llvm-project/llvm/lib/Target/ARM/ARMInstrVFP.td

1895 lines
72 KiB
TableGen

//===-- ARMInstrVFP.td - VFP support for ARM ---------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM VFP instruction set.
//
//===----------------------------------------------------------------------===//
def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>;
def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>;
def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>;
def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// 8-bit floating-point immediate encodings.
def FPImmOperand : AsmOperandClass {
let Name = "FPImm";
let ParserMethod = "parseFPImm";
}
def vfp_f32imm : Operand<f32>,
PatLeaf<(f32 fpimm), [{
return ARM_AM::getFP32Imm(N->getValueAPF()) != -1;
}], SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = ARM_AM::getFP32Imm(InVal);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>> {
let PrintMethod = "printFPImmOperand";
let ParserMatchClass = FPImmOperand;
}
def vfp_f64imm : Operand<f64>,
PatLeaf<(f64 fpimm), [{
return ARM_AM::getFP64Imm(N->getValueAPF()) != -1;
}], SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = ARM_AM::getFP64Imm(InVal);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>> {
let PrintMethod = "printFPImmOperand";
let ParserMatchClass = FPImmOperand;
}
def alignedload32 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 4;
}]>;
def alignedstore32 : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 4;
}]>;
// The VCVT to/from fixed-point instructions encode the 'fbits' operand
// (the number of fixed bits) differently than it appears in the assembly
// source. It's encoded as "Size - fbits" where Size is the size of the
// fixed-point representation (32 or 16) and fbits is the value appearing
// in the assembly source, an integer in [0,16] or (0,32], depending on size.
def fbits32_asm_operand : AsmOperandClass { let Name = "FBits32"; }
def fbits32 : Operand<i32> {
let PrintMethod = "printFBits32";
let ParserMatchClass = fbits32_asm_operand;
}
def fbits16_asm_operand : AsmOperandClass { let Name = "FBits16"; }
def fbits16 : Operand<i32> {
let PrintMethod = "printFBits16";
let ParserMatchClass = fbits16_asm_operand;
}
//===----------------------------------------------------------------------===//
// Load / store Instructions.
//
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr),
IIC_fpLoad64, "vldr", "\t$Dd, $addr",
[(set DPR:$Dd, (f64 (alignedload32 addrmode5:$addr)))]>;
def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr),
IIC_fpLoad32, "vldr", "\t$Sd, $addr",
[(set SPR:$Sd, (alignedload32 addrmode5:$addr))]> {
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
} // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in'
def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr),
IIC_fpStore64, "vstr", "\t$Dd, $addr",
[(alignedstore32 (f64 DPR:$Dd), addrmode5:$addr)]>;
def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr),
IIC_fpStore32, "vstr", "\t$Sd, $addr",
[(alignedstore32 SPR:$Sd, addrmode5:$addr)]> {
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass vfp_ldst_mult<string asm, bit L_bit,
InstrItinClass itin, InstrItinClass itin_upd> {
// Double Precision
def DIA :
AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
IndexModeNone, itin,
!strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DIA_UPD :
AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def DDB_UPD :
AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
// Single Precision
def SIA :
AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops),
IndexModeNone, itin,
!strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
def SIA_UPD :
AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
def SDB_UPD :
AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
}
let hasSideEffects = 0 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpStore_m, IIC_fpStore_mu>;
} // hasSideEffects
def : MnemonicAlias<"vldm", "vldmia">;
def : MnemonicAlias<"vstm", "vstmia">;
// FLDM/FSTM - Load / Store multiple single / double precision registers for
// pre-ARMv6 cores.
// These instructions are deprecated!
def : VFP2MnemonicAlias<"fldmias", "vldmia">;
def : VFP2MnemonicAlias<"fldmdbs", "vldmdb">;
def : VFP2MnemonicAlias<"fldmeas", "vldmdb">;
def : VFP2MnemonicAlias<"fldmfds", "vldmia">;
def : VFP2MnemonicAlias<"fldmiad", "vldmia">;
def : VFP2MnemonicAlias<"fldmdbd", "vldmdb">;
def : VFP2MnemonicAlias<"fldmead", "vldmdb">;
def : VFP2MnemonicAlias<"fldmfdd", "vldmia">;
def : VFP2MnemonicAlias<"fstmias", "vstmia">;
def : VFP2MnemonicAlias<"fstmdbs", "vstmdb">;
def : VFP2MnemonicAlias<"fstmeas", "vstmia">;
def : VFP2MnemonicAlias<"fstmfds", "vstmdb">;
def : VFP2MnemonicAlias<"fstmiad", "vstmia">;
def : VFP2MnemonicAlias<"fstmdbd", "vstmdb">;
def : VFP2MnemonicAlias<"fstmead", "vstmia">;
def : VFP2MnemonicAlias<"fstmfdd", "vstmdb">;
def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>,
Requires<[HasVFP2]>;
defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
(VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>;
defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
(VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>;
defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
(VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>;
defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
(VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>;
// FLDMX, FSTMX - Load and store multiple unknown precision registers for
// pre-armv6 cores.
