llvm-project/bolt/Passes/BinaryPasses.cpp

1510 lines
49 KiB
C++

//===--- BinaryPasses.cpp - Binary-level analysis/optimization passes -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "BinaryPasses.h"
#include "HFSort.h"
#include "llvm/Support/Options.h"
#include <fstream>
#define DEBUG_TYPE "bolt"
using namespace llvm;
namespace {
const char* dynoStatsOptName(const bolt::DynoStats::Category C) {
if (C == bolt::DynoStats::FIRST_DYNO_STAT)
return "none";
else if (C == bolt::DynoStats::LAST_DYNO_STAT)
return "all";
static std::string OptNames[bolt::DynoStats::LAST_DYNO_STAT+1];
OptNames[C] = bolt::DynoStats::Description(C);
std::replace(OptNames[C].begin(), OptNames[C].end(), ' ', '-');
return OptNames[C].c_str();
}
const char* dynoStatsOptDesc(const bolt::DynoStats::Category C) {
if (C == bolt::DynoStats::FIRST_DYNO_STAT)
return "unsorted";
else if (C == bolt::DynoStats::LAST_DYNO_STAT)
return "sorted by all stats";
return bolt::DynoStats::Description(C);
}
}
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<unsigned> Verbosity;
extern cl::opt<uint32_t> RandomSeed;
extern cl::opt<bool> Relocs;
extern cl::opt<bolt::BinaryFunction::SplittingType> SplitFunctions;
extern bool shouldProcess(const bolt::BinaryFunction &Function);
extern size_t padFunction(const bolt::BinaryFunction &Function);
enum DynoStatsSortOrder : char {
Ascending,
Descending
};
static cl::opt<DynoStatsSortOrder>
DynoStatsSortOrderOpt("print-sorted-by-order",
cl::desc("use ascending or descending order when printing functions "
"ordered by dyno stats"),
cl::ZeroOrMore,
cl::init(DynoStatsSortOrder::Descending),
cl::cat(BoltOptCategory));
static cl::opt<std::string>
FunctionOrderFile("function-order",
cl::desc("file containing an ordered list of functions to use for function "
"reordering"),
cl::cat(BoltOptCategory));
static cl::opt<bool>
ICFUseDFS("icf-dfs",
cl::desc("use DFS ordering when using -icf option"),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bool>
MinBranchClusters("min-branch-clusters",
cl::desc("use a modified clustering algorithm geared towards minimizing "
"branches"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltOptCategory));
static cl::list<bolt::DynoStats::Category>
PrintSortedBy("print-sorted-by",
cl::CommaSeparated,
cl::desc("print functions sorted by order of dyno stats"),
cl::value_desc("key1,key2,key3,..."),
cl::values(
#define D(name, ...) \
clEnumValN(bolt::DynoStats::name, \
dynoStatsOptName(bolt::DynoStats::name), \
dynoStatsOptDesc(bolt::DynoStats::name)),
DYNO_STATS
#undef D
clEnumValEnd),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bolt::BinaryFunction::LayoutType>
ReorderBlocks("reorder-blocks",
cl::desc("change layout of basic blocks in a function"),
cl::init(bolt::BinaryFunction::LT_NONE),
cl::values(
clEnumValN(bolt::BinaryFunction::LT_NONE,
"none",
"do not reorder basic blocks"),
clEnumValN(bolt::BinaryFunction::LT_REVERSE,
"reverse",
"layout blocks in reverse order"),
clEnumValN(bolt::BinaryFunction::LT_OPTIMIZE,
"normal",
"perform optimal layout based on profile"),
clEnumValN(bolt::BinaryFunction::LT_OPTIMIZE_BRANCH,
"branch-predictor",
"perform optimal layout prioritizing branch "
"predictions"),
clEnumValN(bolt::BinaryFunction::LT_OPTIMIZE_CACHE,
"cache",
"perform optimal layout prioritizing I-cache "
"behavior"),
clEnumValN(bolt::BinaryFunction::LT_OPTIMIZE_SHUFFLE,
"cluster-shuffle",
"perform random layout of clusters"),
clEnumValEnd),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<bolt::BinaryFunction::ReorderType>
ReorderFunctions("reorder-functions",
cl::desc("reorder and cluster functions (works only with relocations)"),
cl::init(bolt::BinaryFunction::RT_NONE),
cl::values(clEnumValN(bolt::BinaryFunction::RT_NONE,
"none",
"do not reorder functions"),
clEnumValN(bolt::BinaryFunction::RT_EXEC_COUNT,
"exec-count",
"order by execution count"),
clEnumValN(bolt::BinaryFunction::RT_HFSORT,
"hfsort",
"use hfsort algorithm"),
clEnumValN(bolt::BinaryFunction::RT_HFSORT_PLUS,
"hfsort+",
"use hfsort+ algorithm"),
clEnumValN(bolt::BinaryFunction::RT_PETTIS_HANSEN,
"pettis-hansen",
"use Pettis-Hansen algorithm"),
clEnumValN(bolt::BinaryFunction::RT_RANDOM,
"random",
"reorder functions randomly"),
clEnumValN(bolt::BinaryFunction::RT_USER,
"user",
"use function order specified by -function-order"),
clEnumValEnd),
cl::cat(BoltOptCategory));
static cl::opt<bool>
ReorderFunctionsUseHotSize("reorder-functions-use-hot-size",
cl::desc("use a function's hot size when doing clustering"),
cl::init(true),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
enum SctcModes : char {
SctcAlways,
SctcPreserveDirection,
SctcHeuristic
};
static cl::opt<SctcModes>
SctcMode("sctc-mode",
cl::desc("mode for simplify conditional tail calls"),
cl::init(SctcAlways),
cl::values(clEnumValN(SctcAlways, "always", "always perform sctc"),
clEnumValN(SctcPreserveDirection,
"preserve",
"only perform sctc when branch direction is "
"preserved"),
clEnumValN(SctcHeuristic,
"heuristic",
"use branch prediction data to control sctc"),
clEnumValEnd),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bool>
UseEdgeCounts("use-edge-counts",
cl::desc("use edge count data when doing clustering"),
cl::init(true),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
bool BinaryFunctionPass::shouldOptimize(const BinaryFunction &BF) const {
return BF.isSimple() &&
BF.getState() == BinaryFunction::State::CFG &&
opts::shouldProcess(BF) &&
(BF.getSize() > 0);
}
bool BinaryFunctionPass::shouldPrint(const BinaryFunction &BF) const {
return BF.isSimple() && opts::shouldProcess(BF);
}
void OptimizeBodylessFunctions::analyze(
BinaryFunction &BF,
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs) {
if (BF.size() != 1 || BF.front().getNumNonPseudos() != 1)
return;
const auto *FirstInstr = BF.front().getFirstNonPseudoInstr();
if (!FirstInstr)
return;
if (!BC.MIA->isTailCall(*FirstInstr))
return;
const auto *TargetSymbol = BC.MIA->getTargetSymbol(*FirstInstr);
if (!TargetSymbol)
return;
const auto *Function = BC.getFunctionForSymbol(TargetSymbol);
if (!Function)
return;
EquivalentCallTarget[BF.getSymbol()] = Function;
}
void OptimizeBodylessFunctions::optimizeCalls(BinaryFunction &BF,
BinaryContext &BC) {
for (auto *BB : BF.layout()) {
for (auto &Inst : *BB) {
if (!BC.MIA->isCall(Inst))
continue;
const auto *OriginalTarget = BC.MIA->getTargetSymbol(Inst);
if (!OriginalTarget)
continue;
const auto *Target = OriginalTarget;
// Iteratively update target since we could have f1() calling f2()
// calling f3() calling f4() and we want to output f1() directly
// calling f4().
