llvm-project/lldb/source/Core/Disassembler.cpp

1051 lines
32 KiB
C++

//===-- Disassembler.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Disassembler.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/lldb-private.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Timer.h"
#include "lldb/Interpreter/NamedOptionValue.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#define DEFAULT_DISASM_BYTE_SIZE 32
using namespace lldb;
using namespace lldb_private;
Disassembler*
Disassembler::FindPlugin (const ArchSpec &arch, const char *plugin_name)
{
Timer scoped_timer (__PRETTY_FUNCTION__,
"Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
arch.GetArchitectureName(),
plugin_name);
std::auto_ptr<Disassembler> disassembler_ap;
DisassemblerCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
disassembler_ap.reset (create_callback(arch));
if (disassembler_ap.get())
return disassembler_ap.release();
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
disassembler_ap.reset (create_callback(arch));
if (disassembler_ap.get())
return disassembler_ap.release();
}
}
return NULL;
}
static void
ResolveAddress (const ExecutionContext &exe_ctx,
const Address &addr,
Address &resolved_addr)
{
if (!addr.IsSectionOffset())
{
// If we weren't passed in a section offset address range,
// try and resolve it to something
if (exe_ctx.target)
{
if (exe_ctx.target->GetSectionLoadList().IsEmpty())
{
exe_ctx.target->GetImages().ResolveFileAddress (addr.GetOffset(), resolved_addr);
}
else
{
exe_ctx.target->GetSectionLoadList().ResolveLoadAddress (addr.GetOffset(), resolved_addr);
}
// We weren't able to resolve the address, just treat it as a
// raw address
if (resolved_addr.IsValid())
return;
}
}
resolved_addr = addr;
}
size_t
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
SymbolContextList &sc_list,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
size_t success_count = 0;
const size_t count = sc_list.GetSize();
SymbolContext sc;
AddressRange range;
const uint32_t scope = eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = true;
for (size_t i=0; i<count; ++i)
{
if (sc_list.GetContextAtIndex(i, sc) == false)
break;
for (uint32_t range_idx = 0; sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); ++range_idx)
{
if (Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
range,
num_instructions,
num_mixed_context_lines,
options,
strm))
{
++success_count;
strm.EOL();
}
}
}
return success_count;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const ConstString &name,
Module *module,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
SymbolContextList sc_list;
if (name)
{
const bool include_symbols = true;
if (module)
{
module->FindFunctions (name,
eFunctionNameTypeBase |
eFunctionNameTypeFull |
eFunctionNameTypeMethod |
eFunctionNameTypeSelector,
include_symbols,
true,
sc_list);
}
else if (exe_ctx.target)
{
exe_ctx.target->GetImages().FindFunctions (name,
eFunctionNameTypeBase |
eFunctionNameTypeFull |
eFunctionNameTypeMethod |
eFunctionNameTypeSelector,
include_symbols,
false,
sc_list);
}
}
if (sc_list.GetSize ())
{
return Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
sc_list,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
return false;
}
lldb::DisassemblerSP
Disassembler::DisassembleRange
(
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const AddressRange &range
)
{
lldb::DisassemblerSP disasm_sp;
if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid())
{
disasm_sp.reset (Disassembler::FindPlugin(arch, plugin_name));
if (disasm_sp)
{
size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, range);
if (bytes_disassembled == 0)
disasm_sp.reset();
}
}
return disasm_sp;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const AddressRange &disasm_range,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
if (disasm_range.GetByteSize())
{
std::auto_ptr<Disassembler> disasm_ap (Disassembler::FindPlugin(arch, plugin_name));
if (disasm_ap.get())
{
AddressRange range;
ResolveAddress (exe_ctx, disasm_range.GetBaseAddress(), range.GetBaseAddress());
range.SetByteSize (disasm_range.GetByteSize());
size_t bytes_disassembled = disasm_ap->ParseInstructions (&exe_ctx, range);
if (bytes_disassembled == 0)
return false;
return PrintInstructions (disasm_ap.get(),
debugger,
arch,
exe_ctx,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
}
return false;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const Address &start_address,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
if (num_instructions > 0)
{
std::auto_ptr<Disassembler> disasm_ap (Disassembler::FindPlugin(arch, plugin_name));
if (disasm_ap.get())
{
Address addr;
ResolveAddress (exe_ctx, start_address, addr);
size_t bytes_disassembled = disasm_ap->ParseInstructions (&exe_ctx, addr, num_instructions);
if (bytes_disassembled == 0)
return false;
return PrintInstructions (disasm_ap.get(),
debugger,
arch,
exe_ctx,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
}
return false;
}
bool
Disassembler::PrintInstructions
(
Disassembler *disasm_ptr,
Debugger &debugger,
const ArchSpec &arch,
const ExecutionContext &exe_ctx,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
// We got some things disassembled...
