forked from OSchip/llvm-project
1066 lines
42 KiB
C++
1066 lines
42 KiB
C++
//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This simple pass provides alias and mod/ref information for global values
|
|
// that do not have their address taken, and keeps track of whether functions
|
|
// read or write memory (are "pure"). For this simple (but very common) case,
|
|
// we can provide pretty accurate and useful information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "globalsmodref-aa"
|
|
|
|
STATISTIC(NumNonAddrTakenGlobalVars,
|
|
"Number of global vars without address taken");
|
|
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
|
|
STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
|
|
STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
|
|
STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
|
|
|
|
// An option to enable unsafe alias results from the GlobalsModRef analysis.
|
|
// When enabled, GlobalsModRef will provide no-alias results which in extremely
|
|
// rare cases may not be conservatively correct. In particular, in the face of
|
|
// transforms which cause asymmetry between how effective getUnderlyingObject
|
|
// is for two pointers, it may produce incorrect results.
|
|
//
|
|
// These unsafe results have been returned by GMR for many years without
|
|
// causing significant issues in the wild and so we provide a mechanism to
|
|
// re-enable them for users of LLVM that have a particular performance
|
|
// sensitivity and no known issues. The option also makes it easy to evaluate
|
|
// the performance impact of these results.
|
|
static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
|
|
"enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
|
|
|
|
/// The mod/ref information collected for a particular function.
|
|
///
|
|
/// We collect information about mod/ref behavior of a function here, both in
|
|
/// general and as pertains to specific globals. We only have this detailed
|
|
/// information when we know *something* useful about the behavior. If we
|
|
/// saturate to fully general mod/ref, we remove the info for the function.
|
|
class GlobalsAAResult::FunctionInfo {
|
|
typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
|
|
|
|
/// Build a wrapper struct that has 8-byte alignment. All heap allocations
|
|
/// should provide this much alignment at least, but this makes it clear we
|
|
/// specifically rely on this amount of alignment.
|
|
struct alignas(8) AlignedMap {
|
|
AlignedMap() = default;
|
|
AlignedMap(const AlignedMap &Arg) = default;
|
|
GlobalInfoMapType Map;
|
|
};
|
|
|
|
/// Pointer traits for our aligned map.
|
|
struct AlignedMapPointerTraits {
|
|
static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
|
|
static inline AlignedMap *getFromVoidPointer(void *P) {
|
|
return (AlignedMap *)P;
|
|
}
|
|
static constexpr int NumLowBitsAvailable = 3;
|
|
static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
|
|
"AlignedMap insufficiently aligned to have enough low bits.");
|
|
};
|
|
|
|
/// The bit that flags that this function may read any global. This is
|
|
/// chosen to mix together with ModRefInfo bits.
|
|
/// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
|
|
/// It overlaps with ModRefInfo::Must bit!
|
|
/// FunctionInfo.getModRefInfo() masks out everything except ModRef so
|
|
/// this remains correct, but the Must info is lost.
|
|
enum { MayReadAnyGlobal = 4 };
|
|
|
|
/// Checks to document the invariants of the bit packing here.
|
|
static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
|
|
0,
|
|
"ModRef and the MayReadAnyGlobal flag bits overlap.");
|
|
static_assert(((MayReadAnyGlobal |
|
|
static_cast<int>(ModRefInfo::MustModRef)) >>
|
|
AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
|
|
"Insufficient low bits to store our flag and ModRef info.");
|
|
|
|
public:
|
|
FunctionInfo() = default;
|
|
~FunctionInfo() {
|
|
delete Info.getPointer();
|
|
}
|
|
// Spell out the copy ond move constructors and assignment operators to get
|
|
// deep copy semantics and correct move semantics in the face of the
|
|
// pointer-int pair.
|
|
FunctionInfo(const FunctionInfo &Arg)
|
|
: Info(nullptr, Arg.Info.getInt()) {
|
|
if (const auto *ArgPtr = Arg.Info.getPointer())
|
|
Info.setPointer(new AlignedMap(*ArgPtr));
|
|
}
|
|
FunctionInfo(FunctionInfo &&Arg)
|
|
: Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
|
|
Arg.Info.setPointerAndInt(nullptr, 0);
|
|
}
|
|
FunctionInfo &operator=(const FunctionInfo &RHS) {
|
|
delete Info.getPointer();
|
|
Info.setPointerAndInt(nullptr, RHS.Info.getInt());
|
|
if (const auto *RHSPtr = RHS.Info.getPointer())
|
|
Info.setPointer(new AlignedMap(*RHSPtr));
|
|
return *this;
|
|
}
|
|
FunctionInfo &operator=(FunctionInfo &&RHS) {
|
|
delete Info.getPointer();
|
|
Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
|
|
RHS.Info.setPointerAndInt(nullptr, 0);
|
|
return *this;
|
|
}
|
|
|
|
/// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
|
|
/// the corresponding ModRefInfo. It must align in functionality with
|
|
/// clearMust().
|
|
ModRefInfo globalClearMayReadAnyGlobal(int I) const {
|
|
return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
|
|
static_cast<int>(ModRefInfo::NoModRef));
|
|
}
|
|
|
|
/// Returns the \c ModRefInfo info for this function.
