forked from OSchip/llvm-project
3981 lines
137 KiB
C++
3981 lines
137 KiB
C++
//===--- BinaryFunction.cpp - Interface for machine-level function --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#include "BinaryBasicBlock.h"
|
|
#include "BinaryFunction.h"
|
|
#include "DataReader.h"
|
|
#include "Passes/ReorderAlgorithm.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <limits>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <functional>
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
|
|
extern cl::OptionCategory BoltCategory;
|
|
extern cl::OptionCategory BoltOptCategory;
|
|
extern cl::OptionCategory BoltRelocCategory;
|
|
|
|
extern bool shouldProcess(const BinaryFunction &);
|
|
|
|
extern cl::opt<bool> PrintDynoStats;
|
|
extern cl::opt<bool> Relocs;
|
|
extern cl::opt<bool> UpdateDebugSections;
|
|
extern cl::opt<IndirectCallPromotionType> IndirectCallPromotion;
|
|
extern cl::opt<unsigned> Verbosity;
|
|
|
|
static cl::opt<bool>
|
|
AggressiveSplitting("split-all-cold",
|
|
cl::desc("outline as many cold basic blocks as possible"),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool>
|
|
AlignBlocks("align-blocks",
|
|
cl::desc("try to align BBs inserting nops"),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool>
|
|
DotToolTipCode("dot-tooltip-code",
|
|
cl::desc("add basic block instructions as tool tips on nodes"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<uint32_t>
|
|
DynoStatsScale("dyno-stats-scale",
|
|
cl::desc("scale to be applied while reporting dyno stats"),
|
|
cl::Optional,
|
|
cl::init(1),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<JumpTableSupportLevel>
|
|
JumpTables("jump-tables",
|
|
cl::desc("jump tables support (default=basic)"),
|
|
cl::init(JTS_BASIC),
|
|
cl::values(
|
|
clEnumValN(JTS_NONE, "none",
|
|
"do not optimize functions with jump tables"),
|
|
clEnumValN(JTS_BASIC, "basic",
|
|
"optimize functions with jump tables"),
|
|
clEnumValN(JTS_MOVE, "move",
|
|
"move jump tables to a separate section"),
|
|
clEnumValN(JTS_SPLIT, "split",
|
|
"split jump tables section into hot and cold based on "
|
|
"function execution frequency"),
|
|
clEnumValN(JTS_AGGRESSIVE, "aggressive",
|
|
"aggressively split jump tables section based on usage "
|
|
"of the tables"),
|
|
clEnumValEnd),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintJumpTables("print-jump-tables",
|
|
cl::desc("print jump tables"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::list<std::string>
|
|
PrintOnly("print-only",
|
|
cl::CommaSeparated,
|
|
cl::desc("list of functions to print"),
|
|
cl::value_desc("func1,func2,func3,..."),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
SplitEH("split-eh",
|
|
cl::desc("split C++ exception handling code (experimental)"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
bool shouldPrint(const BinaryFunction &Function) {
|
|
if (PrintOnly.empty())
|
|
return true;
|
|
|
|
for (auto &Name : opts::PrintOnly) {
|
|
if (Function.hasName(Name)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
// Temporary constant.
|
|
//
|
|
// TODO: move to architecture-specific file together with the code that is
|
|
// using it.
|
|
constexpr unsigned NoRegister = 0;
|
|
|
|
constexpr const char *DynoStats::Desc[];
|
|
|
|
namespace {
|
|
|
|
/// Gets debug line information for the instruction located at the given
|
|
/// address in the original binary. The SMLoc's pointer is used
|
|
/// to point to this information, which is represented by a
|
|
/// DebugLineTableRowRef. The returned pointer is null if no debug line
|
|
/// information for this instruction was found.
|
|
SMLoc findDebugLineInformationForInstructionAt(
|
|
uint64_t Address,
|
|
DWARFUnitLineTable &ULT) {
|
|
// We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
|
|
// which occupies 64 bits. Thus, we can only proceed if the struct fits into
|
|
// the pointer itself.
|
|
assert(
|
|
sizeof(decltype(SMLoc().getPointer())) >= sizeof(DebugLineTableRowRef) &&
|
|
"Cannot fit instruction debug line information into SMLoc's pointer");
|
|
|
|
SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
|
|
|
|
auto &LineTable = ULT.second;
|
|
if (!LineTable)
|
|
return NullResult;
|
|
|
|
uint32_t RowIndex = LineTable->lookupAddress(Address);
|
|
if (RowIndex == LineTable->UnknownRowIndex)
|
|
return NullResult;
|
|
|
|
assert(RowIndex < LineTable->Rows.size() &&
|
|
"Line Table lookup returned invalid index.");
|
|
|
|
decltype(SMLoc().getPointer()) Ptr;
|
|
DebugLineTableRowRef *InstructionLocation =
|
|
reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
|
|
|
|
InstructionLocation->DwCompileUnitIndex = ULT.first->getOffset();
|
|
InstructionLocation->RowIndex = RowIndex + 1;
|
|
|
|
return SMLoc::getFromPointer(Ptr);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool DynoStats::operator<(const DynoStats &Other) const {
|
|
return std::lexicographical_compare(
|
|
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
|
|
&Other.Stats[FIRST_DYNO_STAT], &Other.Stats[LAST_DYNO_STAT]
|
|
);
|
|
}
|
|
|
|
bool DynoStats::operator==(const DynoStats &Other) const {
|
|
return std::equal(
|
|
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
|
|
&Other.Stats[FIRST_DYNO_STAT]
|
|
);
|
|
}
|
|
|
|
bool DynoStats::lessThan(const DynoStats &Other,
|
|
ArrayRef<Category> Keys) const {
|
|
return std::lexicographical_compare(
|
|
Keys.begin(), Keys.end(),
|
|
Keys.begin(), Keys.end(),
|
|
[this,&Other](const Category A, const Category) {
|
|
return Stats[A] < Other.Stats[A];
|
|
}
|
|
);
|
|
}
|
|
|
|
uint64_t BinaryFunction::Count = 0;
|
|
|
|
BinaryBasicBlock *
|
|
BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
|
|
if (Offset > Size)
|
|
return nullptr;
|
|
|
|
if (BasicBlockOffsets.empty())
|
|
return nullptr;
|
|
|
|
/*
|
|
* This is commented out because it makes BOLT too slow.
|
|
* assert(std::is_sorted(BasicBlockOffsets.begin(),
|
|
* BasicBlockOffsets.end(),
|
|
* CompareBasicBlockOffsets())));
|
|
*/
|
|
auto I = std::upper_bound(BasicBlockOffsets.begin(),
|
|
BasicBlockOffsets.end(),
|
|
BasicBlockOffset(Offset, nullptr),
|
|
CompareBasicBlockOffsets());
|
|
assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
|
|
--I;
|
|
return I->second;
|
|
}
|
|
|
|
size_t
|
|
BinaryFunction::getBasicBlockOriginalSize(const BinaryBasicBlock *BB) const {
|
|
if (!hasCFG())
|
|
return 0;
|
|
|
|
auto Index = getIndex(BB);
|
|
if (Index + 1 == BasicBlocks.size()) {
|
|
return Size - BB->getOffset();
|
|
} else {
|
|
return BasicBlocks[Index + 1]->getOffset() - BB->getOffset();
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::markUnreachable() {
|
|
std::stack<BinaryBasicBlock *> Stack;
|
|
|
|
for (auto *BB : layout()) {
|
|
BB->markValid(false);
|
|
}
|
|
|
|
// Add all entries and landing pads as roots.
|
|
for (auto *BB : BasicBlocks) {
|
|
if (BB->isEntryPoint() || BB->isLandingPad()) {
|
|
Stack.push(BB);
|
|
BB->markValid(true);
|
|
}
|
|
}
|
|
|
|
// Determine reachable BBs from the entry point
|
|
while (!Stack.empty()) {
|
|
auto BB = Stack.top();
|
|
Stack.pop();
|
|
for (auto Succ : BB->successors()) {
|
|
if (Succ->isValid())
|
|
continue;
|
|
Succ->markValid(true);
|
|
Stack.push(Succ);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
|
|
// will be cleaned up by fixBranches().
|
|
std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() {
|
|
BasicBlockOrderType NewLayout;
|
|
unsigned Count = 0;
|
|
uint64_t Bytes = 0;
|
|
for (auto *BB : layout()) {
|
|
assert((!BB->isEntryPoint() || BB->isValid()) &&
|
|
"all entry blocks must be valid");
|
|
if (BB->isValid()) {
|
|
NewLayout.push_back(BB);
|
|
} else {
|
|
++Count;
|
|
Bytes += BC.computeCodeSize(BB->begin(), BB->end());
|
|
}
|
|
}
|
|
BasicBlocksLayout = std::move(NewLayout);
|
|
|
|
BasicBlockListType NewBasicBlocks;
|
|
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
|
|
if ((*I)->isValid()) {
|
|
NewBasicBlocks.push_back(*I);
|
|
} else {
|
|
DeletedBasicBlocks.push_back(*I);
|
|
}
|
|
}
|
|
BasicBlocks = std::move(NewBasicBlocks);
|
|
|
|
assert(BasicBlocks.size() == BasicBlocksLayout.size());
|
|
|
|
// Update CFG state if needed
|
|
if (Count > 0) {
|
|
updateBBIndices(0);
|
|
recomputeLandingPads(0, BasicBlocks.size());
|
|
}
|
|
|
|
return std::make_pair(Count, Bytes);
|
|
}
|
|
|
|
bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
|
|
// This function should work properly before and after function reordering.
|
|
// In order to accomplish this, we use the function index (if it is valid).
|
|
// If the function indices are not valid, we fall back to the original
|
|
// addresses. This should be ok because the functions without valid indices
|
|
// should have been ordered with a stable sort.
|
|
const auto *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
|
|
if (CalleeBF) {
|
|
if (hasValidIndex() && CalleeBF->hasValidIndex()) {
|
|
return getIndex() < CalleeBF->getIndex();
|
|
} else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
|
|
return true;
|
|
} else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
|
|
return false;
|
|
} else {
|
|
return getAddress() < CalleeBF->getAddress();
|
|
}
|
|
} else {
|
|
// Absolute symbol.
|
|
auto const CalleeSI = BC.GlobalSymbols.find(CalleeSymbol->getName());
|
|
assert(CalleeSI != BC.GlobalSymbols.end() && "unregistered symbol found");
|
|
return CalleeSI->second > getAddress();
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::dump(bool PrintInstructions) const {
|
|
print(dbgs(), "", PrintInstructions);
|
|
}
|
|
|
|
void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
|
|
bool PrintInstructions) const {
|
|
// FIXME: remove after #15075512 is done.
|
|
if (!opts::shouldProcess(*this) || !opts::shouldPrint(*this))
|
|
return;
|
|
|
|
StringRef SectionName;
|
|
Section.getName(SectionName);
|
|
OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
|
|
if (Names.size() > 1) {
|
|
OS << "\n Other names : ";
|
|
auto Sep = "";
|
|
for (unsigned i = 0; i < Names.size() - 1; ++i) {
|
|
OS << Sep << Names[i];
|
|
Sep = "\n ";
|
|
}
|
|
}
|
|
OS << "\n Number : " << FunctionNumber
|
|
<< "\n State : " << CurrentState
|
|
<< "\n Address : 0x" << Twine::utohexstr(Address)
|
|
<< "\n Size : 0x" << Twine::utohexstr(Size)
|
|
<< "\n MaxSize : 0x" << Twine::utohexstr(MaxSize)
|
|
<< "\n Offset : 0x" << Twine::utohexstr(FileOffset)
|
|
<< "\n Section : " << SectionName
|
|
<< "\n Orc Section : " << getCodeSectionName()
|
|
<< "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress())
|
|
<< "\n IsSimple : " << IsSimple
|
|
<< "\n IsSplit : " << IsSplit
|
|
<< "\n BB Count : " << BasicBlocksLayout.size();
|
|
|
|
if (hasCFG()) {
|
|
OS << "\n Hash : " << Twine::utohexstr(hash());
|
|
}
|
|
if (FrameInstructions.size()) {
|
|
OS << "\n CFI Instrs : " << FrameInstructions.size();
|
|
}
|
|
if (BasicBlocksLayout.size()) {
|
|
OS << "\n BB Layout : ";
|
|
auto Sep = "";
|
|
for (auto BB : BasicBlocksLayout) {
|
|
OS << Sep << BB->getName();
|
|
Sep = ", ";
|
|
}
|
|
}
|
|
if (ImageAddress)
|
|
OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress);
|
|
if (ExecutionCount != COUNT_NO_PROFILE) {
|
|
OS << "\n Exec Count : " << ExecutionCount;
|
|
OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
|
|
}
|
|
|
|
if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) {
|
|
OS << '\n';
|
|
DynoStats dynoStats = getDynoStats();
|
|
OS << dynoStats;
|
|
}
|
|
|
|
OS << "\n}\n";
|
|
|
|
if (!PrintInstructions || !BC.InstPrinter)
|
|
return;
|
|
|
|
// Offset of the instruction in function.
|
|
uint64_t Offset{0};
|
|
|
|
if (BasicBlocks.empty() && !Instructions.empty()) {
|
|
// Print before CFG was built.
|
|
for (const auto &II : Instructions) {
|
|
Offset = II.first;
|
|
|
|
// Print label if exists at this offset.
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end())
|
|
OS << LI->second->getName() << ":\n";
|
|
|
|
BC.printInstruction(OS, II.second, Offset, this);
|
|
}
|
|
}
|
|
|
|
for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
|
|
auto BB = BasicBlocksLayout[I];
|
|
if (I != 0 &&
|
|
BB->isCold() != BasicBlocksLayout[I - 1]->isCold())
|
|
OS << "------- HOT-COLD SPLIT POINT -------\n\n";
|
|
|
|
OS << BB->getName() << " ("
|
|
<< BB->size() << " instructions, align : " << BB->getAlignment()
|
|
<< ")\n";
|
|
|
|
if (BB->isEntryPoint())
|
|
OS << " Entry Point\n";
|
|
|
|
if (BB->isLandingPad())
|
|
OS << " Landing Pad\n";
|
|
|
|
uint64_t BBExecCount = BB->getExecutionCount();
|
|
if (hasValidProfile()) {
|
|
OS << " Exec Count : " << BBExecCount << "\n";
|
|
}
|
|
if (BB->getCFIState() >= 0) {
|
|
OS << " CFI State : " << BB->getCFIState() << '\n';
|
|
}
|
|
if (!BB->pred_empty()) {
|
|
OS << " Predecessors: ";
|
|
auto Sep = "";
|
|
for (auto Pred : BB->predecessors()) {
|
|
OS << Sep << Pred->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
if (!BB->throw_empty()) {
|
|
OS << " Throwers: ";
|
|
auto Sep = "";
|
|
for (auto Throw : BB->throwers()) {
|
|
OS << Sep << Throw->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
Offset = RoundUpToAlignment(Offset, BB->getAlignment());
|
|
|
|
// Note: offsets are imprecise since this is happening prior to relaxation.
|
|
Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
|
|
|
|
if (!BB->succ_empty()) {
|
|
OS << " Successors: ";
|
|
auto BI = BB->branch_info_begin();
|
|
auto Sep = "";
|
|
for (auto Succ : BB->successors()) {
|
|
assert(BI != BB->branch_info_end() && "missing BranchInfo entry");
|
|
OS << Sep << Succ->getName();
|
|
if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
|
|
OS << " (mispreds: " << BI->MispredictedCount
|
|
<< ", count: " << BI->Count << ")";
|
|
} else if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
OS << " (inferred count: " << BI->Count << ")";
|
|
}
|
|
Sep = ", ";
|
|
++BI;
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
if (!BB->lp_empty()) {
|
|
OS << " Landing Pads: ";
|
|
auto Sep = "";
|
|
for (auto LP : BB->landing_pads()) {
|
|
OS << Sep << LP->getName();
|
|
if (ExecutionCount != COUNT_NO_PROFILE) {
|
|
OS << " (count: " << LP->getExecutionCount() << ")";
|
|
}
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
// In CFG_Finalized state we can miscalculate CFI state at exit.
|
|
if (CurrentState == State::CFG) {
|
|
const auto CFIStateAtExit = BB->getCFIStateAtExit();
|
|
if (CFIStateAtExit >= 0)
|
|
OS << " CFI State: " << CFIStateAtExit << '\n';
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
// Dump new exception ranges for the function.
|
|
if (!CallSites.empty()) {
|
|
OS << "EH table:\n";
|
|
for (auto &CSI : CallSites) {
|
|
OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
|
|
if (CSI.LP)
|
|
OS << *CSI.LP;
|
|
else
|
|
OS << "0";
|
|
OS << ", action : " << CSI.Action << '\n';
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
// Print all jump tables.
|
|
for (auto &JTI : JumpTables) {
|
|
JTI.second.print(OS);
|
|
}
|
|
|
|
OS << "DWARF CFI Instructions:\n";
|
|
if (OffsetToCFI.size()) {
|
|
// Pre-buildCFG information
|
|
for (auto &Elmt : OffsetToCFI) {
|
|
OS << format(" %08x:\t", Elmt.first);
|
|
assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
|
|
BinaryContext::printCFI(OS,
|
|
FrameInstructions[Elmt.second].getOperation());
|
|
OS << "\n";
|
|
}
|
|
} else {
|
|
// Post-buildCFG information
|
|
for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
|
|
const MCCFIInstruction &CFI = FrameInstructions[I];
|
|
OS << format(" %d:\t", I);
|
|
BinaryContext::printCFI(OS, CFI.getOperation());
|
|
OS << "\n";
|
|
}
|
|
}
|
|
if (FrameInstructions.empty())
|
|
OS << " <empty>\n";
|
|
|
|
OS << "End of Function \"" << *this << "\"\n\n";
|
|
}
|
|
|
|
BinaryFunction::IndirectBranchType
|
|
BinaryFunction::analyzeIndirectBranch(MCInst &Instruction,
|
|
unsigned Size,
|
|
uint64_t Offset) {
|
|
auto &MIA = BC.MIA;
|
|
|
|
IndirectBranchType Type = IndirectBranchType::UNKNOWN;
|
|
|
|
// An instruction referencing memory used by jump instruction (directly or
|
|
// via register). This location could be an array of function pointers
|
|
// in case of indirect tail call, or a jump table.
|
|
MCInst *MemLocInstr = nullptr;
|
|
|
|
// Address of the table referenced by MemLocInstr. Could be either an
|
|
// array of function pointers, or a jump table.
|
|
uint64_t ArrayStart = 0;
|
|
|
|
auto analyzePICJumpTable =
|
|
[&](InstrMapType::reverse_iterator II,
|
|
InstrMapType::reverse_iterator IE,
|
|
unsigned R1,
|
|
unsigned R2) {
|
|
// Analyze PIC-style jump table code template:
|
|
//
|
|
// lea PIC_JUMP_TABLE(%rip), {%r1|%r2} <- MemLocInstr
|
|
// mov ({%r1|%r2}, %index, 4), {%r2|%r1}
|
|
// add %r2, %r1
|
|
// jmp *%r1
|
|
//
|
|
// (with any irrelevant instructions in-between)
|
|
//
|
|
// When we call this helper we've already determined %r1 and %r2, and
|
|
// reverse instruction iterator \p II is pointing to the ADD instruction.