size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize();
if (num_instructions > 0 && num_instructions < num_instructions_found)
num_instructions_found = num_instructions;
const uint32_t max_opcode_byte_size = disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize ();
uint32_t offset = 0;
SymbolContext sc;
SymbolContext prev_sc;
AddressRange sc_range;
const Address *pc_addr_ptr = NULL;
ExecutionContextScope *exe_scope = exe_ctx.GetBestExecutionContextScope();
if (exe_ctx.frame)
pc_addr_ptr = &exe_ctx.frame->GetFrameCodeAddress();
const uint32_t scope = eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = false;
for (size_t i=0; i<num_instructions_found; ++i)
{
Instruction *inst = disasm_ptr->GetInstructionList().GetInstructionAtIndex (i).get();
if (inst)
{
const Address &addr = inst->GetAddress();
const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
prev_sc = sc;
Module *module = addr.GetModule();
if (module)
{
uint32_t resolved_mask = module->ResolveSymbolContextForAddress(addr, eSymbolContextEverything, sc);
if (resolved_mask)
{
if (num_mixed_context_lines)
{
if (!sc_range.ContainsFileAddress (addr))
{
sc.GetAddressRange (scope, 0, use_inline_block_range, sc_range);
if (sc != prev_sc)
{
if (offset != 0)
strm.EOL();
sc.DumpStopContext(&strm, exe_ctx.process, addr, false, true, false);
strm.EOL();
if (sc.comp_unit && sc.line_entry.IsValid())
{
debugger.GetSourceManager().DisplaySourceLinesWithLineNumbers (debugger.GetTargetList().GetSelectedTarget().get(),
sc.line_entry.file,
sc.line_entry.line,
num_mixed_context_lines,
num_mixed_context_lines,
((inst_is_at_pc && (options & eOptionMarkPCSourceLine)) ? "->" : ""),
&strm);
}
}
}
}
else if (!(prev_sc.function == sc.function || prev_sc.symbol == sc.symbol))
{
if (prev_sc.function || prev_sc.symbol)
strm.EOL();
bool show_fullpaths = false;
bool show_module = true;
bool show_inlined_frames = true;
sc.DumpStopContext (&strm,
exe_scope,
addr,
show_fullpaths,
show_module,
show_inlined_frames);
strm << ":\n";
}
}
else
{
sc.Clear();
}
}
if ((options & eOptionMarkPCAddress) && pc_addr_ptr)
{
strm.PutCString(inst_is_at_pc ? "-> " : " ");
}
const bool show_bytes = (options & eOptionShowBytes) != 0;
const bool raw = (options & eOptionRawOuput) != 0;
inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, raw);
strm.EOL();
}
else
{
break;
}
}
return true;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
AddressRange range;
if (exe_ctx.frame)
{
SymbolContext sc(exe_ctx.frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
if (sc.function)
{
range = sc.function->GetAddressRange();
}
else if (sc.symbol && sc.symbol->GetAddressRangePtr())
{
range = *sc.symbol->GetAddressRangePtr();
}
else
{
range.GetBaseAddress() = exe_ctx.frame->GetFrameCodeAddress();
}
if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
range.SetByteSize (DEFAULT_DISASM_BYTE_SIZE);
}
return Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
range,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
Instruction::Instruction(const Address &address, AddressClass addr_class) :
m_address (address),
m_address_class (addr_class),
m_opcode()
{
}
Instruction::~Instruction()
{
}
AddressClass
Instruction::GetAddressClass ()
{
if (m_address_class == eAddressClassInvalid)
m_address_class = m_address.GetAddressClass();
return m_address_class;
}
bool
Instruction::DumpEmulation (const ArchSpec &arch)
{
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
{
insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL);
return insn_emulator_ap->EvaluateInstruction (0);
}
return false;
}
OptionValueSP
Instruction::ReadArray (FILE *in_file, Stream *out_stream, OptionValue::Type data_type)
{
bool done = false;
char buffer[1024];