|
|
ModRefInfo getModRefInfo() const {
|
|
return globalClearMayReadAnyGlobal(Info.getInt());
|
|
}
|
|
|
|
/// Adds new \c ModRefInfo for this function to its state.
|
|
void addModRefInfo(ModRefInfo NewMRI) {
|
|
Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
|
|
}
|
|
|
|
/// Returns whether this function may read any global variable, and we don't
|
|
/// know which global.
|
|
bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
|
|
|
|
/// Sets this function as potentially reading from any global.
|
|
void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
|
|
|
|
/// Returns the \c ModRefInfo info for this function w.r.t. a particular
|
|
/// global, which may be more precise than the general information above.
|
|
ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
|
|
ModRefInfo GlobalMRI =
|
|
mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
|
|
if (AlignedMap *P = Info.getPointer()) {
|
|
auto I = P->Map.find(&GV);
|
|
if (I != P->Map.end())
|
|
GlobalMRI = unionModRef(GlobalMRI, I->second);
|
|
}
|
|
return GlobalMRI;
|
|
}
|
|
|
|
/// Add mod/ref info from another function into ours, saturating towards
|
|
/// ModRef.
|
|
void addFunctionInfo(const FunctionInfo &FI) {
|
|
addModRefInfo(FI.getModRefInfo());
|
|
|
|
if (FI.mayReadAnyGlobal())
|
|
setMayReadAnyGlobal();
|
|
|
|
if (AlignedMap *P = FI.Info.getPointer())
|
|
for (const auto &G : P->Map)
|
|
addModRefInfoForGlobal(*G.first, G.second);
|
|
}
|
|
|
|
void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
|
|
AlignedMap *P = Info.getPointer();
|
|
if (!P) {
|
|
P = new AlignedMap();
|
|
Info.setPointer(P);
|
|
}
|
|
auto &GlobalMRI = P->Map[&GV];
|
|
GlobalMRI = unionModRef(GlobalMRI, NewMRI);
|
|
}
|
|
|
|
/// Clear a global's ModRef info. Should be used when a global is being
|
|
/// deleted.
|
|
void eraseModRefInfoForGlobal(const GlobalValue &GV) {
|
|
if (AlignedMap *P = Info.getPointer())
|
|
P->Map.erase(&GV);
|
|
}
|
|
|
|
private:
|
|
/// All of the information is encoded into a single pointer, with a three bit
|
|
/// integer in the low three bits. The high bit provides a flag for when this
|
|
/// function may read any global. The low two bits are the ModRefInfo. And
|
|
/// the pointer, when non-null, points to a map from GlobalValue to
|
|
/// ModRefInfo specific to that GlobalValue.
|
|
PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
|
|
};
|
|
|
|
void GlobalsAAResult::DeletionCallbackHandle::deleted() {
|
|
Value *V = getValPtr();
|
|
if (auto *F = dyn_cast<Function>(V))
|
|
GAR->FunctionInfos.erase(F);
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
if (GAR->NonAddressTakenGlobals.erase(GV)) {
|
|
// This global might be an indirect global. If so, remove it and
|
|
// remove any AllocRelatedValues for it.
|
|
if (GAR->IndirectGlobals.erase(GV)) {
|
|
// Remove any entries in AllocsForIndirectGlobals for this global.
|
|
for (auto I = GAR->AllocsForIndirectGlobals.begin(),
|
|
E = GAR->AllocsForIndirectGlobals.end();
|
|
I != E; ++I)
|
|
if (I->second == GV)
|
|
GAR->AllocsForIndirectGlobals.erase(I);
|
|
}
|
|
|
|
// Scan the function info we have collected and remove this global
|
|
// from all of them.
|
|
for (auto &FIPair : GAR->FunctionInfos)
|
|
FIPair.second.eraseModRefInfoForGlobal(*GV);
|
|
}
|
|
}
|
|
|
|
// If this is an allocation related to an indirect global, remove it.
|
|
GAR->AllocsForIndirectGlobals.erase(V);
|
|
|
|
// And clear out the handle.
|
|
setValPtr(nullptr);
|
|
GAR->Handles.erase(I);
|
|
// This object is now destroyed!
|
|
}
|
|
|
|
FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
if (FunctionInfo *FI = getFunctionInfo(F)) {
|
|
if (!isModOrRefSet(FI->getModRefInfo()))
|
|
Min = FMRB_DoesNotAccessMemory;
|
|
else if (!isModSet(FI->getModRefInfo()))
|
|
Min = FMRB_OnlyReadsMemory;
|
|
}
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
if (!Call->hasOperandBundles())
|
|
if (const Function *F = Call->getCalledFunction())
|
|
if (FunctionInfo *FI = getFunctionInfo(F)) {
|
|
if (!isModOrRefSet(FI->getModRefInfo()))
|
|
Min = FMRB_DoesNotAccessMemory;
|
|
else if (!isModSet(FI->getModRefInfo()))
|
|
Min = FMRB_OnlyReadsMemory;
|
|
}
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
|
|
}
|
|
|
|
/// Returns the function info for the function, or null if we don't have
|
|
/// anything useful to say about it.