// These instruction are deprecated so we don't want them to get selected.
multiclass vfp_ldstx_mult<string asm, bit L_bit> {
// Unknown precision
def XIA :
AXXI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
IndexModeNone, !strconcat(asm, "iax${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def XIA_UPD :
AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
IndexModeUpd, !strconcat(asm, "iax${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def XDB_UPD :
AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
IndexModeUpd, !strconcat(asm, "dbx${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
}
defm FLDM : vfp_ldstx_mult<"fldm", 1>;
defm FSTM : vfp_ldstx_mult<"fstm", 0>;
def : VFP2MnemonicAlias<"fldmeax", "fldmdbx">;
def : VFP2MnemonicAlias<"fldmfdx", "fldmiax">;
def : VFP2MnemonicAlias<"fstmeax", "fstmiax">;
def : VFP2MnemonicAlias<"fstmfdx", "fstmdbx">;
//===----------------------------------------------------------------------===//
// FP Binary Operations.
//
let TwoOperandAliasConstraint = "$Dn = $Dd" in
def VADDD : ADbI<0b11100, 0b11, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>;
let TwoOperandAliasConstraint = "$Sn = $Sd" in
def VADDS : ASbIn<0b11100, 0b11, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
let TwoOperandAliasConstraint = "$Dn = $Dd" in
def VSUBD : ADbI<0b11100, 0b11, 1, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>;
let TwoOperandAliasConstraint = "$Sn = $Sd" in
def VSUBS : ASbIn<0b11100, 0b11, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
let TwoOperandAliasConstraint = "$Dn = $Dd" in
def VDIVD : ADbI<0b11101, 0b00, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>;
let TwoOperandAliasConstraint = "$Sn = $Sd" in
def VDIVS : ASbI<0b11101, 0b00, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>;
let TwoOperandAliasConstraint = "$Dn = $Dd" in
def VMULD : ADbI<0b11100, 0b10, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>;
let TwoOperandAliasConstraint = "$Sn = $Sd" in
def VMULS : ASbIn<0b11100, 0b10, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VNMULD : ADbI<0b11100, 0b10, 1, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>;
def VNMULS : ASbI<0b11100, 0b10, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
multiclass vsel_inst<string op, bits<2> opc, int CC> {
let DecoderNamespace = "VFPV8", PostEncoderMethod = "",
Uses = [CPSR], AddedComplexity = 4 in {
def S : ASbInp<0b11100, opc, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
NoItinerary, !strconcat("vsel", op, ".f32\t$Sd, $Sn, $Sm"),
[(set SPR:$Sd, (ARMcmov SPR:$Sm, SPR:$Sn, CC))]>,
Requires<[HasFPARMv8]>;
def D : ADbInp<0b11100, opc, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
NoItinerary, !strconcat("vsel", op, ".f64\t$Dd, $Dn, $Dm"),
[(set DPR:$Dd, (ARMcmov (f64 DPR:$Dm), (f64 DPR:$Dn), CC))]>,
Requires<[HasFPARMv8, HasDPVFP]>;
}
}
// The CC constants here match ARMCC::CondCodes.
defm VSELGT : vsel_inst<"gt", 0b11, 12>;
defm VSELGE : vsel_inst<"ge", 0b10, 10>;
defm VSELEQ : vsel_inst<"eq", 0b00, 0>;
defm VSELVS : vsel_inst<"vs", 0b01, 6>;
multiclass vmaxmin_inst<string op, bit opc, SDNode SD> {
let DecoderNamespace = "VFPV8", PostEncoderMethod = "" in {
def S : ASbInp<0b11101, 0b00, opc,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
NoItinerary, !strconcat(op, ".f32\t$Sd, $Sn, $Sm"),
[(set SPR:$Sd, (SD SPR:$Sn, SPR:$Sm))]>,
Requires<[HasFPARMv8]>;
def D : ADbInp<0b11101, 0b00, opc,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
NoItinerary, !strconcat(op, ".f64\t$Dd, $Dn, $Dm"),
[(set DPR:$Dd, (f64 (SD (f64 DPR:$Dn), (f64 DPR:$Dm))))]>,
Requires<[HasFPARMv8, HasDPVFP]>;
}
}
defm VMAXNM : vmaxmin_inst<"vmaxnm", 0, fmaxnum>;
defm VMINNM : vmaxmin_inst<"vminnm", 1, fminnum>;
// Match reassociated forms only if not sign dependent rounding.
def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)),
(VNMULD DPR:$a, DPR:$b)>,
Requires<[NoHonorSignDependentRounding,HasDPVFP]>;
def : Pat<(fmul (fneg SPR:$a), SPR:$b),
(VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>;
// These are encoded as unary instructions.
let Defs = [FPSCR_NZCV] in {
def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0,
(outs), (ins DPR:$Dd, DPR:$Dm),
IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm",
[(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>;
def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0,
(outs), (ins SPR:$Sd, SPR:$Sm),
IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm",
[(arm_cmpfp SPR:$Sd, SPR:$Sm)]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// FIXME: Verify encoding after integrated assembler is working.
def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0,
(outs), (ins DPR:$Dd, DPR:$Dm),
IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm",
[/* For disassembly only; pattern left blank */]>;
def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0,
(outs), (ins SPR:$Sd, SPR:$Sm),
IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
} // Defs = [FPSCR_NZCV]
//===----------------------------------------------------------------------===//
// FP Unary Operations.
