forked from OSchip/llvm-project
2034 lines
71 KiB
C++
2034 lines
71 KiB
C++
//===- Function.cpp - Implement the Global object classes -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Function class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Function.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/AbstractCallSite.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsAArch64.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/IntrinsicsBPF.h"
|
|
#include "llvm/IR/IntrinsicsHexagon.h"
|
|
#include "llvm/IR/IntrinsicsMips.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/IntrinsicsPowerPC.h"
|
|
#include "llvm/IR/IntrinsicsR600.h"
|
|
#include "llvm/IR/IntrinsicsRISCV.h"
|
|
#include "llvm/IR/IntrinsicsS390.h"
|
|
#include "llvm/IR/IntrinsicsVE.h"
|
|
#include "llvm/IR/IntrinsicsWebAssembly.h"
|
|
#include "llvm/IR/IntrinsicsX86.h"
|
|
#include "llvm/IR/IntrinsicsXCore.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/SymbolTableListTraits.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
// Explicit instantiations of SymbolTableListTraits since some of the methods
|
|
// are not in the public header file...
|
|
template class llvm::SymbolTableListTraits<BasicBlock>;
|
|
|
|
static cl::opt<unsigned> NonGlobalValueMaxNameSize(
|
|
"non-global-value-max-name-size", cl::Hidden, cl::init(1024),
|
|
cl::desc("Maximum size for the name of non-global values."));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Argument Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
|
|
: Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
|
|
setName(Name);
|
|
}
|
|
|
|
void Argument::setParent(Function *parent) {
|
|
Parent = parent;
|
|
}
|
|
|
|
bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
|
|
(AllowUndefOrPoison ||
|
|
getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
|
|
return true;
|
|
else if (getDereferenceableBytes() > 0 &&
|
|
!NullPointerIsDefined(getParent(),
|
|
getType()->getPointerAddressSpace()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool Argument::hasByValAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::ByVal);
|
|
}
|
|
|
|
bool Argument::hasByRefAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
return hasAttribute(Attribute::ByRef);
|
|
}
|
|
|
|
bool Argument::hasSwiftSelfAttr() const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
|
|
}
|
|
|
|
bool Argument::hasSwiftErrorAttr() const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
|
|
}
|
|
|
|
bool Argument::hasInAllocaAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::InAlloca);
|
|
}
|
|
|
|
bool Argument::hasPreallocatedAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
return hasAttribute(Attribute::Preallocated);
|
|
}
|
|
|
|
bool Argument::hasPassPointeeByValueCopyAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
|
|
}
|
|
|
|
bool Argument::hasPointeeInMemoryValueAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
|
|
}
|
|
|
|
/// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
|
|
/// parameter type.
|
|
static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
|
|
// FIXME: All the type carrying attributes are mutually exclusive, so there
|
|
// should be a single query to get the stored type that handles any of them.
|
|
if (Type *ByValTy = ParamAttrs.getByValType())
|
|
return ByValTy;
|
|
if (Type *ByRefTy = ParamAttrs.getByRefType())
|
|
return ByRefTy;
|
|
if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
|
|
return PreAllocTy;
|
|
if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
|
|
return InAllocaTy;
|
|
if (Type *SRetTy = ParamAttrs.getStructRetType())
|
|
return SRetTy;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
|
|
AttributeSet ParamAttrs =
|
|
getParent()->getAttributes().getParamAttrs(getArgNo());
|
|
if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
|
|
return DL.getTypeAllocSize(MemTy);
|
|
return 0;
|
|
}
|
|
|
|
Type *Argument::getPointeeInMemoryValueType() const {
|
|
AttributeSet ParamAttrs =
|
|
getParent()->getAttributes().getParamAttrs(getArgNo());
|
|
return getMemoryParamAllocType(ParamAttrs);
|
|
}
|
|
|
|
uint64_t Argument::getParamAlignment() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have alignments");
|
|
return getParent()->getParamAlignment(getArgNo());
|
|
}
|
|
|
|
MaybeAlign Argument::getParamAlign() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have alignments");
|
|
return getParent()->getParamAlign(getArgNo());
|
|
}
|
|
|
|
MaybeAlign Argument::getParamStackAlign() const {
|
|
return getParent()->getParamStackAlign(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamByValType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have byval types");
|
|
return getParent()->getParamByValType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamStructRetType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have sret types");
|
|
return getParent()->getParamStructRetType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamByRefType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have byref types");
|
|
return getParent()->getParamByRefType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamInAllocaType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have inalloca types");
|
|
return getParent()->getParamInAllocaType(getArgNo());
|
|
}
|
|
|
|
uint64_t Argument::getDereferenceableBytes() const {
|
|
assert(getType()->isPointerTy() &&
|
|
"Only pointers have dereferenceable bytes");
|
|
return getParent()->getParamDereferenceableBytes(getArgNo());
|
|
}
|
|
|
|
uint64_t Argument::getDereferenceableOrNullBytes() const {
|
|
assert(getType()->isPointerTy() &&
|
|
"Only pointers have dereferenceable bytes");
|
|
return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
|
|
}
|
|
|
|
bool Argument::hasNestAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::Nest);
|
|
}
|
|
|
|
bool Argument::hasNoAliasAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoAlias);
|
|
}
|
|
|
|
bool Argument::hasNoCaptureAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoCapture);
|
|
}
|
|
|
|
bool Argument::hasNoFreeAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoFree);
|
|
}
|
|
|
|
bool Argument::hasStructRetAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::StructRet);
|
|
}
|
|
|
|
bool Argument::hasInRegAttr() const {
|
|
return hasAttribute(Attribute::InReg);
|
|
}
|
|
|
|
bool Argument::hasReturnedAttr() const {
|
|
return hasAttribute(Attribute::Returned);
|
|
}
|
|
|
|
bool Argument::hasZExtAttr() const {
|
|
return hasAttribute(Attribute::ZExt);
|
|
}
|
|
|
|
bool Argument::hasSExtAttr() const {
|
|
return hasAttribute(Attribute::SExt);
|
|
}
|
|
|
|
bool Argument::onlyReadsMemory() const {
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
|
|
Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
|
|
}
|
|
|
|
void Argument::addAttrs(AttrBuilder &B) {
|
|
AttributeList AL = getParent()->getAttributes();
|
|
AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
|
|
getParent()->setAttributes(AL);
|
|
}
|
|
|
|
void Argument::addAttr(Attribute::AttrKind Kind) {
|
|
getParent()->addParamAttr(getArgNo(), Kind);
|
|
}
|
|
|
|
void Argument::addAttr(Attribute Attr) {
|
|
getParent()->addParamAttr(getArgNo(), Attr);
|
|
}
|
|
|
|
void Argument::removeAttr(Attribute::AttrKind Kind) {
|
|
getParent()->removeParamAttr(getArgNo(), Kind);
|
|
}
|
|
|
|
void Argument::removeAttrs(const AttributeMask &AM) {
|
|
AttributeList AL = getParent()->getAttributes();
|
|
AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
|
|
getParent()->setAttributes(AL);
|
|
}
|
|
|
|
bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Kind);
|
|
}
|
|
|
|
Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
|
|
return getParent()->getParamAttribute(getArgNo(), Kind);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Methods in Function
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LLVMContext &Function::getContext() const {
|
|
return getType()->getContext();
|
|
}
|
|
|
|
unsigned Function::getInstructionCount() const {
|
|
unsigned NumInstrs = 0;
|
|
for (const BasicBlock &BB : BasicBlocks)
|
|
NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
|
|
BB.instructionsWithoutDebug().end());
|
|
return NumInstrs;
|
|
}
|
|
|
|
Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
|
|
const Twine &N, Module &M) {
|
|
return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
|
|
}
|
|
|
|
Function *Function::createWithDefaultAttr(FunctionType *Ty,
|
|
LinkageTypes Linkage,
|
|
unsigned AddrSpace, const Twine &N,
|
|
Module *M) {
|
|
auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
|
|
AttrBuilder B(F->getContext());
|
|
UWTableKind UWTable = M->getUwtable();
|
|
if (UWTable != UWTableKind::None)
|
|
B.addUWTableAttr(UWTable);
|
|
switch (M->getFramePointer()) {
|
|
case FramePointerKind::None:
|
|
// 0 ("none") is the default.