|
|
GlobalsAAResult::FunctionInfo *
|
|
GlobalsAAResult::getFunctionInfo(const Function *F) {
|
|
auto I = FunctionInfos.find(F);
|
|
if (I != FunctionInfos.end())
|
|
return &I->second;
|
|
return nullptr;
|
|
}
|
|
|
|
/// AnalyzeGlobals - Scan through the users of all of the internal
|
|
/// GlobalValue's in the program. If none of them have their "address taken"
|
|
/// (really, their address passed to something nontrivial), record this fact,
|
|
/// and record the functions that they are used directly in.
|
|
void GlobalsAAResult::AnalyzeGlobals(Module &M) {
|
|
SmallPtrSet<Function *, 32> TrackedFunctions;
|
|
for (Function &F : M)
|
|
if (F.hasLocalLinkage()) {
|
|
if (!AnalyzeUsesOfPointer(&F)) {
|
|
// Remember that we are tracking this global.
|
|
NonAddressTakenGlobals.insert(&F);
|
|
TrackedFunctions.insert(&F);
|
|
Handles.emplace_front(*this, &F);
|
|
Handles.front().I = Handles.begin();
|
|
++NumNonAddrTakenFunctions;
|
|
} else
|
|
UnknownFunctionsWithLocalLinkage = true;
|
|
}
|
|
|
|
SmallPtrSet<Function *, 16> Readers, Writers;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasLocalLinkage()) {
|
|
if (!AnalyzeUsesOfPointer(&GV, &Readers,
|
|
GV.isConstant() ? nullptr : &Writers)) {
|
|
// Remember that we are tracking this global, and the mod/ref fns
|
|
NonAddressTakenGlobals.insert(&GV);
|
|
Handles.emplace_front(*this, &GV);
|
|
Handles.front().I = Handles.begin();
|
|
|
|
for (Function *Reader : Readers) {
|
|
if (TrackedFunctions.insert(Reader).second) {
|
|
Handles.emplace_front(*this, Reader);
|
|
Handles.front().I = Handles.begin();
|
|
}
|
|
FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
|
|
}
|
|
|
|
if (!GV.isConstant()) // No need to keep track of writers to constants
|
|
for (Function *Writer : Writers) {
|
|
if (TrackedFunctions.insert(Writer).second) {
|
|
Handles.emplace_front(*this, Writer);
|
|
Handles.front().I = Handles.begin();
|
|
}
|
|
FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
|
|
}
|
|
++NumNonAddrTakenGlobalVars;
|
|
|
|
// If this global holds a pointer type, see if it is an indirect global.
|
|
if (GV.getValueType()->isPointerTy() &&
|
|
AnalyzeIndirectGlobalMemory(&GV))
|
|
++NumIndirectGlobalVars;
|
|
}
|
|
Readers.clear();
|
|
Writers.clear();
|
|
}
|
|
}
|
|
|
|
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
|
|
/// If this is used by anything complex (i.e., the address escapes), return
|
|
/// true. Also, while we are at it, keep track of those functions that read and
|
|
/// write to the value.
|
|
///
|
|
/// If OkayStoreDest is non-null, stores into this global are allowed.
|
|
bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
|
|
SmallPtrSetImpl<Function *> *Readers,
|
|
SmallPtrSetImpl<Function *> *Writers,
|
|
GlobalValue *OkayStoreDest) {
|
|
if (!V->getType()->isPointerTy())
|
|
return true;
|
|
|
|
for (Use &U : V->uses()) {
|
|
User *I = U.getUser();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (Readers)
|
|
Readers->insert(LI->getParent()->getParent());
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (V == SI->getOperand(1)) {
|
|
if (Writers)
|
|
Writers->insert(SI->getParent()->getParent());
|
|
} else if (SI->getOperand(1) != OkayStoreDest) {
|
|
return true; // Storing the pointer
|
|
}
|
|
} else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
|
|
if (AnalyzeUsesOfPointer(I, Readers, Writers))
|
|
return true;
|
|
} else if (Operator::getOpcode(I) == Instruction::BitCast ||
|
|
Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
|
|
if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
|
|
return true;
|
|
} else if (auto *Call = dyn_cast<CallBase>(I)) {
|
|
// Make sure that this is just the function being called, not that it is
|
|
// passing into the function.
|
|
if (Call->isDataOperand(&U)) {
|
|
// Detect calls to free.
|
|
if (Call->isArgOperand(&U) &&
|
|
isFreeCall(I, &GetTLI(*Call->getFunction()))) {
|
|
if (Writers)
|
|
Writers->insert(Call->getParent()->getParent());
|
|
} else {
|
|
return true; // Argument of an unknown call.
|
|
}
|
|
}
|
|
} else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
|
|
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
|
|
return true; // Allow comparison against null.
|
|
} else if (Constant *C = dyn_cast<Constant>(I)) {
|
|
// Ignore constants which don't have any live uses.
|
|
if (isa<GlobalValue>(C) || C->isConstantUsed())
|
|
return true;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
|
|
/// which holds a pointer type. See if the global always points to non-aliased
|
|
/// heap memory: that is, all initializers of the globals store a value known
|
|
/// to be obtained via a noalias return function call which have no other use.
