llvm-project/clang/lib/Frontend/CodeGenAction.cpp

579 lines
20 KiB
C++

//===--- CodeGenAction.cpp - LLVM Code Generation Frontend Action ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/CodeGenAction.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclGroup.h"
#include "clang/CodeGen/CodeGenOptions.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Frontend/ASTConsumers.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StandardPasses.h"
#include "llvm/Support/Timer.h"
#include "llvm/Target/SubtargetFeature.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
using namespace clang;
using namespace llvm;
namespace {
enum BackendAction {
Backend_EmitAssembly, ///< Emit native assembly files
Backend_EmitBC, ///< Emit LLVM bitcode files
Backend_EmitLL, ///< Emit human-readable LLVM assembly
Backend_EmitNothing, ///< Don't emit anything (benchmarking mode)
Backend_EmitObj ///< Emit native object files
};
class BackendConsumer : public ASTConsumer {
Diagnostic &Diags;
BackendAction Action;
const CodeGenOptions &CodeGenOpts;
const LangOptions &LangOpts;
const TargetOptions &TargetOpts;
llvm::raw_ostream *AsmOutStream;
llvm::formatted_raw_ostream FormattedOutStream;
ASTContext *Context;
Timer LLVMIRGeneration;
Timer CodeGenerationTime;
llvm::OwningPtr<CodeGenerator> Gen;
llvm::OwningPtr<llvm::Module> TheModule;
llvm::TargetData *TheTargetData;
mutable FunctionPassManager *CodeGenPasses;
mutable PassManager *PerModulePasses;
mutable FunctionPassManager *PerFunctionPasses;
FunctionPassManager *getCodeGenPasses() const;
PassManager *getPerModulePasses() const;
FunctionPassManager *getPerFunctionPasses() const;
void CreatePasses();
/// AddEmitPasses - Add passes necessary to emit assembly or LLVM IR.
///
/// \return True on success.
bool AddEmitPasses();
void EmitAssembly();
public:
BackendConsumer(BackendAction action, Diagnostic &_Diags,
const LangOptions &langopts, const CodeGenOptions &compopts,
const TargetOptions &targetopts, bool TimePasses,
const std::string &infile, llvm::raw_ostream *OS,
LLVMContext &C) :
Diags(_Diags),
Action(action),
CodeGenOpts(compopts),
LangOpts(langopts),
TargetOpts(targetopts),
AsmOutStream(OS),
LLVMIRGeneration("LLVM IR Generation Time"),
CodeGenerationTime("Code Generation Time"),
Gen(CreateLLVMCodeGen(Diags, infile, compopts, C)),
TheTargetData(0),
CodeGenPasses(0), PerModulePasses(0), PerFunctionPasses(0) {
if (AsmOutStream)
FormattedOutStream.setStream(*AsmOutStream,
formatted_raw_ostream::PRESERVE_STREAM);
llvm::TimePassesIsEnabled = TimePasses;
}
~BackendConsumer() {
delete TheTargetData;
delete CodeGenPasses;
delete PerModulePasses;
delete PerFunctionPasses;
}
llvm::Module *takeModule() { return TheModule.take(); }
virtual void Initialize(ASTContext &Ctx) {
Context = &Ctx;
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.startTimer();
Gen->Initialize(Ctx);
TheModule.reset(Gen->GetModule());
TheTargetData = new llvm::TargetData(Ctx.Target.getTargetDescription());
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.stopTimer();
}
virtual void HandleTopLevelDecl(DeclGroupRef D) {
PrettyStackTraceDecl CrashInfo(*D.begin(), SourceLocation(),
Context->getSourceManager(),
"LLVM IR generation of declaration");
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.startTimer();
Gen->HandleTopLevelDecl(D);
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.stopTimer();
}
virtual void HandleTranslationUnit(ASTContext &C) {
{
PrettyStackTraceString CrashInfo("Per-file LLVM IR generation");
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.startTimer();
Gen->HandleTranslationUnit(C);
if (llvm::TimePassesIsEnabled)
LLVMIRGeneration.stopTimer();
}
// EmitAssembly times and registers crash info itself.