OptionValueSP option_value_sp (new OptionValueArray (1u << data_type));
int idx = 0;
while (!done)
{
if (!fgets (buffer, 1023, in_file))
{
out_stream->Printf ("Instruction::ReadArray: Erroe reading file (fgets).\n");
option_value_sp.reset ();
return option_value_sp;
}
std::string line (buffer);
int len = line.size();
if (line[len-1] == '\n')
{
line[len-1] = '\0';
line.resize (len-1);
}
if ((line.size() == 1) && line[0] == ']')
{
done = true;
line.clear();
}
if (line.size() > 0)
{
std::string value;
RegularExpression reg_exp ("^[ \t]*([^ \t]+)[ \t]*$");
bool reg_exp_success = reg_exp.Execute (line.c_str(), 1);
if (reg_exp_success)
reg_exp.GetMatchAtIndex (line.c_str(), 1, value);
else
value = line;
OptionValueSP data_value_sp;
switch (data_type)
{
case OptionValue::eTypeUInt64:
data_value_sp.reset (new OptionValueUInt64 (0, 0));
data_value_sp->SetValueFromCString (value.c_str());
break;
// Other types can be added later as needed.
default:
data_value_sp.reset (new OptionValueString (value.c_str(), ""));
break;
}
option_value_sp->GetAsArray()->InsertValue (idx, data_value_sp);
++idx;
}
}
return option_value_sp;
}
OptionValueSP
Instruction::ReadDictionary (FILE *in_file, Stream *out_stream)
{
bool done = false;
char buffer[1024];
OptionValueSP option_value_sp (new OptionValueDictionary());
static ConstString encoding_key ("data_encoding");
OptionValue::Type data_type = OptionValue::eTypeInvalid;
while (!done)
{
// Read the next line in the file
if (!fgets (buffer, 1023, in_file))
{
out_stream->Printf ("Instruction::ReadDictionary: Error reading file (fgets).\n");
option_value_sp.reset ();
return option_value_sp;
}
// Check to see if the line contains the end-of-dictionary marker ("}")
std::string line (buffer);
int len = line.size();
if (line[len-1] == '\n')
{
line[len-1] = '\0';
line.resize (len-1);
}
if ((line.size() == 1) && (line[0] == '}'))
{
done = true;
line.clear();
}
// Try to find a key-value pair in the current line and add it to the dictionary.
if (line.size() > 0)
{
RegularExpression reg_exp ("^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$");
bool reg_exp_success = reg_exp.Execute (line.c_str(), 2);
std::string key;
std::string value;
if (reg_exp_success)
{
reg_exp.GetMatchAtIndex (line.c_str(), 1, key);
reg_exp.GetMatchAtIndex (line.c_str(), 2, value);
}
else
{
out_stream->Printf ("Instruction::ReadDictionary: Failure executing regular expression.\n");
option_value_sp.reset();
return option_value_sp;
}
ConstString const_key (key.c_str());
// Check value to see if it's the start of an array or dictionary.
lldb::OptionValueSP value_sp;
assert (value.empty() == false);
assert (key.empty() == false);
if (value[0] == '{')
{
assert (value.size() == 1);
// value is a dictionary
value_sp = ReadDictionary (in_file, out_stream);
if (value_sp.get() == NULL)
{
option_value_sp.reset ();
return option_value_sp;
}
}
else if (value[0] == '[')
{
assert (value.size() == 1);
// value is an array
value_sp = ReadArray (in_file, out_stream, data_type);
if (value_sp.get() == NULL)
{
option_value_sp.reset ();
return option_value_sp;
}
// We've used the data_type to read an array; re-set the type to Invalid
data_type = OptionValue::eTypeInvalid;
}
else if ((value[0] == '0') && (value[1] == 'x'))
{
value_sp.reset (new OptionValueUInt64 (0, 0));
value_sp->SetValueFromCString (value.c_str());
}
else
{
int len = value.size();
if ((value[0] == '"') && (value[len-1] == '"'))
value = value.substr (1, len-2);
value_sp.reset (new OptionValueString (value.c_str(), ""));
}
if (const_key == encoding_key)
{
// A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data indicating the
// data type of an upcoming array (usually the next bit of data to be read in).