|
|
//
|
|
// PIC jump table looks like following:
|
|
//
|
|
// JT: ----------
|
|
// E1:| L1 - JT |
|
|
// |----------|
|
|
// E2:| L2 - JT |
|
|
// |----------|
|
|
// | |
|
|
// ......
|
|
// En:| Ln - JT |
|
|
// ----------
|
|
//
|
|
// Where L1, L2, ..., Ln represent labels in the function.
|
|
//
|
|
// The actual relocations in the table will be of the form:
|
|
//
|
|
// Ln - JT
|
|
// = (Ln - En) + (En - JT)
|
|
// = R_X86_64_PC32(Ln) + En - JT
|
|
// = R_X86_64_PC32(Ln + offsetof(En))
|
|
//
|
|
DEBUG(dbgs() << "BOLT-DEBUG: checking for PIC jump table\n");
|
|
MCInst *MovInstr = nullptr;
|
|
while (++II != IE) {
|
|
auto &Instr = II->second;
|
|
const auto &InstrDesc = BC.MII->get(Instr.getOpcode());
|
|
if (!InstrDesc.hasDefOfPhysReg(Instr, R1, *BC.MRI) &&
|
|
!InstrDesc.hasDefOfPhysReg(Instr, R2, *BC.MRI)) {
|
|
// Ignore instructions that don't affect R1, R2 registers.
|
|
continue;
|
|
} else if (!MovInstr) {
|
|
// Expect to see MOV instruction.
|
|
if (!MIA->isMOVSX64rm32(Instr)) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: MOV instruction expected.\n");
|
|
break;
|
|
}
|
|
|
|
// Check if it's setting %r1 or %r2. In canonical form it sets %r2.
|
|
// If it sets %r1 - rename the registers so we have to only check
|
|
// a single form.
|
|
auto MovDestReg = Instr.getOperand(0).getReg();
|
|
if (MovDestReg != R2)
|
|
std::swap(R1, R2);
|
|
if (MovDestReg != R2) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: MOV instruction expected to set %r2\n");
|
|
break;
|
|
}
|
|
|
|
// Verify operands for MOV.
|
|
unsigned BaseRegNum;
|
|
int64_t ScaleValue;
|
|
unsigned IndexRegNum;
|
|
int64_t DispValue;
|
|
unsigned SegRegNum;
|
|
if (!MIA->evaluateX86MemoryOperand(Instr, &BaseRegNum,
|
|
&ScaleValue, &IndexRegNum,
|
|
&DispValue, &SegRegNum))
|
|
break;
|
|
if (BaseRegNum != R1 ||
|
|
ScaleValue != 4 ||
|
|
IndexRegNum == bolt::NoRegister ||
|
|
DispValue != 0 ||
|
|
SegRegNum != bolt::NoRegister)
|
|
break;
|
|
MovInstr = &Instr;
|
|
} else {
|
|
assert(MovInstr && "MOV instruction expected to be set");
|
|
if (!InstrDesc.hasDefOfPhysReg(Instr, R1, *BC.MRI))
|
|
continue;
|
|
if (!MIA->isLEA64r(Instr)) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: LEA instruction expected\n");
|
|
break;
|
|
}
|
|
if (Instr.getOperand(0).getReg() != R1) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: LEA instruction expected to set %r1\n");
|
|
break;
|
|
}
|
|
|
|
// Verify operands for LEA.
|
|
unsigned BaseRegNum;
|
|
int64_t ScaleValue;
|
|
unsigned IndexRegNum;
|
|
const MCExpr *DispExpr = nullptr;
|
|
unsigned SegRegNum;
|
|
if (!MIA->evaluateX86MemoryOperand(Instr, &BaseRegNum,
|
|
&ScaleValue, &IndexRegNum,
|
|
nullptr, &SegRegNum, &DispExpr))
|
|
break;
|
|
if (BaseRegNum != BC.MRI->getProgramCounter() ||
|
|
IndexRegNum != bolt::NoRegister ||
|
|
SegRegNum != bolt::NoRegister ||
|
|
DispExpr == nullptr)
|
|
break;
|
|
MemLocInstr = &Instr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!MemLocInstr)
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
DEBUG(dbgs() << "BOLT-DEBUG: checking potential PIC jump table\n");
|
|
return IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE;
|
|
};
|
|
|
|
// Try to find a (base) memory location from where the address for
|
|
// the indirect branch is loaded. For X86-64 the memory will be specified
|
|
// in the following format:
|
|
//
|
|
// {%rip}/{%basereg} + Imm + IndexReg * Scale
|
|
//
|
|
// We are interested in the cases where Scale == sizeof(uintptr_t) and
|
|
// the contents of the memory are presumably a function array.
|
|
//
|
|
// Normal jump table:
|
|
//
|
|
// jmp *(JUMP_TABLE, %index, Scale)
|
|
//
|
|
// or
|
|
//
|
|
// mov (JUMP_TABLE, %index, Scale), %r1
|
|
// ...
|
|
// jmp %r1
|
|
//
|
|
// We handle PIC-style jump tables separately.
|
|
//
|
|
if (Instruction.getNumOperands() == 1) {
|
|
// If the indirect jump is on register - try to detect if the
|
|
// register value is loaded from a memory location.
|
|
assert(Instruction.getOperand(0).isReg() && "register operand expected");
|
|
const auto R1 = Instruction.getOperand(0).getReg();
|
|
// Check if one of the previous instructions defines the jump-on register.
|
|
// We will check that this instruction belongs to the same basic block
|
|
// in postProcessIndirectBranches().
|
|
for (auto PrevII = Instructions.rbegin(); PrevII != Instructions.rend();
|
|
++PrevII) {
|
|
auto &PrevInstr = PrevII->second;
|
|
const auto &PrevInstrDesc = BC.MII->get(PrevInstr.getOpcode());
|
|
|
|
if (!PrevInstrDesc.hasDefOfPhysReg(PrevInstr, R1, *BC.MRI))
|
|
continue;
|
|
|
|
if (MIA->isMoveMem2Reg(PrevInstr)) {
|
|
MemLocInstr = &PrevInstr;
|
|
break;
|
|
} else if (MIA->isADD64rr(PrevInstr)) {
|
|
auto R2 = PrevInstr.getOperand(2).getReg();
|
|
if (R1 == R2)
|
|
return IndirectBranchType::UNKNOWN;
|
|
Type = analyzePICJumpTable(PrevII, Instructions.rend(), R1, R2);
|
|
break;
|
|
} else {
|
|
return IndirectBranchType::UNKNOWN;
|
|
}
|
|
}
|
|
if (!MemLocInstr) {
|
|
// No definition seen for the register in this function so far. Could be
|
|
// an input parameter - which means it is an external code reference.
|
|
// It also could be that the definition happens to be in the code that
|
|
// we haven't processed yet. Since we have to be conservative, return
|
|
// as UNKNOWN case.
|
|
return IndirectBranchType::UNKNOWN;
|
|
}
|
|
} else {
|
|
MemLocInstr = &Instruction;
|
|
}
|
|
|
|
const auto RIPRegister = BC.MRI->getProgramCounter();
|
|
auto PtrSize = BC.AsmInfo->getPointerSize();
|
|
|
|
// Analyze the memory location.
|
|
unsigned BaseRegNum;
|
|
int64_t ScaleValue;
|
|
unsigned IndexRegNum;
|
|
int64_t DispValue;
|
|
unsigned SegRegNum;
|
|
const MCExpr *DispExpr;
|
|
if (!MIA->evaluateX86MemoryOperand(*MemLocInstr, &BaseRegNum,
|
|
&ScaleValue, &IndexRegNum,
|
|
&DispValue, &SegRegNum,
|
|
&DispExpr))
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
if ((BaseRegNum != bolt::NoRegister && BaseRegNum != RIPRegister) ||
|
|
SegRegNum != bolt::NoRegister)
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE &&
|
|
(ScaleValue != 1 || BaseRegNum != RIPRegister))
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
if (Type != IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE &&
|
|
ScaleValue != PtrSize)
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
// RIP-relative addressing should be converted to symbol form by now
|
|
// in processed instructions (but not in jump).
|
|
if (DispExpr) {
|
|
auto SI = BC.GlobalSymbols.find(DispExpr->getSymbol().getName());
|
|
assert(SI != BC.GlobalSymbols.end() && "global symbol needs a value");
|
|
ArrayStart = SI->second;
|
|
} else {
|
|
ArrayStart = static_cast<uint64_t>(DispValue);
|
|
if (BaseRegNum == RIPRegister)
|
|
ArrayStart += getAddress() + Offset + Size;
|
|
}
|
|
|
|
DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
|
|
<< Twine::utohexstr(ArrayStart) << '\n');
|
|
|
|
// Check if there's already a jump table registered at this address.
|
|
if (auto *JT = getJumpTableContainingAddress(ArrayStart)) {
|
|
auto JTOffset = ArrayStart - JT->Address;
|
|
if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE && JTOffset != 0) {
|
|
// Adjust the size of this jump table and create a new one if necessary.
|
|
// We cannot re-use the entries since the offsets are relative to the
|
|
// table start.
|
|
DEBUG(dbgs() << "BOLT-DEBUG: adjusting size of jump table at 0x"
|
|
<< Twine::utohexstr(JT->Address) << '\n');
|
|
JT->OffsetEntries.resize(JTOffset / JT->EntrySize);
|
|
} else {
|
|
// Re-use an existing jump table. Perhaps parts of it.
|
|
if (Type != IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
|
|
assert(JT->Type == JumpTable::JTT_NORMAL &&
|
|
"normal jump table expected");
|
|
Type = IndirectBranchType::POSSIBLE_JUMP_TABLE;
|
|
} else {
|
|
assert(JT->Type == JumpTable::JTT_PIC && "PIC jump table expected");
|
|
}
|
|
|
|
// Get or create a new label for the table.
|
|
auto LI = JT->Labels.find(JTOffset);
|
|
if (LI == JT->Labels.end()) {
|
|
auto *JTStartLabel = BC.getOrCreateGlobalSymbol(ArrayStart,
|
|
"JUMP_TABLEat");
|
|
auto Result = JT->Labels.emplace(JTOffset, JTStartLabel);
|
|
assert(Result.second && "error adding jump table label");
|
|
LI = Result.first;
|
|
}
|
|
|
|
BC.MIA->replaceMemOperandDisp(*MemLocInstr, LI->second, BC.Ctx.get());
|
|
BC.MIA->setJumpTable(Instruction, ArrayStart);
|
|
|
|
JTSites.emplace_back(Offset, ArrayStart);
|
|
|
|
return Type;
|
|
}
|
|
}
|
|
|
|
auto SectionOrError = BC.getSectionForAddress(ArrayStart);
|
|
if (!SectionOrError) {
|
|
// No section - possibly an absolute address. Since we don't allow
|
|
// internal function addresses to escape the function scope - we
|
|
// consider it a tail call.
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: no section for address 0x"
|
|
<< Twine::utohexstr(ArrayStart) << " referenced from function "
|
|
<< *this << '\n';
|
|
}
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
}
|
|
auto &Section = *SectionOrError;
|
|
if (Section.isVirtual()) {
|
|
// The contents are filled at runtime.
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
}
|
|
// Extract the value at the start of the array.
|
|
StringRef SectionContents;
|
|
Section.getContents(SectionContents);
|
|
auto EntrySize =
|
|
Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE ? 4 : PtrSize;
|
|
DataExtractor DE(SectionContents, BC.AsmInfo->isLittleEndian(), EntrySize);
|
|
auto ValueOffset = static_cast<uint32_t>(ArrayStart - Section.getAddress());
|
|
uint64_t Value = 0;
|
|
std::vector<uint64_t> JTOffsetCandidates;
|
|
while (ValueOffset <= Section.getSize() - EntrySize) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: indirect jmp at 0x"
|
|
<< Twine::utohexstr(getAddress() + Offset)
|
|
<< " is referencing address 0x"
|
|
<< Twine::utohexstr(Section.getAddress() + ValueOffset));
|
|
// Extract the value and increment the offset.
|
|
if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
|
|
Value = ArrayStart + DE.getSigned(&ValueOffset, 4);
|
|
} else {
|
|
Value = DE.getAddress(&ValueOffset);
|
|
}
|
|
DEBUG(dbgs() << ", which contains value "
|
|
<< Twine::utohexstr(Value) << '\n');
|
|
if (containsAddress(Value) && Value != getAddress()) {
|
|
// Is it possible to have a jump table with function start as an entry?
|
|
JTOffsetCandidates.push_back(Value - getAddress());
|
|
if (Type == IndirectBranchType::UNKNOWN)
|
|
Type = IndirectBranchType::POSSIBLE_JUMP_TABLE;
|
|
continue;
|
|
}
|
|
// Potentially a switch table can contain __builtin_unreachable() entry
|
|
// pointing just right after the function. In this case we have to check
|
|
// another entry. Otherwise the entry is outside of this function scope
|
|
// and it's not a switch table.
|
|
if (Value == getAddress() + getSize()) {
|
|
JTOffsetCandidates.push_back(Value - getAddress());
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (Type == IndirectBranchType::POSSIBLE_JUMP_TABLE ||
|
|
Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
|
|
assert(JTOffsetCandidates.size() > 2 &&
|
|
"expected more than 2 jump table entries");
|
|
auto *JTStartLabel = BC.getOrCreateGlobalSymbol(ArrayStart, "JUMP_TABLEat");
|
|
DEBUG(dbgs() << "BOLT-DEBUG: creating jump table "
|
|
<< JTStartLabel->getName()
|
|
<< " in function " << *this << " with "
|
|
<< JTOffsetCandidates.size() << " entries.\n");
|
|
auto JumpTableType =
|
|
Type == IndirectBranchType::POSSIBLE_JUMP_TABLE
|
|
? JumpTable::JTT_NORMAL
|
|
: JumpTable::JTT_PIC;
|
|
JumpTables.emplace(ArrayStart, JumpTable{ArrayStart,
|
|
EntrySize,
|
|
JumpTableType,
|
|
std::move(JTOffsetCandidates),
|
|
{{0, JTStartLabel}}});
|
|
BC.MIA->replaceMemOperandDisp(*MemLocInstr, JTStartLabel, BC.Ctx.get());
|
|
BC.MIA->setJumpTable(Instruction, ArrayStart);
|
|
|
|
JTSites.emplace_back(Offset, ArrayStart);
|
|
|
|
return Type;
|
|
}
|
|
BC.InterproceduralReferences.insert(Value);
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
}
|
|
|
|
MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
|
|
bool CreatePastEnd) {
|
|
MCSymbol *Result;
|
|
// Check if there's already a registered label.
|
|
auto Offset = Address - getAddress();
|
|
|
|
if ((Offset == getSize()) && CreatePastEnd)
|
|
return getFunctionEndLabel();
|
|
|
|
// Check if there's a global symbol registered at given address.
|
|
// If so - reuse it since we want to keep the symbol value updated.
|
|
if (Offset != 0) {
|
|
if (auto *Symbol = BC.getGlobalSymbolAtAddress(Address)) {
|
|
Labels[Offset] = Symbol;
|
|
return Symbol;
|
|
}
|
|
}
|
|
|
|
auto LI = Labels.find(Offset);
|
|
if (LI == Labels.end()) {
|
|
Result = BC.Ctx->createTempSymbol();
|
|
Labels[Offset] = Result;
|
|
} else {
|
|
Result = LI->second;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void BinaryFunction::disassemble(ArrayRef<uint8_t> FunctionData) {
|
|
assert(FunctionData.size() == getSize() &&
|
|
"function size does not match raw data size");
|
|
|
|
auto &Ctx = BC.Ctx;
|
|
auto &MIA = BC.MIA;
|
|
auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames());
|
|
|
|
DWARFUnitLineTable ULT = getDWARFUnitLineTable();
|
|
|
|
// Insert a label at the beginning of the function. This will be our first
|
|
// basic block.
|
|
Labels[0] = Ctx->createTempSymbol("BB0", false);
|
|
addEntryPointAtOffset(0);
|
|
|
|
auto handleRIPOperand =
|
|
[&](MCInst &Instruction, uint64_t Address, uint64_t Size) {
|
|
uint64_t TargetAddress{0};
|
|
MCSymbol *TargetSymbol{nullptr};
|
|
if (!MIA->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
|
|
Size)) {
|
|
errs() << "BOLT-ERROR: rip-relative operand can't be evaluated:\n";
|
|
BC.InstPrinter->printInst(&Instruction, errs(), "", *BC.STI);
|
|
errs() << '\n';
|
|
Instruction.dump_pretty(errs(), BC.InstPrinter.get());
|
|
errs() << '\n';;
|
|
return false;
|
|
}
|
|
if (TargetAddress == 0) {
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: rip-relative operand is zero in function "
|
|
<< *this << ".\n";
|
|
}
|
|
}
|
|
|
|
// Note that the address does not necessarily have to reside inside
|
|
// a section, it could be an absolute address too.
|
|
auto Section = BC.getSectionForAddress(TargetAddress);
|
|
if (Section && Section->isText()) {
|
|
if (containsAddress(TargetAddress)) {
|
|
if (TargetAddress != getAddress()) {
|
|
// The address could potentially escape. Mark it as another entry
|
|
// point into the function.
|
|
DEBUG(dbgs() << "BOLT-DEBUG: potentially escaped address 0x"
|
|
<< Twine::utohexstr(TargetAddress) << " in function "
|
|
<< *this << '\n');
|
|
TargetSymbol = getOrCreateLocalLabel(TargetAddress);
|
|
addEntryPointAtOffset(TargetAddress - getAddress());
|
|
}
|
|
} else {
|
|
BC.InterproceduralReferences.insert(TargetAddress);
|
|
}
|
|
}
|
|
if (!TargetSymbol)
|
|
TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "DATAat");
|
|
MIA->replaceMemOperandDisp(
|
|
Instruction, MCOperand::createExpr(MCSymbolRefExpr::create(
|
|
TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx)));
|
|
return true;
|
|
};
|
|
|
|
uint64_t Size = 0; // instruction size
|
|
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
|
|
MCInst Instruction;
|
|
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
|
|
|
|
if (!BC.DisAsm->getInstruction(Instruction,
|
|
Size,
|
|
FunctionData.slice(Offset),
|
|
AbsoluteInstrAddr,
|
|
nulls(),
|
|
nulls())) {
|
|
// Functions with "soft" boundaries, e.g. coming from assembly source,
|
|
// can have 0-byte padding at the end.
|
|
bool IsZeroPadding = true;
|
|
for (auto I = Offset; I < getSize(); ++I) {
|
|
if (FunctionData[I] != 0) {
|
|
IsZeroPadding = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!IsZeroPadding) {
|
|
// Ignore this function. Skip to the next one in non-relocs mode.
|
|
errs() << "BOLT-ERROR: unable to disassemble instruction at offset 0x"
|
|
<< Twine::utohexstr(Offset) << " (address 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function "
|
|
<< *this << '\n';
|
|
IsSimple = false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Cannot process functions with AVX-512 instructions.
|
|
if (MIA->hasEVEXEncoding(Instruction)) {
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: function " << *this << " uses instruction"
|
|
" encoded with EVEX (AVX-512) at offset 0x"
|
|
<< Twine::utohexstr(Offset) << ". Disassembly could be wrong."
|
|
" Skipping further processing.\n";
|
|
}
|
|
IsSimple = false;
|
|
break;
|
|
}
|
|
|
|
// Check if there's a relocation associated with this instruction.