|
|
/// Further, all loads out of GV must directly use the memory, not store the
|
|
/// pointer somewhere. If this is true, we consider the memory pointed to by
|
|
/// GV to be owned by GV and can disambiguate other pointers from it.
|
|
bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
|
|
// Keep track of values related to the allocation of the memory, f.e. the
|
|
// value produced by the noalias call and any casts.
|
|
std::vector<Value *> AllocRelatedValues;
|
|
|
|
// If the initializer is a valid pointer, bail.
|
|
if (Constant *C = GV->getInitializer())
|
|
if (!C->isNullValue())
|
|
return false;
|
|
|
|
// Walk the user list of the global. If we find anything other than a direct
|
|
// load or store, bail out.
|
|
for (User *U : GV->users()) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
|
|
// The pointer loaded from the global can only be used in simple ways:
|
|
// we allow addressing of it and loading storing to it. We do *not* allow
|
|
// storing the loaded pointer somewhere else or passing to a function.
|
|
if (AnalyzeUsesOfPointer(LI))
|
|
return false; // Loaded pointer escapes.
|
|
// TODO: Could try some IP mod/ref of the loaded pointer.
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
// Storing the global itself.
|
|
if (SI->getOperand(0) == GV)
|
|
return false;
|
|
|
|
// If storing the null pointer, ignore it.
|
|
if (isa<ConstantPointerNull>(SI->getOperand(0)))
|
|
continue;
|
|
|
|
// Check the value being stored.
|
|
Value *Ptr = getUnderlyingObject(SI->getOperand(0));
|
|
|
|
if (!isNoAliasCall(Ptr))
|
|
return false; // Too hard to analyze.
|
|
|
|
// Analyze all uses of the allocation. If any of them are used in a
|
|
// non-simple way (e.g. stored to another global) bail out.
|
|
if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
|
|
GV))
|
|
return false; // Loaded pointer escapes.
|
|
|
|
// Remember that this allocation is related to the indirect global.
|
|
AllocRelatedValues.push_back(Ptr);
|
|
} else {
|
|
// Something complex, bail out.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Okay, this is an indirect global. Remember all of the allocations for
|
|
// this global in AllocsForIndirectGlobals.
|
|
while (!AllocRelatedValues.empty()) {
|
|
AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
|
|
Handles.emplace_front(*this, AllocRelatedValues.back());
|
|
Handles.front().I = Handles.begin();
|
|
AllocRelatedValues.pop_back();
|
|
}
|
|
IndirectGlobals.insert(GV);
|
|
Handles.emplace_front(*this, GV);
|
|
Handles.front().I = Handles.begin();
|
|
return true;
|
|
}
|
|
|
|
void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
|
|
// We do a bottom-up SCC traversal of the call graph. In other words, we
|
|
// visit all callees before callers (leaf-first).
|
|
unsigned SCCID = 0;
|
|
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
|
|
const std::vector<CallGraphNode *> &SCC = *I;
|
|
assert(!SCC.empty() && "SCC with no functions?");
|
|
|
|
for (auto *CGN : SCC)
|
|
if (Function *F = CGN->getFunction())
|
|
FunctionToSCCMap[F] = SCCID;
|
|
++SCCID;
|
|
}
|
|
}
|
|
|
|
/// AnalyzeCallGraph - At this point, we know the functions where globals are
|
|
/// immediately stored to and read from. Propagate this information up the call
|
|
/// graph to all callers and compute the mod/ref info for all memory for each
|
|
/// function.
|
|
void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
|
|
// We do a bottom-up SCC traversal of the call graph. In other words, we
|
|
// visit all callees before callers (leaf-first).
|
|
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
|
|
const std::vector<CallGraphNode *> &SCC = *I;
|
|
assert(!SCC.empty() && "SCC with no functions?");
|
|
|
|
Function *F = SCC[0]->getFunction();
|
|
|
|
if (!F || !F->isDefinitionExact()) {
|
|
// Calls externally or not exact - can't say anything useful. Remove any
|
|
// existing function records (may have been created when scanning
|
|
// globals).
|
|
for (auto *Node : SCC)
|
|
FunctionInfos.erase(Node->getFunction());
|
|
continue;
|
|
}
|
|
|
|
FunctionInfo &FI = FunctionInfos[F];
|
|
Handles.emplace_front(*this, F);
|
|
Handles.front().I = Handles.begin();
|
|
bool KnowNothing = false;
|
|
|
|
// Collect the mod/ref properties due to called functions. We only compute
|
|
// one mod-ref set.
|
|
for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
|
|
if (!F) {
|
|
KnowNothing = true;
|
|
break;
|
|
}
|
|
|
|
if (F->isDeclaration() || F->hasOptNone()) {
|
|
// Try to get mod/ref behaviour from function attributes.
|
|
if (F->doesNotAccessMemory()) {
|
|
// Can't do better than that!
|
|
} else if (F->onlyReadsMemory()) {
|
|
FI.addModRefInfo(ModRefInfo::Ref);
|
|
if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
|
|
// This function might call back into the module and read a global -
|
|
// consider every global as possibly being read by this function.
|
|
FI.setMayReadAnyGlobal();
|
|
} else {
|
|
FI.addModRefInfo(ModRefInfo::ModRef);
|
|
if (!F->onlyAccessesArgMemory())
|
|
FI.setMayReadAnyGlobal();
|
|
if (!F->isIntrinsic()) {
|
|
KnowNothing = true;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
|
|
CI != E && !KnowNothing; ++CI)
|
|
if (Function *Callee = CI->second->getFunction()) {
|
|
if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
|
|
// Propagate function effect up.
|
|
FI.addFunctionInfo(*CalleeFI);
|
|
} else {
|
|
// Can't say anything about it. However, if it is inside our SCC,
|
|
// then nothing needs to be done.