|
|
break;
|
|
case FramePointerKind::NonLeaf:
|
|
B.addAttribute("frame-pointer", "non-leaf");
|
|
break;
|
|
case FramePointerKind::All:
|
|
B.addAttribute("frame-pointer", "all");
|
|
break;
|
|
}
|
|
F->addFnAttrs(B);
|
|
return F;
|
|
}
|
|
|
|
void Function::removeFromParent() {
|
|
getParent()->getFunctionList().remove(getIterator());
|
|
}
|
|
|
|
void Function::eraseFromParent() {
|
|
getParent()->getFunctionList().erase(getIterator());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
|
|
// If AS == -1 and we are passed a valid module pointer we place the function
|
|
// in the program address space. Otherwise we default to AS0.
|
|
if (AddrSpace == static_cast<unsigned>(-1))
|
|
return M ? M->getDataLayout().getProgramAddressSpace() : 0;
|
|
return AddrSpace;
|
|
}
|
|
|
|
Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
|
|
const Twine &name, Module *ParentModule)
|
|
: GlobalObject(Ty, Value::FunctionVal,
|
|
OperandTraits<Function>::op_begin(this), 0, Linkage, name,
|
|
computeAddrSpace(AddrSpace, ParentModule)),
|
|
NumArgs(Ty->getNumParams()) {
|
|
assert(FunctionType::isValidReturnType(getReturnType()) &&
|
|
"invalid return type");
|
|
setGlobalObjectSubClassData(0);
|
|
|
|
// We only need a symbol table for a function if the context keeps value names
|
|
if (!getContext().shouldDiscardValueNames())
|
|
SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
|
|
|
|
// If the function has arguments, mark them as lazily built.
|
|
if (Ty->getNumParams())
|
|
setValueSubclassData(1); // Set the "has lazy arguments" bit.
|
|
|
|
if (ParentModule)
|
|
ParentModule->getFunctionList().push_back(this);
|
|
|
|
HasLLVMReservedName = getName().startswith("llvm.");
|
|
// Ensure intrinsics have the right parameter attributes.
|
|
// Note, the IntID field will have been set in Value::setName if this function
|
|
// name is a valid intrinsic ID.
|
|
if (IntID)
|
|
setAttributes(Intrinsic::getAttributes(getContext(), IntID));
|
|
}
|
|
|
|
Function::~Function() {
|
|
dropAllReferences(); // After this it is safe to delete instructions.
|
|
|
|
// Delete all of the method arguments and unlink from symbol table...
|
|
if (Arguments)
|
|
clearArguments();
|
|
|
|
// Remove the function from the on-the-side GC table.
|
|
clearGC();
|
|
}
|
|
|
|
void Function::BuildLazyArguments() const {
|
|
// Create the arguments vector, all arguments start out unnamed.
|
|
auto *FT = getFunctionType();
|
|
if (NumArgs > 0) {
|
|
Arguments = std::allocator<Argument>().allocate(NumArgs);
|
|
for (unsigned i = 0, e = NumArgs; i != e; ++i) {
|
|
Type *ArgTy = FT->getParamType(i);
|
|
assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
|
|
new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
|
|
}
|
|
}
|
|
|
|
// Clear the lazy arguments bit.
|
|
unsigned SDC = getSubclassDataFromValue();
|
|
SDC &= ~(1 << 0);
|
|
const_cast<Function*>(this)->setValueSubclassData(SDC);
|
|
assert(!hasLazyArguments());
|
|
}
|
|
|
|
static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
|
|
return MutableArrayRef<Argument>(Args, Count);
|
|
}
|
|
|
|
bool Function::isConstrainedFPIntrinsic() const {
|
|
switch (getIntrinsicID()) {
|
|
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
|
|
case Intrinsic::INTRINSIC:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
return true;
|
|
#undef INSTRUCTION
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Function::clearArguments() {
|
|
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
|
|
A.setName("");
|
|
A.~Argument();
|
|
}
|
|
std::allocator<Argument>().deallocate(Arguments, NumArgs);
|
|
Arguments = nullptr;
|
|
}
|
|
|
|
void Function::stealArgumentListFrom(Function &Src) {
|
|
assert(isDeclaration() && "Expected no references to current arguments");
|
|
|
|
// Drop the current arguments, if any, and set the lazy argument bit.
|
|
if (!hasLazyArguments()) {
|
|
assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
|
|
[](const Argument &A) { return A.use_empty(); }) &&
|
|
"Expected arguments to be unused in declaration");
|
|
clearArguments();
|
|
setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
|
|
}
|
|
|
|
// Nothing to steal if Src has lazy arguments.
|
|
if (Src.hasLazyArguments())
|
|
return;
|
|
|
|
// Steal arguments from Src, and fix the lazy argument bits.
|
|
assert(arg_size() == Src.arg_size());
|
|
Arguments = Src.Arguments;
|
|
Src.Arguments = nullptr;
|
|
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
|
|
// FIXME: This does the work of transferNodesFromList inefficiently.
|
|
SmallString<128> Name;
|
|
if (A.hasName())
|
|
Name = A.getName();
|
|
if (!Name.empty())
|
|
A.setName("");
|
|
A.setParent(this);
|
|
if (!Name.empty())
|
|
A.setName(Name);
|
|
}
|
|
|
|
setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
|
|
assert(!hasLazyArguments());
|
|
Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
|
|
}
|
|
|
|
// dropAllReferences() - This function causes all the subinstructions to "let
|
|
// go" of all references that they are maintaining. This allows one to
|
|
// 'delete' a whole class at a time, even though there may be circular
|
|
// references... first all references are dropped, and all use counts go to
|
|
// zero. Then everything is deleted for real. Note that no operations are
|
|
// valid on an object that has "dropped all references", except operator
|
|
// delete.
|
|
//
|
|
void Function::dropAllReferences() {
|
|
setIsMaterializable(false);
|
|
|
|
for (BasicBlock &BB : *this)
|
|
BB.dropAllReferences();
|
|
|
|
// Delete all basic blocks. They are now unused, except possibly by
|
|
// blockaddresses, but BasicBlock's destructor takes care of those.
|
|
while (!BasicBlocks.empty())
|
|
BasicBlocks.begin()->eraseFromParent();
|
|
|
|
// Drop uses of any optional data (real or placeholder).