if (strcmp (value.c_str(), "uint32_t") == 0)
data_type = OptionValue::eTypeUInt64;
}
else
option_value_sp->GetAsDictionary()->SetValueForKey (const_key, value_sp, false);
}
}
return option_value_sp;
}
bool
Instruction::TestEmulation (Stream *out_stream, const char *file_name)
{
if (!out_stream)
return false;
if (!file_name)
{
out_stream->Printf ("Instruction::TestEmulation: Missing file_name.");
return false;
}
FILE *test_file = fopen (file_name, "r");
if (!test_file)
{
out_stream->Printf ("Instruction::TestEmulation: Attempt to open test file failed.");
return false;
}
char buffer[256];
if (!fgets (buffer, 255, test_file))
{
out_stream->Printf ("Instruction::TestEmulation: Error reading first line of test file.\n");
fclose (test_file);
return false;
}
if (strncmp (buffer, "InstructionEmulationState={", 27) != 0)
{
out_stream->Printf ("Instructin::TestEmulation: Test file does not contain emulation state dictionary\n");
fclose (test_file);
return false;
}
// Read all the test information from the test file into an OptionValueDictionary.
OptionValueSP data_dictionary_sp (ReadDictionary (test_file, out_stream));
if (data_dictionary_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Error reading Dictionary Object.\n");
fclose (test_file);
return false;
}
fclose (test_file);
OptionValueDictionary *data_dictionary = data_dictionary_sp->GetAsDictionary();
static ConstString description_key ("assembly_string");
static ConstString triple_key ("triple");
OptionValueSP value_sp = data_dictionary->GetValueForKey (description_key);
if (value_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Test file does not contain description string.\n");
return false;
}
SetDescription (value_sp->GetStringValue());
value_sp = data_dictionary->GetValueForKey (triple_key);
if (value_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Test file does not contain triple.\n");
return false;
}
ArchSpec arch;
arch.SetTriple (llvm::Triple (value_sp->GetStringValue()));
bool success = false;
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
success = insn_emulator_ap->TestEmulation (out_stream, arch, data_dictionary);
if (success)
out_stream->Printf ("Emulation test succeeded.");
else
out_stream->Printf ("Emulation test failed.");
return success;
}
bool
Instruction::Emulate (const ArchSpec &arch,
uint32_t evaluate_options,
void *baton,
EmulateInstruction::ReadMemoryCallback read_mem_callback,
EmulateInstruction::WriteMemoryCallback write_mem_callback,
EmulateInstruction::ReadRegisterCallback read_reg_callback,
EmulateInstruction::WriteRegisterCallback write_reg_callback)
{
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
{
insn_emulator_ap->SetBaton (baton);
insn_emulator_ap->SetCallbacks (read_mem_callback, write_mem_callback, read_reg_callback, write_reg_callback);
insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL);
return insn_emulator_ap->EvaluateInstruction (evaluate_options);
}
return false;
}
InstructionList::InstructionList() :
m_instructions()
{
}
InstructionList::~InstructionList()
{
}
size_t
InstructionList::GetSize() const
{
return m_instructions.size();
}
uint32_t
InstructionList::GetMaxOpcocdeByteSize () const
{
uint32_t max_inst_size = 0;
collection::const_iterator pos, end;
for (pos = m_instructions.begin(), end = m_instructions.end();
pos != end;
++pos)
{
uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
if (max_inst_size < inst_size)
max_inst_size = inst_size;
}
return max_inst_size;
}
InstructionSP
InstructionList::GetInstructionAtIndex (uint32_t idx) const
{
InstructionSP inst_sp;
if (idx < m_instructions.size())
inst_sp = m_instructions[idx];
return inst_sp;
}
void
InstructionList::Clear()
{
m_instructions.clear();
}
void
InstructionList::Append (lldb::InstructionSP &inst_sp)
{
if (inst_sp)
m_instructions.push_back(inst_sp);
}
size_t
Disassembler::ParseInstructions
(
const ExecutionContext *exe_ctx,
const AddressRange &range