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
if (!is_contained(SCC, CalleeNode))
|
|
KnowNothing = true;
|
|
}
|
|
} else {
|
|
KnowNothing = true;
|
|
}
|
|
}
|
|
|
|
// If we can't say anything useful about this SCC, remove all SCC functions
|
|
// from the FunctionInfos map.
|
|
if (KnowNothing) {
|
|
for (auto *Node : SCC)
|
|
FunctionInfos.erase(Node->getFunction());
|
|
continue;
|
|
}
|
|
|
|
// Scan the function bodies for explicit loads or stores.
|
|
for (auto *Node : SCC) {
|
|
if (isModAndRefSet(FI.getModRefInfo()))
|
|
break; // The mod/ref lattice saturates here.
|
|
|
|
// Don't prove any properties based on the implementation of an optnone
|
|
// function. Function attributes were already used as a best approximation
|
|
// above.
|
|
if (Node->getFunction()->hasOptNone())
|
|
continue;
|
|
|
|
for (Instruction &I : instructions(Node->getFunction())) {
|
|
if (isModAndRefSet(FI.getModRefInfo()))
|
|
break; // The mod/ref lattice saturates here.
|
|
|
|
// We handle calls specially because the graph-relevant aspects are
|
|
// handled above.
|
|
if (auto *Call = dyn_cast<CallBase>(&I)) {
|
|
auto &TLI = GetTLI(*Node->getFunction());
|
|
if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
|
|
// FIXME: It is completely unclear why this is necessary and not
|
|
// handled by the above graph code.
|
|
FI.addModRefInfo(ModRefInfo::ModRef);
|
|
} else if (Function *Callee = Call->getCalledFunction()) {
|
|
// The callgraph doesn't include intrinsic calls.
|
|
if (Callee->isIntrinsic()) {
|
|
if (isa<DbgInfoIntrinsic>(Call))
|
|
// Don't let dbg intrinsics affect alias info.
|
|
continue;
|
|
|
|
FunctionModRefBehavior Behaviour =
|
|
AAResultBase::getModRefBehavior(Callee);
|
|
FI.addModRefInfo(createModRefInfo(Behaviour));
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// All non-call instructions we use the primary predicates for whether
|
|
// they read or write memory.
|
|
if (I.mayReadFromMemory())
|
|
FI.addModRefInfo(ModRefInfo::Ref);
|
|
if (I.mayWriteToMemory())
|
|
FI.addModRefInfo(ModRefInfo::Mod);
|
|
}
|
|
}
|
|
|
|
if (!isModSet(FI.getModRefInfo()))
|
|
++NumReadMemFunctions;
|
|
if (!isModOrRefSet(FI.getModRefInfo()))
|
|
++NumNoMemFunctions;
|
|
|
|
// Finally, now that we know the full effect on this SCC, clone the
|
|
// information to each function in the SCC.
|
|
// FI is a reference into FunctionInfos, so copy it now so that it doesn't
|
|
// get invalidated if DenseMap decides to re-hash.
|
|
FunctionInfo CachedFI = FI;
|
|
for (unsigned i = 1, e = SCC.size(); i != e; ++i)
|
|
FunctionInfos[SCC[i]->getFunction()] = CachedFI;
|
|
}
|
|
}
|
|
|
|
// GV is a non-escaping global. V is a pointer address that has been loaded from.
|
|
// If we can prove that V must escape, we can conclude that a load from V cannot
|
|
// alias GV.
|
|
static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
|
|
const Value *V,
|
|
int &Depth,
|
|
const DataLayout &DL) {
|
|
SmallPtrSet<const Value *, 8> Visited;
|
|
SmallVector<const Value *, 8> Inputs;
|
|
Visited.insert(V);
|
|
Inputs.push_back(V);
|
|
do {
|
|
const Value *Input = Inputs.pop_back_val();
|
|
|
|
if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
|
|
isa<InvokeInst>(Input))
|
|
// Arguments to functions or returns from functions are inherently
|
|
// escaping, so we can immediately classify those as not aliasing any
|
|
// non-addr-taken globals.
|
|
//
|
|
// (Transitive) loads from a global are also safe - if this aliased
|
|
// another global, its address would escape, so no alias.
|
|
continue;
|
|
|
|
// Recurse through a limited number of selects, loads and PHIs. This is an
|
|
// arbitrary depth of 4, lower numbers could be used to fix compile time
|
|
// issues if needed, but this is generally expected to be only be important
|
|
// for small depths.