|
|
if (getNumOperands()) {
|
|
User::dropAllReferences();
|
|
setNumHungOffUseOperands(0);
|
|
setValueSubclassData(getSubclassDataFromValue() & ~0xe);
|
|
}
|
|
|
|
// Metadata is stored in a side-table.
|
|
clearMetadata();
|
|
}
|
|
|
|
void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
|
|
AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
|
|
}
|
|
|
|
void Function::addFnAttr(Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::addFnAttr(StringRef Kind, StringRef Val) {
|
|
AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
|
|
}
|
|
|
|
void Function::addFnAttr(Attribute Attr) {
|
|
AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
|
|
}
|
|
|
|
void Function::addFnAttrs(const AttrBuilder &Attrs) {
|
|
AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
|
|
}
|
|
|
|
void Function::addRetAttr(Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::addRetAttr(Attribute Attr) {
|
|
AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
|
|
}
|
|
|
|
void Function::addRetAttrs(const AttrBuilder &Attrs) {
|
|
AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
|
|
}
|
|
|
|
void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
|
|
}
|
|
|
|
void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
|
|
AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
|
|
}
|
|
|
|
void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
|
|
AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
|
|
}
|
|
|
|
void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
|
|
}
|
|
|
|
void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
|
|
AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
|
|
}
|
|
|
|
void Function::removeFnAttr(Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::removeFnAttr(StringRef Kind) {
|
|
AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::removeFnAttrs(const AttributeMask &AM) {
|
|
AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
|
|
}
|
|
|
|
void Function::removeRetAttr(Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::removeRetAttr(StringRef Kind) {
|
|
AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
|
|
}
|
|
|
|
void Function::removeRetAttrs(const AttributeMask &Attrs) {
|
|
AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
|
|
}
|
|
|
|
void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
|
|
}
|
|
|
|
void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
|
|
AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
|
|
}
|
|
|
|
void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
|
|
AttributeSets =
|
|
AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
|
|
}
|
|
|
|
void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
|
|
AttributeSets =
|
|
AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
|
|
}
|
|
|
|
bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
|
|
return AttributeSets.hasFnAttr(Kind);
|
|
}
|
|
|
|
bool Function::hasFnAttribute(StringRef Kind) const {
|
|
return AttributeSets.hasFnAttr(Kind);
|
|
}
|
|
|
|
bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
|
|
return AttributeSets.hasRetAttr(Kind);
|
|
}
|
|
|
|
bool Function::hasParamAttribute(unsigned ArgNo,
|
|
Attribute::AttrKind Kind) const {
|
|
return AttributeSets.hasParamAttr(ArgNo, Kind);
|
|
}
|
|
|
|
Attribute Function::getAttributeAtIndex(unsigned i,
|
|
Attribute::AttrKind Kind) const {
|
|
return AttributeSets.getAttributeAtIndex(i, Kind);
|
|
}
|
|
|
|
Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
|
|
return AttributeSets.getAttributeAtIndex(i, Kind);
|
|
}
|
|
|
|
Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
|
|
return AttributeSets.getFnAttr(Kind);
|
|
}
|
|
|
|
Attribute Function::getFnAttribute(StringRef Kind) const {
|
|
return AttributeSets.getFnAttr(Kind);
|
|
}
|
|
|
|
/// gets the specified attribute from the list of attributes.
|
|
Attribute Function::getParamAttribute(unsigned ArgNo,
|
|
Attribute::AttrKind Kind) const {
|
|
return AttributeSets.getParamAttr(ArgNo, Kind);
|
|
}
|
|
|
|
void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
|
|
uint64_t Bytes) {
|
|
AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
|
|
ArgNo, Bytes);
|
|
}
|
|
|
|
DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
|
|
if (&FPType == &APFloat::IEEEsingle()) {
|
|
Attribute Attr = getFnAttribute("denormal-fp-math-f32");
|
|
StringRef Val = Attr.getValueAsString();
|
|
if (!Val.empty())
|
|
return parseDenormalFPAttribute(Val);
|
|
|
|
// If the f32 variant of the attribute isn't specified, try to use the
|
|
// generic one.
|
|
}
|
|
|
|
Attribute Attr = getFnAttribute("denormal-fp-math");
|
|
return parseDenormalFPAttribute(Attr.getValueAsString());
|
|
}
|
|
|
|
const std::string &Function::getGC() const {
|
|
assert(hasGC() && "Function has no collector");
|
|
return getContext().getGC(*this);
|
|
}
|
|
|
|
void Function::setGC(std::string Str) {
|
|
setValueSubclassDataBit(14, !Str.empty());
|
|
getContext().setGC(*this, std::move(Str));
|
|
}
|
|
|
|
void Function::clearGC() {
|
|
if (!hasGC())
|
|
return;
|
|
getContext().deleteGC(*this);
|
|
setValueSubclassDataBit(14, false);
|
|
}
|
|
|
|
bool Function::hasStackProtectorFnAttr() const {
|
|
return hasFnAttribute(Attribute::StackProtect) ||
|
|
hasFnAttribute(Attribute::StackProtectStrong) ||
|
|
hasFnAttribute(Attribute::StackProtectReq);
|
|
}
|
|
|
|
/// Copy all additional attributes (those not needed to create a Function) from
|
|
/// the Function Src to this one.
|
|
void Function::copyAttributesFrom(const Function *Src) {
|
|
GlobalObject::copyAttributesFrom(Src);
|
|
setCallingConv(Src->getCallingConv());
|
|
setAttributes(Src->getAttributes());
|
|
if (Src->hasGC())
|
|
setGC(Src->getGC());
|
|
else
|
|
clearGC();
|
|
if (Src->hasPersonalityFn())
|
|
setPersonalityFn(Src->getPersonalityFn());
|
|
if (Src->hasPrefixData())
|
|
setPrefixData(Src->getPrefixData());
|
|
if (Src->hasPrologueData())
|
|
setPrologueData(Src->getPrologueData());
|
|
}
|
|
|
|
/// Table of string intrinsic names indexed by enum value.
|
|
static const char * const IntrinsicNameTable[] = {
|
|
"not_intrinsic",
|
|
#define GET_INTRINSIC_NAME_TABLE
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_NAME_TABLE
|
|
};
|
|
|
|
/// Table of per-target intrinsic name tables.
|
|
#define GET_INTRINSIC_TARGET_DATA
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_TARGET_DATA
|
|
|
|
bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
|
|
return IID > TargetInfos[0].Count;
|
|
}
|
|
|
|
bool Function::isTargetIntrinsic() const {
|
|
return isTargetIntrinsic(IntID);
|
|
}
|
|
|
|
/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
|
|
/// target as \c Name, or the generic table if \c Name is not target specific.
|
|
///
|
|
/// Returns the relevant slice of \c IntrinsicNameTable
|
|
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
|
|
assert(Name.startswith("llvm."));
|
|
|
|
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
|
|
// Drop "llvm." and take the first dotted component. That will be the target
|
|
// if this is target specific.
|
|
StringRef Target = Name.drop_front(5).split('.').first;
|
|
auto It = partition_point(
|
|
Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
|
|
// We've either found the target or just fall back to the generic set, which
|
|
// is always first.
|
|
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
|
|
return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
|
|
}
|
|
|
|
/// This does the actual lookup of an intrinsic ID which
|
|
/// matches the given function name.
