forked from OSchip/llvm-project
538 lines
18 KiB
C++
538 lines
18 KiB
C++
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Lex/IdentifierTable.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
|
|
bool Wide, QualType t, SourceLocation firstLoc,
|
|
SourceLocation lastLoc) :
|
|
Expr(StringLiteralClass, t) {
|
|
// OPTIMIZE: could allocate this appended to the StringLiteral.
|
|
char *AStrData = new char[byteLength];
|
|
memcpy(AStrData, strData, byteLength);
|
|
StrData = AStrData;
|
|
ByteLength = byteLength;
|
|
IsWide = Wide;
|
|
firstTokLoc = firstLoc;
|
|
lastTokLoc = lastLoc;
|
|
}
|
|
|
|
StringLiteral::~StringLiteral() {
|
|
delete[] StrData;
|
|
}
|
|
|
|
bool UnaryOperator::isPostfix(Opcode Op) {
|
|
switch (Op) {
|
|
case PostInc:
|
|
case PostDec:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++".
|
|
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown unary operator");
|
|
case PostInc: return "++";
|
|
case PostDec: return "--";
|
|
case PreInc: return "++";
|
|
case PreDec: return "--";
|
|
case AddrOf: return "&";
|
|
case Deref: return "*";
|
|
case Plus: return "+";
|
|
case Minus: return "-";
|
|
case Not: return "~";
|
|
case LNot: return "!";
|
|
case Real: return "__real";
|
|
case Imag: return "__imag";
|
|
case SizeOf: return "sizeof";
|
|
case AlignOf: return "alignof";
|
|
case Extension: return "__extension__";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
|
|
SourceLocation rparenloc)
|
|
: Expr(CallExprClass, t), Fn(fn), NumArgs(numargs) {
|
|
Args = new Expr*[numargs];
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
Args[i] = args[i];
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown binary operator");
|
|
case Mul: return "*";
|
|
case Div: return "/";
|
|
case Rem: return "%";
|
|
case Add: return "+";
|
|
case Sub: return "-";
|
|
case Shl: return "<<";
|
|
case Shr: return ">>";
|
|
case LT: return "<";
|
|
case GT: return ">";
|
|
case LE: return "<=";
|
|
case GE: return ">=";
|
|
case EQ: return "==";
|
|
case NE: return "!=";
|
|
case And: return "&";
|
|
case Xor: return "^";
|
|
case Or: return "|";
|
|
case LAnd: return "&&";
|
|
case LOr: return "||";
|
|
case Assign: return "=";
|
|
case MulAssign: return "*=";
|
|
case DivAssign: return "/=";
|
|
case RemAssign: return "%=";
|
|
case AddAssign: return "+=";
|
|
case SubAssign: return "-=";
|
|
case ShlAssign: return "<<=";
|
|
case ShrAssign: return ">>=";
|
|
case AndAssign: return "&=";
|
|
case XorAssign: return "^=";
|
|
case OrAssign: return "|=";
|
|
case Comma: return ",";
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Expression Routines
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// hasLocalSideEffect - Return true if this immediate expression has side
|
|
/// effects, not counting any sub-expressions.
|
|
bool Expr::hasLocalSideEffect() const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(this);
|
|
|
|
switch (UO->getOpcode()) {
|
|
default: return false;
|
|
case UnaryOperator::PostInc:
|
|
case UnaryOperator::PostDec:
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
return true; // ++/--
|
|
|
|
case UnaryOperator::Deref:
|
|
// Dereferencing a volatile pointer is a side-effect.
|
|
return getType().isVolatileQualified();
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
// accessing a piece of a volatile complex is a side-effect.
|
|
return UO->getSubExpr()->getType().isVolatileQualified();
|
|
|
|
case UnaryOperator::Extension:
|
|
return UO->getSubExpr()->hasLocalSideEffect();
|
|
}
|
|
}
|
|
case BinaryOperatorClass:
|
|
return cast<BinaryOperator>(this)->isAssignmentOp();
|
|
|
|
case MemberExprClass:
|
|
case ArraySubscriptExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// if is a side effect.
|
|
return getType().isVolatileQualified();
|
|
|
|
case CallExprClass:
|
|
// TODO: check attributes for pure/const. "void foo() { strlen("bar"); }"
|
|
// should warn.
|
|
return true;
|
|
|
|
case CastExprClass:
|
|
// If this is a cast to void, check the operand. Otherwise, the result of
|
|
// the cast is unused.