|
|
if (++Depth > 4)
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Input)) {
|
|
Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
|
|
continue;
|
|
}
|
|
if (auto *SI = dyn_cast<SelectInst>(Input)) {
|
|
const Value *LHS = getUnderlyingObject(SI->getTrueValue());
|
|
const Value *RHS = getUnderlyingObject(SI->getFalseValue());
|
|
if (Visited.insert(LHS).second)
|
|
Inputs.push_back(LHS);
|
|
if (Visited.insert(RHS).second)
|
|
Inputs.push_back(RHS);
|
|
continue;
|
|
}
|
|
if (auto *PN = dyn_cast<PHINode>(Input)) {
|
|
for (const Value *Op : PN->incoming_values()) {
|
|
Op = getUnderlyingObject(Op);
|
|
if (Visited.insert(Op).second)
|
|
Inputs.push_back(Op);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
} while (!Inputs.empty());
|
|
|
|
// All inputs were known to be no-alias.
|
|
return true;
|
|
}
|
|
|
|
// There are particular cases where we can conclude no-alias between
|
|
// a non-addr-taken global and some other underlying object. Specifically,
|
|
// a non-addr-taken global is known to not be escaped from any function. It is
|
|
// also incorrect for a transformation to introduce an escape of a global in
|
|
// a way that is observable when it was not there previously. One function
|
|
// being transformed to introduce an escape which could possibly be observed
|
|
// (via loading from a global or the return value for example) within another
|
|
// function is never safe. If the observation is made through non-atomic
|
|
// operations on different threads, it is a data-race and UB. If the
|
|
// observation is well defined, by being observed the transformation would have
|
|
// changed program behavior by introducing the observed escape, making it an
|
|
// invalid transform.
|
|
//
|
|
// This property does require that transformations which *temporarily* escape
|
|
// a global that was not previously escaped, prior to restoring it, cannot rely
|
|
// on the results of GMR::alias. This seems a reasonable restriction, although
|
|
// currently there is no way to enforce it. There is also no realistic
|
|
// optimization pass that would make this mistake. The closest example is
|
|
// a transformation pass which does reg2mem of SSA values but stores them into
|
|
// global variables temporarily before restoring the global variable's value.
|
|
// This could be useful to expose "benign" races for example. However, it seems
|
|
// reasonable to require that a pass which introduces escapes of global
|
|
// variables in this way to either not trust AA results while the escape is
|
|
// active, or to be forced to operate as a module pass that cannot co-exist
|
|
// with an alias analysis such as GMR.
|
|
bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
|
|
const Value *V) {
|
|
// In order to know that the underlying object cannot alias the
|
|
// non-addr-taken global, we must know that it would have to be an escape.
|
|
// Thus if the underlying object is a function argument, a load from
|
|
// a global, or the return of a function, it cannot alias. We can also
|
|
// recurse through PHI nodes and select nodes provided all of their inputs
|
|
// resolve to one of these known-escaping roots.
|
|
SmallPtrSet<const Value *, 8> Visited;
|
|
SmallVector<const Value *, 8> Inputs;
|
|
Visited.insert(V);
|
|
Inputs.push_back(V);
|
|
int Depth = 0;
|
|
do {
|
|
const Value *Input = Inputs.pop_back_val();
|
|
|
|
if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
|
|
// If one input is the very global we're querying against, then we can't
|
|
// conclude no-alias.
|
|
if (InputGV == GV)
|
|
return false;
|
|
|
|
// Distinct GlobalVariables never alias, unless overriden or zero-sized.
|
|
// FIXME: The condition can be refined, but be conservative for now.
|
|
auto *GVar = dyn_cast<GlobalVariable>(GV);
|
|
auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
|
|
if (GVar && InputGVar &&
|
|
!GVar->isDeclaration() && !InputGVar->isDeclaration() &&
|
|
!GVar->isInterposable() && !InputGVar->isInterposable()) {
|
|
Type *GVType = GVar->getInitializer()->getType();
|
|
Type *InputGVType = InputGVar->getInitializer()->getType();
|
|
if (GVType->isSized() && InputGVType->isSized() &&
|
|
(DL.getTypeAllocSize(GVType) > 0) &&
|
|
(DL.getTypeAllocSize(InputGVType) > 0))
|
|
continue;
|
|
}
|
|
|
|
// Conservatively return false, even though we could be smarter
|
|
// (e.g. look through GlobalAliases).
|
|
return false;
|
|
}
|
|
|
|
if (isa<Argument>(Input) || isa<CallInst>(Input) ||
|
|
isa<InvokeInst>(Input)) {
|
|
// Arguments to functions or returns from functions are inherently
|
|
// escaping, so we can immediately classify those as not aliasing any
|
|
// non-addr-taken globals.
|
|
continue;
|
|
}
|
|
|
|
// Recurse through a limited number of selects, loads and PHIs. This is an
|
|
// arbitrary depth of 4, lower numbers could be used to fix compile time
|
|
// issues if needed, but this is generally expected to be only be important
|
|
// for small depths.
|
|
if (++Depth > 4)
|
|
return false;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Input)) {
|
|
// A pointer loaded from a global would have been captured, and we know
|
|
// that the global is non-escaping, so no alias.
|
|
const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
|
|
if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
|
|
// The load does not alias with GV.
|
|
continue;
|
|
// Otherwise, a load could come from anywhere, so bail.