|
|
Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
|
|
ArrayRef<const char *> NameTable = findTargetSubtable(Name);
|
|
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
|
|
if (Idx == -1)
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
// Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
|
|
// an index into a sub-table.
|
|
int Adjust = NameTable.data() - IntrinsicNameTable;
|
|
Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
|
|
|
|
// If the intrinsic is not overloaded, require an exact match. If it is
|
|
// overloaded, require either exact or prefix match.
|
|
const auto MatchSize = strlen(NameTable[Idx]);
|
|
assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
|
|
bool IsExactMatch = Name.size() == MatchSize;
|
|
return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
|
|
: Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
void Function::recalculateIntrinsicID() {
|
|
StringRef Name = getName();
|
|
if (!Name.startswith("llvm.")) {
|
|
HasLLVMReservedName = false;
|
|
IntID = Intrinsic::not_intrinsic;
|
|
return;
|
|
}
|
|
HasLLVMReservedName = true;
|
|
IntID = lookupIntrinsicID(Name);
|
|
}
|
|
|
|
/// Returns a stable mangling for the type specified for use in the name
|
|
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
|
|
/// of named types is simply their name. Manglings for unnamed types consist
|
|
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
|
|
/// combined with the mangling of their component types. A vararg function
|
|
/// type will have a suffix of 'vararg'. Since function types can contain
|
|
/// other function types, we close a function type mangling with suffix 'f'
|
|
/// which can't be confused with it's prefix. This ensures we don't have
|
|
/// collisions between two unrelated function types. Otherwise, you might
|
|
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
|
|
/// The HasUnnamedType boolean is set if an unnamed type was encountered,
|
|
/// indicating that extra care must be taken to ensure a unique name.
|
|
static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
|
|
std::string Result;
|
|
if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
|
|
Result += "p" + utostr(PTyp->getAddressSpace());
|
|
// Opaque pointer doesn't have pointee type information, so we just mangle
|
|
// address space for opaque pointer.
|
|
if (!PTyp->isOpaque())
|
|
Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
|
|
HasUnnamedType);
|
|
} else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
|
|
Result += "a" + utostr(ATyp->getNumElements()) +
|
|
getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
|
|
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
|
|
if (!STyp->isLiteral()) {
|
|
Result += "s_";
|
|
if (STyp->hasName())
|
|
Result += STyp->getName();
|
|
else
|
|
HasUnnamedType = true;
|
|
} else {
|
|
Result += "sl_";
|
|
for (auto Elem : STyp->elements())
|
|
Result += getMangledTypeStr(Elem, HasUnnamedType);
|
|
}
|
|
// Ensure nested structs are distinguishable.
|
|
Result += "s";
|
|
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
|
|
Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
|
|
for (size_t i = 0; i < FT->getNumParams(); i++)
|
|
Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
|
|
if (FT->isVarArg())
|
|
Result += "vararg";
|
|
// Ensure nested function types are distinguishable.
|
|
Result += "f";
|
|
} else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
ElementCount EC = VTy->getElementCount();
|
|
if (EC.isScalable())
|
|
Result += "nx";
|
|
Result += "v" + utostr(EC.getKnownMinValue()) +
|
|
getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
|
|
} else if (Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
default: llvm_unreachable("Unhandled type");
|
|
case Type::VoidTyID: Result += "isVoid"; break;
|
|
case Type::MetadataTyID: Result += "Metadata"; break;
|
|
case Type::HalfTyID: Result += "f16"; break;
|
|
case Type::BFloatTyID: Result += "bf16"; break;
|
|
case Type::FloatTyID: Result += "f32"; break;
|
|
case Type::DoubleTyID: Result += "f64"; break;
|
|
case Type::X86_FP80TyID: Result += "f80"; break;
|
|
case Type::FP128TyID: Result += "f128"; break;
|
|
case Type::PPC_FP128TyID: Result += "ppcf128"; break;
|
|
case Type::X86_MMXTyID: Result += "x86mmx"; break;
|
|
case Type::X86_AMXTyID: Result += "x86amx"; break;
|
|
case Type::IntegerTyID:
|
|
Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
StringRef Intrinsic::getBaseName(ID id) {
|
|
assert(id < num_intrinsics && "Invalid intrinsic ID!");
|
|
return IntrinsicNameTable[id];
|
|
}
|
|
|
|
StringRef Intrinsic::getName(ID id) {
|
|
assert(id < num_intrinsics && "Invalid intrinsic ID!");
|
|
assert(!Intrinsic::isOverloaded(id) &&
|
|
"This version of getName does not support overloading");
|
|
return getBaseName(id);
|
|
}
|
|
|
|
static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
|
|
Module *M, FunctionType *FT,
|
|
bool EarlyModuleCheck) {
|
|
|
|
assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
|
|
assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
|
|
"This version of getName is for overloaded intrinsics only");
|
|
(void)EarlyModuleCheck;
|
|
assert((!EarlyModuleCheck || M ||
|
|
!any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
|
|
"Intrinsic overloading on pointer types need to provide a Module");
|
|
bool HasUnnamedType = false;
|
|
std::string Result(Intrinsic::getBaseName(Id));
|
|
for (Type *Ty : Tys)
|
|
Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
|
|
if (HasUnnamedType) {
|
|
assert(M && "unnamed types need a module");
|
|
if (!FT)
|
|
FT = Intrinsic::getType(M->getContext(), Id, Tys);
|
|
else
|
|
assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
|
|
"Provided FunctionType must match arguments");
|
|
return M->getUniqueIntrinsicName(Result, Id, FT);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
|
|
FunctionType *FT) {
|
|
assert(M && "We need to have a Module");
|
|
return getIntrinsicNameImpl(Id, Tys, M, FT, true);
|
|
}
|
|
|
|
std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
|
|
return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
|
|
}
|
|
|
|
/// IIT_Info - These are enumerators that describe the entries returned by the
|
|
/// getIntrinsicInfoTableEntries function.
|
|
///
|
|
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
|
|
enum IIT_Info {
|
|
// Common values should be encoded with 0-15.
|
|
IIT_Done = 0,
|
|
IIT_I1 = 1,
|
|
IIT_I8 = 2,
|
|
IIT_I16 = 3,
|
|
IIT_I32 = 4,
|
|
IIT_I64 = 5,
|
|
IIT_F16 = 6,
|
|
IIT_F32 = 7,
|
|
IIT_F64 = 8,
|
|
IIT_V2 = 9,
|
|
IIT_V4 = 10,
|
|
IIT_V8 = 11,
|
|
IIT_V16 = 12,
|
|
IIT_V32 = 13,
|
|
IIT_PTR = 14,
|
|
IIT_ARG = 15,
|
|
|
|
// Values from 16+ are only encodable with the inefficient encoding.