|
|
if (getType()->isVoidType())
|
|
return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
|
|
/// incomplete type other than void. Nonarray expressions that can be lvalues:
|
|
/// - name, where name must be a variable
|
|
/// - e[i]
|
|
/// - (e), where e must be an lvalue
|
|
/// - e.name, where e must be an lvalue
|
|
/// - e->name
|
|
/// - *e, the type of e cannot be a function type
|
|
/// - string-constant
|
|
///
|
|
Expr::isLvalueResult Expr::isLvalue() {
|
|
// first, check the type (C99 6.3.2.1)
|
|
if (isa<FunctionType>(TR.getCanonicalType())) // from isObjectType()
|
|
return LV_NotObjectType;
|
|
|
|
if (TR->isIncompleteType() && TR->isVoidType())
|
|
return LV_IncompleteVoidType;
|
|
|
|
// the type looks fine, now check the expression
|
|
switch (getStmtClass()) {
|
|
case StringLiteralClass: // C99 6.5.1p4
|
|
case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
|
|
// For vectors, make sure base is an lvalue (i.e. not a function call).
|
|
if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
|
|
return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
|
|
return LV_Valid;
|
|
case DeclRefExprClass: // C99 6.5.1p2
|
|
if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
|
|
return LV_Valid;
|
|
break;
|
|
case MemberExprClass: { // C99 6.5.2.3p4
|
|
const MemberExpr *m = cast<MemberExpr>(this);
|
|
return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
|
|
}
|
|
case UnaryOperatorClass: // C99 6.5.3p4
|
|
if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
|
|
return LV_Valid;
|
|
break;
|
|
case ParenExprClass: // C99 6.5.1p5
|
|
return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
|
|
default:
|
|
break;
|
|
}
|
|
return LV_InvalidExpression;
|
|
}
|
|
|
|
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
|
|
/// does not have an incomplete type, does not have a const-qualified type, and
|
|
/// if it is a structure or union, does not have any member (including,
|
|
/// recursively, any member or element of all contained aggregates or unions)
|
|
/// with a const-qualified type.
|
|
Expr::isModifiableLvalueResult Expr::isModifiableLvalue() {
|
|
isLvalueResult lvalResult = isLvalue();
|
|
|
|
switch (lvalResult) {
|
|
case LV_Valid: break;
|
|
case LV_NotObjectType: return MLV_NotObjectType;
|
|
case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
|
|
case LV_InvalidExpression: return MLV_InvalidExpression;
|
|
}
|
|
if (TR.isConstQualified())
|
|
return MLV_ConstQualified;
|
|
if (TR->isArrayType())
|
|
return MLV_ArrayType;
|
|
if (TR->isIncompleteType())
|
|
return MLV_IncompleteType;
|
|
|
|
if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
|
|
if (r->hasConstFields())
|
|
return MLV_ConstQualified;
|
|
}
|
|
return MLV_Valid;
|
|
}
|
|
|
|
/// isIntegerConstantExpr - this recursive routine will test if an expression is
|
|
/// an integer constant expression. Note: With the introduction of VLA's in
|
|
/// C99 the result of the sizeof operator is no longer always a constant
|
|
/// expression. The generalization of the wording to include any subexpression
|
|
/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
|
|
/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
|
|
/// "0 || f()" can be treated as a constant expression. In C90 this expression,
|
|
/// occurring in a context requiring a constant, would have been a constraint
|
|
/// violation. FIXME: This routine currently implements C90 semantics.
|
|
/// To properly implement C99 semantics this routine will need to evaluate
|
|
/// expressions involving operators previously mentioned.
|
|
|
|
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
|
|
/// comma, etc
|
|
///
|
|
/// FIXME: This should ext-warn on overflow during evaluation! ISO C does not
|
|
/// permit this.
|
|
bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, SourceLocation *Loc,
|
|
bool isEvaluated) const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isIntegerConstantExpr(Result, Loc, isEvaluated);
|
|
case IntegerLiteralClass:
|
|
Result = cast<IntegerLiteral>(this)->getValue();
|
|
break;
|
|
case CharacterLiteralClass:
|
|
// FIXME: This doesn't set the right width etc.
|
|
Result.zextOrTrunc(32); // FIXME: NOT RIGHT IN GENERAL.
|
|
Result = cast<CharacterLiteral>(this)->getValue();
|
|
break;
|
|
case DeclRefExprClass:
|
|
if (const EnumConstantDecl *D =
|
|
dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
|
|
Result = D->getInitVal();
|
|
break;
|
|
}
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(this);
|
|
|
|
// Get the operand value. If this is sizeof/alignof, do not evalute the
|
|
// operand. This affects C99 6.6p3.