unsigned CallSites = 0;
while (EquivalentCallTarget.count(Target)) {
Target = EquivalentCallTarget.find(Target)->second->getSymbol();
++CallSites;
}
if (Target == OriginalTarget)
continue;
DEBUG(dbgs() << "BOLT-DEBUG: Optimizing " << BB->getName()
<< " (executed " << BB->getKnownExecutionCount()
<< " times) in " << BF
<< ": replacing call to " << OriginalTarget->getName()
<< " by call to " << Target->getName()
<< " while folding " << CallSites << " call sites\n");
BC.MIA->replaceCallTargetOperand(Inst, Target, BC.Ctx.get());
NumOptimizedCallSites += CallSites;
if (BB->hasProfile()) {
NumEliminatedCalls += CallSites * BB->getExecutionCount();
}
}
}
}
void OptimizeBodylessFunctions::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &) {
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function)) {
analyze(Function, BC, BFs);
}
}
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function)) {
optimizeCalls(Function, BC);
}
}
if (NumEliminatedCalls || NumOptimizedCallSites) {
outs() << "BOLT-INFO: optimized " << NumOptimizedCallSites
<< " redirect call sites to eliminate " << NumEliminatedCalls
<< " dynamic calls.\n";
}
}
void EliminateUnreachableBlocks::runOnFunction(BinaryFunction& Function) {
if (Function.layout_size() > 0) {
unsigned Count;
uint64_t Bytes;
Function.markUnreachable();
DEBUG({
for (auto *BB : Function.layout()) {
if (!BB->isValid()) {
dbgs() << "BOLT-INFO: UCE found unreachable block " << BB->getName()
<< " in function " << Function << "\n";
BB->dump();
}
}
});
std::tie(Count, Bytes) = Function.eraseInvalidBBs();
DeletedBlocks += Count;
DeletedBytes += Bytes;
if (Count && opts::Verbosity > 0) {
Modified.insert(&Function);
outs() << "BOLT-INFO: Removed " << Count
<< " dead basic block(s) accounting for " << Bytes
<< " bytes in function " << Function << '\n';
}
}
}
void EliminateUnreachableBlocks::runOnFunctions(
BinaryContext&,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &
) {
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function)) {
runOnFunction(Function);
}
}
outs() << "BOLT-INFO: UCE removed " << DeletedBlocks << " blocks and "
<< DeletedBytes << " bytes of code.\n";
}
bool ReorderBasicBlocks::shouldPrint(const BinaryFunction &BF) const {
return (BinaryFunctionPass::shouldPrint(BF) &&
opts::ReorderBlocks != BinaryFunction::LT_NONE);
}
void ReorderBasicBlocks::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &LargeFunctions) {
if (opts::ReorderBlocks == BinaryFunction::LT_NONE)
return;
for (auto &It : BFs) {
auto &Function = It.second;
if (!shouldOptimize(Function))
continue;
const bool ShouldSplit =
(opts::SplitFunctions == BinaryFunction::ST_ALL) ||
(opts::SplitFunctions == BinaryFunction::ST_EH &&
Function.hasEHRanges()) ||
(LargeFunctions.find(It.first) != LargeFunctions.end());
Function.modifyLayout(opts::ReorderBlocks, opts::MinBranchClusters,
ShouldSplit);
}
}
void FixupBranches::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &) {
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function)) {
Function.fixBranches();
}
}
}
void FinalizeFunctions::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &
) {
for (auto &It : BFs) {
auto &Function = It.second;
const auto ShouldOptimize = shouldOptimize(Function);
// Always fix functions in relocation mode.
if (!opts::Relocs && !ShouldOptimize)
continue;
// Fix the CFI state.
if (ShouldOptimize && !Function.fixCFIState()) {
if (opts::Relocs) {
errs() << "BOLT-ERROR: unable to fix CFI state for function "
<< Function << ". Exiting.\n";
exit(1);
}
Function.setSimple(false);
continue;
}
Function.setFinalized();
// Update exception handling information.
Function.updateEHRanges();
}
}
namespace {
// This peephole fixes jump instructions that jump to another basic
// block with a single jump instruction, e.g.
//
// B0: ...
// jmp B1 (or jcc B1)
//
// B1: jmp B2
//
// ->
//
// B0: ...