|
|
if (!Relocations.empty()) {
|
|
auto RI = Relocations.lower_bound(Offset);
|
|
if (RI != Relocations.end() && RI->first < Offset + Size) {
|
|
const auto &Relocation = RI->second;
|
|
DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate with relocation"
|
|
" against " << Relocation.Symbol->getName()
|
|
<< " in function " << *this
|
|
<< " for instruction at offset 0x"
|
|
<< Twine::utohexstr(Offset) << '\n');
|
|
int64_t Value;
|
|
const auto Result =
|
|
BC.MIA->replaceImmWithSymbol(Instruction, Relocation.Symbol,
|
|
Relocation.Addend, BC.Ctx.get(), Value);
|
|
assert(Result && "cannot replace immediate with relocation");
|
|
|
|
// Make sure we replaced the correct immediate (instruction
|
|
// can have multiple immediate operands).
|
|
assert(static_cast<uint64_t>(Value) == Relocation.Value &&
|
|
"immediate value mismatch in function");
|
|
}
|
|
}
|
|
|
|
// Convert instruction to a shorter version that could be relaxed if needed.
|
|
MIA->shortenInstruction(Instruction);
|
|
|
|
if (MIA->isBranch(Instruction) || MIA->isCall(Instruction)) {
|
|
uint64_t TargetAddress = 0;
|
|
if (MIA->evaluateBranch(Instruction,
|
|
AbsoluteInstrAddr,
|
|
Size,
|
|
TargetAddress)) {
|
|
// Check if the target is within the same function. Otherwise it's
|
|
// a call, possibly a tail call.
|
|
//
|
|
// If the target *is* the function address it could be either a branch
|
|
// or a recursive call.
|
|
bool IsCall = MIA->isCall(Instruction);
|
|
const bool IsCondBranch = MIA->isConditionalBranch(Instruction);
|
|
MCSymbol *TargetSymbol{nullptr};
|
|
|
|
if (IsCall && containsAddress(TargetAddress)) {
|
|
if (TargetAddress == getAddress()) {
|
|
// Recursive call.
|
|
TargetSymbol = getSymbol();
|
|
} else {
|
|
// Possibly an old-style PIC code
|
|
errs() << "BOLT-WARNING: internal call detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< " in function " << *this << ". Skipping.\n";
|
|
IsSimple = false;
|
|
}
|
|
}
|
|
|
|
if (!TargetSymbol) {
|
|
// Create either local label or external symbol.
|
|
if (containsAddress(TargetAddress)) {
|
|
TargetSymbol = getOrCreateLocalLabel(TargetAddress);
|
|
} else {
|
|
if (TargetAddress == getAddress() + getSize() &&
|
|
TargetAddress < getAddress() + getMaxSize()) {
|
|
// Result of __builtin_unreachable().
|
|
DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< " in function " << *this
|
|
<< " : replacing with nop.\n");
|
|
BC.MIA->createNoop(Instruction);
|
|
if (IsCondBranch) {
|
|
// Register branch function profile validation.
|
|
IgnoredBranches.emplace_back(Offset, Offset + Size);
|
|
}
|
|
goto add_instruction;
|
|
}
|
|
BC.InterproceduralReferences.insert(TargetAddress);
|
|
if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !opts::Relocs) {
|
|
errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< " in function " << *this
|
|
<< ". Code size will be increased.\n";
|
|
}
|
|
|
|
assert(!MIA->isTailCall(Instruction) &&
|
|
"synthetic tail call instruction found");
|
|
|
|
// This is a call regardless of the opcode.
|
|
// Assign proper opcode for tail calls, so that they could be
|
|
// treated as calls.
|
|
if (!IsCall) {
|
|
if (!MIA->convertJmpToTailCall(Instruction) &&
|
|
opts::Verbosity >= 2) {
|
|
assert(IsCondBranch && "unknown tail call instruction");
|
|
errs() << "BOLT-WARNING: conditional tail call detected in "
|
|
<< "function " << *this << " at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
|
|
}
|
|
// TODO: A better way to do this would be using annotations for
|
|
// MCInst objects.
|
|
TailCallOffsets.emplace(std::make_pair(Offset,
|
|
TargetAddress));
|
|
IsCall = true;
|
|
}
|
|
|
|
TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress,
|
|
"FUNCat");
|
|
if (TargetAddress == 0) {
|
|
// We actually see calls to address 0 in presence of weak symbols
|
|
// originating from libraries. This code is never meant to be
|
|
// executed.
|
|
if (opts::Verbosity >= 2) {
|
|
outs() << "BOLT-INFO: Function " << *this
|
|
<< " has a call to address zero.\n";
|
|
}
|
|
}
|
|
|
|
if (opts::Relocs) {
|
|
// Check if we need to create relocation to move this function's
|
|
// code without re-assembly.
|
|
size_t RelSize = (Size < 5) ? 1 : 4;
|
|
auto RelOffset = Offset + Size - RelSize;
|
|
auto RI = MoveRelocations.find(RelOffset);
|
|
if (RI == MoveRelocations.end()) {
|
|
uint64_t RelType = (RelSize == 1) ? ELF::R_X86_64_PC8
|
|
: ELF::R_X86_64_PC32;
|
|
DEBUG(dbgs() << "BOLT-DEBUG: creating relocation for static"
|
|
<< " function call to " << TargetSymbol->getName()
|
|
<< " at offset 0x"
|
|
<< Twine::utohexstr(RelOffset)
|
|
<< " with size " << RelSize
|
|
<< " for function " << *this << '\n');
|
|
addRelocation(getAddress() + RelOffset, TargetSymbol, RelType,
|
|
-RelSize, 0);
|
|
}
|
|
auto OI = PCRelativeRelocationOffsets.find(RelOffset);
|
|
if (OI != PCRelativeRelocationOffsets.end()) {
|
|
PCRelativeRelocationOffsets.erase(OI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!IsCall) {
|
|
// Add taken branch info.
|
|
TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
|
|
}
|
|
if (IsCondBranch) {
|
|
// Add fallthrough branch info.
|
|
FTBranches.emplace_back(Offset, Offset + Size);
|
|
}
|
|
|
|
const bool isIndirect =
|
|
((IsCall || !IsCondBranch) && MIA->isIndirectBranch(Instruction));
|
|
|
|
Instruction.clear();
|
|
Instruction.addOperand(
|
|
MCOperand::createExpr(
|
|
MCSymbolRefExpr::create(TargetSymbol,
|
|
MCSymbolRefExpr::VK_None,
|
|
*Ctx)));
|
|
|
|
if (BranchDataOrErr) {
|
|
if (IsCall) {
|
|
MIA->addAnnotation(Ctx.get(), Instruction, "EdgeCountData", Offset);
|
|
}
|
|
if (isIndirect) {
|
|
MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData",
|
|
Offset);
|
|
}
|
|
}
|
|
} else {
|
|
// Could not evaluate branch. Should be an indirect call or an
|
|
// indirect branch. Bail out on the latter case.
|
|
bool MaybeEdgeCountData = false;
|
|
if (MIA->isIndirectBranch(Instruction)) {
|
|
auto Result = analyzeIndirectBranch(Instruction, Size, Offset);
|
|
switch (Result) {
|
|
default:
|
|
llvm_unreachable("unexpected result");
|
|
case IndirectBranchType::POSSIBLE_TAIL_CALL:
|
|
{
|
|
auto Result = MIA->convertJmpToTailCall(Instruction);
|
|
assert(Result);
|
|
if (BranchDataOrErr) {
|
|
MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData",
|
|
Offset);
|
|
}
|
|
}
|
|
break;
|
|
case IndirectBranchType::POSSIBLE_JUMP_TABLE:
|
|
case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
|
|
if (opts::JumpTables == JTS_NONE)
|
|
IsSimple = false;
|
|
MaybeEdgeCountData = true;
|
|
break;
|
|
case IndirectBranchType::UNKNOWN:
|
|
// Keep processing. We'll do more checks and fixes in
|
|
// postProcessIndirectBranches().
|
|
MaybeEdgeCountData = true;
|
|
if (BranchDataOrErr) {
|
|
MIA->addAnnotation(Ctx.get(),
|
|
Instruction,
|
|
"MaybeIndirectBranchData",
|
|
Offset);
|
|
}
|
|
break;
|
|
};
|
|
} else if (MIA->isCall(Instruction)) {
|
|
if (BranchDataOrErr) {
|
|
MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData",
|
|
Offset);
|
|
}
|
|
}
|
|
if (BranchDataOrErr) {
|
|
const char* AttrName =
|
|
MaybeEdgeCountData ? "MaybeEdgeCountData" : "EdgeCountData";
|
|
MIA->addAnnotation(Ctx.get(), Instruction, AttrName, Offset);
|
|
}
|
|
// Indirect call. We only need to fix it if the operand is RIP-relative
|
|
if (IsSimple && MIA->hasRIPOperand(Instruction)) {
|
|
if (!handleRIPOperand(Instruction, AbsoluteInstrAddr, Size)) {
|
|
errs() << "BOLT-ERROR: cannot handle RIP operand at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< ". Skipping function " << *this << ".\n";
|
|
IsSimple = false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (MIA->hasRIPOperand(Instruction)) {
|
|
if (!handleRIPOperand(Instruction, AbsoluteInstrAddr, Size)) {
|
|
errs() << "BOLT-ERROR: cannot handle RIP operand at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< ". Skipping function " << *this << ".\n";
|
|
IsSimple = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
add_instruction:
|
|
if (ULT.first && ULT.second) {
|
|
Instruction.setLoc(
|
|
findDebugLineInformationForInstructionAt(AbsoluteInstrAddr, ULT));
|
|
}
|
|
|
|
addInstruction(Offset, std::move(Instruction));
|
|
}
|
|
|
|
postProcessJumpTables();
|
|
|
|
// Update state.
|
|
updateState(State::Disassembled);
|
|
}
|
|
|
|
void BinaryFunction::postProcessJumpTables() {
|
|
// Create labels for all entries.
|
|
for (auto &JTI : JumpTables) {
|
|
auto &JT = JTI.second;
|
|
for (auto Offset : JT.OffsetEntries) {
|
|
auto *Label = getOrCreateLocalLabel(getAddress() + Offset,
|
|
/*CreatePastEnd*/ true);
|
|
JT.Entries.push_back(Label);
|
|
}
|
|
}
|
|
|
|
// Add TakenBranches from JumpTables.
|
|
//
|
|
// We want to do it after initial processing since we don't know jump tables'
|
|
// boundaries until we process them all.
|
|
for (auto &JTSite : JTSites) {
|
|
const auto JTSiteOffset = JTSite.first;
|
|
const auto JTAddress = JTSite.second;
|
|
const auto *JT = getJumpTableContainingAddress(JTAddress);
|
|
assert(JT && "cannot find jump table for address");
|
|
auto EntryOffset = JTAddress - JT->Address;
|
|
while (EntryOffset < JT->getSize()) {
|
|
auto TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize];
|
|
if (TargetOffset < getSize())
|
|
TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
|
|
|
|
// Take ownership of jump table relocations.
|
|
if (opts::Relocs)
|
|
BC.removeRelocationAt(JT->Address + EntryOffset);
|
|
|
|
EntryOffset += JT->EntrySize;
|
|
|
|
// A label at the next entry means the end of this jump table.
|
|
if (JT->Labels.count(EntryOffset))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Free memory used by jump table offsets.
|
|
for (auto &JTI : JumpTables) {
|
|
auto &JT = JTI.second;
|
|
clearList(JT.OffsetEntries);
|
|
}
|
|
|
|
// Remove duplicates branches. We can get a bunch of them from jump tables.
|
|
// Without doing jump table value profiling we don't have use for extra
|
|
// (duplicate) branches.
|
|
std::sort(TakenBranches.begin(), TakenBranches.end());
|
|
auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
|
|
TakenBranches.erase(NewEnd, TakenBranches.end());
|
|
}
|
|
|
|
bool BinaryFunction::postProcessIndirectBranches() {
|
|
auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames());
|
|
|
|
for (auto *BB : layout()) {
|
|
for (auto &Instr : *BB) {
|
|
if (!BC.MIA->isIndirectBranch(Instr))
|
|
continue;
|
|
|
|
// If there's an indirect branch in a single-block function -
|
|
// it must be a tail call.
|
|
if (layout_size() == 1) {
|
|
BC.MIA->convertJmpToTailCall(Instr);
|
|
BC.MIA->renameAnnotation(Instr,
|
|
"MaybeEdgeCountData",
|
|
"EdgeCountData");
|
|
BC.MIA->renameAnnotation(Instr,
|
|
"MaybeIndirectBranchData",
|
|
"IndirectBranchData");
|
|
return true;
|
|
}
|
|
|
|
// Validate the tail call or jump table assumptions.
|
|
if (BC.MIA->isTailCall(Instr) || BC.MIA->getJumpTable(Instr)) {
|
|
if (BC.MIA->getMemoryOperandNo(Instr) != -1) {
|
|
// We have validated memory contents addressed by the jump
|
|
// instruction already.
|
|
continue;
|
|
}
|
|
// This is jump on register. Just make sure the register is defined
|
|
// in the containing basic block. Other assumptions were checked
|
|
// earlier.
|
|
assert(Instr.getOperand(0).isReg() && "register operand expected");
|
|
const auto R1 = Instr.getOperand(0).getReg();
|
|
auto PrevInstr = BB->rbegin();
|
|
while (PrevInstr != BB->rend()) {
|
|
const auto &PrevInstrDesc = BC.MII->get(PrevInstr->getOpcode());
|
|
if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R1, *BC.MRI)) {
|
|
break;
|
|
}
|
|
++PrevInstr;
|
|
}
|
|
if (PrevInstr == BB->rend()) {
|
|
if (opts::Verbosity >= 2) {
|
|
outs() << "BOLT-INFO: rejected potential "
|
|
<< (BC.MIA->isTailCall(Instr) ? "indirect tail call"
|
|
: "jump table")
|
|
<< " in function " << *this
|
|
<< " because the jump-on register was not defined in "
|
|
<< " basic block " << BB->getName() << ".\n";
|
|
DEBUG(dbgs() << BC.printInstructions(dbgs(), BB->begin(), BB->end(),
|
|
BB->getOffset(), this, true));
|
|
}
|
|
return false;
|
|
}
|
|
// In case of PIC jump table we need to do more checks.
|
|
if (BC.MIA->isMoveMem2Reg(*PrevInstr))
|
|
continue;
|
|
assert(BC.MIA->isADD64rr(*PrevInstr) && "add instruction expected");
|
|
auto R2 = PrevInstr->getOperand(2).getReg();
|
|
// Make sure both regs are set in the same basic block prior to ADD.
|
|
bool IsR1Set = false;
|
|
bool IsR2Set = false;
|
|
while ((++PrevInstr != BB->rend()) && !(IsR1Set && IsR2Set)) {
|
|
const auto &PrevInstrDesc = BC.MII->get(PrevInstr->getOpcode());
|
|
if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R1, *BC.MRI))
|
|
IsR1Set = true;
|
|
else if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R2, *BC.MRI))
|
|
IsR2Set = true;
|
|
}
|
|
|
|
if (!IsR1Set || !IsR2Set)
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If this block contains an epilogue code and has an indirect branch,
|
|
// then most likely it's a tail call. Otherwise, we cannot tell for sure
|
|
// what it is and conservatively reject the function's CFG.
|
|
bool IsEpilogue = false;
|
|
for (const auto &Instr : *BB) {
|
|
if (BC.MIA->isLeave(Instr) || BC.MIA->isPop(Instr)) {
|
|
IsEpilogue = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!IsEpilogue) {
|
|
if (opts::Verbosity >= 2) {
|
|
outs() << "BOLT-INFO: rejected potential indirect tail call in "
|
|
<< "function " << *this << " in basic block "
|
|
<< BB->getName() << ".\n";
|
|
DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(),
|
|
BB->getOffset(), this, true));
|
|
}
|
|
return false;
|
|
}
|
|
BC.MIA->convertJmpToTailCall(Instr);
|
|
BC.MIA->renameAnnotation(Instr,
|
|
"MaybeEdgeCountData",
|
|
"EdgeCountData");
|
|
BC.MIA->renameAnnotation(Instr,
|
|
"MaybeIndirectBranchData",
|
|
"IndirectBranchData");
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::clearLandingPads(const unsigned StartIndex,
|
|
const unsigned NumBlocks) {
|
|
// remove all landing pads/throws for the given collection of blocks
|
|
for (auto I = StartIndex; I < StartIndex + NumBlocks; ++I) {
|
|
BasicBlocks[I]->clearLandingPads();
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::addLandingPads(const unsigned StartIndex,
|
|
const unsigned NumBlocks) {
|
|
for (auto *BB : BasicBlocks) {
|
|
if (LandingPads.find(BB->getLabel()) != LandingPads.end()) {
|
|
const MCSymbol *LP = BB->getLabel();
|
|
for (unsigned I : LPToBBIndex[LP]) {
|
|
assert(I < BasicBlocks.size());
|
|
BinaryBasicBlock *ThrowBB = BasicBlocks[I];
|
|
const unsigned ThrowBBIndex = getIndex(ThrowBB);
|
|
if (ThrowBBIndex >= StartIndex && ThrowBBIndex < StartIndex + NumBlocks)
|
|
ThrowBB->addLandingPad(BB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::recomputeLandingPads(const unsigned StartIndex,
|
|
const unsigned NumBlocks) {
|
|
assert(LPToBBIndex.empty());
|
|
|
|
clearLandingPads(StartIndex, NumBlocks);
|
|
|
|
for (auto I = StartIndex; I < StartIndex + NumBlocks; ++I) {
|
|
auto *BB = BasicBlocks[I];
|
|
for (auto &Instr : BB->instructions()) {
|
|
// Store info about associated landing pad.
|
|
if (BC.MIA->isInvoke(Instr)) {
|
|
const MCSymbol *LP;
|
|
uint64_t Action;
|
|
std::tie(LP, Action) = BC.MIA->getEHInfo(Instr);
|
|
if (LP) {
|
|
LPToBBIndex[LP].push_back(getIndex(BB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
addLandingPads(StartIndex, NumBlocks);
|
|
|
|
clearList(LPToBBIndex);
|
|
}
|
|
|
|
bool BinaryFunction::buildCFG() {
|
|
auto &MIA = BC.MIA;
|
|
|
|
auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames());
|
|
if (!BranchDataOrErr) {
|
|
DEBUG(dbgs() << "no branch data found for \"" << *this << "\"\n");
|
|
} else {
|
|
ExecutionCount = BranchDataOrErr->ExecutionCount;
|
|
}
|
|
|
|
if (!isSimple()) {
|
|
assert(!opts::Relocs &&
|
|
"cannot process file with non-simple function in relocs mode");
|
|
return false;
|
|
}
|
|
|
|
if (!(CurrentState == State::Disassembled))
|
|
return false;
|
|
|
|
assert(BasicBlocks.empty() && "basic block list should be empty");
|
|
assert((Labels.find(0) != Labels.end()) &&
|
|
"first instruction should always have a label");
|
|
|
|
// Create basic blocks in the original layout order:
|
|
//
|
|
// * Every instruction with associated label marks
|
|
// the beginning of a basic block.
|
|
// * Conditional instruction marks the end of a basic block,
|
|
// except when the following instruction is an
|
|
// unconditional branch, and the unconditional branch is not
|
|
// a destination of another branch. In the latter case, the
|
|
// basic block will consist of a single unconditional branch
|
|
// (missed optimization opportunity?).