//
def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>;
def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fabs SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
let Defs = [FPSCR_NZCV] in {
def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0,
(outs), (ins DPR:$Dd),
IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0",
[(arm_cmpfp0 (f64 DPR:$Dd))]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
}
def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0,
(outs), (ins SPR:$Sd),
IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0",
[(arm_cmpfp0 SPR:$Sd)]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// FIXME: Verify encoding after integrated assembler is working.
def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0,
(outs), (ins DPR:$Dd),
IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0",
[/* For disassembly only; pattern left blank */]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
}
def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0,
(outs), (ins SPR:$Sd),
IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0",
[/* For disassembly only; pattern left blank */]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
} // Defs = [FPSCR_NZCV]
def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm",
[(set DPR:$Dd, (fextend SPR:$Sm))]> {
// Instruction operands.
bits<5> Dd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
let Predicates = [HasVFP2, HasDPVFP];
}
// Special case encoding: bits 11-8 is 0b1011.
def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm,
IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (fround DPR:$Dm))]> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
let Inst{27-23} = 0b11101;
let Inst{21-16} = 0b110111;
let Inst{11-8} = 0b1011;
let Inst{7-6} = 0b11;
let Inst{4} = 0;
let Predicates = [HasVFP2, HasDPVFP];
}
// Between half, single and double-precision. For disassembly only.
// FIXME: Verify encoding after integrated assembler is working.
def VCVTBHS: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
/* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]>,
Requires<[HasFP16]>;
def VCVTBSH: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
/* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]>,
Requires<[HasFP16]>;
def VCVTTHS: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
/* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]>,
Requires<[HasFP16]>;
def VCVTTSH: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
/* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]>,
Requires<[HasFP16]>;
def VCVTBHD : ADuI<0b11101, 0b11, 0b0010, 0b01, 0,
(outs DPR:$Dd), (ins SPR:$Sm),
NoItinerary, "vcvtb", ".f64.f16\t$Dd, $Sm",
[]>, Requires<[HasFPARMv8, HasDPVFP]> {
// Instruction operands.
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
}
def VCVTBDH : ADuI<0b11101, 0b11, 0b0011, 0b01, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, "vcvtb", ".f16.f64\t$Sd, $Dm",
[]>, Requires<[HasFPARMv8, HasDPVFP]> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
def VCVTTHD : ADuI<0b11101, 0b11, 0b0010, 0b11, 0,
(outs DPR:$Dd), (ins SPR:$Sm),
NoItinerary, "vcvtt", ".f64.f16\t$Dd, $Sm",
[]>, Requires<[HasFPARMv8, HasDPVFP]> {
// Instruction operands.
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
}
def VCVTTDH : ADuI<0b11101, 0b11, 0b0011, 0b11, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, "vcvtt", ".f16.f64\t$Sd, $Dm",
[]>, Requires<[HasFPARMv8, HasDPVFP]> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
}
def : Pat<(fp_to_f16 SPR:$a),
(i32 (COPY_TO_REGCLASS (VCVTBSH SPR:$a), GPR))>;
def : Pat<(fp_to_f16 (f64 DPR:$a)),
(i32 (COPY_TO_REGCLASS (VCVTBDH DPR:$a), GPR))>;
def : Pat<(f16_to_fp GPR:$a),
(VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>;
def : Pat<(f64 (f16_to_fp GPR:$a)),
(VCVTBHD (COPY_TO_REGCLASS GPR:$a, SPR))>;
multiclass vcvt_inst<string opc, bits<2> rm,
SDPatternOperator node = null_frag> {
let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"),
[]>,
Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"),
[]>,
Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"),
[]>,
Requires<[HasFPARMv8, HasDPVFP]> {
bits<5> Dm;
let Inst{17-16} = rm;
// Encode instruction operands
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{8} = 1;
}
def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
(outs SPR:$Sd), (ins DPR:$Dm),
NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"),
[]>,
Requires<[HasFPARMv8, HasDPVFP]> {
bits<5> Dm;
let Inst{17-16} = rm;
// Encode instruction operands
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{8} = 1;
}
}
let Predicates = [HasFPARMv8] in {
def : Pat<(i32 (fp_to_sint (node SPR:$a))),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"SS") SPR:$a),
GPR)>;
def : Pat<(i32 (fp_to_uint (node SPR:$a))),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"US") SPR:$a),
GPR)>;
}
let Predicates = [HasFPARMv8, HasDPVFP] in {
def : Pat<(i32 (fp_to_sint (node (f64 DPR:$a)))),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"SD") DPR:$a),
GPR)>;
def : Pat<(i32 (fp_to_uint (node (f64 DPR:$a)))),
(COPY_TO_REGCLASS
(!cast<Instruction>(NAME#"UD") DPR:$a),
GPR)>;
}
}
defm VCVTA : vcvt_inst<"a", 0b00, frnd>;
defm VCVTN : vcvt_inst<"n", 0b01>;
defm VCVTP : vcvt_inst<"p", 0b10, fceil>;
defm VCVTM : vcvt_inst<"m", 0b11, ffloor>;
def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>;
def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fneg SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
multiclass vrint_inst_zrx<string opc, bit op, bit op2, SDPatternOperator node> {