// jmp B2 (or jcc B2)
//
uint64_t fixDoubleJumps(BinaryContext &BC,
BinaryFunction &Function,
bool MarkInvalid) {
uint64_t NumDoubleJumps = 0;
for (auto &BB : Function) {
auto checkAndPatch = [&](BinaryBasicBlock *Pred,
BinaryBasicBlock *Succ,
const MCSymbol *SuccSym) {
// Ignore infinite loop jumps or fallthrough tail jumps.
if (Pred == Succ || Succ == &BB)
return false;
if (Succ) {
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
auto Res = Pred->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
if(!Res) {
DEBUG(dbgs() << "analyzeBranch failed in peepholes in block:\n";
Pred->dump());
return false;
}
Pred->replaceSuccessor(&BB, Succ);
// We must patch up any existing branch instructions to match up
// with the new successor.
auto *Ctx = BC.Ctx.get();
if (CondBranch &&
BC.MIA->getTargetSymbol(*CondBranch) == BB.getLabel()) {
BC.MIA->replaceBranchTarget(*CondBranch, Succ->getLabel(), Ctx);
} else if (UncondBranch &&
BC.MIA->getTargetSymbol(*UncondBranch) == BB.getLabel()) {
BC.MIA->replaceBranchTarget(*UncondBranch, Succ->getLabel(), Ctx);
}
} else {
// Succ will be null in the tail call case. In this case we
// need to explicitly add a tail call instruction.
auto *Branch = Pred->getLastNonPseudoInstr();
if (Branch && BC.MIA->isUnconditionalBranch(*Branch)) {
assert(BC.MIA->getTargetSymbol(*Branch) == BB.getLabel());
Pred->removeSuccessor(&BB);
Pred->eraseInstruction(Branch);
Pred->addTailCallInstruction(SuccSym);
} else {
return false;
}
}
++NumDoubleJumps;
DEBUG(dbgs() << "Removed double jump in " << Function << " from "
<< Pred->getName() << " -> " << BB.getName() << " to "
<< Pred->getName() << " -> " << SuccSym->getName()
<< (!Succ ? " (tail)\n" : "\n"));
return true;
};
if (BB.getNumNonPseudos() != 1 || BB.isLandingPad())
continue;
auto *Inst = BB.getFirstNonPseudoInstr();
const bool IsTailCall = BC.MIA->isTailCall(*Inst);
if (!BC.MIA->isUnconditionalBranch(*Inst) && !IsTailCall)
continue;
const auto *SuccSym = BC.MIA->getTargetSymbol(*Inst);
auto *Succ = BB.getSuccessor();
if (((!Succ || &BB == Succ) && !IsTailCall) || (IsTailCall && !SuccSym))
continue;
std::vector<BinaryBasicBlock *> Preds{BB.pred_begin(), BB.pred_end()};
for (auto *Pred : Preds) {
if (Pred->isLandingPad())
continue;
if (Pred->getSuccessor() == &BB ||
(Pred->getConditionalSuccessor(true) == &BB && !IsTailCall) ||
Pred->getConditionalSuccessor(false) == &BB) {
if (checkAndPatch(Pred, Succ, SuccSym) && MarkInvalid) {
BB.markValid(BB.pred_size() != 0 ||
BB.isLandingPad() ||
BB.isEntryPoint());
}
assert(Function.validateCFG());
}
}
}
return NumDoubleJumps;
}
}
bool
SimplifyConditionalTailCalls::shouldRewriteBranch(const BinaryBasicBlock *PredBB,
const MCInst &CondBranch,
const BinaryBasicBlock *BB,
const bool DirectionFlag) {
const bool IsForward = BinaryFunction::isForwardBranch(PredBB, BB);
if (IsForward)
++NumOrigForwardBranches;
else
++NumOrigBackwardBranches;
if (opts::SctcMode == opts::SctcAlways)
return true;
if (opts::SctcMode == opts::SctcPreserveDirection)
return IsForward == DirectionFlag;
const auto Frequency = PredBB->getBranchStats(BB);
// It's ok to rewrite the conditional branch if the new target will be
// a backward branch.
// If no data available for these branches, then it should be ok to
// do the optimization since it will reduce code size.
if (Frequency.getError())
return true;
// TODO: should this use misprediction frequency instead?
const bool Result =
(IsForward && Frequency.get().first >= 0.5) ||
(!IsForward && Frequency.get().first <= 0.5);
return Result == DirectionFlag;
}
uint64_t SimplifyConditionalTailCalls::fixTailCalls(BinaryContext &BC,
BinaryFunction &BF) {
// Need updated indices to correctly detect branch' direction.
BF.updateLayoutIndices();
BF.markUnreachable();
auto &MIA = BC.MIA;
uint64_t NumLocalCTCCandidates = 0;
uint64_t NumLocalCTCs = 0;
for (auto *BB : BF.layout()) {
// Locate BB with a single direct tail-call instruction.
if (BB->getNumNonPseudos() != 1)
continue;
auto *Instr = BB->getFirstNonPseudoInstr();
if (!MIA->isTailCall(*Instr))
continue;
auto *CalleeSymbol = MIA->getTargetSymbol(*Instr);
if (!CalleeSymbol)
continue;
// Detect direction of the possible conditional tail call.
const bool IsForwardCTC = BF.isForwardCall(CalleeSymbol);
// Iterate through all predecessors.
for (auto *PredBB : BB->predecessors()) {
auto *CondSucc = PredBB->getConditionalSuccessor(true);
if (!CondSucc)
continue;
++NumLocalCTCCandidates;
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
auto Result = PredBB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
// analyzeBranch() can fail due to unusual branch instructions, e.g. jrcxz
if (!Result) {
DEBUG(dbgs() << "analyzeBranch failed in SCTC in block:\n";
PredBB->dump());
continue;
}
assert(Result && "internal error analyzing conditional branch");
assert(CondBranch && "conditional branch expected");
// We don't want to reverse direction of the branch in new order
// without further profile analysis.
const bool DirectionFlag = CondSucc == BB ? IsForwardCTC : !IsForwardCTC;
if (!shouldRewriteBranch(PredBB, *CondBranch, BB, DirectionFlag))
continue;
if (CondSucc != BB) {
// Patch the new target address into the conditional branch.