|
|
//
|
|
// Created basic blocks are sorted in layout order since they are
|
|
// created in the same order as instructions, and instructions are
|
|
// sorted by offsets.
|
|
BinaryBasicBlock *InsertBB{nullptr};
|
|
BinaryBasicBlock *PrevBB{nullptr};
|
|
bool IsLastInstrNop{false};
|
|
bool IsPreviousInstrTailCall{false};
|
|
const MCInst *PrevInstr{nullptr};
|
|
|
|
auto addCFIPlaceholders =
|
|
[this](uint64_t CFIOffset, BinaryBasicBlock *InsertBB) {
|
|
for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
|
|
FE = OffsetToCFI.upper_bound(CFIOffset);
|
|
FI != FE; ++FI) {
|
|
addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
|
|
}
|
|
};
|
|
|
|
for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
|
|
const uint32_t Offset = I->first;
|
|
const auto &Instr = I->second;
|
|
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
// Always create new BB at branch destination.
|
|
PrevBB = InsertBB;
|
|
InsertBB = addBasicBlock(LI->first, LI->second,
|
|
/* DeriveAlignment = */ IsLastInstrNop);
|
|
if (hasEntryPointAtOffset(Offset))
|
|
InsertBB->setEntryPoint();
|
|
}
|
|
// Ignore nops. We use nops to derive alignment of the next basic block.
|
|
// It will not always work, as some blocks are naturally aligned, but
|
|
// it's just part of heuristic for block alignment.
|
|
if (MIA->isNoop(Instr)) {
|
|
IsLastInstrNop = true;
|
|
continue;
|
|
}
|
|
if (!InsertBB) {
|
|
// It must be a fallthrough or unreachable code. Create a new block unless
|
|
// we see an unconditional branch following a conditional one.
|
|
assert(PrevBB && "no previous basic block for a fall through");
|
|
assert(PrevInstr && "no previous instruction for a fall through");
|
|
if (MIA->isUnconditionalBranch(Instr) &&
|
|
!MIA->isUnconditionalBranch(*PrevInstr) && !IsPreviousInstrTailCall) {
|
|
// Temporarily restore inserter basic block.
|
|
InsertBB = PrevBB;
|
|
} else {
|
|
InsertBB = addBasicBlock(Offset,
|
|
BC.Ctx->createTempSymbol("FT", true),
|
|
/* DeriveAlignment = */ IsLastInstrNop);
|
|
}
|
|
}
|
|
if (Offset == 0) {
|
|
// Add associated CFI pseudos in the first offset (0)
|
|
addCFIPlaceholders(0, InsertBB);
|
|
}
|
|
|
|
IsLastInstrNop = false;
|
|
uint32_t InsertIndex = InsertBB->addInstruction(Instr);
|
|
PrevInstr = &Instr;
|
|
|
|
// Record whether this basic block is terminated with a tail call.
|
|
auto TCI = TailCallOffsets.find(Offset);
|
|
if (TCI != TailCallOffsets.end()) {
|
|
uint64_t TargetAddr = TCI->second;
|
|
TailCallTerminatedBlocks.emplace(
|
|
std::make_pair(InsertBB,
|
|
TailCallInfo(Offset, InsertIndex, TargetAddr)));
|
|
IsPreviousInstrTailCall = true;
|
|
} else {
|
|
IsPreviousInstrTailCall = false;
|
|
}
|
|
|
|
// Add associated CFI instrs. We always add the CFI instruction that is
|
|
// located immediately after this instruction, since the next CFI
|
|
// instruction reflects the change in state caused by this instruction.
|
|
auto NextInstr = std::next(I);
|
|
uint64_t CFIOffset;
|
|
if (NextInstr != E)
|
|
CFIOffset = NextInstr->first;
|
|
else
|
|
CFIOffset = getSize();
|
|
addCFIPlaceholders(CFIOffset, InsertBB);
|
|
|
|
// Store info about associated landing pad.
|
|
if (MIA->isInvoke(Instr)) {
|
|
const MCSymbol *LP;
|
|
uint64_t Action;
|
|
std::tie(LP, Action) = MIA->getEHInfo(Instr);
|
|
if (LP) {
|
|
LPToBBIndex[LP].push_back(getIndex(InsertBB));
|
|
}
|
|
}
|
|
|
|
// How well do we detect tail calls here?
|
|
if (MIA->isTerminator(Instr)) {
|
|
PrevBB = InsertBB;
|
|
InsertBB = nullptr;
|
|
}
|
|
}
|
|
|
|
if (BasicBlocks.empty()) {
|
|
setSimple(false);
|
|
return false;
|
|
}
|
|
|
|
// Intermediate dump.
|
|
DEBUG(print(dbgs(), "after creating basic blocks"));
|
|
|
|
// TODO: handle properly calls to no-return functions,
|
|
// e.g. exit(3), etc. Otherwise we'll see a false fall-through
|
|
// blocks.
|
|
|
|
// Make sure we can use profile data for this function.
|
|
if (BranchDataOrErr)
|
|
evaluateProfileData(BranchDataOrErr.get());
|
|
|
|
for (auto &Branch : TakenBranches) {
|
|
DEBUG(dbgs() << "registering branch [0x" << Twine::utohexstr(Branch.first)
|
|
<< "] -> [0x" << Twine::utohexstr(Branch.second) << "]\n");
|
|
auto *FromBB = getBasicBlockContainingOffset(Branch.first);
|
|
assert(FromBB && "cannot find BB containing FROM branch");
|
|
auto *ToBB = getBasicBlockAtOffset(Branch.second);
|
|
assert(ToBB && "cannot find BB containing TO branch");
|
|
|
|
if (BranchDataOrErr.getError()) {
|
|
FromBB->addSuccessor(ToBB);
|
|
} else {
|
|
const FuncBranchData &BranchData = BranchDataOrErr.get();
|
|
auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second);
|
|
if (BranchInfoOrErr.getError()) {
|
|
FromBB->addSuccessor(ToBB);
|
|
} else {
|
|
const BranchInfo &BInfo = BranchInfoOrErr.get();
|
|
FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds);
|
|
// Populate profile counts for the jump table.
|
|
auto *LastInstr = FromBB->getLastNonPseudoInstr();
|
|
if (!LastInstr)
|
|
continue;
|
|
auto JTAddress = BC.MIA->getJumpTable(*LastInstr);
|
|
if (!JTAddress)
|
|
continue;
|
|
auto *JT = getJumpTableContainingAddress(JTAddress);
|
|
if (!JT)
|
|
continue;
|
|
JT->Count += BInfo.Branches;
|
|
if (opts::IndirectCallPromotion < ICP_JUMP_TABLES &&
|
|
opts::JumpTables < JTS_AGGRESSIVE)
|
|
continue;
|
|
if (JT->Counts.empty())
|
|
JT->Counts.resize(JT->Entries.size());
|
|
auto EI = JT->Entries.begin();
|
|
auto Delta = (JTAddress - JT->Address) / JT->EntrySize;
|
|
EI += Delta;
|
|
while (EI != JT->Entries.end()) {
|
|
if (ToBB->getLabel() == *EI) {
|
|
assert(Delta < JT->Counts.size());
|
|
JT->Counts[Delta].Mispreds += BInfo.Mispreds;
|
|
JT->Counts[Delta].Count += BInfo.Branches;
|
|
}
|
|
++Delta;
|
|
++EI;
|
|
// A label marks the start of another jump table.
|
|
if (JT->Labels.count(Delta * JT->EntrySize))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &Branch : FTBranches) {
|
|
DEBUG(dbgs() << "registering fallthrough [0x"
|
|
<< Twine::utohexstr(Branch.first) << "] -> [0x"
|
|
<< Twine::utohexstr(Branch.second) << "]\n");
|
|
auto *FromBB = getBasicBlockContainingOffset(Branch.first);
|
|
assert(FromBB && "cannot find BB containing FROM branch");
|
|
// Try to find the destination basic block. If the jump instruction was
|
|
// followed by a no-op then the destination offset recorded in FTBranches
|
|
// will point to that no-op but the destination basic block will start
|
|
// after the no-op due to ignoring no-ops when creating basic blocks.
|
|
// So we have to skip any no-ops when trying to find the destination
|
|
// basic block.
|
|
auto *ToBB = getBasicBlockAtOffset(Branch.second);
|
|
if (ToBB == nullptr) {
|
|
auto I = Instructions.find(Branch.second), E = Instructions.end();
|
|
while (ToBB == nullptr && I != E && MIA->isNoop(I->second)) {
|
|
++I;
|
|
if (I == E)
|
|
break;
|
|
ToBB = getBasicBlockAtOffset(I->first);
|
|
}
|
|
if (ToBB == nullptr) {
|
|
// We have a fall-through that does not point to another BB, ignore it
|
|
// as it may happen in cases where we have a BB finished by two
|
|
// branches.
|
|
// This can also happen when we delete a branch past the end of a
|
|
// function in case of a call to __builtin_unreachable().
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Does not add a successor if we can't find profile data, leave it to the
|
|
// inference pass to guess its frequency
|
|
if (BranchDataOrErr) {
|
|
const FuncBranchData &BranchData = BranchDataOrErr.get();
|
|
auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second);
|
|
if (BranchInfoOrErr) {
|
|
const BranchInfo &BInfo = BranchInfoOrErr.get();
|
|
FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &I : TailCallTerminatedBlocks) {
|
|
TailCallInfo &TCInfo = I.second;
|
|
if (BranchDataOrErr) {
|
|
const FuncBranchData &BranchData = BranchDataOrErr.get();
|
|
auto BranchInfoOrErr = BranchData.getDirectCallBranch(TCInfo.Offset);
|
|
if (BranchInfoOrErr) {
|
|
const BranchInfo &BInfo = BranchInfoOrErr.get();
|
|
TCInfo.Count = BInfo.Branches;
|
|
TCInfo.Mispreds = BInfo.Mispreds;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add fall-through branches (except for non-taken conditional branches with
|
|
// profile data, which were already accounted for in TakenBranches).
|
|
PrevBB = nullptr;
|
|
bool IsPrevFT = false; // Is previous block a fall-through.
|
|
for (auto BB : BasicBlocks) {
|
|
if (IsPrevFT) {
|
|
PrevBB->addSuccessor(BB, BinaryBasicBlock::COUNT_NO_PROFILE,
|
|
BinaryBasicBlock::COUNT_INFERRED);
|
|
}
|
|
if (BB->empty()) {
|
|
IsPrevFT = true;
|
|
PrevBB = BB;
|
|
continue;
|
|
}
|
|
|
|
auto LastInstIter = --BB->end();
|
|
while (MIA->isCFI(*LastInstIter) && LastInstIter != BB->begin())
|
|
--LastInstIter;
|
|
|
|
// Check if the last instruction is a conditional jump that serves as a tail
|
|
// call.
|
|
bool IsCondTailCall = MIA->isConditionalBranch(*LastInstIter) &&
|
|
TailCallTerminatedBlocks.count(BB);
|
|
|
|
if (BB->succ_size() == 0) {
|
|
if (IsCondTailCall) {
|
|
// Conditional tail call without profile data for non-taken branch.
|
|
IsPrevFT = true;
|
|
} else {
|
|
// Unless the last instruction is a terminator, control will fall
|
|
// through to the next basic block.
|
|
IsPrevFT = MIA->isTerminator(*LastInstIter) ? false : true;
|
|
}
|
|
} else if (BB->succ_size() == 1) {
|
|
if (IsCondTailCall) {
|
|
// Conditional tail call with data for non-taken branch. A fall-through
|
|
// edge has already ben added in the CFG.
|
|
IsPrevFT = false;
|
|
} else {
|
|
// Fall-through should be added if the last instruction is a conditional
|
|
// jump, since there was no profile data for the non-taken branch.
|
|
IsPrevFT = MIA->isConditionalBranch(*LastInstIter) ? true : false;
|
|
}
|
|
} else {
|
|
// Ends with 2 branches, with an indirect jump or it is a conditional
|
|
// branch whose frequency has been inferred from LBR.
|
|
IsPrevFT = false;
|
|
}
|
|
|
|
PrevBB = BB;
|
|
}
|
|
|
|
if (!IsPrevFT) {
|
|
// Possibly a call that does not return.
|
|
DEBUG(dbgs() << "last block was marked as a fall-through\n");
|
|
}
|
|
|
|
// Add associated landing pad blocks to each basic block.
|
|
addLandingPads(0, BasicBlocks.size());
|
|
|
|
// Infer frequency for non-taken branches
|
|
if (hasValidProfile())
|
|
inferFallThroughCounts();
|
|
else
|
|
clearProfile();
|
|
|
|
// Assign CFI information to each BB entry.
|
|
annotateCFIState();
|
|
|
|
// Convert conditional tail call branches to conditional branches that jump
|
|
// to a tail call.
|
|
removeConditionalTailCalls();
|
|
|
|
// Set the basic block layout to the original order.
|
|
for (auto BB : BasicBlocks) {
|
|
BasicBlocksLayout.emplace_back(BB);
|
|
}
|
|
|
|
// Make any necessary adjustments for indirect branches.
|
|
if (!postProcessIndirectBranches()) {
|
|
if (opts::Verbosity) {
|
|
errs() << "BOLT-WARNING: failed to post-process indirect branches for "
|
|
<< *this << '\n';
|
|
}
|
|
// In relocation mode we want to keep processing the function but avoid
|
|
// optimizing it.
|
|
setSimple(false);
|
|
}
|
|
|
|
// Eliminate inconsistencies between branch instructions and CFG.
|
|
postProcessBranches();
|
|
|
|
// Clean-up memory taken by instructions and labels.
|
|
//
|
|
// NB: don't clear Labels list as we may need them if we mark the function
|
|
// as non-simple later in the process of discovering extra entry points.
|
|
clearList(Instructions);
|
|
clearList(TailCallOffsets);
|
|
clearList(TailCallTerminatedBlocks);
|
|
clearList(OffsetToCFI);
|
|
clearList(TakenBranches);
|
|
clearList(FTBranches);
|
|
clearList(IgnoredBranches);
|
|
clearList(LPToBBIndex);
|
|
clearList(EntryOffsets);
|
|
|
|
// Update the state.
|
|
CurrentState = State::CFG;
|
|
|
|
// Annotate invoke instructions with GNU_args_size data.
|
|
propagateGnuArgsSizeInfo();
|
|
|
|
assert(validateCFG() && "Invalid CFG detected after disassembly");
|
|
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::addEntryPoint(uint64_t Address) {
|
|
assert(containsAddress(Address) && "address does not belong to the function");
|
|
|
|
auto Offset = Address - getAddress();
|
|
|
|
DEBUG(dbgs() << "BOLT-INFO: adding external entry point to function " << *this
|
|
<< " at offset 0x" << Twine::utohexstr(Address - getAddress())
|
|
<< '\n');
|
|
|
|
auto *EntrySymbol = BC.getGlobalSymbolAtAddress(Address);
|
|
|
|
// If we haven't disassembled the function yet we can add a new entry point
|
|
// even if it doesn't have an associated entry in the symbol table.
|
|
if (CurrentState == State::Empty) {
|
|
if (!EntrySymbol) {
|
|
DEBUG(dbgs() << "creating local label\n");
|
|
EntrySymbol = getOrCreateLocalLabel(Address);
|
|
} else {
|
|
DEBUG(dbgs() << "using global symbol " << EntrySymbol->getName() << '\n');
|
|
}
|
|
addEntryPointAtOffset(Address - getAddress());
|
|
Labels.emplace(Offset, EntrySymbol);
|
|
return;
|
|
}
|
|
|
|
assert(EntrySymbol && "expected symbol at address");
|
|
|
|
if (isSimple()) {
|
|
// Find basic block corresponding to the address and substitute label.
|
|
auto *BB = getBasicBlockAtOffset(Offset);
|
|
if (!BB) {
|
|
// TODO #14762450: split basic block and process function.
|
|
if (opts::Verbosity || opts::Relocs) {
|
|
errs() << "BOLT-WARNING: no basic block at offset 0x"
|
|
<< Twine::utohexstr(Offset) << " in function " << *this
|
|
<< ". Marking non-simple.\n";
|
|
}
|
|
setSimple(false);
|
|
} else {
|
|
BB->setLabel(EntrySymbol);
|
|
BB->setEntryPoint(true);
|
|
}
|
|
}
|
|
|
|
// Fix/append labels list.
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
LI->second = EntrySymbol;
|
|
} else {
|
|
Labels.emplace(Offset, EntrySymbol);
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::evaluateProfileData(const FuncBranchData &BranchData) {
|
|
BranchListType ProfileBranches(BranchData.Data.size());
|
|
std::transform(BranchData.Data.begin(),
|
|
BranchData.Data.end(),
|
|
ProfileBranches.begin(),
|
|
[](const BranchInfo &BI) {
|
|
return std::make_pair(BI.From.Offset,
|
|
BI.To.Name == BI.From.Name ?
|
|
BI.To.Offset : -1U);
|
|
});
|
|
BranchListType LocalProfileBranches;
|
|
std::copy_if(ProfileBranches.begin(),
|
|
ProfileBranches.end(),
|
|
std::back_inserter(LocalProfileBranches),
|
|
[](const std::pair<uint32_t, uint32_t> &Branch) {
|
|
return Branch.second != -1U;
|
|
});
|
|
|
|
// Until we define a minimal profile, we consider no branch data to be a valid
|
|
// profile. It could happen to a function without branches.
|
|
if (LocalProfileBranches.empty()) {
|
|
ProfileMatchRatio = 1.0f;
|
|
return;
|
|
}
|
|
|
|
std::sort(LocalProfileBranches.begin(), LocalProfileBranches.end());
|
|
|
|
BranchListType FunctionBranches = TakenBranches;
|
|
FunctionBranches.insert(FunctionBranches.end(),
|
|
FTBranches.begin(),
|
|
FTBranches.end());
|
|
FunctionBranches.insert(FunctionBranches.end(),
|
|
IgnoredBranches.begin(),
|
|
IgnoredBranches.end());
|
|
std::sort(FunctionBranches.begin(), FunctionBranches.end());
|
|
|
|
BranchListType DiffBranches; // Branches in profile without a match.
|
|
std::set_difference(LocalProfileBranches.begin(),
|
|
LocalProfileBranches.end(),
|
|
FunctionBranches.begin(),
|
|
FunctionBranches.end(),
|
|
std::back_inserter(DiffBranches));
|
|
|
|
// Branches without a match in CFG.
|
|
BranchListType OrphanBranches;
|
|
|
|
// Eliminate recursive calls and returns from recursive calls from the list
|
|
// of branches that have no match. They are not considered local branches.
|
|
auto isRecursiveBranch = [&](std::pair<uint32_t, uint32_t> &Branch) {
|
|
auto SrcInstrI = Instructions.find(Branch.first);
|
|
if (SrcInstrI == Instructions.end())
|
|
return false;
|
|
|
|
// Check if it is a recursive call.
|
|
if (BC.MIA->isCall(SrcInstrI->second) && Branch.second == 0)
|
|
return true;
|
|
|
|
auto DstInstrI = Instructions.find(Branch.second);
|
|
if (DstInstrI == Instructions.end())
|
|
return false;
|
|
|
|
// Check if it is a return from a recursive call.
|
|
bool IsSrcReturn = BC.MIA->isReturn(SrcInstrI->second);
|
|
// "rep ret" is considered to be 2 different instructions.