def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm",
[(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
Requires<[HasFPARMv8]> {
let Inst{7} = op2;
let Inst{16} = op;
}
def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm",
[(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
Requires<[HasFPARMv8, HasDPVFP]> {
let Inst{7} = op2;
let Inst{16} = op;
}
def : InstAlias<!strconcat("vrint", opc, "$p.f32.f32\t$Sd, $Sm"),
(!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm, pred:$p)>,
Requires<[HasFPARMv8]>;
def : InstAlias<!strconcat("vrint", opc, "$p.f64.f64\t$Dd, $Dm"),
(!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm, pred:$p)>,
Requires<[HasFPARMv8,HasDPVFP]>;
}
defm VRINTZ : vrint_inst_zrx<"z", 0, 1, ftrunc>;
defm VRINTR : vrint_inst_zrx<"r", 0, 0, fnearbyint>;
defm VRINTX : vrint_inst_zrx<"x", 1, 0, frint>;
multiclass vrint_inst_anpm<string opc, bits<2> rm,
SDPatternOperator node = null_frag> {
let PostEncoderMethod = "", DecoderNamespace = "VFPV8" in {
def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"),
[(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
Requires<[HasFPARMv8]> {
let Inst{17-16} = rm;
}
def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"),
[(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
Requires<[HasFPARMv8, HasDPVFP]> {
let Inst{17-16} = rm;
}
}
def : InstAlias<!strconcat("vrint", opc, ".f32.f32\t$Sd, $Sm"),
(!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm)>,
Requires<[HasFPARMv8]>;
def : InstAlias<!strconcat("vrint", opc, ".f64.f64\t$Dd, $Dm"),
(!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm)>,
Requires<[HasFPARMv8,HasDPVFP]>;
}
defm VRINTA : vrint_inst_anpm<"a", 0b00, frnd>;
defm VRINTN : vrint_inst_anpm<"n", 0b01>;
defm VRINTP : vrint_inst_anpm<"p", 0b10, fceil>;
defm VRINTM : vrint_inst_anpm<"m", 0b11, ffloor>;
def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>;
def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fsqrt SPR:$Sm))]>;
let hasSideEffects = 0 in {
def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>;
def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>;
} // hasSideEffects
//===----------------------------------------------------------------------===//
// FP <-> GPR Copies. Int <-> FP Conversions.
//
def VMOVRS : AVConv2I<0b11100001, 0b1010,
(outs GPR:$Rt), (ins SPR:$Sn),
IIC_fpMOVSI, "vmov", "\t$Rt, $Sn",
[(set GPR:$Rt, (bitconvert SPR:$Sn))]> {
// Instruction operands.
bits<4> Rt;
bits<5> Sn;
// Encode instruction operands.
let Inst{19-16} = Sn{4-1};
let Inst{7} = Sn{0};
let Inst{15-12} = Rt;
let Inst{6-5} = 0b00;
let Inst{3-0} = 0b0000;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
// Bitcast i32 -> f32. NEON prefers to use VMOVDRR.
def VMOVSR : AVConv4I<0b11100000, 0b1010,
(outs SPR:$Sn), (ins GPR:$Rt),
IIC_fpMOVIS, "vmov", "\t$Sn, $Rt",
[(set SPR:$Sn, (bitconvert GPR:$Rt))]>,
Requires<[HasVFP2, UseVMOVSR]> {
// Instruction operands.
bits<5> Sn;
bits<4> Rt;
// Encode instruction operands.
let Inst{19-16} = Sn{4-1};
let Inst{7} = Sn{0};
let Inst{15-12} = Rt;
let Inst{6-5} = 0b00;
let Inst{3-0} = 0b0000;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
let hasSideEffects = 0 in {
def VMOVRRD : AVConv3I<0b11000101, 0b1011,
(outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm),
IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm",
[/* FIXME: Can't write pattern for multiple result instr*/]> {
// Instruction operands.
bits<5> Dm;
bits<4> Rt;
bits<4> Rt2;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
// This instruction is equivalent to
// $Rt = EXTRACT_SUBREG $Dm, ssub_0
// $Rt2 = EXTRACT_SUBREG $Dm, ssub_1
let isExtractSubreg = 1;
}
def VMOVRRS : AVConv3I<0b11000101, 0b1010,
(outs GPR:$Rt, GPR:$Rt2), (ins SPR:$src1, SPR:$src2),
IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $src1, $src2",
[/* For disassembly only; pattern left blank */]> {
bits<5> src1;
bits<4> Rt;
bits<4> Rt2;
// Encode instruction operands.
let Inst{3-0} = src1{4-1};
let Inst{5} = src1{0};
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
let DecoderMethod = "DecodeVMOVRRS";
}
} // hasSideEffects
// FMDHR: GPR -> SPR
// FMDLR: GPR -> SPR
def VMOVDRR : AVConv5I<0b11000100, 0b1011,
(outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2),
IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2",
[(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]> {
// Instruction operands.
bits<5> Dm;
bits<4> Rt;
bits<4> Rt2;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
// This instruction is equivalent to
// $Dm = REG_SEQUENCE $Rt, ssub_0, $Rt2, ssub_1
let isRegSequence = 1;
}
// Hoist an fabs or a fneg of a value coming from integer registers
// and do the fabs/fneg on the integer value. This is never a lose
// and could enable the conversion to float to be removed completely.
def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)),
(VMOVDRR GPR:$Rl, (BFC GPR:$Rh, (i32 0x7FFFFFFF)))>,
Requires<[IsARM]>;
def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)),
(VMOVDRR GPR:$Rl, (t2BFC GPR:$Rh, (i32 0x7FFFFFFF)))>,
Requires<[IsThumb2]>;
def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)),
(VMOVDRR GPR:$Rl, (EORri GPR:$Rh, (i32 0x80000000)))>,
Requires<[IsARM]>;
def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)),
(VMOVDRR GPR:$Rl, (t2EORri GPR:$Rh, (i32 0x80000000)))>,
Requires<[IsThumb2]>;
let hasSideEffects = 0 in
def VMOVSRR : AVConv5I<0b11000100, 0b1010,
(outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2),
IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2",
[/* For disassembly only; pattern left blank */]> {
// Instruction operands.