MIA->reverseBranchCondition(*CondBranch, CalleeSymbol, BC.Ctx.get());
// Since we reversed the condition on the branch we need to change
// the target for the unconditional branch or add a unconditional
// branch to the old target. This has to be done manually since
// fixupBranches is not called after SCTC.
if (UncondBranch) {
MIA->replaceBranchTarget(*UncondBranch,
CondSucc->getLabel(),
BC.Ctx.get());
} else {
MCInst Branch;
auto Result = MIA->createUncondBranch(Branch,
CondSucc->getLabel(),
BC.Ctx.get());
assert(Result);
PredBB->addInstruction(Branch);
}
// Swap branch statistics after swapping the branch targets.
auto BI = PredBB->branch_info_begin();
std::swap(*BI, *(BI + 1));
} else {
// Change destination of the unconditional branch.
MIA->replaceBranchTarget(*CondBranch, CalleeSymbol, BC.Ctx.get());
}
// Remove the unused successor which may be eliminated later
// if there are no other users.
PredBB->removeSuccessor(BB);
++NumLocalCTCs;
}
// Remove the block from CFG if all predecessors were removed.
BB->markValid(BB->pred_size() != 0 ||
BB->isLandingPad() ||
BB->isEntryPoint());
}
if (NumLocalCTCs > 0) {
NumDoubleJumps += fixDoubleJumps(BC, BF, true);
// Clean-up unreachable tail-call blocks.
const auto Stats = BF.eraseInvalidBBs();
DeletedBlocks += Stats.first;
DeletedBytes += Stats.second;
}
DEBUG(dbgs() << "BOLT: created " << NumLocalCTCs
<< " conditional tail calls from a total of " << NumLocalCTCCandidates
<< " candidates in function " << BF << "\n";);
NumTailCallsPatched += NumLocalCTCs;
NumCandidateTailCalls += NumLocalCTCCandidates;
return NumLocalCTCs > 0;
}
void SimplifyConditionalTailCalls::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &
) {
for (auto &It : BFs) {
auto &Function = It.second;
if (!shouldOptimize(Function))
continue;
// Fix tail calls to reduce branch mispredictions.
if (fixTailCalls(BC, Function)) {
Modified.insert(&Function);
}
}
outs() << "BOLT-INFO: SCTC: patched " << NumTailCallsPatched
<< " tail calls (" << NumOrigForwardBranches << " forward)"
<< " tail calls (" << NumOrigBackwardBranches << " backward)"
<< " from a total of " << NumCandidateTailCalls
<< " while removing " << NumDoubleJumps << " double jumps"
<< " and removing " << DeletedBlocks << " basic blocks"
<< " totalling " << DeletedBytes << " bytes of code.\n";
}
void Peepholes::shortenInstructions(BinaryContext &BC,
BinaryFunction &Function) {
for (auto &BB : Function) {
for (auto &Inst : BB) {
BC.MIA->shortenInstruction(Inst);
}
}
}
void Peepholes::addTailcallTraps(BinaryContext &BC,
BinaryFunction &Function) {
for (auto &BB : Function) {
auto *Inst = BB.getLastNonPseudoInstr();
if (Inst && BC.MIA->isTailCall(*Inst) && BC.MIA->isIndirectBranch(*Inst)) {
MCInst Trap;
if (BC.MIA->createTrap(Trap)) {
BB.addInstruction(Trap);
++TailCallTraps;
}
}
}
}
void Peepholes::removeUselessCondBranches(BinaryContext &BC,
BinaryFunction &Function) {
for (auto &BB : Function) {
if (BB.succ_size() != 2)
continue;
auto *CondBB = BB.getConditionalSuccessor(true);
auto *UncondBB = BB.getConditionalSuccessor(false);
if (CondBB != UncondBB)
continue;
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
auto Result = BB.analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
// analyzeBranch() can fail due to unusual branch instructions,
// e.g. jrcxz, or jump tables (indirect jump).
if (!Result || !CondBranch)
continue;
BB.removeDuplicateConditionalSuccessor(CondBranch);
++NumUselessCondBranches;
}
}
void Peepholes::runOnFunctions(BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &LargeFunctions) {
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function)) {
shortenInstructions(BC, Function);
NumDoubleJumps += fixDoubleJumps(BC, Function, false);
addTailcallTraps(BC, Function);
removeUselessCondBranches(BC, Function);
}
}
outs() << "BOLT-INFO: Peephole: " << NumDoubleJumps
<< " double jumps patched.\n"
<< "BOLT-INFO: Peephole: " << TailCallTraps
<< " tail call traps inserted.\n"
<< "BOLT-INFO: Peephole: " << NumUselessCondBranches
<< " useless conditional branches removed.\n";
}
bool SimplifyRODataLoads::simplifyRODataLoads(
BinaryContext &BC, BinaryFunction &BF) {
auto &MIA = BC.MIA;
uint64_t NumLocalLoadsSimplified = 0;
uint64_t NumDynamicLocalLoadsSimplified = 0;
uint64_t NumLocalLoadsFound = 0;
uint64_t NumDynamicLocalLoadsFound = 0;
for (auto *BB : BF.layout()) {
for (auto &Inst : *BB) {
unsigned Opcode = Inst.getOpcode();
const MCInstrDesc &Desc = BC.MII->get(Opcode);
// Skip instructions that do not load from memory.
if (!Desc.mayLoad())
continue;
// Try to statically evaluate the target memory address;
uint64_t TargetAddress;
if (MIA->hasRIPOperand(Inst)) {
// Try to find the symbol that corresponds to the RIP-relative operand.
auto DispOpI = MIA->getMemOperandDisp(Inst);
assert(DispOpI != Inst.end() && "expected RIP-relative displacement");
assert(DispOpI->isExpr() &&
"found RIP-relative with non-symbolic displacement");
// Get displacement symbol.
const MCSymbolRefExpr *DisplExpr;
if (!(DisplExpr = dyn_cast<MCSymbolRefExpr>(DispOpI->getExpr())))
continue;
const MCSymbol &DisplSymbol = DisplExpr->getSymbol();
// Look up the symbol address in the global symbols map of the binary
// context object.
auto GI = BC.GlobalSymbols.find(DisplSymbol.getName());
if (GI == BC.GlobalSymbols.end())
continue;
TargetAddress = GI->second;
} else if (!MIA->evaluateMemOperandTarget(Inst, TargetAddress)) {
continue;
}
// Get the contents of the section containing the target address of the
// memory operand. We are only interested in read-only sections.