|
|
return false;
|
|
}
|
|
if (auto *SI = dyn_cast<SelectInst>(Input)) {
|
|
const Value *LHS = getUnderlyingObject(SI->getTrueValue());
|
|
const Value *RHS = getUnderlyingObject(SI->getFalseValue());
|
|
if (Visited.insert(LHS).second)
|
|
Inputs.push_back(LHS);
|
|
if (Visited.insert(RHS).second)
|
|
Inputs.push_back(RHS);
|
|
continue;
|
|
}
|
|
if (auto *PN = dyn_cast<PHINode>(Input)) {
|
|
for (const Value *Op : PN->incoming_values()) {
|
|
Op = getUnderlyingObject(Op);
|
|
if (Visited.insert(Op).second)
|
|
Inputs.push_back(Op);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// FIXME: It would be good to handle other obvious no-alias cases here, but
|
|
// it isn't clear how to do so reasonably without building a small version
|
|
// of BasicAA into this code. We could recurse into AAResultBase::alias
|
|
// here but that seems likely to go poorly as we're inside the
|
|
// implementation of such a query. Until then, just conservatively return
|
|
// false.
|
|
return false;
|
|
} while (!Inputs.empty());
|
|
|
|
// If all the inputs to V were definitively no-alias, then V is no-alias.
|
|
return true;
|
|
}
|
|
|
|
bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
|
|
ModuleAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis has been explicitly invalidated. Otherwise, it's
|
|
// stateless and remains preserved.
|
|
auto PAC = PA.getChecker<GlobalsAA>();
|
|
return !PAC.preservedWhenStateless();
|
|
}
|
|
|
|
/// alias - If one of the pointers is to a global that we are tracking, and the
|
|
/// other is some random pointer, we know there cannot be an alias, because the
|
|
/// address of the global isn't taken.
|
|
AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI) {
|
|
// Get the base object these pointers point to.
|
|
const Value *UV1 =
|
|
getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
|
|
const Value *UV2 =
|
|
getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
|
|
|
|
// If either of the underlying values is a global, they may be non-addr-taken
|
|
// globals, which we can answer queries about.
|
|
const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
|
|
const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
|
|
if (GV1 || GV2) {
|
|
// If the global's address is taken, pretend we don't know it's a pointer to
|
|
// the global.
|
|
if (GV1 && !NonAddressTakenGlobals.count(GV1))
|
|
GV1 = nullptr;
|
|
if (GV2 && !NonAddressTakenGlobals.count(GV2))
|
|
GV2 = nullptr;
|
|
|
|
// If the two pointers are derived from two different non-addr-taken
|
|
// globals we know these can't alias.
|
|
if (GV1 && GV2 && GV1 != GV2)
|
|
return AliasResult::NoAlias;
|
|
|
|
// If one is and the other isn't, it isn't strictly safe but we can fake
|
|
// this result if necessary for performance. This does not appear to be
|
|
// a common problem in practice.
|
|
if (EnableUnsafeGlobalsModRefAliasResults)
|
|
if ((GV1 || GV2) && GV1 != GV2)
|
|
return AliasResult::NoAlias;
|
|
|
|
// Check for a special case where a non-escaping global can be used to
|
|
// conclude no-alias.
|
|
if ((GV1 || GV2) && GV1 != GV2) {
|
|
const GlobalValue *GV = GV1 ? GV1 : GV2;
|
|
const Value *UV = GV1 ? UV2 : UV1;
|
|
if (isNonEscapingGlobalNoAlias(GV, UV))
|
|
return AliasResult::NoAlias;
|
|
}
|
|
|
|
// Otherwise if they are both derived from the same addr-taken global, we
|
|
// can't know the two accesses don't overlap.
|
|
}
|
|
|
|
// These pointers may be based on the memory owned by an indirect global. If
|
|
// so, we may be able to handle this. First check to see if the base pointer
|
|
// is a direct load from an indirect global.
|
|
GV1 = GV2 = nullptr;
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
|
if (IndirectGlobals.count(GV))
|
|
GV1 = GV;
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
|
if (IndirectGlobals.count(GV))
|
|
GV2 = GV;
|
|
|
|
// These pointers may also be from an allocation for the indirect global. If
|
|
// so, also handle them.
|
|
if (!GV1)
|
|
GV1 = AllocsForIndirectGlobals.lookup(UV1);
|
|
if (!GV2)
|
|
GV2 = AllocsForIndirectGlobals.lookup(UV2);
|
|
|
|
// Now that we know whether the two pointers are related to indirect globals,
|
|
// use this to disambiguate the pointers. If the pointers are based on
|
|
// different indirect globals they cannot alias.
|
|
if (GV1 && GV2 && GV1 != GV2)
|
|
return AliasResult::NoAlias;
|
|
|
|
// If one is based on an indirect global and the other isn't, it isn't
|
|
// strictly safe but we can fake this result if necessary for performance.
|
|
// This does not appear to be a common problem in practice.