bits<5> dst1;
bits<4> src1;
bits<4> src2;
// Encode instruction operands.
let Inst{3-0} = dst1{4-1};
let Inst{5} = dst1{0};
let Inst{15-12} = src1;
let Inst{19-16} = src2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
let DecoderMethod = "DecodeVMOVSRR";
}
// FMRDH: SPR -> GPR
// FMRDL: SPR -> GPR
// FMRRS: SPR -> GPR
// FMRX: SPR system reg -> GPR
// FMSRR: GPR -> SPR
// FMXR: GPR -> VFP system reg
// Int -> FP:
class AVConv1IDs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Dd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
let Predicates = [HasVFP2, HasDPVFP];
}
class AVConv1InSs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm",
[]> {
let Inst{7} = 1; // s32
}
let Predicates=[HasVFP2, HasDPVFP] in {
def : VFPPat<(f64 (sint_to_fp GPR:$a)),
(VSITOD (COPY_TO_REGCLASS GPR:$a, SPR))>;
def : VFPPat<(f64 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))),
(VSITOD (VLDRS addrmode5:$a))>;
}
def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
(outs SPR:$Sd),(ins SPR:$Sm),
IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm",
[]> {
let Inst{7} = 1; // s32
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : VFPNoNEONPat<(f32 (sint_to_fp GPR:$a)),
(VSITOS (COPY_TO_REGCLASS GPR:$a, SPR))>;
def : VFPNoNEONPat<(f32 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))),
(VSITOS (VLDRS addrmode5:$a))>;
def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm",
[]> {
let Inst{7} = 0; // u32
}
let Predicates=[HasVFP2, HasDPVFP] in {
def : VFPPat<(f64 (uint_to_fp GPR:$a)),
(VUITOD (COPY_TO_REGCLASS GPR:$a, SPR))>;
def : VFPPat<(f64 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))),
(VUITOD (VLDRS addrmode5:$a))>;
}
def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm",
[]> {
let Inst{7} = 0; // u32
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : VFPNoNEONPat<(f32 (uint_to_fp GPR:$a)),
(VUITOS (COPY_TO_REGCLASS GPR:$a, SPR))>;
def : VFPNoNEONPat<(f32 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))),
(VUITOS (VLDRS addrmode5:$a))>;
// FP -> Int:
class AVConv1IsD_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
let Predicates = [HasVFP2, HasDPVFP];
}
class AVConv1InsS_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
// Always set Z bit in the instruction, i.e. "round towards zero" variants.
def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm",
[]> {
let Inst{7} = 1; // Z bit
}
let Predicates=[HasVFP2, HasDPVFP] in {
def : VFPPat<(i32 (fp_to_sint (f64 DPR:$a))),
(COPY_TO_REGCLASS (VTOSIZD DPR:$a), GPR)>;
def : VFPPat<(alignedstore32 (i32 (fp_to_sint (f64 DPR:$a))), addrmode5:$ptr),
(VSTRS (VTOSIZD DPR:$a), addrmode5:$ptr)>;
}
def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm",
[]> {
let Inst{7} = 1; // Z bit
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : VFPNoNEONPat<(i32 (fp_to_sint SPR:$a)),
(COPY_TO_REGCLASS (VTOSIZS SPR:$a), GPR)>;
def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_sint (f32 SPR:$a))),
addrmode5:$ptr),
(VSTRS (VTOSIZS SPR:$a), addrmode5:$ptr)>;
def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm",
[]> {
let Inst{7} = 1; // Z bit
}
let Predicates=[HasVFP2, HasDPVFP] in {
def : VFPPat<(i32 (fp_to_uint (f64 DPR:$a))),
(COPY_TO_REGCLASS (VTOUIZD DPR:$a), GPR)>;
def : VFPPat<(alignedstore32 (i32 (fp_to_uint (f64 DPR:$a))), addrmode5:$ptr),
(VSTRS (VTOUIZD DPR:$a), addrmode5:$ptr)>;
}
def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm",
[]> {
let Inst{7} = 1; // Z bit
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : VFPNoNEONPat<(i32 (fp_to_uint SPR:$a)),
(COPY_TO_REGCLASS (VTOUIZS SPR:$a), GPR)>;
def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_uint (f32 SPR:$a))),
addrmode5:$ptr),
(VSTRS (VTOUIZS SPR:$a), addrmode5:$ptr)>;
// And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR.
let Uses = [FPSCR] in {
// FIXME: Verify encoding after integrated assembler is working.
def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>{
let Inst{7} = 0; // Z bit
}
def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]> {
let Inst{7} = 0; // Z bit
}
def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>{
let Inst{7} = 0; // Z bit
}
def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]> {
let Inst{7} = 0; // Z bit
}
}
// Convert between floating-point and fixed-point
// Data type for fixed-point naming convention:
// S16 (U=0, sx=0) -> SH
// U16 (U=1, sx=0) -> UH
// S32 (U=0, sx=1) -> SL
// U32 (U=1, sx=1) -> UL
let Constraints = "$a = $dst" in {
// FP to Fixed-Point:
// Single Precision register
class AVConv1XInsS_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
bit op5, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>,
Sched<[WriteCvtFP]> {
bits<5> dst;
// if dp_operation then UInt(D:Vd) else UInt(Vd:D);
let Inst{22} = dst{0};
let Inst{15-12} = dst{4-1};
}
// Double Precision register
class AVConv1XInsD_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
bit op5, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern>,
Sched<[WriteCvtFP]> {
bits<5> dst;
// if dp_operation then UInt(D:Vd) else UInt(Vd:D);
let Inst{22} = dst{4};
let Inst{15-12} = dst{3-0};
let Predicates = [HasVFP2, HasDPVFP];
}
def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>;
def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>;
def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>;
def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>;
// Fixed-Point to FP:
def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>;
def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>;
def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>;
def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>;
} // End of 'let Constraints = "$a = $dst" in'
//===----------------------------------------------------------------------===//
// FP Multiply-Accumulate Operations.