|
|
IIT_V64 = 16,
|
|
IIT_MMX = 17,
|
|
IIT_TOKEN = 18,
|
|
IIT_METADATA = 19,
|
|
IIT_EMPTYSTRUCT = 20,
|
|
IIT_STRUCT2 = 21,
|
|
IIT_STRUCT3 = 22,
|
|
IIT_STRUCT4 = 23,
|
|
IIT_STRUCT5 = 24,
|
|
IIT_EXTEND_ARG = 25,
|
|
IIT_TRUNC_ARG = 26,
|
|
IIT_ANYPTR = 27,
|
|
IIT_V1 = 28,
|
|
IIT_VARARG = 29,
|
|
IIT_HALF_VEC_ARG = 30,
|
|
IIT_SAME_VEC_WIDTH_ARG = 31,
|
|
IIT_PTR_TO_ARG = 32,
|
|
IIT_PTR_TO_ELT = 33,
|
|
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
|
|
IIT_I128 = 35,
|
|
IIT_V512 = 36,
|
|
IIT_V1024 = 37,
|
|
IIT_STRUCT6 = 38,
|
|
IIT_STRUCT7 = 39,
|
|
IIT_STRUCT8 = 40,
|
|
IIT_F128 = 41,
|
|
IIT_VEC_ELEMENT = 42,
|
|
IIT_SCALABLE_VEC = 43,
|
|
IIT_SUBDIVIDE2_ARG = 44,
|
|
IIT_SUBDIVIDE4_ARG = 45,
|
|
IIT_VEC_OF_BITCASTS_TO_INT = 46,
|
|
IIT_V128 = 47,
|
|
IIT_BF16 = 48,
|
|
IIT_STRUCT9 = 49,
|
|
IIT_V256 = 50,
|
|
IIT_AMX = 51,
|
|
IIT_PPCF128 = 52,
|
|
IIT_V3 = 53,
|
|
IIT_EXTERNREF = 54,
|
|
IIT_FUNCREF = 55,
|
|
IIT_ANYPTR_TO_ELT = 56,
|
|
};
|
|
|
|
static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
|
|
IIT_Info LastInfo,
|
|
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
|
|
using namespace Intrinsic;
|
|
|
|
bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
|
|
|
|
IIT_Info Info = IIT_Info(Infos[NextElt++]);
|
|
unsigned StructElts = 2;
|
|
|
|
switch (Info) {
|
|
case IIT_Done:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
|
|
return;
|
|
case IIT_VARARG:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
|
|
return;
|
|
case IIT_MMX:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
|
|
return;
|
|
case IIT_AMX:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
|
|
return;
|
|
case IIT_TOKEN:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
|
|
return;
|
|
case IIT_METADATA:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
|
|
return;
|
|
case IIT_F16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
|
|
return;
|
|
case IIT_BF16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
|
|
return;
|
|
case IIT_F32:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
|
|
return;
|
|
case IIT_F64:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
|
|
return;
|
|
case IIT_F128:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
|
|
return;
|
|
case IIT_PPCF128:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
|
|
return;
|
|
case IIT_I1:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
|
|
return;
|
|
case IIT_I8:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
|
|
return;
|
|
case IIT_I16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
|
|
return;
|
|
case IIT_I32:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
|
|
return;
|
|
case IIT_I64:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
|
|
return;
|
|
case IIT_I128:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
|
|
return;
|
|
case IIT_V1:
|
|
OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V2:
|
|
OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V3:
|
|
OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V4:
|
|
OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V8:
|
|
OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V16:
|
|
OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V32:
|
|
OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V64:
|
|
OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V128:
|
|
OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V256:
|
|
OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V512:
|
|
OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V1024:
|
|
OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_EXTERNREF:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
|
|
return;
|
|
case IIT_FUNCREF:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
|
|
return;
|
|
case IIT_PTR:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
|
|
Infos[NextElt++]));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_EXTEND_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_TRUNC_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_HALF_VEC_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SAME_VEC_WIDTH_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_PTR_TO_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_PTR_TO_ELT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_ANYPTR_TO_ELT: {
|
|
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(
|
|
IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
|
|
return;
|
|
}
|
|
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
|
|
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(
|
|
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
|
|
return;
|
|
}
|
|
case IIT_EMPTYSTRUCT:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
|
|
return;
|
|
case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT2: {
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
|
|
|
|
for (unsigned i = 0; i != StructElts; ++i)
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_SUBDIVIDE2_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SUBDIVIDE4_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_VEC_ELEMENT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SCALABLE_VEC: {
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_VEC_OF_BITCASTS_TO_INT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
#define GET_INTRINSIC_GENERATOR_GLOBAL
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_GENERATOR_GLOBAL
|
|
|
|
void Intrinsic::getIntrinsicInfoTableEntries(ID id,
|
|
SmallVectorImpl<IITDescriptor> &T){
|
|
// Check to see if the intrinsic's type was expressible by the table.
|
|
unsigned TableVal = IIT_Table[id-1];
|
|
|
|
// Decode the TableVal into an array of IITValues.
|
|
SmallVector<unsigned char, 8> IITValues;
|
|
ArrayRef<unsigned char> IITEntries;
|
|
unsigned NextElt = 0;
|
|
if ((TableVal >> 31) != 0) {
|
|
// This is an offset into the IIT_LongEncodingTable.
|
|
IITEntries = IIT_LongEncodingTable;
|
|
|
|
// Strip sentinel bit.
|
|
NextElt = (TableVal << 1) >> 1;
|
|
} else {
|
|
// Decode the TableVal into an array of IITValues. If the entry was encoded
|
|
// into a single word in the table itself, decode it now.
|
|
do {
|
|
IITValues.push_back(TableVal & 0xF);
|
|
TableVal >>= 4;
|
|
} while (TableVal);
|
|
|
|
IITEntries = IITValues;
|
|
NextElt = 0;
|
|
}
|
|
|
|
// Okay, decode the table into the output vector of IITDescriptors.