|
|
if (EnableUnsafeGlobalsModRefAliasResults)
|
|
if ((GV1 || GV2) && GV1 != GV2)
|
|
return AliasResult::NoAlias;
|
|
|
|
return AAResultBase::alias(LocA, LocB, AAQI);
|
|
}
|
|
|
|
ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
|
|
const GlobalValue *GV,
|
|
AAQueryInfo &AAQI) {
|
|
if (Call->doesNotAccessMemory())
|
|
return ModRefInfo::NoModRef;
|
|
ModRefInfo ConservativeResult =
|
|
Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
|
|
|
|
// Iterate through all the arguments to the called function. If any argument
|
|
// is based on GV, return the conservative result.
|
|
for (auto &A : Call->args()) {
|
|
SmallVector<const Value*, 4> Objects;
|
|
getUnderlyingObjects(A, Objects);
|
|
|
|
// All objects must be identified.
|
|
if (!all_of(Objects, isIdentifiedObject) &&
|
|
// Try ::alias to see if all objects are known not to alias GV.
|
|
!all_of(Objects, [&](const Value *V) {
|
|
return this->alias(MemoryLocation::getBeforeOrAfter(V),
|
|
MemoryLocation::getBeforeOrAfter(GV),
|
|
AAQI) == AliasResult::NoAlias;
|
|
}))
|
|
return ConservativeResult;
|
|
|
|
if (is_contained(Objects, GV))
|
|
return ConservativeResult;
|
|
}
|
|
|
|
// We identified all objects in the argument list, and none of them were GV.
|
|
return ModRefInfo::NoModRef;
|
|
}
|
|
|
|
ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
|
|
const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) {
|
|
ModRefInfo Known = ModRefInfo::ModRef;
|
|
|
|
// If we are asking for mod/ref info of a direct call with a pointer to a
|
|
// global we are tracking, return information if we have it.
|
|
if (const GlobalValue *GV =
|
|
dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
|
|
// If GV is internal to this IR and there is no function with local linkage
|
|
// that has had their address taken, keep looking for a tighter ModRefInfo.
|
|
if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
|
|
if (const Function *F = Call->getCalledFunction())
|
|
if (NonAddressTakenGlobals.count(GV))
|
|
if (const FunctionInfo *FI = getFunctionInfo(F))
|
|
Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
|
|
getModRefInfoForArgument(Call, GV, AAQI));
|
|
|
|
if (!isModOrRefSet(Known))
|
|
return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
|
|
return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI));
|
|
}
|
|
|
|
GlobalsAAResult::GlobalsAAResult(
|
|
const DataLayout &DL,
|
|
std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
|
|
: DL(DL), GetTLI(std::move(GetTLI)) {}
|
|
|
|
GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
|
|
: AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
|
|
NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
|
|
IndirectGlobals(std::move(Arg.IndirectGlobals)),
|
|
AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
|
|
FunctionInfos(std::move(Arg.FunctionInfos)),
|
|
Handles(std::move(Arg.Handles)) {
|
|
// Update the parent for each DeletionCallbackHandle.
|
|
for (auto &H : Handles) {
|
|
assert(H.GAR == &Arg);
|
|
H.GAR = this;
|
|
}
|
|
}
|
|
|
|
GlobalsAAResult::~GlobalsAAResult() = default;
|
|
|
|
/*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
|
|
Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
|
|
CallGraph &CG) {
|
|
GlobalsAAResult Result(M.getDataLayout(), GetTLI);
|
|
|
|
// Discover which functions aren't recursive, to feed into AnalyzeGlobals.
|
|
Result.CollectSCCMembership(CG);
|
|
|
|
// Find non-addr taken globals.
|
|
Result.AnalyzeGlobals(M);
|
|
|
|
// Propagate on CG.
|
|
Result.AnalyzeCallGraph(CG, M);
|
|
|
|
return Result;
|
|
}
|
|
|
|
AnalysisKey GlobalsAA::Key;
|
|
|
|
GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
|
|
return FAM.getResult<TargetLibraryAnalysis>(F);
|
|
};
|
|
return GlobalsAAResult::analyzeModule(M, GetTLI,
|
|
AM.getResult<CallGraphAnalysis>(M));
|
|
}
|
|
|
|
PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
if (auto *G = AM.getCachedResult<GlobalsAA>(M)) {
|
|
auto &CG = AM.getResult<CallGraphAnalysis>(M);
|
|
G->NonAddressTakenGlobals.clear();
|
|
G->UnknownFunctionsWithLocalLinkage = false;
|
|
G->IndirectGlobals.clear();
|
|
G->AllocsForIndirectGlobals.clear();
|
|
G->FunctionInfos.clear();
|
|
G->FunctionToSCCMap.clear();
|
|
G->Handles.clear();
|
|
G->CollectSCCMembership(CG);
|
|
G->AnalyzeGlobals(M);
|
|
G->AnalyzeCallGraph(CG, M);
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char GlobalsAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
|
|
"Globals Alias Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
|
|
"Globals Alias Analysis", false, true)
|
|
|
|
ModulePass *llvm::createGlobalsAAWrapperPass() {
|
|
return new GlobalsAAWrapperPass();
|
|
}
|
|
|
|
GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
|
|
initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool GlobalsAAWrapperPass::runOnModule(Module &M) {
|
|
auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
|
|
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
};
|
|
Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
|
|
M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
|
|
return false;
|
|
}
|
|
|
|
bool GlobalsAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<CallGraphWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|