ErrorOr<SectionRef> DataSectionOrErr =
BC.getSectionForAddress(TargetAddress);
if (!DataSectionOrErr)
continue;
SectionRef DataSection = DataSectionOrErr.get();
if (!DataSection.isReadOnly())
continue;
uint32_t Offset = TargetAddress - DataSection.getAddress();
StringRef ConstantData;
if (std::error_code EC = DataSection.getContents(ConstantData)) {
errs() << "BOLT-ERROR: 'cannot get section contents': "
<< EC.message() << ".\n";
exit(1);
}
++NumLocalLoadsFound;
if (BB->hasProfile())
NumDynamicLocalLoadsFound += BB->getExecutionCount();
if (MIA->replaceMemOperandWithImm(Inst, ConstantData, Offset)) {
++NumLocalLoadsSimplified;
if (BB->hasProfile())
NumDynamicLocalLoadsSimplified += BB->getExecutionCount();
}
}
}
NumLoadsFound += NumLocalLoadsFound;
NumDynamicLoadsFound += NumDynamicLocalLoadsFound;
NumLoadsSimplified += NumLocalLoadsSimplified;
NumDynamicLoadsSimplified += NumDynamicLocalLoadsSimplified;
return NumLocalLoadsSimplified > 0;
}
void SimplifyRODataLoads::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &
) {
for (auto &It : BFs) {
auto &Function = It.second;
if (shouldOptimize(Function) && simplifyRODataLoads(BC, Function)) {
Modified.insert(&Function);
}
}
outs() << "BOLT-INFO: simplified " << NumLoadsSimplified << " out of "
<< NumLoadsFound << " loads from a statically computed address.\n"
<< "BOLT-INFO: dynamic loads simplified: " << NumDynamicLoadsSimplified
<< "\n"
<< "BOLT-INFO: dynamic loads found: " << NumDynamicLoadsFound << "\n";
}
void IdenticalCodeFolding::runOnFunctions(BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &) {
const auto OriginalFunctionCount = BFs.size();
uint64_t NumFunctionsFolded = 0;
uint64_t NumJTFunctionsFolded = 0;
uint64_t BytesSavedEstimate = 0;
uint64_t CallsSavedEstimate = 0;
static bool UseDFS = opts::ICFUseDFS;
// This hash table is used to identify identical functions. It maps
// a function to a bucket of functions identical to it.
struct KeyHash {
std::size_t operator()(const BinaryFunction *F) const {
return F->hash(/*Recompute=*/false);
}
};
struct KeyCongruent {
bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
return A->isIdenticalWith(*B, /*IgnoreSymbols=*/true, /*UseDFS=*/UseDFS);
}
};
struct KeyEqual {
bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
return A->isIdenticalWith(*B, /*IgnoreSymbols=*/false, /*UseDFS=*/UseDFS);
}
};
// Create buckets with congruent functions - functions that potentially could
// be folded.
std::unordered_map<BinaryFunction *, std::set<BinaryFunction *>,
KeyHash, KeyCongruent> CongruentBuckets;
for (auto &BFI : BFs) {
auto &BF = BFI.second;
if (!shouldOptimize(BF) || BF.isFolded())
continue;
// Make sure indices are in-order.
BF.updateLayoutIndices();
// Pre-compute hash before pushing into hashtable.
BF.hash(/*Recompute=*/true, /*UseDFS*/UseDFS);
CongruentBuckets[&BF].emplace(&BF);
}
// We repeat the pass until no new modifications happen.
unsigned Iteration = 1;
uint64_t NumFoldedLastIteration;
do {
NumFoldedLastIteration = 0;
DEBUG(dbgs() << "BOLT-DEBUG: ICF iteration " << Iteration << "...\n");
for (auto &CBI : CongruentBuckets) {
auto &Candidates = CBI.second;
if (Candidates.size() < 2)
continue;
// Identical functions go into the same bucket.
std::unordered_map<BinaryFunction *, std::vector<BinaryFunction *>,
KeyHash, KeyEqual> IdenticalBuckets;
for (auto *BF : Candidates) {
IdenticalBuckets[BF].emplace_back(BF);
}
for (auto &IBI : IdenticalBuckets) {
// Functions identified as identical.
auto &Twins = IBI.second;
if (Twins.size() < 2)
continue;
// Fold functions. Keep the order consistent across invocations with
// different options.
std::stable_sort(Twins.begin(), Twins.end(),
[](const BinaryFunction *A, const BinaryFunction *B) {
return A->getFunctionNumber() < B->getFunctionNumber();
});
BinaryFunction *ParentBF = Twins[0];
for (unsigned i = 1; i < Twins.size(); ++i) {
auto *ChildBF = Twins[i];
DEBUG(dbgs() << "BOLT-DEBUG: folding " << *ChildBF << " into "
<< *ParentBF << '\n');
// Remove child function from the list of candidates.
auto FI = Candidates.find(ChildBF);
assert(FI != Candidates.end() &&
"function expected to be in the set");
Candidates.erase(FI);
// Fold the function and remove from the list of processed functions.