|
|
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
|
|
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
|
|
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
|
|
}
|
|
|
|
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
ArrayRef<Type*> Tys, LLVMContext &Context) {
|
|
using namespace Intrinsic;
|
|
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
|
|
switch (D.Kind) {
|
|
case IITDescriptor::Void: return Type::getVoidTy(Context);
|
|
case IITDescriptor::VarArg: return Type::getVoidTy(Context);
|
|
case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
|
|
case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
|
|
case IITDescriptor::Token: return Type::getTokenTy(Context);
|
|
case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
|
|
case IITDescriptor::Half: return Type::getHalfTy(Context);
|
|
case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
|
|
case IITDescriptor::Float: return Type::getFloatTy(Context);
|
|
case IITDescriptor::Double: return Type::getDoubleTy(Context);
|
|
case IITDescriptor::Quad: return Type::getFP128Ty(Context);
|
|
case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
|
|
|
|
case IITDescriptor::Integer:
|
|
return IntegerType::get(Context, D.Integer_Width);
|
|
case IITDescriptor::Vector:
|
|
return VectorType::get(DecodeFixedType(Infos, Tys, Context),
|
|
D.Vector_Width);
|
|
case IITDescriptor::Pointer:
|
|
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
|
|
D.Pointer_AddressSpace);
|
|
case IITDescriptor::Struct: {
|
|
SmallVector<Type *, 8> Elts;
|
|
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
|
|
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
|
|
return StructType::get(Context, Elts);
|
|
}
|
|
case IITDescriptor::Argument:
|
|
return Tys[D.getArgumentNumber()];
|
|
case IITDescriptor::ExtendArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::getExtendedElementVectorType(VTy);
|
|
|
|
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
|
|
}
|
|
case IITDescriptor::TruncArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::getTruncatedElementVectorType(VTy);
|
|
|
|
IntegerType *ITy = cast<IntegerType>(Ty);
|
|
assert(ITy->getBitWidth() % 2 == 0);
|
|
return IntegerType::get(Context, ITy->getBitWidth() / 2);
|
|
}
|
|
case IITDescriptor::Subdivide2Argument:
|
|
case IITDescriptor::Subdivide4Argument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
assert(VTy && "Expected an argument of Vector Type");
|
|
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
|
|
return VectorType::getSubdividedVectorType(VTy, SubDivs);
|
|
}
|
|
case IITDescriptor::HalfVecArgument:
|
|
return VectorType::getHalfElementsVectorType(cast<VectorType>(
|
|
Tys[D.getArgumentNumber()]));
|
|
case IITDescriptor::SameVecWidthArgument: {
|
|
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (auto *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::get(EltTy, VTy->getElementCount());
|
|
return EltTy;
|
|
}
|
|
case IITDescriptor::PtrToArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
return PointerType::getUnqual(Ty);
|
|
}
|
|
case IITDescriptor::PtrToElt: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
if (!VTy)
|
|
llvm_unreachable("Expected an argument of Vector Type");
|
|
Type *EltTy = VTy->getElementType();
|
|
return PointerType::getUnqual(EltTy);
|
|
}
|
|
case IITDescriptor::VecElementArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VTy->getElementType();
|
|
llvm_unreachable("Expected an argument of Vector Type");
|
|
}
|
|
case IITDescriptor::VecOfBitcastsToInt: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
assert(VTy && "Expected an argument of Vector Type");
|
|
return VectorType::getInteger(VTy);
|
|
}
|
|
case IITDescriptor::VecOfAnyPtrsToElt:
|
|
// Return the overloaded type (which determines the pointers address space)
|
|
return Tys[D.getOverloadArgNumber()];
|
|
case IITDescriptor::AnyPtrToElt:
|
|
// Return the overloaded type (which determines the pointers address space)
|
|
return Tys[D.getOverloadArgNumber()];
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
FunctionType *Intrinsic::getType(LLVMContext &Context,
|
|
ID id, ArrayRef<Type*> Tys) {
|
|
SmallVector<IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(id, Table);
|
|
|
|
ArrayRef<IITDescriptor> TableRef = Table;
|
|
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
|
|
|
|
SmallVector<Type*, 8> ArgTys;
|
|
while (!TableRef.empty())
|
|
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
|
|
|
|
// DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
|
|
// If we see void type as the type of the last argument, it is vararg intrinsic
|
|
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
|
|
ArgTys.pop_back();
|
|
return FunctionType::get(ResultTy, ArgTys, true);
|
|
}
|
|
return FunctionType::get(ResultTy, ArgTys, false);
|
|
}
|
|
|
|
bool Intrinsic::isOverloaded(ID id) {
|
|
#define GET_INTRINSIC_OVERLOAD_TABLE
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_OVERLOAD_TABLE
|
|
}
|
|
|
|
bool Intrinsic::isLeaf(ID id) {
|
|
switch (id) {
|
|
default:
|
|
return true;
|
|
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// This defines the "Intrinsic::getAttributes(ID id)" method.
|
|
#define GET_INTRINSIC_ATTRIBUTES
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_ATTRIBUTES
|
|
|
|
Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
|
|
// There can never be multiple globals with the same name of different types,
|
|
// because intrinsics must be a specific type.
|
|
auto *FT = getType(M->getContext(), id, Tys);
|
|
return cast<Function>(
|
|
M->getOrInsertFunction(Tys.empty() ? getName(id)
|
|
: getName(id, Tys, M, FT),
|
|
getType(M->getContext(), id, Tys))
|
|
.getCallee());
|
|
}
|
|
|
|
// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
|
|
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
|
|
|
|
// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
|
|
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
|
|
|
|
using DeferredIntrinsicMatchPair =
|
|
std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
|
|
|
|
static bool matchIntrinsicType(
|
|
Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type *> &ArgTys,
|
|
SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
|
|
bool IsDeferredCheck) {
|
|
using namespace Intrinsic;
|
|
|
|
// If we ran out of descriptors, there are too many arguments.
|
|
if (Infos.empty()) return true;
|
|
|
|
// Do this before slicing off the 'front' part
|
|
auto InfosRef = Infos;
|
|
auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
|
|
DeferredChecks.emplace_back(T, InfosRef);
|
|
return false;
|
|
};
|
|
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
|
|
switch (D.Kind) {
|
|
case IITDescriptor::Void: return !Ty->isVoidTy();
|
|
case IITDescriptor::VarArg: return true;
|
|
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
|
|
case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
|
|
case IITDescriptor::Token: return !Ty->isTokenTy();
|
|
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
|
|
case IITDescriptor::Half: return !Ty->isHalfTy();
|
|
case IITDescriptor::BFloat: return !Ty->isBFloatTy();
|
|
case IITDescriptor::Float: return !Ty->isFloatTy();
|
|
case IITDescriptor::Double: return !Ty->isDoubleTy();
|
|
case IITDescriptor::Quad: return !Ty->isFP128Ty();
|
|
case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
|
|
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
|
|
case IITDescriptor::Vector: {
|
|
VectorType *VT = dyn_cast<VectorType>(Ty);
|
|
return !VT || VT->getElementCount() != D.Vector_Width ||
|
|
matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
|
|
DeferredChecks, IsDeferredCheck);
|
|
}
|
|
case IITDescriptor::Pointer: {
|
|
PointerType *PT = dyn_cast<PointerType>(Ty);
|
|
if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
|
|
return true;
|
|
if (!PT->isOpaque())
|
|
return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
|
|
ArgTys, DeferredChecks, IsDeferredCheck);
|
|
// Consume IIT descriptors relating to the pointer element type.
|
|
// FIXME: Intrinsic type matching of nested single value types or even
|
|
// aggregates doesn't work properly with opaque pointers but hopefully
|
|
// doesn't happen in practice.
|
|
while (Infos.front().Kind == IITDescriptor::Pointer ||
|
|
Infos.front().Kind == IITDescriptor::Vector)
|
|
Infos = Infos.slice(1);
|
|
Infos = Infos.slice(1);
|
|
return false;
|
|
}
|
|
|
|
case IITDescriptor::Struct: {
|
|
StructType *ST = dyn_cast<StructType>(Ty);
|
|
if (!ST || ST->getNumElements() != D.Struct_NumElements)
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
|
|
if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
|
|
DeferredChecks, IsDeferredCheck))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
case IITDescriptor::Argument:
|
|
// If this is the second occurrence of an argument,
|
|
// verify that the later instance matches the previous instance.
|
|
if (D.getArgumentNumber() < ArgTys.size())
|
|
return Ty != ArgTys[D.getArgumentNumber()];
|
|
|
|
if (D.getArgumentNumber() > ArgTys.size() ||
|
|
D.getArgumentKind() == IITDescriptor::AK_MatchType)
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
|
|
"Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
|
|
switch (D.getArgumentKind()) {
|
|
case IITDescriptor::AK_Any: return false; // Success
|
|
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
|
|
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
|
|
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
|
|
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
|
|
default: break;
|
|
}
|
|
llvm_unreachable("all argument kinds not covered");
|
|
|
|
case IITDescriptor::ExtendArgument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getExtendedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::TruncArgument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getTruncatedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::HalfVecArgument:
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
|
|
VectorType::getHalfElementsVectorType(
|
|
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
|
|
case IITDescriptor::SameVecWidthArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size()) {
|
|
// Defer check and subsequent check for the vector element type.