//
def VMLAD : ADbI<0b11100, 0b00, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def VMLAS : ASbIn<0b11100, 0b00, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx,DontUseFusedMAC]>;
def VMLSD : ADbI<0b11100, 0b00, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def VMLSS : ASbIn<0b11100, 0b00, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
def VNMLAD : ADbI<0b11100, 0b01, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def VNMLAS : ASbI<0b11100, 0b01, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
(VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
(VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
def VNMLSD : ADbI<0b11100, 0b01, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def VNMLSS : ASbI<0b11100, 0b01, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
(VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,HasDPVFP,UseFPVMLx,DontUseFusedMAC]>;
def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
(VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx,DontUseFusedMAC]>;
//===----------------------------------------------------------------------===//
// Fused FP Multiply-Accumulate Operations.
//
def VFMAD : ADbI<0b11101, 0b10, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpFMAC64, "vfma", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def VFMAS : ASbIn<0b11101, 0b10, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpFMAC32, "vfma", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
}
def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VFMAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VFMAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
// Match @llvm.fma.* intrinsics
// (fma x, y, z) -> (vfms z, x, y)
def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, DPR:$Ddin)),
(VFMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, SPR:$Sdin)),
(VFMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
def VFMSD : ADbI<0b11101, 0b10, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpFMAC64, "vfms", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def VFMSS : ASbIn<0b11101, 0b10, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpFMAC32, "vfms", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
}
def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VFMSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VFMSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
// Match @llvm.fma.* intrinsics
// (fma (fneg x), y, z) -> (vfms z, x, y)
def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin)),
(VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin)),
(VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
// (fma x, (fneg y), z) -> (vfms z, x, y)
def : Pat<(f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin)),
(VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin)),
(VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
def VFNMAD : ADbI<0b11101, 0b01, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpFMAC64, "vfnma", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def VFNMAS : ASbI<0b11101, 0b01, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpFMAC32, "vfnma", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
}
def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
(VFNMAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
(VFNMAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
// Match @llvm.fma.* intrinsics
// (fneg (fma x, y, z)) -> (vfnma z, x, y)
def : Pat<(fneg (fma (f64 DPR:$Dn), (f64 DPR:$Dm), (f64 DPR:$Ddin))),
(VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(fneg (fma (f32 SPR:$Sn), (f32 SPR:$Sm), (f32 SPR:$Sdin))),
(VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
// (fma (fneg x), y, (fneg z)) -> (vfnma z, x, y)
def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, (fneg DPR:$Ddin))),
(VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, (fneg SPR:$Sdin))),
(VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
def VFNMSD : ADbI<0b11101, 0b01, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpFMAC64, "vfnms", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def VFNMSS : ASbI<0b11101, 0b01, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpFMAC32, "vfnms", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
}
def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
(VFNMSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
(VFNMSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
// Match @llvm.fma.* intrinsics
// (fma x, y, (fneg z)) -> (vfnms z, x, y))
def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, (fneg DPR:$Ddin))),
(VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, (fneg SPR:$Sdin))),
(VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
// (fneg (fma (fneg x), y, z)) -> (vfnms z, x, y)
def : Pat<(fneg (f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin))),
(VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(fneg (f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin))),
(VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
// (fneg (fma x, (fneg y), z) -> (vfnms z, x, y)
def : Pat<(fneg (f64 (fma DPR:$Dn, (fneg DPR:$Dm), DPR:$Ddin))),
(VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
Requires<[HasVFP4,HasDPVFP]>;
def : Pat<(fneg (f32 (fma SPR:$Sn, (fneg SPR:$Sm), SPR:$Sdin))),
(VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
Requires<[HasVFP4]>;
//===----------------------------------------------------------------------===//
// FP Conditional moves.
//
let hasSideEffects = 0 in {
def VMOVDcc : PseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, cmovpred:$p),
IIC_fpUNA64,
[(set (f64 DPR:$Dd),
(ARMcmov DPR:$Dn, DPR:$Dm, cmovpred:$p))]>,
RegConstraint<"$Dn = $Dd">, Requires<[HasVFP2,HasDPVFP]>;
def VMOVScc : PseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, cmovpred:$p),
IIC_fpUNA32,
[(set (f32 SPR:$Sd),
(ARMcmov SPR:$Sn, SPR:$Sm, cmovpred:$p))]>,
RegConstraint<"$Sn = $Sd">, Requires<[HasVFP2]>;
} // hasSideEffects
//===----------------------------------------------------------------------===//
// Move from VFP System Register to ARM core register.