BytesSavedEstimate += ChildBF->getSize();
CallsSavedEstimate += std::min(ChildBF->getKnownExecutionCount(),
ParentBF->getKnownExecutionCount());
BC.foldFunction(*ChildBF, *ParentBF, BFs);
++NumFoldedLastIteration;
if (ParentBF->hasJumpTables())
++NumJTFunctionsFolded;
}
}
}
NumFunctionsFolded += NumFoldedLastIteration;
++Iteration;
} while (NumFoldedLastIteration > 0);
DEBUG(
// Print functions that are congruent but not identical.
for (auto &CBI : CongruentBuckets) {
auto &Candidates = CBI.second;
if (Candidates.size() < 2)
continue;
dbgs() << "BOLT-DEBUG: the following " << Candidates.size()
<< " functions (each of size " << (*Candidates.begin())->getSize()
<< " bytes) are congruent but not identical:\n";
for (auto *BF : Candidates) {
dbgs() << " " << *BF;
if (BF->getKnownExecutionCount()) {
dbgs() << " (executed " << BF->getKnownExecutionCount() << " times)";
}
dbgs() << '\n';
}
}
);
if (NumFunctionsFolded) {
outs() << "BOLT-INFO: ICF folded " << NumFunctionsFolded
<< " out of " << OriginalFunctionCount << " functions in "
<< Iteration << " passes. "
<< NumJTFunctionsFolded << " functions had jump tables.\n"
<< "BOLT-INFO: Removing all identical functions will save "
<< format("%.2lf", (double) BytesSavedEstimate / 1024)
<< " KB of code space. Folded functions were called "
<< CallsSavedEstimate << " times based on profile.\n";
}
}
void PrintSortedBy::runOnFunctions(
BinaryContext &,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &
) {
if (!opts::PrintSortedBy.empty() &&
std::find(opts::PrintSortedBy.begin(),
opts::PrintSortedBy.end(),
DynoStats::FIRST_DYNO_STAT) == opts::PrintSortedBy.end()) {
std::vector<const BinaryFunction *> Functions;
std::map<const BinaryFunction *, DynoStats> Stats;
for (const auto &BFI : BFs) {
const auto &BF = BFI.second;
if (shouldOptimize(BF) && BF.hasValidProfile()) {
Functions.push_back(&BF);
Stats.emplace(&BF, BF.getDynoStats());
}
}
const bool SortAll =
std::find(opts::PrintSortedBy.begin(),
opts::PrintSortedBy.end(),
DynoStats::LAST_DYNO_STAT) != opts::PrintSortedBy.end();
const bool Ascending =
opts::DynoStatsSortOrderOpt == opts::DynoStatsSortOrder::Ascending;
if (SortAll) {
std::stable_sort(
Functions.begin(),
Functions.end(),
[Ascending,&Stats](const BinaryFunction *A, const BinaryFunction *B) {
return Ascending ?
Stats.at(A) < Stats.at(B) : Stats.at(B) < Stats.at(A);
}
);
} else {
std::stable_sort(
Functions.begin(),
Functions.end(),
[Ascending,&Stats](const BinaryFunction *A, const BinaryFunction *B) {
const auto &StatsA = Stats.at(A);
const auto &StatsB = Stats.at(B);
return Ascending
? StatsA.lessThan(StatsB, opts::PrintSortedBy)
: StatsB.lessThan(StatsA, opts::PrintSortedBy);
}
);
}
outs() << "BOLT-INFO: top functions sorted by ";
if (SortAll) {
outs() << "dyno stats";
} else {
outs() << "(";
bool PrintComma = false;
for (const auto Category : opts::PrintSortedBy) {
if (PrintComma) outs() << ", ";
outs() << DynoStats::Description(Category);
PrintComma = true;
}
outs() << ")";
}
outs() << " are:\n";
auto SFI = Functions.begin();
for (unsigned i = 0; i < 100 && SFI != Functions.end(); ++SFI, ++i) {
const auto Stats = (*SFI)->getDynoStats();
outs() << " " << **SFI;
if (!SortAll) {
outs() << " (";
bool PrintComma = false;
for (const auto Category : opts::PrintSortedBy) {
if (PrintComma) outs() << ", ";
outs() << dynoStatsOptName(Category) << "=" << Stats[Category];
PrintComma = true;
}
outs() << ")";
}
outs() << "\n";
}
}
}
void InstructionLowering::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &LargeFunctions) {
for (auto &BFI : BFs) {
for (auto &BB : BFI.second) {
for (auto &Instruction : BB) {
BC.MIA->lowerTailCall(Instruction);
}
}
}
}
void StripRepRet::runOnFunctions(
BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &LargeFunctions) {
uint64_t NumPrefixesRemoved = 0;
uint64_t NumBytesSaved = 0;
for (auto &BFI : BFs) {
for (auto &BB : BFI.second) {
auto LastInstRIter = BB.getLastNonPseudo();
if (LastInstRIter == BB.rend() ||
!BC.MIA->isReturn(*LastInstRIter))
continue;
auto NextToLastInstRIter = std::next(LastInstRIter);
if (NextToLastInstRIter == BB.rend() ||
!BC.MIA->isPrefix(*NextToLastInstRIter))
continue;
BB.eraseInstruction(std::next(NextToLastInstRIter).base());
NumPrefixesRemoved += BB.getKnownExecutionCount();
++NumBytesSaved;
}
}
if (NumBytesSaved) {
outs() << "BOLT-INFO: removed " << NumBytesSaved << " 'repz' prefixes"
" with estimated execution count of " << NumPrefixesRemoved
<< " times.\n";
}
}
void ReorderFunctions::buildCallGraph(BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs) {
// Add call graph nodes.
auto lookupNode = [&](BinaryFunction *Function) {
auto It = FuncToTargetId.find(Function);
if (It == FuncToTargetId.end()) {
// It's ok to use the hot size here when the function is split. This is
// because emitFunctions will emit the hot part first in the order that is
// computed by ReorderFunctions. The cold part will be emitted with the
// rest of the cold functions and code.
const auto Size = opts::ReorderFunctionsUseHotSize && Function->isSplit()
? Function->estimateHotSize()
: Function->estimateSize();
const auto Id = Cg.addTarget(Size);
assert(size_t(Id) == Funcs.size());
Funcs.push_back(Function);
FuncToTargetId[Function] = Id;
// NOTE: for functions without a profile, we set the number of samples
// to zero. This will keep these functions from appearing in the hot
// section. This is a little weird because we wouldn't be trying to
// create a node for a function unless it was the target of a call from
// a hot block. The alternative would be to set the count to one or
// accumulate the number of calls from the callsite into the function
// samples. Results from perfomance testing seem to favor the zero
// count though, so I'm leaving it this way for now.