|
|
Infos = Infos.slice(1);
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
}
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
auto *ThisArgType = dyn_cast<VectorType>(Ty);
|
|
// Both must be vectors of the same number of elements or neither.
|
|
if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
|
|
return true;
|
|
Type *EltTy = Ty;
|
|
if (ThisArgType) {
|
|
if (ReferenceType->getElementCount() !=
|
|
ThisArgType->getElementCount())
|
|
return true;
|
|
EltTy = ThisArgType->getElementType();
|
|
}
|
|
return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
|
|
IsDeferredCheck);
|
|
}
|
|
case IITDescriptor::PtrToArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
|
|
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
return (!ThisArgType ||
|
|
!ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
|
|
}
|
|
case IITDescriptor::PtrToElt: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
VectorType * ReferenceType =
|
|
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
|
|
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
|
|
if (!ThisArgType || !ReferenceType)
|
|
return true;
|
|
return !ThisArgType->isOpaqueOrPointeeTypeMatches(
|
|
ReferenceType->getElementType());
|
|
}
|
|
case IITDescriptor::AnyPtrToElt: {
|
|
unsigned RefArgNumber = D.getRefArgNumber();
|
|
if (RefArgNumber >= ArgTys.size()) {
|
|
if (IsDeferredCheck)
|
|
return true;
|
|
// If forward referencing, already add the pointer type and
|
|
// defer the checks for later.
|
|
ArgTys.push_back(Ty);
|
|
return DeferCheck(Ty);
|
|
}
|
|
|
|
if (!IsDeferredCheck) {
|
|
assert(D.getOverloadArgNumber() == ArgTys.size() &&
|
|
"Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
}
|
|
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
|
|
auto *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
if (!ThisArgType || !ReferenceType)
|
|
return true;
|
|
return !ThisArgType->isOpaqueOrPointeeTypeMatches(
|
|
ReferenceType->getElementType());
|
|
}
|
|
case IITDescriptor::VecOfAnyPtrsToElt: {
|
|
unsigned RefArgNumber = D.getRefArgNumber();
|
|
if (RefArgNumber >= ArgTys.size()) {
|
|
if (IsDeferredCheck)
|
|
return true;
|
|
// If forward referencing, already add the pointer-vector type and
|
|
// defer the checks for later.
|
|
ArgTys.push_back(Ty);
|
|
return DeferCheck(Ty);
|
|
}
|
|
|
|
if (!IsDeferredCheck){
|
|
assert(D.getOverloadArgNumber() == ArgTys.size() &&
|
|
"Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
}
|
|
|
|
// Verify the overloaded type "matches" the Ref type.
|
|
// i.e. Ty is a vector with the same width as Ref.
|
|
// Composed of pointers to the same element type as Ref.
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
|
|
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgVecTy || !ReferenceType ||
|
|
(ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
|
|
return true;
|
|
PointerType *ThisArgEltTy =
|
|
dyn_cast<PointerType>(ThisArgVecTy->getElementType());
|
|
if (!ThisArgEltTy)
|
|
return true;
|
|
return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
|
|
ReferenceType->getElementType());
|
|
}
|
|
case IITDescriptor::VecElementArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck ? true : DeferCheck(Ty);
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
return !ReferenceType || Ty != ReferenceType->getElementType();
|
|
}
|
|
case IITDescriptor::Subdivide2Argument:
|
|
case IITDescriptor::Subdivide4Argument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
|
|
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
|
|
NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
|
|
return Ty != NewTy;
|
|
}
|
|
return true;
|
|
}
|
|
case IITDescriptor::VecOfBitcastsToInt: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgVecTy || !ReferenceType)
|
|
return true;
|
|
return ThisArgVecTy != VectorType::getInteger(ReferenceType);
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
Intrinsic::MatchIntrinsicTypesResult
|
|
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type *> &ArgTys) {
|
|
SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
|
|
if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
|
|
false))
|
|
return MatchIntrinsicTypes_NoMatchRet;
|
|
|
|
unsigned NumDeferredReturnChecks = DeferredChecks.size();
|
|
|
|
for (auto Ty : FTy->params())
|
|
if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
|
|
return MatchIntrinsicTypes_NoMatchArg;
|
|
|
|
for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
|
|
DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
|
|
if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
|
|
true))
|
|
return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
|
|
: MatchIntrinsicTypes_NoMatchArg;
|
|
}
|
|
|
|
return MatchIntrinsicTypes_Match;
|
|
}
|
|
|
|
bool
|
|
Intrinsic::matchIntrinsicVarArg(bool isVarArg,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
|
|
// If there are no descriptors left, then it can't be a vararg.
|
|
if (Infos.empty())
|
|
return isVarArg;
|
|
|
|
// There should be only one descriptor remaining at this point.
|
|
if (Infos.size() != 1)
|
|
return true;
|
|
|
|
// Check and verify the descriptor.
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
if (D.Kind == IITDescriptor::VarArg)
|
|
return !isVarArg;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Intrinsic::getIntrinsicSignature(Function *F,
|
|
SmallVectorImpl<Type *> &ArgTys) {
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
if (!ID)
|
|
return false;
|
|
|
|
SmallVector<Intrinsic::IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(ID, Table);
|
|
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
|
|
|
|
if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
|
|
ArgTys) !=
|
|
Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
|
|
return false;
|
|
}
|
|
if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
|
|
TableRef))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
|
|
SmallVector<Type *, 4> ArgTys;
|
|
if (!getIntrinsicSignature(F, ArgTys))
|
|
return None;
|
|
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
StringRef Name = F->getName();
|
|
std::string WantedName =
|
|
Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
|
|
if (Name == WantedName)
|
|
return None;
|
|
|
|
Function *NewDecl = [&] {
|
|
if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
|
|
if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
|
|
if (ExistingF->getFunctionType() == F->getFunctionType())
|
|
return ExistingF;
|
|
|
|
// The name already exists, but is not a function or has the wrong
|
|
// prototype. Make place for the new one by renaming the old version.
|
|
// Either this old version will be removed later on or the module is
|
|
// invalid and we'll get an error.
|
|
ExistingGV->setName(WantedName + ".renamed");
|
|
}
|
|
return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
|
|
}();
|
|
|
|
NewDecl->setCallingConv(F->getCallingConv());
|
|
assert(NewDecl->getFunctionType() == F->getFunctionType() &&
|
|
"Shouldn't change the signature");
|
|
return NewDecl;
|
|
}
|
|
|
|
/// hasAddressTaken - returns true if there are any uses of this function
|
|
/// other than direct calls or invokes to it. Optionally ignores callback
|
|
/// uses, assume like pointer annotation calls, and references in llvm.used
|
|
/// and llvm.compiler.used variables.