EmitAssembly();
// Force a flush here in case we never get released.
if (AsmOutStream)
FormattedOutStream.flush();
}
virtual void HandleTagDeclDefinition(TagDecl *D) {
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
Context->getSourceManager(),
"LLVM IR generation of declaration");
Gen->HandleTagDeclDefinition(D);
}
virtual void CompleteTentativeDefinition(VarDecl *D) {
Gen->CompleteTentativeDefinition(D);
}
static void InlineAsmDiagHandler(const llvm::SMDiagnostic &SM,void *Context,
unsigned LocCookie) {
SourceLocation Loc = SourceLocation::getFromRawEncoding(LocCookie);
((BackendConsumer*)Context)->InlineAsmDiagHandler2(SM, Loc);
}
void InlineAsmDiagHandler2(const llvm::SMDiagnostic &,
SourceLocation LocCookie);
};
}
FunctionPassManager *BackendConsumer::getCodeGenPasses() const {
if (!CodeGenPasses) {
CodeGenPasses = new FunctionPassManager(&*TheModule);
CodeGenPasses->add(new TargetData(*TheTargetData));
}
return CodeGenPasses;
}
PassManager *BackendConsumer::getPerModulePasses() const {
if (!PerModulePasses) {
PerModulePasses = new PassManager();
PerModulePasses->add(new TargetData(*TheTargetData));
}
return PerModulePasses;
}
FunctionPassManager *BackendConsumer::getPerFunctionPasses() const {
if (!PerFunctionPasses) {
PerFunctionPasses = new FunctionPassManager(&*TheModule);
PerFunctionPasses->add(new TargetData(*TheTargetData));
}
return PerFunctionPasses;
}
bool BackendConsumer::AddEmitPasses() {
if (Action == Backend_EmitNothing)
return true;
if (Action == Backend_EmitBC) {
getPerModulePasses()->add(createBitcodeWriterPass(FormattedOutStream));
return true;
}
if (Action == Backend_EmitLL) {
getPerModulePasses()->add(createPrintModulePass(&FormattedOutStream));
return true;
}
bool Fast = CodeGenOpts.OptimizationLevel == 0;
// Create the TargetMachine for generating code.
std::string Error;
std::string Triple = TheModule->getTargetTriple();
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
if (!TheTarget) {
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
return false;
}
// FIXME: Expose these capabilities via actual APIs!!!! Aside from just
// being gross, this is also totally broken if we ever care about
// concurrency.
llvm::NoFramePointerElim = CodeGenOpts.DisableFPElim;
if (CodeGenOpts.FloatABI == "soft")
llvm::FloatABIType = llvm::FloatABI::Soft;
else if (CodeGenOpts.FloatABI == "hard")
llvm::FloatABIType = llvm::FloatABI::Hard;
else {
assert(CodeGenOpts.FloatABI.empty() && "Invalid float abi!");
llvm::FloatABIType = llvm::FloatABI::Default;
}
NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
llvm::UseSoftFloat = CodeGenOpts.SoftFloat;
UnwindTablesMandatory = CodeGenOpts.UnwindTables;
TargetMachine::setAsmVerbosityDefault(CodeGenOpts.AsmVerbose);
TargetMachine::setFunctionSections(CodeGenOpts.FunctionSections);
TargetMachine::setDataSections (CodeGenOpts.DataSections);
// FIXME: Parse this earlier.
if (CodeGenOpts.RelocationModel == "static") {
TargetMachine::setRelocationModel(llvm::Reloc::Static);
} else if (CodeGenOpts.RelocationModel == "pic") {
TargetMachine::setRelocationModel(llvm::Reloc::PIC_);
} else {
assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" &&
"Invalid PIC model!");
TargetMachine::setRelocationModel(llvm::Reloc::DynamicNoPIC);
}
// FIXME: Parse this earlier.
if (CodeGenOpts.CodeModel == "small") {
TargetMachine::setCodeModel(llvm::CodeModel::Small);
} else if (CodeGenOpts.CodeModel == "kernel") {
TargetMachine::setCodeModel(llvm::CodeModel::Kernel);
} else if (CodeGenOpts.CodeModel == "medium") {
TargetMachine::setCodeModel(llvm::CodeModel::Medium);
} else if (CodeGenOpts.CodeModel == "large") {
TargetMachine::setCodeModel(llvm::CodeModel::Large);
} else {
assert(CodeGenOpts.CodeModel.empty() && "Invalid code model!");
TargetMachine::setCodeModel(llvm::CodeModel::Default);
}
std::vector<const char *> BackendArgs;
BackendArgs.push_back("clang"); // Fake program name.
if (!CodeGenOpts.DebugPass.empty()) {
BackendArgs.push_back("-debug-pass");
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
}
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
BackendArgs.push_back("-limit-float-precision");
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
}
if (llvm::TimePassesIsEnabled)
BackendArgs.push_back("-time-passes");
BackendArgs.push_back(0);
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
const_cast<char **>(&BackendArgs[0]));
std::string FeaturesStr;
if (TargetOpts.CPU.size() || TargetOpts.Features.size()) {
SubtargetFeatures Features;
Features.setCPU(TargetOpts.CPU);
for (std::vector<std::string>::const_iterator
it = TargetOpts.Features.begin(),
ie = TargetOpts.Features.end(); it != ie; ++it)
Features.AddFeature(*it);
FeaturesStr = Features.getString();
}
TargetMachine *TM = TheTarget->createTargetMachine(Triple, FeaturesStr);
// Set register scheduler & allocation policy.