)
{
Target *target = exe_ctx->target;
const addr_t byte_size = range.GetByteSize();
if (target == NULL || byte_size == 0 || !range.GetBaseAddress().IsValid())
return 0;
DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0');
DataBufferSP data_sp(heap_buffer);
Error error;
const bool prefer_file_cache = true;
const size_t bytes_read = target->ReadMemory (range.GetBaseAddress(),
prefer_file_cache,
heap_buffer->GetBytes(),
heap_buffer->GetByteSize(),
error);
if (bytes_read > 0)
{
if (bytes_read != heap_buffer->GetByteSize())
heap_buffer->SetByteSize (bytes_read);
DataExtractor data (data_sp,
m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
return DecodeInstructions (range.GetBaseAddress(), data, 0, UINT32_MAX, false);
}
return 0;
}
size_t
Disassembler::ParseInstructions
(
const ExecutionContext *exe_ctx,
const Address &start,
uint32_t num_instructions
)
{
m_instruction_list.Clear();
if (num_instructions == 0 || !start.IsValid())
return 0;
Target *target = exe_ctx->target;
// Calculate the max buffer size we will need in order to disassemble
const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize();
if (target == NULL || byte_size == 0)
return 0;
DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0');
DataBufferSP data_sp (heap_buffer);
Error error;
bool prefer_file_cache = true;
const size_t bytes_read = target->ReadMemory (start,
prefer_file_cache,
heap_buffer->GetBytes(),
byte_size,
error);
if (bytes_read == 0)
return 0;
DataExtractor data (data_sp,
m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
const bool append_instructions = true;
DecodeInstructions (start,
data,
0,
num_instructions,
append_instructions);
return m_instruction_list.GetSize();
}
//----------------------------------------------------------------------
// Disassembler copy constructor
//----------------------------------------------------------------------
Disassembler::Disassembler(const ArchSpec& arch) :
m_arch (arch),
m_instruction_list(),
m_base_addr(LLDB_INVALID_ADDRESS)
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Disassembler::~Disassembler()
{
}
InstructionList &
Disassembler::GetInstructionList ()
{
return m_instruction_list;
}
const InstructionList &
Disassembler::GetInstructionList () const
{
return m_instruction_list;
}
//----------------------------------------------------------------------
// Class PseudoInstruction
//----------------------------------------------------------------------
PseudoInstruction::PseudoInstruction () :
Instruction (Address(), eAddressClassUnknown),
m_description ()
{
}
PseudoInstruction::~PseudoInstruction ()
{
}
void
PseudoInstruction::Dump (lldb_private::Stream *s,
uint32_t max_opcode_byte_size,
bool show_address,
bool show_bytes,
const lldb_private::ExecutionContext* exe_ctx,
bool raw)
{
if (!s)
return;
if (show_bytes)
m_opcode.Dump (s, max_opcode_byte_size);
if (m_description.size() > 0)
s->Printf ("%s", m_description.c_str());
else
s->Printf ("<unknown>");
}
bool
PseudoInstruction::DoesBranch () const
{
// This is NOT a valid question for a pseudo instruction.
return false;
}
size_t
PseudoInstruction::Decode (const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
uint32_t data_offset)
{
return m_opcode.GetByteSize();
}
void
PseudoInstruction::SetOpcode (size_t opcode_size, void *opcode_data)
{
if (!opcode_data)
return;
switch (opcode_size)
{
case 8:
{
uint8_t value8 = *((uint8_t *) opcode_data);
m_opcode.SetOpcode8 (value8);
break;
}
case 16:
{
uint16_t value16 = *((uint16_t *) opcode_data);
m_opcode.SetOpcode16 (value16);
break;
}
case 32:
{
uint32_t value32 = *((uint32_t *) opcode_data);
m_opcode.SetOpcode32 (value32);
break;
}
case 64:
{
uint64_t value64 = *((uint64_t *) opcode_data);
m_opcode.SetOpcode64 (value64);
break;
}
default:
break;
}
}
void
PseudoInstruction::SetDescription (const char *description)
{
if (description && strlen (description) > 0)
m_description = description;
}