llvm-project/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp

253 lines
7.4 KiB
C++

//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as Intel-style
// assembly.
//
//===----------------------------------------------------------------------===//
#include "X86IntelInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86InstComments.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include <cctype>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
#include "X86GenAsmWriter1.inc"
void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << getRegisterName(RegNo);
}
void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
StringRef Annot) {
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
uint64_t TSFlags = Desc.TSFlags;
if (TSFlags & X86II::LOCK)
OS << "\tlock\n";
printInstruction(MI, OS);
// Next always print the annotation.
printAnnotation(OS, Annot);
// If verbose assembly is enabled, we can print some informative comments.
if (CommentStream)
EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
}
static void printSSEAVXCC(int64_t Imm, raw_ostream &O) {
switch (Imm) {
default: llvm_unreachable("Invalid avxcc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
case 8: O << "eq_uq"; break;
case 9: O << "nge"; break;
case 0xa: O << "ngt"; break;
case 0xb: O << "false"; break;
case 0xc: O << "neq_oq"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "gt"; break;
case 0xf: O << "true"; break;
case 0x10: O << "eq_os"; break;
case 0x11: O << "lt_oq"; break;
case 0x12: O << "le_oq"; break;
case 0x13: O << "unord_s"; break;
case 0x14: O << "neq_us"; break;
case 0x15: O << "nlt_uq"; break;
case 0x16: O << "nle_uq"; break;
case 0x17: O << "ord_s"; break;
case 0x18: O << "eq_us"; break;
case 0x19: O << "nge_uq"; break;
case 0x1a: O << "ngt_uq"; break;
case 0x1b: O << "false_os"; break;
case 0x1c: O << "neq_os"; break;
case 0x1d: O << "ge_oq"; break;
case 0x1e: O << "gt_oq"; break;
case 0x1f: O << "true_us"; break;
}
}
void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
assert((Imm & 0x7) == Imm); // Ensure valid immediate.
printSSEAVXCC(Imm, O);
}
void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
assert((Imm & 0x1f) == Imm); // Ensure valid immediate.
printSSEAVXCC(Imm, O);
}
void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
switch (Imm) {
case 0: O << "{rn-sae}"; break;
case 1: O << "{rd-sae}"; break;
case 2: O << "{ru-sae}"; break;
case 3: O << "{rz-sae}"; break;
}
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value.
void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isImm())
O << formatImm(Op.getImm());
else {
assert(Op.isExpr() && "unknown pcrel immediate operand");
// If a symbolic branch target was added as a constant expression then print
// that address in hex.
const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
int64_t Address;
if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
O << formatHex((uint64_t)Address);
}
else {
// Otherwise, just print the expression.
O << *Op.getExpr();
}
}
}
void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
printRegName(O, Op.getReg());
} else if (Op.isImm()) {
O << formatImm((int64_t)Op.getImm());
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
O << *Op.getExpr();
}
}
void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
const MCOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+X86::AddrSegmentReg, O);
O << ':';
}
O << '[';
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOperand(MI, Op+X86::AddrBaseReg, O);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << '*';
printOperand(MI, Op+X86::AddrIndexReg, O);
NeedPlus = true;
}
if (!DispSpec.isImm()) {
if (NeedPlus) O << " + ";
assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
O << *DispSpec.getExpr();
} else {
int64_t DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
if (NeedPlus) {
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
}
O << formatImm(DispVal);
}
}
O << ']';
}
void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &SegReg = MI->getOperand(Op+1);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+1, O);
O << ':';
}
O << '[';
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
// DI accesses are always ES-based.
O << "es:[";
printOperand(MI, Op, O);
O << ']';
}
void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &DispSpec = MI->getOperand(Op);
const MCOperand &SegReg = MI->getOperand(Op+1);
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op+1, O);
O << ':';
}
O << '[';
if (DispSpec.isImm()) {
O << formatImm(DispSpec.getImm());
} else {
assert(DispSpec.isExpr() && "non-immediate displacement?");
O << *DispSpec.getExpr();
}
O << ']';
}
void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
raw_ostream &O) {
O << formatImm(MI->getOperand(Op).getImm() & 0xff);
}