RegisterScheduler::setDefault(createDefaultScheduler);
RegisterRegAlloc::setDefault(Fast ? createLocalRegisterAllocator :
createLinearScanRegisterAllocator);
// Create the code generator passes.
FunctionPassManager *PM = getCodeGenPasses();
CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
switch (CodeGenOpts.OptimizationLevel) {
default: break;
case 0: OptLevel = CodeGenOpt::None; break;
case 3: OptLevel = CodeGenOpt::Aggressive; break;
}
// Normal mode, emit a .s or .o file by running the code generator. Note,
// this also adds codegenerator level optimization passes.
TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile;
if (Action == Backend_EmitObj)
CGFT = TargetMachine::CGFT_ObjectFile;
if (TM->addPassesToEmitFile(*PM, FormattedOutStream, CGFT, OptLevel,
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
Diags.Report(diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
void BackendConsumer::CreatePasses() {
unsigned OptLevel = CodeGenOpts.OptimizationLevel;
CodeGenOptions::InliningMethod Inlining = CodeGenOpts.Inlining;
// Handle disabling of LLVM optimization, where we want to preserve the
// internal module before any optimization.
if (CodeGenOpts.DisableLLVMOpts) {
OptLevel = 0;
Inlining = CodeGenOpts.NoInlining;
}
// In -O0 if checking is disabled, we don't even have per-function passes.
if (CodeGenOpts.VerifyModule)
getPerFunctionPasses()->add(createVerifierPass());
// Assume that standard function passes aren't run for -O0.
if (OptLevel > 0)
llvm::createStandardFunctionPasses(getPerFunctionPasses(), OptLevel);
llvm::Pass *InliningPass = 0;
switch (Inlining) {
case CodeGenOptions::NoInlining: break;
case CodeGenOptions::NormalInlining: {
// Set the inline threshold following llvm-gcc.
//
// FIXME: Derive these constants in a principled fashion.
unsigned Threshold = 225;
if (CodeGenOpts.OptimizeSize)
Threshold = 75;
else if (OptLevel > 2)
Threshold = 275;
InliningPass = createFunctionInliningPass(Threshold);
break;
}
case CodeGenOptions::OnlyAlwaysInlining:
InliningPass = createAlwaysInlinerPass(); // Respect always_inline
break;
}
// For now we always create per module passes.
PassManager *PM = getPerModulePasses();
llvm::createStandardModulePasses(PM, OptLevel, CodeGenOpts.OptimizeSize,
CodeGenOpts.UnitAtATime,
CodeGenOpts.UnrollLoops,
/*SimplifyLibCalls=*/!LangOpts.NoBuiltin,
/*HaveExceptions=*/true,
InliningPass);
}
/// EmitAssembly - Handle interaction with LLVM backend to generate
/// actual machine code.
void BackendConsumer::EmitAssembly() {
// Silently ignore if we weren't initialized for some reason.
if (!TheModule || !TheTargetData)
return;
TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : 0);
// Make sure IR generation is happy with the module. This is
// released by the module provider.
Module *M = Gen->ReleaseModule();
if (!M) {
// The module has been released by IR gen on failures, do not
// double free.
TheModule.take();
return;
}
assert(TheModule.get() == M &&
"Unexpected module change during IR generation");
CreatePasses();
if (!AddEmitPasses())
return;
// Run passes. For now we do all passes at once, but eventually we
// would like to have the option of streaming code generation.
if (PerFunctionPasses) {
PrettyStackTraceString CrashInfo("Per-function optimization");
PerFunctionPasses->doInitialization();
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
PerFunctionPasses->run(*I);
PerFunctionPasses->doFinalization();
}
if (PerModulePasses) {
PrettyStackTraceString CrashInfo("Per-module optimization passes");
PerModulePasses->run(*M);
}
if (CodeGenPasses) {
PrettyStackTraceString CrashInfo("Code generation");
// Install an inline asm handler so that diagnostics get printed through our
// diagnostics hooks.