|
|
if (!IsSrcReturn && BC.MIA->isPrefix(SrcInstrI->second)) {
|
|
auto SrcInstrSuccessorI = SrcInstrI;
|
|
++SrcInstrSuccessorI;
|
|
assert(SrcInstrSuccessorI != Instructions.end() &&
|
|
"unexpected prefix instruction at the end of function");
|
|
IsSrcReturn = BC.MIA->isReturn(SrcInstrSuccessorI->second);
|
|
}
|
|
if (IsSrcReturn && Branch.second != 0) {
|
|
// Make sure the destination follows the call instruction.
|
|
auto DstInstrPredecessorI = DstInstrI;
|
|
--DstInstrPredecessorI;
|
|
assert(DstInstrPredecessorI != Instructions.end() && "invalid iterator");
|
|
if (BC.MIA->isCall(DstInstrPredecessorI->second))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
std::remove_copy_if(DiffBranches.begin(),
|
|
DiffBranches.end(),
|
|
std::back_inserter(OrphanBranches),
|
|
isRecursiveBranch);
|
|
|
|
ProfileMatchRatio =
|
|
(float) (LocalProfileBranches.size() - OrphanBranches.size()) /
|
|
(float) LocalProfileBranches.size();
|
|
|
|
if (opts::Verbosity >= 1 && !OrphanBranches.empty()) {
|
|
errs() << "BOLT-WARNING: profile branches match only "
|
|
<< format("%.1f%%", ProfileMatchRatio * 100.0f) << " ("
|
|
<< (LocalProfileBranches.size() - OrphanBranches.size()) << '/'
|
|
<< LocalProfileBranches.size() << ") for function "
|
|
<< *this << '\n';
|
|
DEBUG(
|
|
for (auto &OBranch : OrphanBranches)
|
|
errs() << "\t0x" << Twine::utohexstr(OBranch.first) << " -> 0x"
|
|
<< Twine::utohexstr(OBranch.second) << " (0x"
|
|
<< Twine::utohexstr(OBranch.first + getAddress()) << " -> 0x"
|
|
<< Twine::utohexstr(OBranch.second + getAddress()) << ")\n";
|
|
);
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::clearProfile() {
|
|
// Keep function execution profile the same. Only clear basic block and edge
|
|
// counts.
|
|
for (auto *BB : BasicBlocks) {
|
|
BB->ExecutionCount = 0;
|
|
for (auto &BI : BB->branch_info()) {
|
|
BI.Count = 0;
|
|
BI.MispredictedCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void BinaryFunction::inferFallThroughCounts() {
|
|
assert(!BasicBlocks.empty() && "basic block list should not be empty");
|
|
|
|
auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames());
|
|
|
|
// Compute preliminary execution time for each basic block
|
|
for (auto CurBB : BasicBlocks) {
|
|
CurBB->ExecutionCount = 0;
|
|
}
|
|
BasicBlocks.front()->setExecutionCount(ExecutionCount);
|
|
|
|
for (auto CurBB : BasicBlocks) {
|
|
auto SuccCount = CurBB->branch_info_begin();
|
|
for (auto Succ : CurBB->successors()) {
|
|
// Do not update execution count of the entry block (when we have tail
|
|
// calls). We already accounted for those when computing the func count.
|
|
if (Succ == BasicBlocks.front()) {
|
|
++SuccCount;
|
|
continue;
|
|
}
|
|
if (SuccCount->Count != BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
Succ->setExecutionCount(Succ->getExecutionCount() + SuccCount->Count);
|
|
++SuccCount;
|
|
}
|
|
}
|
|
|
|
// Update execution counts of landing pad blocks.
|
|
if (!BranchDataOrErr.getError()) {
|
|
const FuncBranchData &BranchData = BranchDataOrErr.get();
|
|
for (const auto &I : BranchData.EntryData) {
|
|
BinaryBasicBlock *BB = getBasicBlockAtOffset(I.To.Offset);
|
|
if (BB && LandingPads.find(BB->getLabel()) != LandingPads.end()) {
|
|
BB->setExecutionCount(BB->getExecutionCount() + I.Branches);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Work on a basic block at a time, propagating frequency information
|
|
// forwards.
|
|
// It is important to walk in the layout order.
|
|
for (auto CurBB : BasicBlocks) {
|
|
uint64_t BBExecCount = CurBB->getExecutionCount();
|
|
|
|
// Propagate this information to successors, filling in fall-through edges
|
|
// with frequency information
|
|
if (CurBB->succ_size() == 0)
|
|
continue;
|
|
|
|
// Calculate frequency of outgoing branches from this node according to
|
|
// LBR data.
|
|
uint64_t ReportedBranches = 0;
|
|
for (const auto &SuccCount : CurBB->branch_info()) {
|
|
if (SuccCount.Count != BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
ReportedBranches += SuccCount.Count;
|
|
}
|
|
|
|
// Calculate frequency of outgoing tail calls from this node according to
|
|
// LBR data.
|
|
uint64_t ReportedTailCalls = 0;
|
|
auto TCI = TailCallTerminatedBlocks.find(CurBB);
|
|
if (TCI != TailCallTerminatedBlocks.end()) {
|
|
ReportedTailCalls = TCI->second.Count;
|
|
}
|
|
|
|
// Calculate frequency of throws from this node according to LBR data
|
|
// for branching into associated landing pads. Since it is possible
|
|
// for a landing pad to be associated with more than one basic blocks,
|
|
// we may overestimate the frequency of throws for such blocks.
|
|
uint64_t ReportedThrows = 0;
|
|
for (BinaryBasicBlock *LP: CurBB->landing_pads()) {
|
|
ReportedThrows += LP->getExecutionCount();
|
|
}
|
|
|
|
uint64_t TotalReportedJumps =
|
|
ReportedBranches + ReportedTailCalls + ReportedThrows;
|
|
|
|
// Infer the frequency of the fall-through edge, representing not taking the
|
|
// branch.
|
|
uint64_t Inferred = 0;
|
|
if (BBExecCount > TotalReportedJumps)
|
|
Inferred = BBExecCount - TotalReportedJumps;
|
|
|
|
DEBUG({
|
|
if (opts::Verbosity >= 1 && BBExecCount < TotalReportedJumps)
|
|
errs()
|
|
<< "BOLT-WARNING: Fall-through inference is slightly inconsistent. "
|
|
"exec frequency is less than the outgoing edges frequency ("
|
|
<< BBExecCount << " < " << ReportedBranches
|
|
<< ") for BB at offset 0x"
|
|
<< Twine::utohexstr(getAddress() + CurBB->getOffset()) << '\n';
|
|
});
|
|
|
|
if (CurBB->succ_size() <= 2) {
|
|
// If there is an FT it will be the last successor.
|
|
auto &SuccCount = *CurBB->branch_info_rbegin();
|
|
auto &Succ = *CurBB->succ_rbegin();
|
|
if (SuccCount.Count == BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
SuccCount.Count = Inferred;
|
|
Succ->ExecutionCount += Inferred;
|
|
}
|
|
}
|
|
|
|
} // end for (CurBB : BasicBlocks)
|
|
|
|
return;
|
|
}
|
|
|
|
void BinaryFunction::removeConditionalTailCalls() {
|
|
for (auto &I : TailCallTerminatedBlocks) {
|
|
BinaryBasicBlock *BB = I.first;
|
|
TailCallInfo &TCInfo = I.second;
|
|
|
|
// Get the conditional tail call instruction.
|
|
MCInst &CondTailCallInst = BB->getInstructionAtIndex(TCInfo.Index);
|
|
if (!BC.MIA->isConditionalBranch(CondTailCallInst)) {
|
|
// The block is not terminated with a conditional tail call.
|
|
continue;
|
|
}
|
|
|
|
// Assert that the tail call does not throw.
|
|
const MCSymbol *LP;
|
|
uint64_t Action;
|
|
std::tie(LP, Action) = BC.MIA->getEHInfo(CondTailCallInst);
|
|
assert(!LP && "found tail call with associated landing pad");
|
|
|
|
// Create the unconditional tail call instruction.
|
|
const auto *TailCallTargetLabel = BC.MIA->getTargetSymbol(CondTailCallInst);
|
|
assert(TailCallTargetLabel && "symbol expected for direct tail call");
|
|
MCInst TailCallInst;
|
|
BC.MIA->createTailCall(TailCallInst, TailCallTargetLabel, BC.Ctx.get());
|
|
|
|
// The way we will remove this conditional tail call depends on the
|
|
// direction of the jump when it is taken. We want to preserve this
|
|
// direction.
|
|
BinaryBasicBlock *TailCallBB = nullptr;
|
|
MCSymbol *TCLabel = BC.Ctx->createTempSymbol("TC", true);
|
|
if (getAddress() >= TCInfo.TargetAddress) {
|
|
// Backward jump: We will reverse the condition of the tail call, change
|
|
// its target to the following (currently fall-through) block, and insert
|
|
// a new block between them that will contain the unconditional tail call.
|
|
|
|
// Reverse the condition of the tail call and update its target.
|
|
unsigned InsertIdx = getIndex(BB) + 1;
|
|
assert(InsertIdx < size() && "no fall-through for conditional tail call");
|
|
BinaryBasicBlock *NextBB = BasicBlocks[InsertIdx];
|
|
|
|
BC.MIA->reverseBranchCondition(
|
|
CondTailCallInst, NextBB->getLabel(), BC.Ctx.get());
|
|
|
|
// Create a basic block containing the unconditional tail call instruction
|
|
// and place it between BB and NextBB.
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> TailCallBBs;
|
|
TailCallBBs.emplace_back(createBasicBlock(NextBB->getOffset(), TCLabel));
|
|
TailCallBBs[0]->addInstruction(TailCallInst);
|
|
insertBasicBlocks(BB, std::move(TailCallBBs),
|
|
/* UpdateLayout */ false,
|
|
/* UpdateCFIState */ false);
|
|
TailCallBB = BasicBlocks[InsertIdx];
|
|
|
|
// Add the correct CFI state for the new block.
|
|
TailCallBB->setCFIState(TCInfo.CFIStateBefore);
|
|
} else {
|
|
// Forward jump: we will create a new basic block at the end of the
|
|
// function containing the unconditional tail call and change the target
|
|
// of the conditional tail call to this basic block.
|
|
|
|
// Create a basic block containing the unconditional tail call
|
|
// instruction and place it at the end of the function.
|
|
// We have to add 1 byte as there's potentially an existing branch past
|
|
// the end of the code as a result of __builtin_unreachable().
|
|
const BinaryBasicBlock *LastBB = BasicBlocks.back();
|
|
uint64_t NewBlockOffset =
|
|
LastBB->getOffset()
|
|
+ BC.computeCodeSize(LastBB->begin(), LastBB->end()) + 1;
|
|
TailCallBB = addBasicBlock(NewBlockOffset, TCLabel);
|
|
TailCallBB->addInstruction(TailCallInst);
|
|
|
|
// Add the correct CFI state for the new block. It has to be inserted in
|
|
// the one before last position (the last position holds the CFI state
|
|
// after the last block).
|
|
TailCallBB->setCFIState(TCInfo.CFIStateBefore);
|
|
|
|
// Replace the target of the conditional tail call with the label of the
|
|
// new basic block.
|
|
BC.MIA->replaceBranchTarget(CondTailCallInst, TCLabel, BC.Ctx.get());
|
|
}
|
|
|
|
// Add CFG edge with profile info from BB to TailCallBB info and swap
|
|
// edges if the TailCallBB corresponds to the taken branch.
|
|
BB->addSuccessor(TailCallBB, TCInfo.Count, TCInfo.Mispreds);
|
|
if (getAddress() < TCInfo.TargetAddress)
|
|
BB->swapConditionalSuccessors();
|
|
|
|
// Add execution count for the block.
|
|
if (hasValidProfile())
|
|
TailCallBB->setExecutionCount(TCInfo.Count);
|
|
}
|
|
}
|
|
|
|
uint64_t BinaryFunction::getFunctionScore() {
|
|
if (FunctionScore != -1)
|
|
return FunctionScore;
|
|
|
|
uint64_t TotalScore = 0ULL;
|
|
for (auto BB : layout()) {
|
|
uint64_t BBExecCount = BB->getExecutionCount();
|
|
if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
continue;
|
|
BBExecCount *= BB->getNumNonPseudos();
|
|
TotalScore += BBExecCount;
|
|
}
|
|
FunctionScore = TotalScore;
|
|
return FunctionScore;
|
|
}
|
|
|
|
void BinaryFunction::annotateCFIState() {
|
|
assert(CurrentState == State::Disassembled && "unexpected function state");
|
|
assert(!BasicBlocks.empty() && "basic block list should not be empty");
|
|
|
|
// This is an index of the last processed CFI in FDE CFI program.
|
|
int32_t State = 0;
|
|
|
|
// This is an index of RememberState CFI reflecting effective state right
|
|
// after execution of RestoreState CFI.
|
|
//
|
|
// It differs from State iff the CFI at (State-1)
|
|
// was RestoreState (modulo GNU_args_size CFIs, which are ignored).
|
|
//
|
|
// This allows us to generate shorter replay sequences when producing new
|
|
// CFI programs.
|
|
int32_t EffectiveState = 0;
|
|
|
|
// For tracking RememberState/RestoreState sequences.
|
|
std::stack<int32_t> StateStack;
|
|
|
|
for (auto *BB : BasicBlocks) {
|
|
BB->setCFIState(EffectiveState);
|
|
|
|
// While building the CFG, we want to save the CFI state before a tail call
|
|
// instruction, so that we can correctly remove conditional tail calls.
|
|
auto TCI = TailCallTerminatedBlocks.find(BB);
|
|
bool SaveState = TCI != TailCallTerminatedBlocks.end();
|
|
|
|
uint32_t Idx = 0; // instruction index in a current basic block
|
|
for (const auto &Instr : *BB) {
|
|
++Idx;
|
|
if (SaveState && Idx == TCI->second.Index) {
|
|
TCI->second.CFIStateBefore = EffectiveState;
|
|
SaveState = false;
|
|
}
|
|
|
|
const auto *CFI = getCFIFor(Instr);
|
|
if (!CFI)
|
|
continue;
|
|
|
|
++State;
|
|
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
|
|
StateStack.push(EffectiveState);
|
|
} else if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
|
|
assert(!StateStack.empty() && "corrupt CFI stack");
|
|
EffectiveState = StateStack.top();
|
|
StateStack.pop();
|
|
} else if (CFI->getOperation() != MCCFIInstruction::OpGnuArgsSize) {
|
|
// OpGnuArgsSize CFIs do not affect the CFI state.
|
|
EffectiveState = State;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(StateStack.empty() && "corrupt CFI stack");
|
|
}
|
|
|
|
bool BinaryFunction::fixCFIState() {
|
|
auto Sep = "";
|
|
DEBUG(dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
|
|
DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
|
|
<< ": ");
|
|
|
|
auto replayCFIInstrs =
|
|
[this](int32_t FromState, int32_t ToState, BinaryBasicBlock *InBB,
|
|
BinaryBasicBlock::iterator InsertIt) -> bool {
|
|
if (FromState == ToState)
|
|
return true;
|
|
assert(FromState < ToState && "can only replay CFIs forward");
|
|
|
|
std::vector<uint32_t> NewCFIs;
|
|
uint32_t NestedLevel = 0;
|
|
for (auto CurState = FromState; CurState < ToState; ++CurState) {
|
|
MCCFIInstruction *Instr = &FrameInstructions[CurState];
|
|
if (Instr->getOperation() == MCCFIInstruction::OpRememberState)
|
|
++NestedLevel;
|
|
if (!NestedLevel)
|
|
NewCFIs.push_back(CurState);
|
|
if (Instr->getOperation() == MCCFIInstruction::OpRestoreState)
|
|
--NestedLevel;
|
|
}
|
|
|
|
// TODO: If in replaying the CFI instructions to reach this state we
|
|
// have state stack instructions, we could still work out the logic
|
|
// to extract only the necessary instructions to reach this state
|
|
// without using the state stack. Not sure if it is worth the effort
|
|
// because this happens rarely.
|
|
if (NestedLevel != 0) {
|
|
errs() << "BOLT-WARNING: CFI rewriter detected nested CFI state"
|
|
<< " while replaying CFI instructions for BB "
|
|
<< InBB->getName() << " in function " << *this << '\n';
|
|
return false;
|
|
}
|
|
|
|
for (auto CFI : NewCFIs) {
|
|
// Ignore GNU_args_size instructions.
|
|
if (FrameInstructions[CFI].getOperation() !=
|
|
MCCFIInstruction::OpGnuArgsSize) {
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, CFI);
|
|
++InsertIt;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
int32_t State = 0;
|
|
auto *FDEStartBB = BasicBlocksLayout[0];
|
|
bool SeenCold = false;
|
|
for (auto *BB : BasicBlocksLayout) {
|
|
const auto CFIStateAtExit = BB->getCFIStateAtExit();
|
|
|
|
// Hot-cold border: check if this is the first BB to be allocated in a cold
|
|
// region (with a different FDE). If yes, we need to reset the CFI state and
|
|
// the FDEStartBB that is used to insert remember_state CFIs.
|
|
if (!SeenCold && BB->isCold()) {
|
|
State = 0;
|
|
FDEStartBB = BB;
|
|
SeenCold = true;
|
|
}
|
|
|
|
// We need to recover the correct state if it doesn't match expected
|
|
// state at BB entry point.
|
|
if (BB->getCFIState() < State) {
|
|
// In this case, State is currently higher than what this BB expect it
|
|
// to be. To solve this, we need to insert a CFI instruction to remember
|
|
// the old state at function entry, then another CFI instruction to
|
|
// restore it at the entry of this BB and replay CFI instructions to
|
|
// reach the desired state.
|
|
int32_t OldState = BB->getCFIState();
|
|
// Remember state at function entry point (our reference state).
|
|
auto InsertIt = FDEStartBB->begin();
|
|
while (InsertIt != FDEStartBB->end() && BC.MIA->isCFI(*InsertIt))
|
|
++InsertIt;
|
|
addCFIPseudo(FDEStartBB, InsertIt, FrameInstructions.size());
|
|
FrameInstructions.emplace_back(
|
|
MCCFIInstruction::createRememberState(nullptr));
|
|
// Restore state
|
|
InsertIt = addCFIPseudo(BB, BB->begin(), FrameInstructions.size());
|
|
++InsertIt;
|
|
FrameInstructions.emplace_back(
|
|
MCCFIInstruction::createRestoreState(nullptr));
|
|
if (!replayCFIInstrs(0, OldState, BB, InsertIt))
|
|
return false;
|
|
// Check if we messed up the stack in this process
|
|
int StackOffset = 0;
|
|
for (BinaryBasicBlock *CurBB : BasicBlocksLayout) {
|
|
if (CurBB == BB)
|
|
break;
|
|
for (auto &Instr : *CurBB) {
|
|
if (auto *CFI = getCFIFor(Instr)) {
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRememberState)
|
|
++StackOffset;
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState)
|
|
--StackOffset;
|
|
}
|
|
}
|
|
}
|
|
auto Pos = BB->begin();
|
|
while (Pos != BB->end() && BC.MIA->isCFI(*Pos)) {
|
|
auto CFI = getCFIFor(*Pos);
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRememberState)
|
|
++StackOffset;
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState)
|
|
--StackOffset;
|
|
++Pos;
|
|
}
|
|
|
|
if (StackOffset != 0) {
|
|
errs() << "BOLT-WARNING: not possible to remember/recover state"
|
|
<< " without corrupting CFI state stack in function "
|
|
<< *this << " @ " << BB->getName() << "\n";
|
|
return false;
|
|
}
|
|
} else if (BB->getCFIState() > State) {
|
|
// If BB's CFI state is greater than State, it means we are behind in the
|
|
// state. Just emit all instructions to reach this state at the
|
|
// beginning of this BB. If this sequence of instructions involve
|
|
// remember state or restore state, bail out.
