfterBBIs and the def registers of AfterBBIs.
|
|
bool removeRedundantLIs(MachineBasicBlock &MBB,
|
|
const TargetRegisterInfo *TRI) {
|
|
LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
|
|
MBB.dump(); dbgs() << "\n");
|
|
|
|
DenseSet<MachineInstr *> InstrsToErase;
|
|
for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
|
|
// Skip load immediate that is marked to be erased later because it
|
|
// cannot be used to replace any other instructions.
|
|
if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
|
|
continue;
|
|
// Skip non-load immediate.
|
|
unsigned Opc = BBI->getOpcode();
|
|
if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
|
|
Opc != PPC::LIS8)
|
|
continue;
|
|
// Skip load immediate, where the operand is a relocation (e.g., $r3 =
|
|
// LI target-flags(ppc-lo) %const.0).
|
|
if (!BBI->getOperand(1).isImm())
|
|
continue;
|
|
assert(BBI->getOperand(0).isReg() &&
|
|
"Expected a register for the first operand");
|
|
|
|
LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
|
|
|
|
Register Reg = BBI->getOperand(0).getReg();
|
|
int64_t Imm = BBI->getOperand(1).getImm();
|
|
MachineOperand *DeadOrKillToUnset = nullptr;
|
|
if (BBI->getOperand(0).isDead()) {
|
|
DeadOrKillToUnset = &BBI->getOperand(0);
|
|
LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
|
|
<< " from load immediate " << *BBI
|
|
<< " is a unsetting candidate\n");
|
|
}
|
|
// This loop scans instructions after BBI to see if there is any
|
|
// redundant load immediate.
|
|
for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
|
|
++AfterBBI) {
|
|
// Track the operand that kill Reg. We would unset the kill flag of
|
|
// the operand if there is a following redundant load immediate.
|
|
int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
|
|
if (KillIdx != -1) {
|
|
assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
|
|
DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
|
|
LLVM_DEBUG(dbgs()
|
|
<< " Kill flag of " << *DeadOrKillToUnset << " from "
|
|
<< *AfterBBI << " is a unsetting candidate\n");
|
|
}
|
|
|
|
if (!AfterBBI->modifiesRegister(Reg, TRI))
|
|
continue;
|
|
// Finish scanning because Reg is overwritten by a non-load
|
|
// instruction.
|
|
if (AfterBBI->getOpcode() != Opc)
|
|
break;
|
|
assert(AfterBBI->getOperand(0).isReg() &&
|
|
"Expected a register for the first operand");
|
|
// Finish scanning because Reg is overwritten by a relocation or a
|
|
// different value.
|
|
if (!AfterBBI->getOperand(1).isImm() ||
|
|
AfterBBI->getOperand(1).getImm() != Imm)
|
|
break;
|
|
|
|
// It loads same immediate value to the same Reg, which is redundant.
|
|
// We would unset kill flag in previous Reg usage to extend live range
|
|
// of Reg first, then remove the redundancy.
|
|
if (DeadOrKillToUnset) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< " Unset dead/kill flag of " << *DeadOrKillToUnset
|
|
<< " from " << *DeadOrKillToUnset->getParent());
|
|
if (DeadOrKillToUnset->isDef())
|
|
DeadOrKillToUnset->setIsDead(false);
|
|
else
|
|
DeadOrKillToUnset->setIsKill(false);
|
|
}
|
|
DeadOrKillToUnset =
|
|
AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
|
|
if (DeadOrKillToUnset)
|
|
LLVM_DEBUG(dbgs()
|
|
<< " Dead flag of " << *DeadOrKillToUnset << " from "
|
|
<< *AfterBBI << " is a unsetting candidate\n");
|
|
InstrsToErase.insert(&*AfterBBI);
|
|
LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
|
|
AfterBBI->dump());
|
|
}
|
|
}
|
|
|
|
for (MachineInstr *MI : InstrsToErase) {
|
|
MI->eraseFromParent();
|
|
}
|
|
NumRemovedInPreEmit += InstrsToErase.size();
|
|
return !InstrsToErase.empty();
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
|
|
// Remove UNENCODED_NOP even when this pass is disabled.
|
|
// This needs to be done unconditionally so we don't emit zeros
|
|
// in the instruction stream.
|
|
SmallVector<MachineInstr *, 4> InstrsToErase;
|
|
for (MachineBasicBlock &MBB : MF)
|
|
for (MachineInstr &MI : MBB)
|
|
if (MI.getOpcode() == PPC::UNENCODED_NOP)
|
|
InstrsToErase.push_back(&MI);
|
|
for (MachineInstr *MI : InstrsToErase)
|
|
MI->eraseFromParent();
|
|
return false;
|
|
}
|
|
bool Changed = false;
|
|
const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
SmallVector<MachineInstr *, 4> InstrsToErase;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
Changed |= removeRedundantLIs(MBB, TRI);
|
|
for (MachineInstr &MI : MBB) {
|
|
unsigned Opc = MI.getOpcode();
|
|
if (Opc == PPC::UNENCODED_NOP) {
|
|
InstrsToErase.push_back(&MI);
|
|
continue;
|
|
}
|
|
// Detect self copies - these can result from running AADB.