Cg.Targets[Id].Samples = Function->hasProfile() ? Function->getExecutionCount() : 0;
assert(Funcs[Id] == Function);
return Id;
} else {
return It->second;
}
};
// Add call graph edges.
uint64_t NotProcessed = 0;
uint64_t TotalCalls = 0;
for (auto &It : BFs) {
auto *Function = &It.second;
if(!shouldOptimize(*Function) || !Function->hasProfile()) {
continue;
}
auto BranchDataOrErr = BC.DR.getFuncBranchData(Function->getNames());
const auto SrcId = lookupNode(Function);
uint64_t Offset = Function->getAddress();
auto recordCall = [&](const MCSymbol *DestSymbol, const uint64_t Count) {
if (auto *DstFunc = BC.getFunctionForSymbol(DestSymbol)) {
const auto DstId = lookupNode(DstFunc);
auto &A = Cg.incArcWeight(SrcId, DstId, Count);
if (!opts::UseEdgeCounts) {
A.AvgCallOffset += (Offset - DstFunc->getAddress());
}
DEBUG(dbgs() << "BOLT-DEBUG: Reorder functions: call " << *Function
<< " -> " << *DstFunc << " @ " << Offset << "\n");
return true;
}
return false;
};
for (auto *BB : Function->layout()) {
// Don't count calls from cold blocks
if (BB->isCold())
continue;
for (auto &Inst : *BB) {
// Find call instructions and extract target symbols from each one.
if (BC.MIA->isCall(Inst)) {
++TotalCalls;
if (const auto *DstSym = BC.MIA->getTargetSymbol(Inst)) {
// For direct calls, just use the BB execution count.
assert(BB->hasProfile());
const auto Count = opts::UseEdgeCounts ? BB->getExecutionCount() : 1;
if (!recordCall(DstSym, Count))
++NotProcessed;
} else if (BC.MIA->hasAnnotation(Inst, "EdgeCountData")) {
// For indirect calls and jump tables, use branch data.
assert(BranchDataOrErr);
const FuncBranchData &BranchData = BranchDataOrErr.get();
const auto DataOffset =
BC.MIA->getAnnotationAs<uint64_t>(Inst, "EdgeCountData");
for (const auto &BI : BranchData.getBranchRange(DataOffset)) {
// Count each target as a separate call.
++TotalCalls;
if (!BI.To.IsSymbol) {
++NotProcessed;
continue;
}
auto Itr = BC.GlobalSymbols.find(BI.To.Name);
if (Itr == BC.GlobalSymbols.end()) {
++NotProcessed;
continue;
}
const auto *DstSym =
BC.getOrCreateGlobalSymbol(Itr->second, "FUNCat");
if (!recordCall(DstSym, opts::UseEdgeCounts ? BI.Branches : 1))
++NotProcessed;
}
}
}
if (!opts::UseEdgeCounts) {
Offset += BC.computeCodeSize(&Inst, &Inst + 1);
}
}
}
}
outs() << "BOLT-WARNING: ReorderFunctions: " << NotProcessed
<< " callsites not processed out of " << TotalCalls << "\n";
// Normalize arc weights.
if (!opts::UseEdgeCounts) {
for (TargetId FuncId = 0; FuncId < Cg.Targets.size(); ++FuncId) {
auto& Func = Cg.Targets[FuncId];
for (auto Caller : Func.Preds) {
auto& A = *Cg.Arcs.find(Arc(Caller, FuncId));
A.NormalizedWeight = A.Weight / Func.Samples;
A.AvgCallOffset /= A.Weight;
assert(A.AvgCallOffset < Cg.Targets[Caller].Size);
}
}
} else {
for (TargetId FuncId = 0; FuncId < Cg.Targets.size(); ++FuncId) {
auto &Func = Cg.Targets[FuncId];
for (auto Caller : Func.Preds) {
auto& A = *Cg.Arcs.find(Arc(Caller, FuncId));
A.NormalizedWeight = A.Weight / Func.Samples;
}
}
}
}
void ReorderFunctions::reorder(std::vector<Cluster> &&Clusters,
std::map<uint64_t, BinaryFunction> &BFs) {
std::vector<uint64_t> FuncAddr(Cg.Targets.size()); // Just for computing stats
uint64_t TotalSize = 0;
uint32_t Index = 0;
// Set order of hot functions based on clusters.