|
|
if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
|
|
return false;
|
|
}
|
|
|
|
State = CFIStateAtExit;
|
|
DEBUG(dbgs() << Sep << State; Sep = ", ");
|
|
}
|
|
DEBUG(dbgs() << "\n");
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::modifyLayout(LayoutType Type, bool MinBranchClusters,
|
|
bool Split) {
|
|
if (BasicBlocksLayout.empty() || Type == LT_NONE)
|
|
return;
|
|
|
|
BasicBlockOrderType NewLayout;
|
|
std::unique_ptr<ReorderAlgorithm> Algo;
|
|
|
|
// Cannot do optimal layout without profile.
|
|
if (Type != LT_REVERSE && !hasValidProfile())
|
|
return;
|
|
|
|
if (Type == LT_REVERSE) {
|
|
Algo.reset(new ReverseReorderAlgorithm());
|
|
}
|
|
else if (BasicBlocksLayout.size() <= FUNC_SIZE_THRESHOLD &&
|
|
Type != LT_OPTIMIZE_SHUFFLE) {
|
|
// Work on optimal solution if problem is small enough
|
|
DEBUG(dbgs() << "finding optimal block layout for " << *this << "\n");
|
|
Algo.reset(new OptimalReorderAlgorithm());
|
|
}
|
|
else {
|
|
DEBUG(dbgs() << "running block layout heuristics on " << *this << "\n");
|
|
|
|
std::unique_ptr<ClusterAlgorithm> CAlgo;
|
|
if (MinBranchClusters)
|
|
CAlgo.reset(new MinBranchGreedyClusterAlgorithm());
|
|
else
|
|
CAlgo.reset(new PHGreedyClusterAlgorithm());
|
|
|
|
switch(Type) {
|
|
case LT_OPTIMIZE:
|
|
Algo.reset(new OptimizeReorderAlgorithm(std::move(CAlgo)));
|
|
break;
|
|
|
|
case LT_OPTIMIZE_BRANCH:
|
|
Algo.reset(new OptimizeBranchReorderAlgorithm(std::move(CAlgo)));
|
|
break;
|
|
|
|
case LT_OPTIMIZE_CACHE:
|
|
Algo.reset(new OptimizeCacheReorderAlgorithm(std::move(CAlgo)));
|
|
break;
|
|
|
|
case LT_OPTIMIZE_SHUFFLE:
|
|
Algo.reset(new RandomClusterReorderAlgorithm(std::move(CAlgo)));
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("unexpected layout type");
|
|
}
|
|
}
|
|
|
|
Algo->reorderBasicBlocks(*this, NewLayout);
|
|
BasicBlocksLayout.clear();
|
|
BasicBlocksLayout.swap(NewLayout);
|
|
|
|
if (Split)
|
|
splitFunction();
|
|
}
|
|
|
|
void BinaryFunction::emitBody(MCStreamer &Streamer, bool EmitColdPart) {
|
|
int64_t CurrentGnuArgsSize = 0;
|
|
for (auto BB : layout()) {
|
|
if (EmitColdPart != BB->isCold())
|
|
continue;
|
|
|
|
if (opts::AlignBlocks && BB->getAlignment() > 1)
|
|
Streamer.EmitCodeAlignment(BB->getAlignment());
|
|
Streamer.EmitLabel(BB->getLabel());
|
|
|
|
// Remember if last instruction emitted was a prefix
|
|
bool LastIsPrefix = false;
|
|
SMLoc LastLocSeen;
|
|
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
auto &Instr = *I;
|
|
// Handle pseudo instructions.
|
|
if (BC.MIA->isEHLabel(Instr)) {
|
|
const auto *Label = BC.MIA->getTargetSymbol(Instr);
|
|
assert(Instr.getNumOperands() == 1 && Label &&
|
|
"bad EH_LABEL instruction");
|
|
Streamer.EmitLabel(const_cast<MCSymbol *>(Label));
|
|
continue;
|
|
}
|
|
if (BC.MIA->isCFI(Instr)) {
|
|
Streamer.EmitCFIInstruction(*getCFIFor(Instr));
|
|
continue;
|
|
}
|
|
if (opts::UpdateDebugSections && UnitLineTable.first) {
|
|
LastLocSeen = emitLineInfo(Instr.getLoc(), LastLocSeen);
|
|
}
|
|
|
|
// Emit GNU_args_size CFIs as necessary.
|
|
if (usesGnuArgsSize() && BC.MIA->isInvoke(Instr)) {
|
|
auto NewGnuArgsSize = BC.MIA->getGnuArgsSize(Instr);
|
|
assert(NewGnuArgsSize >= 0 && "expected non-negative GNU_args_size");
|
|
if (NewGnuArgsSize != CurrentGnuArgsSize) {
|
|
CurrentGnuArgsSize = NewGnuArgsSize;
|
|
Streamer.EmitCFIGnuArgsSize(CurrentGnuArgsSize);
|
|
}
|
|
}
|
|
|
|
Streamer.EmitInstruction(Instr, *BC.STI);
|
|
LastIsPrefix = BC.MIA->isPrefix(Instr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::emitBodyRaw(MCStreamer *Streamer) {
|
|
|
|
// #14998851: Fix gold linker's '--emit-relocs'.
|
|
assert(false &&
|
|
"cannot emit raw body unless relocation accuracy is guaranteed");
|
|
|
|
// Raw contents of the function.
|
|
StringRef SectionContents;
|
|
Section.getContents(SectionContents);
|
|
|
|
// Raw contents of the function.
|
|
StringRef FunctionContents =
|
|
SectionContents.substr(getAddress() - Section.getAddress(),
|
|
getSize());
|
|
|
|
if (opts::Verbosity)
|
|
outs() << "BOLT-INFO: emitting function " << *this << " in raw ("
|
|
<< getSize() << " bytes).\n";
|
|
|
|
// We split the function blob into smaller blocks and output relocations
|
|
// and/or labels between them.
|
|
uint64_t FunctionOffset = 0;
|
|
auto LI = Labels.begin();
|
|
auto RI = MoveRelocations.begin();
|
|
while (LI != Labels.end() ||
|
|
RI != MoveRelocations.end()) {
|
|
uint64_t NextLabelOffset = (LI == Labels.end() ? getSize() : LI->first);
|
|
uint64_t NextRelocationOffset =
|
|
(RI == MoveRelocations.end() ? getSize() : RI->first);
|
|
auto NextStop = std::min(NextLabelOffset, NextRelocationOffset);
|
|
assert(NextStop <= getSize() && "internal overflow error");
|
|
if (FunctionOffset < NextStop) {
|
|
Streamer->EmitBytes(
|
|
FunctionContents.slice(FunctionOffset, NextStop));
|
|
FunctionOffset = NextStop;
|
|
}
|
|
if (LI != Labels.end() && FunctionOffset == LI->first) {
|
|
Streamer->EmitLabel(LI->second);
|
|
DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << LI->second->getName()
|
|
<< " at offset 0x" << Twine::utohexstr(LI->first) << '\n');
|
|
++LI;
|
|
}
|
|
if (RI != MoveRelocations.end() && FunctionOffset == RI->first) {
|
|
auto RelocationSize = RI->second.emit(Streamer);
|
|
DEBUG(dbgs() << "BOLT-DEBUG: emitted relocation for symbol "
|
|
<< RI->second.Symbol->getName() << " at offset 0x"
|
|
<< Twine::utohexstr(RI->first)
|
|
<< " with size " << RelocationSize << '\n');
|
|
FunctionOffset += RelocationSize;
|
|
++RI;
|
|
}
|
|
}
|
|
assert(FunctionOffset <= getSize() && "overflow error");
|
|
if (FunctionOffset < getSize()) {
|
|
Streamer->EmitBytes(FunctionContents.substr(FunctionOffset));
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
#ifndef MAX_PATH
|
|
#define MAX_PATH 255
|
|
#endif
|
|
|
|
std::string constructFilename(std::string Filename,
|
|
std::string Annotation,
|
|
std::string Suffix) {
|
|
std::replace(Filename.begin(), Filename.end(), '/', '-');
|
|
if (!Annotation.empty()) {
|
|
Annotation.insert(0, "-");
|
|
}
|
|
if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
|
|
assert(Suffix.size() + Annotation.size() <= MAX_PATH);
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix
|
|
<< "\" exceeds the " << MAX_PATH << " size limit, truncating.\n";
|
|
}
|
|
Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
|
|
}
|
|
Filename += Annotation;
|
|
Filename += Suffix;
|
|
return Filename;
|
|
}
|
|
|
|
std::string formatEscapes(const std::string& Str) {
|
|
std::string Result;
|
|
for (unsigned I = 0; I < Str.size(); ++I) {
|
|
auto C = Str[I];
|
|
switch (C) {
|
|
case '\n':
|
|
Result += " ";
|
|
break;
|
|
case '"':
|
|
break;
|
|
default:
|
|
Result += C;
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
}
|
|
|
|
void BinaryFunction::dumpGraph(raw_ostream& OS) const {
|
|
OS << "strict digraph \"" << getPrintName() << "\" {\n";
|
|
uint64_t Offset = Address;
|
|
for (auto *BB : BasicBlocks) {
|
|
auto LayoutPos = std::find(BasicBlocksLayout.begin(),
|
|
BasicBlocksLayout.end(),
|
|
BB);
|
|
unsigned Layout = LayoutPos - BasicBlocksLayout.begin();
|
|
const char* ColdStr = BB->isCold() ? " (cold)" : "";
|
|
OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n",
|
|
BB->getName().data(),
|
|
BB->getName().data(),
|
|
ColdStr,
|
|
(BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE
|
|
? BB->ExecutionCount
|
|
: 0),
|
|
BB->getOffset(),
|
|
getIndex(BB),
|
|
Layout,
|
|
BB->getCFIState());
|
|
OS << format("\"%s\" [shape=box]\n", BB->getName().data());
|
|
if (opts::DotToolTipCode) {
|
|
std::string Str;
|
|
raw_string_ostream CS(Str);
|
|
Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this);
|
|
const auto Code = formatEscapes(CS.str());
|
|
OS << format("\"%s\" [tooltip=\"%s\"]\n",
|
|
BB->getName().data(),
|
|
Code.c_str());
|
|
}
|
|
|
|
// analyzeBranch is just used to get the names of the branch
|
|
// opcodes.
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
const bool Success = BB->analyzeBranch(TBB,
|
|
FBB,
|
|
CondBranch,
|
|
UncondBranch);
|
|
|
|
const auto *LastInstr = BB->getLastNonPseudoInstr();
|
|
const bool IsJumpTable = LastInstr && BC.MIA->getJumpTable(*LastInstr);
|
|
|
|
auto BI = BB->branch_info_begin();
|
|
for (auto *Succ : BB->successors()) {
|
|
std::string Branch;
|
|
if (Success) {
|
|
if (Succ == BB->getConditionalSuccessor(true)) {
|
|
Branch = CondBranch
|
|
? BC.InstPrinter->getOpcodeName(CondBranch->getOpcode())
|
|
: "TB";
|
|
} else if (Succ == BB->getConditionalSuccessor(false)) {
|
|
Branch = UncondBranch
|
|
? BC.InstPrinter->getOpcodeName(UncondBranch->getOpcode())
|
|
: "FB";
|
|
} else {
|
|
Branch = "FT";
|
|
}
|
|
}
|
|
if (IsJumpTable) {
|
|
Branch = "JT";
|
|
}
|
|
OS << format("\"%s\" -> \"%s\" [label=\"%s",
|
|
BB->getName().data(),
|
|
Succ->getName().data(),
|
|
Branch.c_str());
|
|
|
|
if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
|
|
BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
|
|
OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
|
|
} else if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
OS << "\\n(IC:" << BI->Count << ")";
|
|
}
|
|
OS << "\"]\n";
|
|
|
|
++BI;
|
|
}
|
|
for (auto *LP : BB->landing_pads()) {
|
|
OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
|
|
BB->getName().data(),
|
|
LP->getName().data());
|
|
}
|
|
}
|
|
OS << "}\n";
|
|
}
|
|
|
|
void BinaryFunction::viewGraph() const {
|
|
SmallString<MAX_PATH> Filename;
|
|
if (auto EC = sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
|
|
errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
|
|
<< " bolt-cfg-XXXXX.dot temporary file.\n";
|
|
return;
|
|
}
|
|
dumpGraphToFile(Filename.str());
|
|
if (DisplayGraph(Filename)) {
|
|
errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n";
|
|
}
|
|
if (auto EC = sys::fs::remove(Filename)) {
|
|
errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
|
|
<< Filename << "\n";
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
|
|
auto Filename = constructFilename(getPrintName(), Annotation, ".dot");
|
|
outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n";
|
|
dumpGraphToFile(Filename);
|
|
}
|
|
|
|
void BinaryFunction::dumpGraphToFile(std::string Filename) const {
|
|
std::error_code EC;
|
|
raw_fd_ostream of(Filename, EC, sys::fs::F_None);
|
|
if (EC) {
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
|
|
<< Filename << " for output.\n";
|
|
}
|
|
return;
|
|
}
|
|
dumpGraph(of);
|
|
}
|
|
|
|
bool BinaryFunction::validateCFG() const {
|
|
bool Valid = true;
|
|
for (auto *BB : BasicBlocks) {
|
|
Valid &= BB->validateSuccessorInvariants();
|
|
}
|
|
|
|
if (!Valid)
|
|
return Valid;
|
|
|
|
for (auto *BB : BasicBlocks) {
|
|
std::set<BinaryBasicBlock *> Seen;
|
|
for (auto *LPBlock : BB->LandingPads) {
|
|
Valid &= Seen.count(LPBlock) == 0;
|
|
if (!Valid) {
|
|
errs() << "BOLT-WARNING: Duplicate LP seen " << LPBlock->getName()
|
|
<< "in " << *this << "\n";
|
|
break;
|
|
}
|
|
Seen.insert(LPBlock);
|
|
auto count = LPBlock->Throwers.count(BB);
|
|
Valid &= (count == 1);
|
|
if (!Valid) {
|
|
errs() << "BOLT-WARNING: Inconsistent landing pad detected in "
|
|
<< *this << ": " << LPBlock->getName()
|
|
<< " is in LandingPads but not in " << BB->getName()
|
|
<< "->Throwers\n";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Valid;
|
|
}
|
|
|
|
void BinaryFunction::fixBranches() {
|
|
auto &MIA = BC.MIA;
|
|
auto *Ctx = BC.Ctx.get();
|
|
|
|
for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
|
|
BinaryBasicBlock *BB = BasicBlocksLayout[I];
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
|
|
continue;
|
|
|
|
// We will create unconditional branch with correct destination if needed.
|
|
if (UncondBranch)
|
|
BB->eraseInstruction(UncondBranch);
|
|
|
|
// Basic block that follows the current one in the final layout.
|
|
const BinaryBasicBlock *NextBB = nullptr;
|
|
if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold())
|
|
NextBB = BasicBlocksLayout[I + 1];
|
|
|
|
if (BB->succ_size() == 1) {
|
|
// __builtin_unreachable() could create a conditional branch that
|
|
// falls-through into the next function - hence the block will have only
|
|
// one valid successor. Since behaviour is undefined - we replace
|
|
// the conditional branch with an unconditional if required.
|
|
if (CondBranch)
|
|
BB->eraseInstruction(CondBranch);
|
|
if (BB->getSuccessor() == NextBB)
|
|
continue;
|
|
BB->addBranchInstruction(BB->getSuccessor());
|
|
} else if (BB->succ_size() == 2) {
|
|
assert(CondBranch && "conditional branch expected");
|
|
const auto *TSuccessor = BB->getConditionalSuccessor(true);
|
|
const auto *FSuccessor = BB->getConditionalSuccessor(false);
|
|
if (NextBB && NextBB == TSuccessor) {
|
|
std::swap(TSuccessor, FSuccessor);
|
|
MIA->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
|
|
BB->swapConditionalSuccessors();
|
|
} else {
|
|
MIA->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
|
|
}
|
|
if (TSuccessor == FSuccessor) {
|
|
BB->removeDuplicateConditionalSuccessor(CondBranch);
|
|
}
|
|
if (!NextBB || (NextBB != TSuccessor && NextBB != FSuccessor)) {
|
|
BB->addBranchInstruction(FSuccessor);
|
|
}
|
|
}
|
|
// Cases where the number of successors is 0 (block ends with a
|
|
// terminator) or more than 2 (switch table) don't require branch
|
|
// instruction adjustments.
|
|
}
|
|
assert(validateCFG() && "Invalid CFG detected after fixing branches");
|
|
}
|
|
|
|
void BinaryFunction::splitFunction() {
|
|
bool AllCold = true;
|
|
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
|
|
auto ExecCount = BB->getExecutionCount();
|
|
if (ExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
return;
|
|
if (ExecCount != 0)
|
|
AllCold = false;
|
|
}
|
|
|
|
if (AllCold)
|
|
return;
|
|
|
|
assert(BasicBlocksLayout.size() > 0);
|
|
|
|
// Never outline the first basic block.
|
|
BasicBlocks.front()->setCanOutline(false);
|
|
for (auto BB : BasicBlocks) {
|
|
if (!BB->canOutline())
|
|
continue;
|
|
if (BB->getExecutionCount() != 0) {
|
|
BB->setCanOutline(false);
|
|
continue;
|
|
}
|
|
if (hasEHRanges() && !opts::SplitEH) {
|
|
// We cannot move landing pads (or rather entry points for landing
|
|
// pads).
|
|
if (BB->isLandingPad()) {
|
|
BB->setCanOutline(false);
|
|
continue;
|
|
}
|
|
// We cannot move a block that can throw since exception-handling
|
|
// runtime cannot deal with split functions. However, if we can guarantee
|
|
// that the block never throws, it is safe to move the block to
|
|
// decrease the size of the function.
|
|
for (auto &Instr : *BB) {
|
|
if (BC.MIA->isInvoke(Instr)) {
|
|
BB->setCanOutline(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opts::AggressiveSplitting) {
|
|
// All blocks with 0 count that we can move go to the end of the function.
|
|
// Even if they were natural to cluster formation and were seen in-between
|
|
// hot basic blocks.
|
|
std::stable_sort(BasicBlocksLayout.begin(), BasicBlocksLayout.end(),
|
|
[&] (BinaryBasicBlock *A, BinaryBasicBlock *B) {
|
|
return A->canOutline() < B->canOutline();
|
|
});
|
|
} else if (hasEHRanges() && !opts::SplitEH) {
|
|
// Typically functions with exception handling have landing pads at the end.
|
|
// We cannot move beginning of landing pads, but we can move 0-count blocks
|
|
// comprising landing pads to the end and thus facilitate splitting.
|
|
auto FirstLP = BasicBlocksLayout.begin();
|
|
while ((*FirstLP)->isLandingPad())
|
|
++FirstLP;
|
|
|
|
std::stable_sort(FirstLP, BasicBlocksLayout.end(),
|
|
[&] (BinaryBasicBlock *A, BinaryBasicBlock *B) {
|
|
return A->canOutline() < B->canOutline();
|
|
});
|
|
}
|
|
|
|
// Separate hot from cold starting from the bottom.