|
|
if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
|
|
const MCInstrDesc &MCID = TII->get(Opc);
|
|
if (MCID.getNumOperands() == 3 &&
|
|
MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
|
|
MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
|
|
NumberOfSelfCopies++;
|
|
LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
InstrsToErase.push_back(&MI);
|
|
continue;
|
|
}
|
|
else if (MCID.getNumOperands() == 2 &&
|
|
MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
|
|
NumberOfSelfCopies++;
|
|
LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
InstrsToErase.push_back(&MI);
|
|
continue;
|
|
}
|
|
}
|
|
MachineInstr *DefMIToErase = nullptr;
|
|
if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
|
|
Changed = true;
|
|
NumRRConvertedInPreEmit++;
|
|
LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
if (DefMIToErase) {
|
|
InstrsToErase.push_back(DefMIToErase);
|
|
}
|
|
}
|
|
if (TII->foldFrameOffset(MI)) {
|
|
Changed = true;
|
|
NumFrameOffFoldInPreEmit++;
|
|
LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
}
|
|
}
|
|
|
|
// Eliminate conditional branch based on a constant CR bit by
|
|
// CRSET or CRUNSET. We eliminate the conditional branch or
|
|
// convert it into an unconditional branch. Also, if the CR bit
|
|
// is not used by other instructions, we eliminate CRSET as well.
|
|
auto I = MBB.getFirstInstrTerminator();
|
|
if (I == MBB.instr_end())
|
|
continue;
|
|
MachineInstr *Br = &*I;
|
|
if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
|
|
continue;
|
|
MachineInstr *CRSetMI = nullptr;
|
|
Register CRBit = Br->getOperand(0).getReg();
|
|
unsigned CRReg = getCRFromCRBit(CRBit);
|
|
bool SeenUse = false;
|
|
MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
|
|
for (It++; It != Er; It++) {
|
|
if (It->modifiesRegister(CRBit, TRI)) {
|
|
if ((It->getOpcode() == PPC::CRUNSET ||
|
|
It->getOpcode() == PPC::CRSET) &&
|
|
It->getOperand(0).getReg() == CRBit)
|
|
CRSetMI = &*It;
|
|
break;
|
|
}
|
|
if (It->readsRegister(CRBit, TRI))
|
|
SeenUse = true;
|
|
}
|
|
if (!CRSetMI) continue;
|
|
|
|
unsigned CRSetOp = CRSetMI->getOpcode();
|
|
if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
|
|
(Br->getOpcode() == PPC::BC && CRSetOp == PPC::CRUNSET)) {
|
|
// Remove this branch since it cannot be taken.
|
|
InstrsToErase.push_back(Br);
|
|
MBB.removeSuccessor(Br->getOperand(1).getMBB());
|
|
}
|
|
else {
|
|
// This conditional branch is always taken. So, remove all branches
|
|
// and insert an unconditional branch to the destination of this.
|
|
MachineBasicBlock::iterator It = Br, Er = MBB.end();
|
|
for (; It != Er; It++) {
|
|
if (It->isDebugInstr()) continue;
|
|
assert(It->isTerminator() && "Non-terminator after a terminator");
|
|
InstrsToErase.push_back(&*It);
|
|
}
|
|
if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
|
|
ArrayRef<MachineOperand> NoCond;
|
|
TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
|
|
NoCond, Br->getDebugLoc());
|
|
}
|
|
for (auto &Succ : MBB.successors())
|
|
if (Succ != Br->getOperand(1).getMBB()) {
|
|
MBB.removeSuccessor(Succ);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the CRBit is not used by another instruction, we can eliminate
|
|
// CRSET/CRUNSET instruction.
|
|
if (!SeenUse) {
|
|
// We need to check use of the CRBit in successors.
|
|
for (auto &SuccMBB : MBB.successors())
|
|
if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
|
|
SeenUse = true;
|
|
break;
|
|
}
|
|
if (!SeenUse)
|
|
InstrsToErase.push_back(CRSetMI);
|
|
}
|
|
}
|
|
for (MachineInstr *MI : InstrsToErase) {
|
|
LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
|
|
LLVM_DEBUG(MI->dump());
|
|
MI->eraseFromParent();
|
|
NumRemovedInPreEmit++;
|
|
}
|
|
return Changed;
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
|
|
false, false)
|
|
char PPCPreEmitPeephole::ID = 0;
|
|
|
|
FunctionPass *llvm::createPPCPreEmitPeepholePass() {
|
|
return new PPCPreEmitPeephole();
|
|
}
|