llvm-project/mlir/test/lib/TestDialect/TestPatterns.cpp

515 lines
20 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Value input) {
rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
op.operand());
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<TestNamedPatternRule>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be successfully infered.
template <typename OpTy>
static void invokeCreateWithInferedReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
SmallVector<Type, 2> inferedReturnTypes;
if (succeeded(OpTy::inferReturnTypes(context, llvm::None, values,
op->getAttrs(), op->getRegions(),
inferedReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO(jpienaar): Expand to regions.
OpTy::build(&b, state, values, op->getAttrs());
(void)b.createOperation(state);
}
}
}
}
struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> {
void runOnFunction() override {
if (getFunction().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferedReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferedReturnType<OpWithShapedTypeInferTypeInterfaceOp>(
op);
};
return;
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i)
if (failed(converter.convertSignatureArg(
i, entry->getArgument(i).getType(), result)))
return matchFailure();
// Convert the region signature and just drop the operation.
rewriter.applySignatureConversion(&region, result);
rewriter.eraseOp(op);
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return matchSuccess();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return matchFailure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return matchSuccess();
}
// Otherwise, fail to match.
return matchFailure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!Type(*op->result_type_begin()).isSignlessInteger(32))
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!Type(*op->result_type_begin()).isF32())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return matchSuccess();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return matchSuccess();
}
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestTypeConverter() { addConversion(convertType); }
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
// Drop I16 types.
if (t.isSignlessInteger(16))
return success();
// Convert I64 to F64.
if (t.isSignlessInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Override the hook to materialize a conversion. This is necessary because
/// we generate 1->N type mappings.
Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
ArrayRef<Value> inputs,
Location loc) override {
return rewriter.create<TestCastOp>(loc, resultType, inputs);
}
};
struct TestLegalizePatternDriver
: public ModulePass<TestLegalizePatternDriver> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnModule() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns
.insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
(void)applyPartialConversion(getModule(), target, patterns, &converter);
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
// Check support for marking unknown operations as dynamically legal.
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
});
(void)applyFullConversion(getModule(), target, patterns, &converter);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getModule(), target, patterns,
legalizedOps, &converter)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of a original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
PatternMatchResult
matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
remappedOperands);
return matchSuccess();
}
};
struct TestRemappedValue : public mlir::FunctionPass<TestRemappedValue> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) -> bool {
return std::distance(op->operand_begin(), op->operand_end()) > 1;
});
if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
signalPassFailure();
}
}
};
} // end anonymous namespace
namespace mlir {
void registerPatternsTestPass() {
mlir::PassRegistration<TestReturnTypeDriver>("test-return-type",
"Run return type functions");
mlir::PassRegistration<TestPatternDriver>("test-patterns",
"Run test dialect patterns");
mlir::PassRegistration<TestLegalizePatternDriver>(
"test-legalize-patterns", "Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});
PassRegistration<TestRemappedValue>(
"test-remapped-value",
"Test public remapped value mechanism in ConversionPatternRewriter");
}
} // namespace mlir