|
|
for (auto I = BasicBlocksLayout.rbegin(), E = BasicBlocksLayout.rend();
|
|
I != E; ++I) {
|
|
BinaryBasicBlock *BB = *I;
|
|
if (!BB->canOutline())
|
|
break;
|
|
BB->setIsCold(true);
|
|
IsSplit = true;
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::propagateGnuArgsSizeInfo() {
|
|
assert(CurrentState == State::CFG && "unexpected function state");
|
|
|
|
if (!hasEHRanges() || !usesGnuArgsSize())
|
|
return;
|
|
|
|
// The current value of DW_CFA_GNU_args_size affects all following
|
|
// invoke instructions until the next CFI overrides it.
|
|
// It is important to iterate basic blocks in the original order when
|
|
// assigning the value.
|
|
uint64_t CurrentGnuArgsSize = 0;
|
|
for (auto BB : BasicBlocks) {
|
|
for (auto II = BB->begin(); II != BB->end(); ) {
|
|
auto &Instr = *II;
|
|
if (BC.MIA->isCFI(Instr)) {
|
|
auto CFI = getCFIFor(Instr);
|
|
if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
|
|
CurrentGnuArgsSize = CFI->getOffset();
|
|
// Delete DW_CFA_GNU_args_size instructions and only regenerate
|
|
// during the final code emission. The information is embedded
|
|
// inside call instructions.
|
|
II = BB->erasePseudoInstruction(II);
|
|
continue;
|
|
}
|
|
} else if (BC.MIA->isInvoke(Instr)) {
|
|
// Add the value of GNU_args_size as an extra operand to invokes.
|
|
BC.MIA->addGnuArgsSize(Instr, CurrentGnuArgsSize);
|
|
}
|
|
++II;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::postProcessBranches() {
|
|
if (!isSimple())
|
|
return;
|
|
for (auto *BB : BasicBlocksLayout) {
|
|
auto LastInstrRI = BB->getLastNonPseudo();
|
|
if (BB->succ_size() == 1) {
|
|
if (LastInstrRI != BB->rend() &&
|
|
BC.MIA->isConditionalBranch(*LastInstrRI)) {
|
|
// __builtin_unreachable() could create a conditional branch that
|
|
// falls-through into the next function - hence the block will have only
|
|
// one valid successor. Such behaviour is undefined and thus we remove
|
|
// the conditional branch while leaving a valid successor.
|
|
assert(BB == BasicBlocksLayout.back() && "last basic block expected");
|
|
BB->eraseInstruction(std::next(LastInstrRI.base()));
|
|
DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
}
|
|
} else if (BB->succ_size() == 0) {
|
|
// Ignore unreachable basic blocks.
|
|
if (BB->pred_size() == 0 || BB->isLandingPad())
|
|
continue;
|
|
|
|
// If it's the basic block that does not end up with a terminator - we
|
|
// insert a return instruction unless it's a call instruction.
|
|
if (LastInstrRI == BB->rend()) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
continue;
|
|
}
|
|
if (!BC.MIA->isTerminator(*LastInstrRI) &&
|
|
!BC.MIA->isCall(*LastInstrRI)) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
MCInst ReturnInstr;
|
|
BC.MIA->createReturn(ReturnInstr);
|
|
BB->addInstruction(ReturnInstr);
|
|
}
|
|
}
|
|
}
|
|
assert(validateCFG() && "invalid CFG");
|
|
}
|
|
|
|
void BinaryFunction::mergeProfileDataInto(BinaryFunction &BF) const {
|
|
// No reason to merge invalid or empty profiles into BF.
|
|
if (!hasValidProfile())
|
|
return;
|
|
|
|
// Update function execution count.
|
|
if (getExecutionCount() != BinaryFunction::COUNT_NO_PROFILE) {
|
|
BF.setExecutionCount(BF.getKnownExecutionCount() + getExecutionCount());
|
|
}
|
|
|
|
// Since we are merging a valid profile, the new profile should be valid too.
|
|
// It has either already been valid, or it has been cleaned up.
|
|
BF.ProfileMatchRatio = 1.0f;
|
|
|
|
// Update basic block and edge counts.
|
|
auto BBMergeI = BF.begin();
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
BinaryBasicBlock *BBMerge = &*BBMergeI;
|
|
assert(getIndex(BB) == BF.getIndex(BBMerge));
|
|
|
|
// Update basic block count.
|
|
if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
BBMerge->setExecutionCount(
|
|
BBMerge->getKnownExecutionCount() + BB->getExecutionCount());
|
|
}
|
|
|
|
// Update edge count for successors of this basic block.
|
|
auto BBMergeSI = BBMerge->succ_begin();
|
|
auto BIMergeI = BBMerge->branch_info_begin();
|
|
auto BII = BB->branch_info_begin();
|
|
for (const auto *BBSucc : BB->successors()) {
|
|
auto *BBMergeSucc = *BBMergeSI;
|
|
assert(getIndex(BBSucc) == BF.getIndex(BBMergeSucc));
|
|
|
|
// At this point no branch count should be set to COUNT_NO_PROFILE.
|
|
assert(BII->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"unexpected unknown branch profile");
|
|
assert(BIMergeI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"unexpected unknown branch profile");
|
|
|
|
BIMergeI->Count += BII->Count;
|
|
|
|
// When we merge inferred and real fall-through branch data, the merged
|
|
// data is considered inferred.
|
|
if (BII->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED &&
|
|
BIMergeI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
|
|
BIMergeI->MispredictedCount += BII->MispredictedCount;
|
|
} else {
|
|
BIMergeI->MispredictedCount = BinaryBasicBlock::COUNT_INFERRED;
|
|
}
|
|
|
|
++BBMergeSI;
|
|
++BII;
|
|
++BIMergeI;
|
|
}
|
|
assert(BBMergeSI == BBMerge->succ_end());
|
|
|
|
++BBMergeI;
|
|
}
|
|
assert(BBMergeI == BF.end());
|
|
}
|
|
|
|
__attribute__((noinline)) BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const {
|
|
BasicBlockOrderType DFS;
|
|
unsigned Index = 0;
|
|
std::stack<BinaryBasicBlock *> Stack;
|
|
|
|
// Push entry points to the stack in reverse order.
|
|
//
|
|
// NB: we rely on the original order of entries to match.
|
|
for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) {
|
|
auto *BB = *BBI;
|
|
if (BB->isEntryPoint())
|
|
Stack.push(BB);
|
|
BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex);
|
|
}
|
|
|
|
while (!Stack.empty()) {
|
|
auto *BB = Stack.top();
|
|
Stack.pop();
|
|
|
|
if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex)
|
|
continue;
|
|
|
|
BB->setLayoutIndex(Index++);
|
|
DFS.push_back(BB);
|
|
|
|
for (auto *SuccBB : BB->landing_pads()) {
|
|
Stack.push(SuccBB);
|
|
}
|
|
|
|
for (auto *SuccBB : BB->successors()) {
|
|
Stack.push(SuccBB);
|
|
}
|
|
}
|
|
|
|
return DFS;
|
|
}
|
|
|
|
bool BinaryFunction::isIdenticalWith(const BinaryFunction &OtherBF,
|
|
bool IgnoreSymbols,
|
|
bool UseDFS) const {
|
|
assert(hasCFG() && OtherBF.hasCFG() && "both functions should have CFG");
|
|
|
|
// Compare the two functions, one basic block at a time.
|
|
// Currently we require two identical basic blocks to have identical
|
|
// instruction sequences and the same index in their corresponding
|
|
// functions. The latter is important for CFG equality.
|
|
|
|
if (layout_size() != OtherBF.layout_size())
|
|
return false;
|
|
|
|
// Comparing multi-entry functions could be non-trivial.
|
|
if (isMultiEntry() || OtherBF.isMultiEntry())
|
|
return false;
|
|
|
|
// Process both functions in either DFS or existing order.
|
|
const auto &Order = UseDFS ? dfs() : BasicBlocksLayout;
|
|
const auto &OtherOrder = UseDFS ? OtherBF.dfs() : OtherBF.BasicBlocksLayout;
|
|
|
|
auto BBI = OtherOrder.begin();
|
|
for (const auto *BB : Order) {
|
|
const auto *OtherBB = *BBI;
|
|
|
|
if (BB->getLayoutIndex() != OtherBB->getLayoutIndex())
|
|
return false;
|
|
|
|
// Compare successor basic blocks.
|
|
// NOTE: the comparison for jump tables is only partially verified here.
|
|
if (BB->succ_size() != OtherBB->succ_size())
|
|
return false;
|
|
|
|
auto SuccBBI = OtherBB->succ_begin();
|
|
for (const auto *SuccBB : BB->successors()) {
|
|
const auto *SuccOtherBB = *SuccBBI;
|
|
if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex())
|
|
return false;
|
|
++SuccBBI;
|
|
}
|
|
|
|
// Compare all instructions including pseudos.
|
|
auto I = BB->begin(), E = BB->end();
|
|
auto OtherI = OtherBB->begin(), OtherE = OtherBB->end();
|
|
while (I != E && OtherI != OtherE) {
|
|
|
|
bool Identical;
|
|
if (IgnoreSymbols) {
|
|
Identical =
|
|
isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB, OtherBF,
|
|
[](const MCSymbol *A, const MCSymbol *B) {
|
|
return true;
|
|
});
|
|
} else {
|
|
// Compare symbols.
|
|
auto AreSymbolsIdentical = [&] (const MCSymbol *A, const MCSymbol *B) {
|
|
if (A == B)
|
|
return true;
|
|
|
|
// All local symbols are considered identical since they affect a
|
|
// control flow and we check the control flow separately.
|
|
// If a local symbol is escaped, then the function (potentially) has
|
|
// multiple entry points and we exclude such functions from
|
|
// comparison.
|
|
if (A->isTemporary() && B->isTemporary())
|
|
return true;
|
|
|
|
// Compare symbols as functions.
|
|
const auto *FunctionA = BC.getFunctionForSymbol(A);
|
|
const auto *FunctionB = BC.getFunctionForSymbol(B);
|
|
if (FunctionA && FunctionB) {
|
|
// Self-referencing functions and recursive calls.
|
|
if (FunctionA == this && FunctionB == &OtherBF)
|
|
return true;
|
|
return FunctionA == FunctionB;
|
|
}
|
|
|
|
// Check if symbols are jump tables.
|
|
auto SIA = BC.GlobalSymbols.find(A->getName());
|
|
if (SIA == BC.GlobalSymbols.end())
|
|
return false;
|
|
auto SIB = BC.GlobalSymbols.find(B->getName());
|
|
if (SIB == BC.GlobalSymbols.end())
|
|
return false;
|
|
|
|
assert((SIA->second != SIB->second) &&
|
|
"different symbols should not have the same value");
|
|
|
|
const auto *JumpTableA = getJumpTableContainingAddress(SIA->second);
|
|
if (!JumpTableA)
|
|
return false;
|
|
const auto *JumpTableB =
|
|
OtherBF.getJumpTableContainingAddress(SIB->second);
|
|
if (!JumpTableB)
|
|
return false;
|
|
|
|
if ((SIA->second - JumpTableA->Address) !=
|
|
(SIB->second - JumpTableB->Address))
|
|
return false;
|
|
|
|
return equalJumpTables(JumpTableA, JumpTableB, OtherBF);
|
|
};
|
|
|
|
Identical =
|
|
isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB, OtherBF,
|
|
AreSymbolsIdentical);
|
|
}
|
|
|
|
if (!Identical)
|
|
return false;
|
|
|
|
++I; ++OtherI;
|
|
}
|
|
|
|
// One of the identical blocks may have a trailing unconditional jump that
|
|
// is ignored for CFG purposes.
|
|
auto *TrailingInstr = (I != E ? &(*I)
|
|
: (OtherI != OtherE ? &(*OtherI) : 0));
|
|
if (TrailingInstr && !BC.MIA->isUnconditionalBranch(*TrailingInstr)) {
|
|
return false;
|
|
}
|
|
|
|
++BBI;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BinaryFunction::equalJumpTables(const JumpTable *JumpTableA,
|
|
const JumpTable *JumpTableB,
|
|
const BinaryFunction &BFB) const {
|
|
if (JumpTableA->EntrySize != JumpTableB->EntrySize)
|
|
return false;
|
|
|
|
if (JumpTableA->Type != JumpTableB->Type)
|
|
return false;
|
|
|
|
if (JumpTableA->getSize() != JumpTableB->getSize())
|
|
return false;
|
|
|
|
for (uint64_t Index = 0; Index < JumpTableA->Entries.size(); ++Index) {
|
|
const auto *LabelA = JumpTableA->Entries[Index];
|
|
const auto *LabelB = JumpTableB->Entries[Index];
|
|
|
|
const auto *TargetA = getBasicBlockForLabel(LabelA);
|
|
const auto *TargetB = BFB.getBasicBlockForLabel(LabelB);
|
|
|
|
if (!TargetA || !TargetB) {
|
|
assert((TargetA || LabelA == getFunctionEndLabel()) &&
|
|
"no target basic block found");
|
|
assert((TargetB || LabelB == BFB.getFunctionEndLabel()) &&
|
|
"no target basic block found");
|
|
|
|
if (TargetA != TargetB)
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
assert(TargetA && TargetB && "cannot locate target block(s)");
|
|
|
|
if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::size_t BinaryFunction::hash(bool Recompute, bool UseDFS) const {
|
|
assert(hasCFG() && "function is expected to have CFG");
|
|
|
|
if (!Recompute)
|
|
return Hash;
|
|
|
|
const auto &Order = UseDFS ? dfs() : BasicBlocksLayout;
|
|
|
|
// The hash is computed by creating a string of all the opcodes
|
|
// in the function and hashing that string with std::hash.
|
|
std::string Opcodes;
|
|
for (const auto *BB : Order) {
|
|
for (const auto &Inst : *BB) {
|
|
unsigned Opcode = Inst.getOpcode();
|
|
|
|
if (BC.MII->get(Opcode).isPseudo())
|
|
continue;
|
|
|
|
// Ignore unconditional jumps since we check CFG consistency by processing
|
|
// basic blocks in order and do not rely on branches to be in-sync with
|
|
// CFG. Note that we still use condition code of conditional jumps.
|
|
if (BC.MIA->isUnconditionalBranch(Inst))
|
|
continue;
|
|
|
|
if (Opcode == 0) {
|
|
Opcodes.push_back(0);
|
|
continue;
|
|
}
|
|
|
|
while (Opcode) {
|
|
uint8_t LSB = Opcode & 0xff;
|
|
Opcodes.push_back(LSB);
|
|
Opcode = Opcode >> 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Hash = std::hash<std::string>{}(Opcodes);
|
|
}
|
|
|
|
void BinaryFunction::insertBasicBlocks(
|
|
BinaryBasicBlock *Start,
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
|
|
const bool UpdateLayout,
|
|
const bool UpdateCFIState) {
|
|
const auto StartIndex = getIndex(Start);
|
|
const auto NumNewBlocks = NewBBs.size();
|
|
|
|
BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1,
|
|
NumNewBlocks,
|
|
nullptr);
|
|
|
|
auto I = StartIndex + 1;
|
|
for (auto &BB : NewBBs) {
|
|
assert(!BasicBlocks[I]);
|
|
BasicBlocks[I++] = BB.release();
|
|
}
|
|
|
|
updateBBIndices(StartIndex);
|
|
|
|
recomputeLandingPads(StartIndex, NumNewBlocks + 1);
|
|
|
|
// Make sure the basic blocks are sorted properly.
|
|
assert(std::is_sorted(begin(), end()));
|
|
|
|
if (UpdateLayout) {
|
|
updateLayout(Start, NumNewBlocks);
|
|
}
|
|
|
|
if (UpdateCFIState) {
|
|
updateCFIState(Start, NumNewBlocks);
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
|
|
for (auto I = StartIndex; I < BasicBlocks.size(); ++I) {
|
|
BasicBlocks[I]->Index = I;
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
|
|
const unsigned NumNewBlocks) {
|
|
assert(TailCallTerminatedBlocks.empty());
|
|
const auto CFIState = Start->getCFIStateAtExit();
|
|
const auto StartIndex = getIndex(Start) + 1;
|
|
for (unsigned I = 0; I < NumNewBlocks; ++I) {
|
|
BasicBlocks[StartIndex + I]->setCFIState(CFIState);
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::updateLayout(BinaryBasicBlock* Start,
|
|
const unsigned NumNewBlocks) {
|
|
// Insert new blocks in the layout immediately after Start.
|
|
auto Pos = std::find(layout_begin(), layout_end(), Start);
|
|
assert(Pos != layout_end());
|
|
auto Begin = &BasicBlocks[getIndex(Start) + 1];
|
|
auto End = &BasicBlocks[getIndex(Start) + NumNewBlocks + 1];
|
|
BasicBlocksLayout.insert(Pos + 1, Begin, End);
|
|
updateLayoutIndices();
|
|
}
|
|
|
|
void BinaryFunction::updateLayout(LayoutType Type,
|
|
bool MinBranchClusters,
|
|
bool Split) {
|
|
// Recompute layout with original parameters.
|
|
BasicBlocksLayout = BasicBlocks;
|
|
modifyLayout(Type, MinBranchClusters, Split);
|
|
updateLayoutIndices();
|
|
}
|
|
|
|
bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
|
|
uint64_t SymbolSize) const {
|
|
// Some symbols are tolerated inside function bodies, others are not.
|
|
// The real function boundaries may not be known at this point.
|
|
|
|
// It's okay to have a zero-sized symbol in the middle of non-zero-sized
|
|
// function.
|
|
if (SymbolSize == 0 && containsAddress(*Symbol.getAddress()))
|
|
return true;
|
|
|
|
if (Symbol.getType() != SymbolRef::ST_Unknown)
|
|
return false;
|
|
|
|
if (Symbol.getFlags() & SymbolRef::SF_Global)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
SMLoc BinaryFunction::emitLineInfo(SMLoc NewLoc, SMLoc PrevLoc) const {
|
|
auto *FunctionCU = UnitLineTable.first;
|
|
const auto *FunctionLineTable = UnitLineTable.second;
|
|
assert(FunctionCU && "cannot emit line info for function without CU");
|
|
|
|
auto RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
|
|
|
|
// Check if no new line info needs to be emitted.
|
|
if (RowReference == DebugLineTableRowRef::NULL_ROW ||
|
|
NewLoc.getPointer() == PrevLoc.getPointer())
|
|
return PrevLoc;
|
|
|
|
unsigned CurrentFilenum = 0;
|
|
const auto *CurrentLineTable = FunctionLineTable;
|
|
|
|
// If the CU id from the current instruction location does not
|
|
// match the CU id from the current function, it means that we
|
|
// have come across some inlined code. We must look up the CU
|
|
// for the instruction's original function and get the line table
|
|
// from that.
|
|
const auto FunctionUnitIndex = FunctionCU->getOffset();
|
|
const auto CurrentUnitIndex = RowReference.DwCompileUnitIndex;
|
|
if (CurrentUnitIndex != FunctionUnitIndex) {
|
|
CurrentLineTable = BC.DwCtx->getLineTableForUnit(
|
|
BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
|
|
// Add filename from the inlined function to the current CU.