//
class MovFromVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
list<dag> pattern>:
VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
// Instruction operand.
bits<4> Rt;
let Inst{27-20} = 0b11101111;
let Inst{19-16} = opc19_16;
let Inst{15-12} = Rt;
let Inst{11-8} = 0b1010;
let Inst{7} = 0;
let Inst{6-5} = 0b00;
let Inst{4} = 1;
let Inst{3-0} = 0b0000;
}
// APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags
// to APSR.
let Defs = [CPSR], Uses = [FPSCR_NZCV], Rt = 0b1111 /* apsr_nzcv */ in
def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins),
"vmrs", "\tAPSR_nzcv, fpscr", [(arm_fmstat)]>;
// Application level FPSCR -> GPR
let hasSideEffects = 1, Uses = [FPSCR] in
def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpscr",
[(set GPR:$Rt, (int_arm_get_fpscr))]>;
// System level FPEXC, FPSID -> GPR
let Uses = [FPSCR] in {
def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpexc", []>;
def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpsid", []>;
def VMRS_MVFR0 : MovFromVFP<0b0111 /* mvfr0 */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, mvfr0", []>;
def VMRS_MVFR1 : MovFromVFP<0b0110 /* mvfr1 */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, mvfr1", []>;
def VMRS_MVFR2 : MovFromVFP<0b0101 /* mvfr2 */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, mvfr2", []>, Requires<[HasFPARMv8]>;
def VMRS_FPINST : MovFromVFP<0b1001 /* fpinst */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpinst", []>;
def VMRS_FPINST2 : MovFromVFP<0b1010 /* fpinst2 */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpinst2", []>;
}
//===----------------------------------------------------------------------===//
// Move from ARM core register to VFP System Register.
//
class MovToVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
list<dag> pattern>:
VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
// Instruction operand.
bits<4> src;
// Encode instruction operand.
let Inst{15-12} = src;
let Inst{27-20} = 0b11101110;
let Inst{19-16} = opc19_16;
let Inst{11-8} = 0b1010;
let Inst{7} = 0;
let Inst{4} = 1;
}
let Defs = [FPSCR] in {
// Application level GPR -> FPSCR
def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPR:$src),
"vmsr", "\tfpscr, $src", [(int_arm_set_fpscr GPR:$src)]>;
// System level GPR -> FPEXC
def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPR:$src),
"vmsr", "\tfpexc, $src", []>;
// System level GPR -> FPSID
def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPR:$src),
"vmsr", "\tfpsid, $src", []>;
def VMSR_FPINST : MovToVFP<0b1001 /* fpinst */, (outs), (ins GPR:$src),
"vmsr", "\tfpinst, $src", []>;
def VMSR_FPINST2 : MovToVFP<0b1010 /* fpinst2 */, (outs), (ins GPR:$src),
"vmsr", "\tfpinst2, $src", []>;
}
//===----------------------------------------------------------------------===//
// Misc.
//
// Materialize FP immediates. VFP3 only.
let isReMaterializable = 1 in {
def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm),
VFPMiscFrm, IIC_fpUNA64,
"vmov", ".f64\t$Dd, $imm",
[(set DPR:$Dd, vfp_f64imm:$imm)]>,
Requires<[HasVFP3,HasDPVFP]> {
bits<5> Dd;
bits<8> imm;
let Inst{27-23} = 0b11101;
let Inst{22} = Dd{4};
let Inst{21-20} = 0b11;
let Inst{19-16} = imm{7-4};
let Inst{15-12} = Dd{3-0};
let Inst{11-9} = 0b101;
let Inst{8} = 1; // Double precision.
let Inst{7-4} = 0b0000;
let Inst{3-0} = imm{3-0};
}
def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm),
VFPMiscFrm, IIC_fpUNA32,
"vmov", ".f32\t$Sd, $imm",
[(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> {
bits<5> Sd;
bits<8> imm;
let Inst{27-23} = 0b11101;
let Inst{22} = Sd{0};
let Inst{21-20} = 0b11;
let Inst{19-16} = imm{7-4};
let Inst{15-12} = Sd{4-1};
let Inst{11-9} = 0b101;
let Inst{8} = 0; // Single precision.
let Inst{7-4} = 0b0000;
let Inst{3-0} = imm{3-0};
}
}
//===----------------------------------------------------------------------===//
// Assembler aliases.
//
// A few mnemonic aliases for pre-unifixed syntax. We don't guarantee to
// support them all, but supporting at least some of the basics is
// good to be friendly.