for (const auto& Cluster : Clusters) {
for (const auto FuncId : Cluster.Targets) {
assert(Cg.Targets[FuncId].Samples > 0);
Funcs[FuncId]->setIndex(Index++);
FuncAddr[FuncId] = TotalSize;
TotalSize += Cg.Targets[FuncId].Size;
}
}
if (opts::ReorderFunctions != BinaryFunction::RT_NONE &&
(opts::Verbosity > 0 ||
(DebugFlag && isCurrentDebugType("hfsort")))) {
uint64_t TotalSize = 0;
uint64_t CurPage = 0;
uint64_t Hotfuncs = 0;
double TotalDistance = 0;
double TotalCalls = 0;
double TotalCalls64B = 0;
double TotalCalls4KB = 0;
double TotalCalls2MB = 0;
dbgs() << "============== page 0 ==============\n";
for (auto& Cluster : Clusters) {
dbgs() <<
format("-------- density = %.3lf (%u / %u) --------\n",
(double) Cluster.Samples / Cluster.Size,
Cluster.Samples, Cluster.Size);
for (auto FuncId : Cluster.Targets) {
if (Cg.Targets[FuncId].Samples > 0) {
Hotfuncs++;
dbgs() << "BOLT-INFO: hot func " << *Funcs[FuncId]
<< " (" << Cg.Targets[FuncId].Size << ")\n";
uint64_t Dist = 0;
uint64_t Calls = 0;
for (auto Dst : Cg.Targets[FuncId].Succs) {
auto& A = *Cg.Arcs.find(Arc(FuncId, Dst));
auto D =
std::abs(FuncAddr[A.Dst] - (FuncAddr[FuncId] + A.AvgCallOffset));
auto W = A.Weight;
Calls += W;
if (D < 64) TotalCalls64B += W;
if (D < 4096) TotalCalls4KB += W;
if (D < (2 << 20)) TotalCalls2MB += W;
Dist += A.Weight * D;
dbgs() << format("arc: %u [@%lu+%.1lf] -> %u [@%lu]: "
"weight = %.0lf, callDist = %f\n",
A.Src, FuncAddr[A.Src], A.AvgCallOffset,
A.Dst, FuncAddr[A.Dst], A.Weight, D);
}
TotalCalls += Calls;
TotalDistance += Dist;
dbgs() << format("start = %6u : avgCallDist = %lu : %s\n",
TotalSize,
Calls ? Dist / Calls : 0,
Funcs[FuncId]->getPrintName().c_str());
TotalSize += Cg.Targets[FuncId].Size;
auto NewPage = TotalSize / PageSize;
if (NewPage != CurPage) {
CurPage = NewPage;
dbgs() << format("============== page %u ==============\n", CurPage);
}
}
}
}
dbgs() << format(" Number of hot functions: %u\n"
" Number of clusters: %lu\n",
Hotfuncs, Clusters.size())
<< format(" Final average call distance = %.1lf (%.0lf / %.0lf)\n",
TotalCalls ? TotalDistance / TotalCalls : 0,
TotalDistance, TotalCalls)
<< format(" Total Calls = %.0lf\n", TotalCalls);
if (TotalCalls) {
dbgs() << format(" Total Calls within 64B = %.0lf (%.2lf%%)\n",
TotalCalls64B, 100 * TotalCalls64B / TotalCalls)
<< format(" Total Calls within 4KB = %.0lf (%.2lf%%)\n",
TotalCalls4KB, 100 * TotalCalls4KB / TotalCalls)
<< format(" Total Calls within 2MB = %.0lf (%.2lf%%)\n",
TotalCalls2MB, 100 * TotalCalls2MB / TotalCalls);
}
}
}
namespace {
std::vector<std::string> readFunctionOrderFile() {
std::vector<std::string> FunctionNames;
std::ifstream FuncsFile(opts::FunctionOrderFile, std::ios::in);
if (!FuncsFile) {
errs() << "Ordered functions file \"" << opts::FunctionOrderFile
<< "\" can't be opened.\n";
exit(1);
}
std::string FuncName;
while (std::getline(FuncsFile, FuncName)) {
FunctionNames.push_back(FuncName);
}
return FunctionNames;
}
}
void ReorderFunctions::runOnFunctions(BinaryContext &BC,
std::map<uint64_t, BinaryFunction> &BFs,
std::set<uint64_t> &LargeFunctions) {
if (!opts::Relocs && opts::ReorderFunctions != BinaryFunction::RT_NONE) {
errs() << "BOLT-ERROR: Function reordering only works when "
<< "relocs are enabled.\n";
exit(1);
}
if (opts::ReorderFunctions != BinaryFunction::RT_NONE &&
opts::ReorderFunctions != BinaryFunction::RT_EXEC_COUNT &&
opts::ReorderFunctions != BinaryFunction::RT_USER) {
buildCallGraph(BC, BFs);
}
std::vector<Cluster> Clusters;
switch(opts::ReorderFunctions) {
case BinaryFunction::RT_NONE:
break;
case BinaryFunction::RT_EXEC_COUNT:
{
std::vector<BinaryFunction *> SortedFunctions(BFs.size());
uint32_t Index = 0;
std::transform(BFs.begin(),
BFs.end(),
SortedFunctions.begin(),
[](std::pair<const uint64_t, BinaryFunction> &BFI) {
return &BFI.second;
});
std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(),
[&](const BinaryFunction *A, const BinaryFunction *B) {
if (!opts::shouldProcess(*A))
return false;
const auto PadA = opts::padFunction(*A);
const auto PadB = opts::padFunction(*B);
if (!PadA || !PadB) {
if (PadA)
return true;
if (PadB)
return false;
}
return !A->hasProfile() &&
(B->hasProfile() ||
(A->getExecutionCount() > B->getExecutionCount()));
});
for (auto *BF : SortedFunctions) {
if (BF->hasProfile())
BF->setIndex(Index++);
}
}
break;
case BinaryFunction::RT_HFSORT:
Clusters = clusterize(Cg);
break;
case BinaryFunction::RT_HFSORT_PLUS:
Clusters = hfsortPlus(Cg);
break;
case BinaryFunction::RT_PETTIS_HANSEN:
Clusters = pettisAndHansen(Cg);
break;
case BinaryFunction::RT_RANDOM:
std::srand(opts::RandomSeed);
Clusters = randomClusters(Cg);
break;
case BinaryFunction::RT_USER:
{
uint32_t Index = 0;
for (const auto &Function : readFunctionOrderFile()) {
std::vector<uint64_t> FuncAddrs;
auto Itr = BC.GlobalSymbols.find(Function);
if (Itr == BC.GlobalSymbols.end()) {
uint32_t LocalID = 1;
while(1) {
// If we can't find the main symbol name, look for alternates.
Itr = BC.GlobalSymbols.find(Function + "/" + std::to_string(LocalID));
if (Itr != BC.GlobalSymbols.end())
FuncAddrs.push_back(Itr->second);
else
break;
LocalID++;
}
} else {
FuncAddrs.push_back(Itr->second);
}
if (FuncAddrs.empty()) {
errs() << "BOLT-WARNING: Reorder functions: can't find function for "
<< Function << "\n";
continue;
}
for (const auto FuncAddr : FuncAddrs) {
const auto *FuncSym = BC.getOrCreateGlobalSymbol(FuncAddr, "FUNCat");
assert(FuncSym);
auto *BF = BC.getFunctionForSymbol(FuncSym);
if (!BF) {
errs() << "BOLT-WARNING: Reorder functions: can't find function for "
<< Function << "\n";
break;
}
if (!BF->hasValidIndex()) {
BF->setIndex(Index++);
}
}
}
}
break;
}
reorder(std::move(Clusters), BFs);
}
} // namespace bolt
} // namespace llvm