|
|
CurrentFilenum =
|
|
BC.addDebugFilenameToUnit(FunctionUnitIndex, CurrentUnitIndex,
|
|
CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
|
|
}
|
|
|
|
const auto &CurrentRow = CurrentLineTable->Rows[RowReference.RowIndex - 1];
|
|
if (!CurrentFilenum)
|
|
CurrentFilenum = CurrentRow.File;
|
|
|
|
BC.Ctx->setCurrentDwarfLoc(
|
|
CurrentFilenum,
|
|
CurrentRow.Line,
|
|
CurrentRow.Column,
|
|
(DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
|
|
(DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
|
|
(DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
|
|
(DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin),
|
|
CurrentRow.Isa,
|
|
CurrentRow.Discriminator);
|
|
BC.Ctx->setDwarfCompileUnitID(FunctionUnitIndex);
|
|
|
|
return NewLoc;
|
|
}
|
|
|
|
BinaryFunction::~BinaryFunction() {
|
|
for (auto BB : BasicBlocks) {
|
|
delete BB;
|
|
}
|
|
for (auto BB : DeletedBasicBlocks) {
|
|
delete BB;
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::emitJumpTables(MCStreamer *Streamer) {
|
|
if (JumpTables.empty())
|
|
return;
|
|
if (opts::PrintJumpTables) {
|
|
outs() << "BOLT-INFO: jump tables for function " << *this << ":\n";
|
|
}
|
|
for (auto &JTI : JumpTables) {
|
|
auto &JT = JTI.second;
|
|
if (opts::PrintJumpTables)
|
|
JT.print(outs());
|
|
if (opts::JumpTables == JTS_BASIC && opts::Relocs) {
|
|
JT.updateOriginal(BC);
|
|
} else {
|
|
MCSection *HotSection, *ColdSection;
|
|
if (opts::JumpTables == JTS_BASIC) {
|
|
JT.SectionName =
|
|
".local.JUMP_TABLEat0x" + Twine::utohexstr(JT.Address).str();
|
|
HotSection = BC.Ctx->getELFSection(JT.SectionName,
|
|
ELF::SHT_PROGBITS,
|
|
ELF::SHF_ALLOC);
|
|
ColdSection = HotSection;
|
|
} else {
|
|
HotSection = BC.MOFI->getReadOnlySection();
|
|
ColdSection = BC.MOFI->getReadOnlyColdSection();
|
|
}
|
|
JT.emit(Streamer, HotSection, ColdSection);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<size_t, size_t>
|
|
BinaryFunction::JumpTable::getEntriesForAddress(const uint64_t Addr) const {
|
|
const uint64_t InstOffset = Addr - Address;
|
|
size_t StartIndex = 0, EndIndex = 0;
|
|
uint64_t Offset = 0;
|
|
|
|
for (size_t I = 0; I < Entries.size(); ++I) {
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
const auto NextLI = std::next(LI);
|
|
const auto NextOffset =
|
|
NextLI == Labels.end() ? getSize() : NextLI->first;
|
|
if (InstOffset >= LI->first && InstOffset < NextOffset) {
|
|
StartIndex = I;
|
|
EndIndex = I;
|
|
while (Offset < NextOffset) {
|
|
++EndIndex;
|
|
Offset += EntrySize;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
Offset += EntrySize;
|
|
}
|
|
|
|
return std::make_pair(StartIndex, EndIndex);
|
|
}
|
|
|
|
void BinaryFunction::JumpTable::updateOriginal(BinaryContext &BC) {
|
|
// In non-relocation mode we have to emit jump tables in local sections.
|
|
// This way we only overwrite them when a corresponding function is
|
|
// overwritten.
|
|
assert(opts::Relocs && "relocation mode expected");
|
|
auto SectionOrError = BC.getSectionForAddress(Address);
|
|
assert(SectionOrError && "section not found for jump table");
|
|
auto Section = SectionOrError.get();
|
|
uint64_t Offset = Address - Section.getAddress();
|
|
StringRef SectionName;
|
|
Section.getName(SectionName);
|
|
for (auto *Entry : Entries) {
|
|
const auto RelType = (Type == JTT_NORMAL) ? ELF::R_X86_64_64
|
|
: ELF::R_X86_64_PC32;
|
|
const uint64_t RelAddend = (Type == JTT_NORMAL)
|
|
? 0 : Offset - (Address - Section.getAddress());
|
|
DEBUG(dbgs() << "adding relocation to section " << SectionName
|
|
<< " at offset " << Twine::utohexstr(Offset) << " for symbol "
|
|
<< Entry->getName() << " with addend "
|
|
<< Twine::utohexstr(RelAddend) << '\n');
|
|
BC.addSectionRelocation(Section, Offset, Entry, RelType, RelAddend);
|
|
Offset += EntrySize;
|
|
}
|
|
}
|
|
|
|
uint64_t BinaryFunction::JumpTable::emit(MCStreamer *Streamer,
|
|
MCSection *HotSection,
|
|
MCSection *ColdSection) {
|
|
// Pre-process entries for aggressive splitting.
|
|
// Each label represents a separate switch table and gets its own count
|
|
// determining its destination.
|
|
std::map<MCSymbol *, uint64_t> LabelCounts;
|
|
if (opts::JumpTables > JTS_SPLIT && !Counts.empty()) {
|
|
MCSymbol *CurrentLabel = Labels[0];
|
|
uint64_t CurrentLabelCount = 0;
|
|
for (unsigned Index = 0; Index < Entries.size(); ++Index) {
|
|
auto LI = Labels.find(Index * EntrySize);
|
|
if (LI != Labels.end()) {
|
|
LabelCounts[CurrentLabel] = CurrentLabelCount;
|
|
CurrentLabel = LI->second;
|
|
CurrentLabelCount = 0;
|
|
}
|
|
CurrentLabelCount += Counts[Index].Count;
|
|
}
|
|
LabelCounts[CurrentLabel] = CurrentLabelCount;
|
|
} else {
|
|
Streamer->SwitchSection(Count > 0 ? HotSection : ColdSection);
|
|
Streamer->EmitValueToAlignment(EntrySize);
|
|
}
|
|
MCSymbol *LastLabel = nullptr;
|
|
uint64_t Offset = 0;
|
|
for (auto *Entry : Entries) {
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table "
|
|
<< LI->second->getName() << " (originally was at address 0x"
|
|
<< Twine::utohexstr(Address + Offset)
|
|
<< (Offset ? "as part of larger jump table\n" : "\n"));
|
|
if (!LabelCounts.empty()) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
|
|
<< LabelCounts[LI->second] << '\n');
|
|
if (LabelCounts[LI->second] > 0) {
|
|
Streamer->SwitchSection(HotSection);
|
|
} else {
|
|
Streamer->SwitchSection(ColdSection);
|
|
}
|
|
Streamer->EmitValueToAlignment(EntrySize);
|
|
}
|
|
Streamer->EmitLabel(LI->second);
|
|
LastLabel = LI->second;
|
|
}
|
|
if (Type == JTT_NORMAL) {
|
|
Streamer->EmitSymbolValue(Entry, EntrySize);
|
|
} else { // JTT_PIC
|
|
auto JT = MCSymbolRefExpr::create(LastLabel, Streamer->getContext());
|
|
auto E = MCSymbolRefExpr::create(Entry, Streamer->getContext());
|
|
auto Value = MCBinaryExpr::createSub(E, JT, Streamer->getContext());
|
|
Streamer->EmitValue(Value, EntrySize);
|
|
}
|
|
Offset += EntrySize;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
void BinaryFunction::JumpTable::print(raw_ostream &OS) const {
|
|
uint64_t Offset = 0;
|
|
for (const auto *Entry : Entries) {
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
OS << "Jump Table " << LI->second->getName() << " at @0x"
|
|
<< Twine::utohexstr(Address+Offset);
|
|
if (Offset) {
|
|
OS << " (possibly part of larger jump table):\n";
|
|
} else {
|
|
OS << " with total count of " << Count << ":\n";
|
|
}
|
|
}
|
|
OS << format(" 0x%04" PRIx64 " : ", Offset) << Entry->getName();
|
|
if (!Counts.empty()) {
|
|
OS << " : " << Counts[Offset / EntrySize].Mispreds
|
|
<< "/" << Counts[Offset / EntrySize].Count;
|
|
}
|
|
OS << '\n';
|
|
Offset += EntrySize;
|
|
}
|
|
OS << "\n\n";
|
|
}
|
|
|
|
void BinaryFunction::calculateLoopInfo() {
|
|
// Discover loops.
|
|
BinaryDominatorTree DomTree(false);
|
|
DomTree.recalculate<BinaryFunction>(*this);
|
|
BLI.reset(new BinaryLoopInfo());
|
|
BLI->analyze(DomTree);
|
|
|
|
// Traverse discovered loops and add depth and profile information.
|
|
std::stack<BinaryLoop *> St;
|
|
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
|
|
St.push(*I);
|
|
++BLI->OuterLoops;
|
|
}
|
|
|
|
while (!St.empty()) {
|
|
BinaryLoop *L = St.top();
|
|
St.pop();
|
|
++BLI->TotalLoops;
|
|
BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
|
|
|
|
// Add nested loops in the stack.
|
|
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
|
|
St.push(*I);
|
|
}
|
|
|
|
// Skip if no valid profile is found.
|
|
if (!hasValidProfile()) {
|
|
L->EntryCount = COUNT_NO_PROFILE;
|
|
L->ExitCount = COUNT_NO_PROFILE;
|
|
L->TotalBackEdgeCount = COUNT_NO_PROFILE;
|
|
continue;
|
|
}
|
|
|
|
// Compute back edge count.
|
|
SmallVector<BinaryBasicBlock *, 1> Latches;
|
|
L->getLoopLatches(Latches);
|
|
|
|
for (BinaryBasicBlock *Latch : Latches) {
|
|
auto BI = Latch->branch_info_begin();
|
|
for (BinaryBasicBlock *Succ : Latch->successors()) {
|
|
if (Succ == L->getHeader()) {
|
|
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"profile data not found");
|
|
L->TotalBackEdgeCount += BI->Count;
|
|
}
|
|
++BI;
|
|
}
|
|
}
|
|
|
|
// Compute entry count.
|
|
L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
|
|
|
|
// Compute exit count.
|
|
SmallVector<BinaryLoop::Edge, 1> ExitEdges;
|
|
L->getExitEdges(ExitEdges);
|
|
for (BinaryLoop::Edge &Exit : ExitEdges) {
|
|
const BinaryBasicBlock *Exiting = Exit.first;
|
|
const BinaryBasicBlock *ExitTarget = Exit.second;
|
|
auto BI = Exiting->branch_info_begin();
|
|
for (BinaryBasicBlock *Succ : Exiting->successors()) {
|
|
if (Succ == ExitTarget) {
|
|
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"profile data not found");
|
|
L->ExitCount += BI->Count;
|
|
}
|
|
++BI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
|
|
OS << "Loop Info for Function \"" << *this << "\"";
|
|
if (hasValidProfile()) {
|
|
OS << " (count: " << getExecutionCount() << ")";
|
|
}
|
|
OS << "\n";
|
|
|
|
std::stack<BinaryLoop *> St;
|
|
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
|
|
St.push(*I);
|
|
}
|
|
while (!St.empty()) {
|
|
BinaryLoop *L = St.top();
|
|
St.pop();
|
|
|
|
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
|
|
St.push(*I);
|
|
}
|
|
|
|
if (!hasValidProfile())
|
|
continue;
|
|
|
|
OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") << " loop header: "
|
|
<< L->getHeader()->getName();
|
|
OS << "\n";
|
|
OS << "Loop basic blocks: ";
|
|
auto Sep = "";
|
|
for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) {
|
|
OS << Sep << (*BI)->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << "\n";
|
|
if (hasValidProfile()) {
|
|
OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
|
|
OS << "Loop entry count: " << L->EntryCount << "\n";
|
|
OS << "Loop exit count: " << L->ExitCount << "\n";
|
|
if (L->EntryCount > 0) {
|
|
OS << "Average iters per entry: "
|
|
<< format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
|
|
<< "\n";
|
|
}
|
|
}
|
|
OS << "----\n";
|
|
}
|
|
|
|
OS << "Total number of loops: "<< BLI->TotalLoops << "\n";
|
|
OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
|
|
OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
|
|
}
|
|
|
|
DynoStats BinaryFunction::getDynoStats() const {
|
|
DynoStats Stats;
|
|
|
|
// Return empty-stats about the function we don't completely understand.
|
|
if (!isSimple() || !hasValidProfile())
|
|
return Stats;
|
|
|
|
// If the function was folded in non-relocation mode we keep its profile
|
|
// for optimization. However, it should be excluded from the dyno stats.
|
|
if (isFolded())
|
|
return Stats;
|
|
|
|
// Update enumeration of basic blocks for correct detection of branch'
|
|
// direction.
|
|
updateLayoutIndices();
|
|
|
|
for (const auto &BB : layout()) {
|
|
// The basic block execution count equals to the sum of incoming branch
|
|
// frequencies. This may deviate from the sum of outgoing branches of the
|
|
// basic block especially since the block may contain a function that
|
|
// does not return or a function that throws an exception.
|
|
const uint64_t BBExecutionCount = BB->getKnownExecutionCount();
|
|
|
|
// Ignore empty blocks and blocks that were not executed.
|
|
if (BB->getNumNonPseudos() == 0 || BBExecutionCount == 0)
|
|
continue;
|
|
|
|
// Count the number of calls by iterating through all instructions.
|
|
for (const auto &Instr : *BB) {
|
|
if (BC.MIA->isStore(Instr)) {
|
|
Stats[DynoStats::STORES] += BBExecutionCount;
|
|
}
|
|
if (BC.MIA->isLoad(Instr)) {
|
|
Stats[DynoStats::LOADS] += BBExecutionCount;
|
|
}
|
|
if (!BC.MIA->isCall(Instr))
|
|
continue;
|
|
Stats[DynoStats::FUNCTION_CALLS] += BBExecutionCount;
|
|
if (BC.MIA->getMemoryOperandNo(Instr) != -1) {
|
|
Stats[DynoStats::INDIRECT_CALLS] += BBExecutionCount;
|
|
} else if (const auto *CallSymbol = BC.MIA->getTargetSymbol(Instr)) {
|
|
if (BC.getFunctionForSymbol(CallSymbol))
|
|
continue;
|
|
auto GSI = BC.GlobalSymbols.find(CallSymbol->getName());
|
|
if (GSI == BC.GlobalSymbols.end())
|
|
continue;
|
|
auto Section = BC.getSectionForAddress(GSI->second);
|
|
if (!Section)
|
|
continue;
|
|
StringRef SectionName;
|
|
Section->getName(SectionName);
|
|
if (SectionName == ".plt") {
|
|
Stats[DynoStats::PLT_CALLS] += BBExecutionCount;
|
|
}
|
|
}
|
|
}
|
|
|
|
Stats[DynoStats::INSTRUCTIONS] += BB->getNumNonPseudos() * BBExecutionCount;
|
|
|
|
// Jump tables.
|
|
const auto *LastInstr = BB->getLastNonPseudoInstr();
|
|
if (BC.MIA->getJumpTable(*LastInstr)) {
|
|
Stats[DynoStats::JUMP_TABLE_BRANCHES] += BBExecutionCount;
|
|
DEBUG(
|
|
static uint64_t MostFrequentJT;
|
|
if (BBExecutionCount > MostFrequentJT) {
|
|
MostFrequentJT = BBExecutionCount;
|
|
dbgs() << "BOLT-INFO: most frequently executed jump table is in "
|
|
<< "function " << *this << " in basic block " << BB->getName()
|
|
<< " executed totally " << BBExecutionCount << " times.\n";
|
|
}
|
|
);
|
|
continue;
|
|
}
|
|
|
|
// Update stats for branches.
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
|
|
continue;
|
|
}
|
|
|
|
if (!CondBranch && !UncondBranch) {
|
|
continue;
|
|
}
|
|
|
|
// Simple unconditional branch.
|
|
if (!CondBranch) {
|
|
Stats[DynoStats::UNCOND_BRANCHES] += BBExecutionCount;
|
|
continue;
|
|
}
|
|
|
|
// Conditional branch that could be followed by an unconditional branch.
|
|
uint64_t TakenCount;
|
|
uint64_t NonTakenCount;
|
|
bool IsForwardBranch;
|
|
if (BB->succ_size() == 2) {
|
|
TakenCount = BB->getBranchInfo(true).Count;
|
|
NonTakenCount = BB->getBranchInfo(false).Count;
|
|
IsForwardBranch = isForwardBranch(BB, BB->getConditionalSuccessor(true));
|
|
} else {
|
|
// SCTC breaks the CFG invariant so we have to make some affordances
|
|
// here if we want dyno stats after running it.
|
|
TakenCount = BB->branch_info_begin()->Count;
|
|
if (TakenCount != COUNT_NO_PROFILE)
|
|
NonTakenCount = BBExecutionCount - TakenCount;
|
|
else
|
|
NonTakenCount = 0;
|
|
|
|
// If succ_size == 0 then we are branching to a function
|
|
// rather than a BB label.
|
|
IsForwardBranch = BB->succ_size() == 0
|
|
? isForwardCall(BC.MIA->getTargetSymbol(*CondBranch))
|
|
: isForwardBranch(BB, BB->getFallthrough());
|
|
}
|
|
|
|
if (TakenCount == COUNT_NO_PROFILE)
|
|
TakenCount = 0;
|
|
if (NonTakenCount == COUNT_NO_PROFILE)
|
|
NonTakenCount = 0;
|
|
|
|
if (IsForwardBranch) {
|
|
Stats[DynoStats::FORWARD_COND_BRANCHES] += BBExecutionCount;
|
|
Stats[DynoStats::FORWARD_COND_BRANCHES_TAKEN] += TakenCount;
|
|
} else {
|
|
Stats[DynoStats::BACKWARD_COND_BRANCHES] += BBExecutionCount;
|
|
Stats[DynoStats::BACKWARD_COND_BRANCHES_TAKEN] += TakenCount;
|
|
}
|
|
|
|
if (UncondBranch) {
|
|
Stats[DynoStats::UNCOND_BRANCHES] += NonTakenCount;
|
|
}
|
|
}
|
|
|
|
return Stats;
|
|
}
|
|
|
|
void DynoStats::print(raw_ostream &OS, const DynoStats *Other) const {
|
|
auto printStatWithDelta = [&](const std::string &Name, uint64_t Stat,
|
|
uint64_t OtherStat) {
|
|
OS << format("%'20lld : ", Stat * opts::DynoStatsScale) << Name;
|
|
if (Other) {
|
|
if (Stat != OtherStat) {
|
|
OS << format(" (%+.1f%%)",
|
|
( (float) Stat - (float) OtherStat ) * 100.0 /
|
|
(float) (OtherStat + 1) );
|
|
} else {
|
|
OS << " (=)";
|
|
}
|
|
}
|
|
OS << '\n';
|
|
};
|
|
|
|
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
|
|
Stat < DynoStats::LAST_DYNO_STAT;
|
|
++Stat) {
|
|
printStatWithDelta(Desc[Stat], Stats[Stat], Other ? (*Other)[Stat] : 0);
|
|
}
|
|
}
|
|
|
|
void DynoStats::operator+=(const DynoStats &Other) {
|
|
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
|
|
Stat < DynoStats::LAST_DYNO_STAT;
|
|
++Stat) {
|
|
Stats[Stat] += Other[Stat];
|
|
}
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|