def : VFP2MnemonicAlias<"flds", "vldr">;
def : VFP2MnemonicAlias<"fldd", "vldr">;
def : VFP2MnemonicAlias<"fmrs", "vmov">;
def : VFP2MnemonicAlias<"fmsr", "vmov">;
def : VFP2MnemonicAlias<"fsqrts", "vsqrt">;
def : VFP2MnemonicAlias<"fsqrtd", "vsqrt">;
def : VFP2MnemonicAlias<"fadds", "vadd.f32">;
def : VFP2MnemonicAlias<"faddd", "vadd.f64">;
def : VFP2MnemonicAlias<"fmrdd", "vmov">;
def : VFP2MnemonicAlias<"fmrds", "vmov">;
def : VFP2MnemonicAlias<"fmrrd", "vmov">;
def : VFP2MnemonicAlias<"fmdrr", "vmov">;
def : VFP2MnemonicAlias<"fmuls", "vmul.f32">;
def : VFP2MnemonicAlias<"fmuld", "vmul.f64">;
def : VFP2MnemonicAlias<"fnegs", "vneg.f32">;
def : VFP2MnemonicAlias<"fnegd", "vneg.f64">;
def : VFP2MnemonicAlias<"ftosizd", "vcvt.s32.f64">;
def : VFP2MnemonicAlias<"ftosid", "vcvtr.s32.f64">;
def : VFP2MnemonicAlias<"ftosizs", "vcvt.s32.f32">;
def : VFP2MnemonicAlias<"ftosis", "vcvtr.s32.f32">;
def : VFP2MnemonicAlias<"ftouizd", "vcvt.u32.f64">;
def : VFP2MnemonicAlias<"ftouid", "vcvtr.u32.f64">;
def : VFP2MnemonicAlias<"ftouizs", "vcvt.u32.f32">;
def : VFP2MnemonicAlias<"ftouis", "vcvtr.u32.f32">;
def : VFP2MnemonicAlias<"fsitod", "vcvt.f64.s32">;
def : VFP2MnemonicAlias<"fsitos", "vcvt.f32.s32">;
def : VFP2MnemonicAlias<"fuitod", "vcvt.f64.u32">;
def : VFP2MnemonicAlias<"fuitos", "vcvt.f32.u32">;
def : VFP2MnemonicAlias<"fsts", "vstr">;
def : VFP2MnemonicAlias<"fstd", "vstr">;
def : VFP2MnemonicAlias<"fmacd", "vmla.f64">;
def : VFP2MnemonicAlias<"fmacs", "vmla.f32">;
def : VFP2MnemonicAlias<"fcpys", "vmov.f32">;
def : VFP2MnemonicAlias<"fcpyd", "vmov.f64">;
def : VFP2MnemonicAlias<"fcmps", "vcmp.f32">;
def : VFP2MnemonicAlias<"fcmpd", "vcmp.f64">;
def : VFP2MnemonicAlias<"fdivs", "vdiv.f32">;
def : VFP2MnemonicAlias<"fdivd", "vdiv.f64">;
def : VFP2MnemonicAlias<"fmrx", "vmrs">;
def : VFP2MnemonicAlias<"fmxr", "vmsr">;
// Be friendly and accept the old form of zero-compare
def : VFP2DPInstAlias<"fcmpzd${p} $val", (VCMPZD DPR:$val, pred:$p)>;
def : VFP2InstAlias<"fcmpzs${p} $val", (VCMPZS SPR:$val, pred:$p)>;
def : VFP2InstAlias<"fmstat${p}", (FMSTAT pred:$p)>;
def : VFP2InstAlias<"fadds${p} $Sd, $Sn, $Sm",
(VADDS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
def : VFP2DPInstAlias<"faddd${p} $Dd, $Dn, $Dm",
(VADDD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
def : VFP2InstAlias<"fsubs${p} $Sd, $Sn, $Sm",
(VSUBS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
def : VFP2DPInstAlias<"fsubd${p} $Dd, $Dn, $Dm",
(VSUBD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
// No need for the size suffix on VSQRT. It's implied by the register classes.
def : VFP2InstAlias<"vsqrt${p} $Sd, $Sm", (VSQRTS SPR:$Sd, SPR:$Sm, pred:$p)>;
def : VFP2DPInstAlias<"vsqrt${p} $Dd, $Dm", (VSQRTD DPR:$Dd, DPR:$Dm, pred:$p)>;
// VLDR/VSTR accept an optional type suffix.
def : VFP2InstAlias<"vldr${p}.32 $Sd, $addr",
(VLDRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
def : VFP2InstAlias<"vstr${p}.32 $Sd, $addr",
(VSTRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
def : VFP2InstAlias<"vldr${p}.64 $Dd, $addr",
(VLDRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
def : VFP2InstAlias<"vstr${p}.64 $Dd, $addr",
(VSTRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
// VMOV can accept optional 32-bit or less data type suffix suffix.
def : VFP2InstAlias<"vmov${p}.8 $Rt, $Sn",
(VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.16 $Rt, $Sn",
(VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.32 $Rt, $Sn",
(VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.8 $Sn, $Rt",
(VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.16 $Sn, $Rt",
(VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.32 $Sn, $Rt",
(VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.f64 $Rt, $Rt2, $Dn",
(VMOVRRD GPR:$Rt, GPR:$Rt2, DPR:$Dn, pred:$p)>;
def : VFP2InstAlias<"vmov${p}.f64 $Dn, $Rt, $Rt2",
(VMOVDRR DPR:$Dn, GPR:$Rt, GPR:$Rt2, pred:$p)>;
// VMOVS doesn't need the .f32 to disambiguate from the NEON encoding the way
// VMOVD does.
def : VFP2InstAlias<"vmov${p} $Sd, $Sm",
(VMOVS SPR:$Sd, SPR:$Sm, pred:$p)>;
// FCONSTD/FCONSTS alias for vmov.f64/vmov.f32
// These aliases provide added functionality over vmov.f instructions by
// allowing users to write assembly containing encoded floating point constants
// (e.g. #0x70 vs #1.0). Without these alises there is no way for the
// assembler to accept encoded fp constants (but the equivalent fp-literal is
// accepted directly by vmovf).
def : VFP3InstAlias<"fconstd${p} $Dd, $val",
(FCONSTD DPR:$Dd, vfp_f64imm:$val, pred:$p)>;
def : VFP3InstAlias<"fconsts${p} $Sd, $val",
(FCONSTS SPR:$Sd, vfp_f32imm:$val, pred:$p)>;