LLVMContext &Ctx = TheModule->getContext();
void *OldHandler = Ctx.getInlineAsmDiagnosticHandler();
void *OldContext = Ctx.getInlineAsmDiagnosticContext();
Ctx.setInlineAsmDiagnosticHandler((void*)(intptr_t)InlineAsmDiagHandler,
this);
CodeGenPasses->doInitialization();
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
CodeGenPasses->run(*I);
CodeGenPasses->doFinalization();
Ctx.setInlineAsmDiagnosticHandler(OldHandler, OldContext);
}
}
/// ConvertBackendLocation - Convert a location in a temporary llvm::SourceMgr
/// buffer to be a valid FullSourceLoc.
static FullSourceLoc ConvertBackendLocation(const llvm::SMDiagnostic &D,
SourceManager &CSM) {
// Get both the clang and llvm source managers. The location is relative to
// a memory buffer that the LLVM Source Manager is handling, we need to add
// a copy to the Clang source manager.
const llvm::SourceMgr &LSM = *D.getSourceMgr();
// We need to copy the underlying LLVM memory buffer because llvm::SourceMgr
// already owns its one and clang::SourceManager wants to own its one.
const MemoryBuffer *LBuf =
LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
// Create the copy and transfer ownership to clang::SourceManager.
llvm::MemoryBuffer *CBuf =
llvm::MemoryBuffer::getMemBufferCopy(LBuf->getBuffer(),
LBuf->getBufferIdentifier());
FileID FID = CSM.createFileIDForMemBuffer(CBuf);
// Translate the offset into the file.
unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
SourceLocation NewLoc =
CSM.getLocForStartOfFile(FID).getFileLocWithOffset(Offset);
return FullSourceLoc(NewLoc, CSM);
}
/// InlineAsmDiagHandler2 - This function is invoked when the backend hits an
/// error parsing inline asm. The SMDiagnostic indicates the error relative to
/// the temporary memory buffer that the inline asm parser has set up.
void BackendConsumer::InlineAsmDiagHandler2(const llvm::SMDiagnostic &D,
SourceLocation LocCookie) {
// There are a couple of different kinds of errors we could get here. First,
// we re-format the SMDiagnostic in terms of a clang diagnostic.
// Strip "error: " off the start of the message string.
llvm::StringRef Message = D.getMessage();
if (Message.startswith("error: "))
Message = Message.substr(7);
// There are two cases: the SMDiagnostic could have a inline asm source
// location or it might not. If it does, translate the location.
FullSourceLoc Loc;
if (D.getLoc() != SMLoc())
Loc = ConvertBackendLocation(D, Context->getSourceManager());
Diags.Report(Loc, diag::err_fe_inline_asm).AddString(Message);
// This could be a problem with no clang-level source location information.
// In this case, LocCookie is invalid. If there is source level information,
// print an "generated from" note.
if (LocCookie.isValid())
Diags.Report(FullSourceLoc(LocCookie, Context->getSourceManager()),
diag::note_fe_inline_asm_here);
}
//
CodeGenAction::CodeGenAction(unsigned _Act) : Act(_Act) {}
CodeGenAction::~CodeGenAction() {}
void CodeGenAction::EndSourceFileAction() {
// If the consumer creation failed, do nothing.
if (!getCompilerInstance().hasASTConsumer())
return;
// Steal the module from the consumer.
BackendConsumer *Consumer = static_cast<BackendConsumer*>(
&getCompilerInstance().getASTConsumer());
TheModule.reset(Consumer->takeModule());
}
llvm::Module *CodeGenAction::takeModule() {
return TheModule.take();
}
ASTConsumer *CodeGenAction::CreateASTConsumer(CompilerInstance &CI,
llvm::StringRef InFile) {
BackendAction BA = static_cast<BackendAction>(Act);
llvm::OwningPtr<llvm::raw_ostream> OS;
switch (BA) {
case Backend_EmitAssembly:
OS.reset(CI.createDefaultOutputFile(false, InFile, "s"));
break;
case Backend_EmitLL:
OS.reset(CI.createDefaultOutputFile(false, InFile, "ll"));
break;
case Backend_EmitBC:
OS.reset(CI.createDefaultOutputFile(true, InFile, "bc"));
break;
case Backend_EmitNothing:
break;
case Backend_EmitObj:
OS.reset(CI.createDefaultOutputFile(true, InFile, "o"));
break;
}
if (BA != Backend_EmitNothing && !OS)
return 0;
return new BackendConsumer(BA, CI.getDiagnostics(), CI.getLangOpts(),
CI.getCodeGenOpts(), CI.getTargetOpts(),
CI.getFrontendOpts().ShowTimers, InFile, OS.take(),
CI.getLLVMContext());
}
EmitAssemblyAction::EmitAssemblyAction()
: CodeGenAction(Backend_EmitAssembly) {}
EmitBCAction::EmitBCAction() : CodeGenAction(Backend_EmitBC) {}
EmitLLVMAction::EmitLLVMAction() : CodeGenAction(Backend_EmitLL) {}
EmitLLVMOnlyAction::EmitLLVMOnlyAction() : CodeGenAction(Backend_EmitNothing) {}
EmitObjAction::EmitObjAction() : CodeGenAction(Backend_EmitObj) {}