|
|
bool Function::hasAddressTaken(const User **PutOffender,
|
|
bool IgnoreCallbackUses,
|
|
bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
|
|
bool IgnoreARCAttachedCall) const {
|
|
for (const Use &U : uses()) {
|
|
const User *FU = U.getUser();
|
|
if (isa<BlockAddress>(FU))
|
|
continue;
|
|
|
|
if (IgnoreCallbackUses) {
|
|
AbstractCallSite ACS(&U);
|
|
if (ACS && ACS.isCallbackCall())
|
|
continue;
|
|
}
|
|
|
|
const auto *Call = dyn_cast<CallBase>(FU);
|
|
if (!Call) {
|
|
if (IgnoreAssumeLikeCalls) {
|
|
if (const auto *FI = dyn_cast<Instruction>(FU)) {
|
|
if (FI->isCast() && !FI->user_empty() &&
|
|
llvm::all_of(FU->users(), [](const User *U) {
|
|
if (const auto *I = dyn_cast<IntrinsicInst>(U))
|
|
return I->isAssumeLikeIntrinsic();
|
|
return false;
|
|
}))
|
|
continue;
|
|
}
|
|
}
|
|
if (IgnoreLLVMUsed && !FU->user_empty()) {
|
|
const User *FUU = FU;
|
|
if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
|
|
!FU->user_begin()->user_empty())
|
|
FUU = *FU->user_begin();
|
|
if (llvm::all_of(FUU->users(), [](const User *U) {
|
|
if (const auto *GV = dyn_cast<GlobalVariable>(U))
|
|
return GV->hasName() &&
|
|
(GV->getName().equals("llvm.compiler.used") ||
|
|
GV->getName().equals("llvm.used"));
|
|
return false;
|
|
}))
|
|
continue;
|
|
}
|
|
if (PutOffender)
|
|
*PutOffender = FU;
|
|
return true;
|
|
}
|
|
if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
|
|
if (IgnoreARCAttachedCall &&
|
|
Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
|
|
U.getOperandNo()))
|
|
continue;
|
|
|
|
if (PutOffender)
|
|
*PutOffender = FU;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Function::isDefTriviallyDead() const {
|
|
// Check the linkage
|
|
if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
|
|
!hasAvailableExternallyLinkage())
|
|
return false;
|
|
|
|
// Check if the function is used by anything other than a blockaddress.
|
|
for (const User *U : users())
|
|
if (!isa<BlockAddress>(U))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
|
|
/// setjmp or other function that gcc recognizes as "returning twice".
|
|
bool Function::callsFunctionThatReturnsTwice() const {
|
|
for (const Instruction &I : instructions(this))
|
|
if (const auto *Call = dyn_cast<CallBase>(&I))
|
|
if (Call->hasFnAttr(Attribute::ReturnsTwice))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Constant *Function::getPersonalityFn() const {
|
|
assert(hasPersonalityFn() && getNumOperands());
|
|
return cast<Constant>(Op<0>());
|
|
}
|
|
|
|
void Function::setPersonalityFn(Constant *Fn) {
|
|
setHungoffOperand<0>(Fn);
|
|
setValueSubclassDataBit(3, Fn != nullptr);
|
|
}
|
|
|
|
Constant *Function::getPrefixData() const {
|
|
assert(hasPrefixData() && getNumOperands());
|
|
return cast<Constant>(Op<1>());
|
|
}
|
|
|
|
void Function::setPrefixData(Constant *PrefixData) {
|
|
setHungoffOperand<1>(PrefixData);
|
|
setValueSubclassDataBit(1, PrefixData != nullptr);
|
|
}
|
|
|
|
Constant *Function::getPrologueData() const {
|
|
assert(hasPrologueData() && getNumOperands());
|
|
return cast<Constant>(Op<2>());
|
|
}
|
|
|
|
void Function::setPrologueData(Constant *PrologueData) {
|
|
setHungoffOperand<2>(PrologueData);
|
|
setValueSubclassDataBit(2, PrologueData != nullptr);
|
|
}
|
|
|
|
void Function::allocHungoffUselist() {
|
|
// If we've already allocated a uselist, stop here.
|
|
if (getNumOperands())
|
|
return;
|
|
|
|
allocHungoffUses(3, /*IsPhi=*/ false);
|
|
setNumHungOffUseOperands(3);
|
|
|
|
// Initialize the uselist with placeholder operands to allow traversal.
|
|
auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
|
|
Op<0>().set(CPN);
|
|
Op<1>().set(CPN);
|
|
Op<2>().set(CPN);
|
|
}
|
|
|
|
template <int Idx>
|
|
void Function::setHungoffOperand(Constant *C) {
|
|
if (C) {
|
|
allocHungoffUselist();
|
|
Op<Idx>().set(C);
|
|
} else if (getNumOperands()) {
|
|
Op<Idx>().set(
|
|
ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
|
|
}
|
|
}
|
|
|
|
void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
|
|
assert(Bit < 16 && "SubclassData contains only 16 bits");
|
|
if (On)
|
|
setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
|
|
else
|
|
setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
|
|
}
|
|
|
|
void Function::setEntryCount(ProfileCount Count,
|
|
const DenseSet<GlobalValue::GUID> *S) {
|
|
#if !defined(NDEBUG)
|
|
auto PrevCount = getEntryCount();
|
|
assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType());
|
|
#endif
|
|
|
|
auto ImportGUIDs = getImportGUIDs();
|
|
if (S == nullptr && ImportGUIDs.size())
|
|
S = &ImportGUIDs;
|
|
|
|
MDBuilder MDB(getContext());
|
|
setMetadata(
|
|
LLVMContext::MD_prof,
|
|
MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
|
|
}
|
|
|
|
void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
|
|
const DenseSet<GlobalValue::GUID> *Imports) {
|
|
setEntryCount(ProfileCount(Count, Type), Imports);
|
|
}
|
|
|
|
Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
|
|
MDNode *MD = getMetadata(LLVMContext::MD_prof);
|
|
if (MD && MD->getOperand(0))
|
|
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
|
|
if (MDS->getString().equals("function_entry_count")) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
|
|
uint64_t Count = CI->getValue().getZExtValue();
|
|
// A value of -1 is used for SamplePGO when there were no samples.
|
|
// Treat this the same as unknown.
|
|
if (Count == (uint64_t)-1)
|
|
return None;
|
|
return ProfileCount(Count, PCT_Real);
|
|
} else if (AllowSynthetic &&
|
|
MDS->getString().equals("synthetic_function_entry_count")) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
|
|
uint64_t Count = CI->getValue().getZExtValue();
|
|
return ProfileCount(Count, PCT_Synthetic);
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
|
|
DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
|
|
DenseSet<GlobalValue::GUID> R;
|
|
if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
|
|
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
|
|
if (MDS->getString().equals("function_entry_count"))
|
|
for (unsigned i = 2; i < MD->getNumOperands(); i++)
|
|
R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
|
|
->getValue()
|
|
.getZExtValue());
|
|
return R;
|
|
}
|
|
|
|
void Function::setSectionPrefix(StringRef Prefix) {
|
|
MDBuilder MDB(getContext());
|
|
setMetadata(LLVMContext::MD_section_prefix,
|
|
MDB.createFunctionSectionPrefix(Prefix));
|
|
}
|
|
|
|
Optional<StringRef> Function::getSectionPrefix() const {
|
|
if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
|
|
assert(cast<MDString>(MD->getOperand(0))
|
|
->getString()
|
|
.equals("function_section_prefix") &&
|
|
"Metadata not match");
|
|
return cast<MDString>(MD->getOperand(1))->getString();
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool Function::nullPointerIsDefined() const {
|
|
return hasFnAttribute(Attribute::NullPointerIsValid);
|
|
}
|
|
|
|
bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
|
|
if (F && F->nullPointerIsDefined())
|
|
return true;
|
|
|
|
if (AS != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|