|
|
if (Exp->isSizeOfAlignOfOp()) isEvaluated = false;
|
|
if (!Exp->getSubExpr()->isIntegerConstantExpr(Result, Loc, isEvaluated))
|
|
return false;
|
|
|
|
switch (Exp->getOpcode()) {
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
default:
|
|
if (Loc) *Loc = Exp->getOperatorLoc();
|
|
return false;
|
|
case UnaryOperator::Extension:
|
|
return true;
|
|
case UnaryOperator::SizeOf:
|
|
case UnaryOperator::AlignOf:
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
if (!Exp->getSubExpr()->getType()->isConstantSizeType(Loc))
|
|
return false;
|
|
|
|
// FIXME: Evaluate sizeof/alignof.
|
|
Result.zextOrTrunc(32); // FIXME: NOT RIGHT IN GENERAL.
|
|
Result = 1; // FIXME: Obviously bogus
|
|
break;
|
|
case UnaryOperator::LNot: {
|
|
bool Val = Result != 0;
|
|
Result.zextOrTrunc(32); // FIXME: NOT RIGHT IN GENERAL.
|
|
Result = Val;
|
|
break;
|
|
}
|
|
case UnaryOperator::Plus:
|
|
// FIXME: Do usual unary promotions here!
|
|
break;
|
|
case UnaryOperator::Minus:
|
|
// FIXME: Do usual unary promotions here!
|
|
Result = -Result;
|
|
break;
|
|
case UnaryOperator::Not:
|
|
// FIXME: Do usual unary promotions here!
|
|
Result = ~Result;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SizeOfAlignOfTypeExprClass: {
|
|
const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
|
|
// alignof always evaluates to a constant.
|
|
if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Loc))
|
|
return false;
|
|
|
|
// FIXME: Evaluate sizeof/alignof.
|
|
Result.zextOrTrunc(32); // FIXME: NOT RIGHT IN GENERAL.
|
|
Result = 1; // FIXME: Obviously bogus
|
|
break;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(this);
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
if (!Exp->getLHS()->isIntegerConstantExpr(Result, Loc, isEvaluated))
|
|
return false;
|
|
|
|
llvm::APSInt RHS(Result);
|
|
|
|
// The short-circuiting &&/|| operators don't necessarily evaluate their
|
|
// RHS. Make sure to pass isEvaluated down correctly.
|
|
if (Exp->isLogicalOp()) {
|
|
bool RHSEval;
|
|
if (Exp->getOpcode() == BinaryOperator::LAnd)
|
|
RHSEval = Result != 0;
|
|
else {
|
|
assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
|
|
RHSEval = Result == 0;
|
|
}
|
|
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Loc,
|
|
isEvaluated & RHSEval))
|
|
return false;
|
|
} else {
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Loc, isEvaluated))
|
|
return false;
|
|
}
|
|
|
|
// FIXME: These should all do the standard promotions, etc.
|
|
switch (Exp->getOpcode()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case BinaryOperator::Mul:
|
|
Result *= RHS;
|
|
break;
|
|
case BinaryOperator::Div:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result /= RHS;
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result %= RHS;
|
|
break;
|
|
case BinaryOperator::Add: Result += RHS; break;
|
|
case BinaryOperator::Sub: Result -= RHS; break;
|
|
case BinaryOperator::Shl:
|
|
Result <<= RHS.getLimitedValue(Result.getBitWidth()-1);
|
|
break;
|
|
case BinaryOperator::Shr:
|
|
Result >>= RHS.getLimitedValue(Result.getBitWidth()-1);
|
|
break;
|
|
case BinaryOperator::LT: Result = Result < RHS; break;
|
|
case BinaryOperator::GT: Result = Result > RHS; break;
|
|
case BinaryOperator::LE: Result = Result <= RHS; break;
|
|
case BinaryOperator::GE: Result = Result >= RHS; break;
|
|
case BinaryOperator::EQ: Result = Result == RHS; break;
|
|
case BinaryOperator::NE: Result = Result != RHS; break;
|
|
case BinaryOperator::And: Result &= RHS; break;
|
|
case BinaryOperator::Xor: Result ^= RHS; break;
|
|
case BinaryOperator::Or: Result |= RHS; break;
|
|
case BinaryOperator::LAnd:
|
|
Result = Result != 0 && RHS != 0;
|
|
break;
|
|
case BinaryOperator::LOr:
|
|
Result = Result != 0 || RHS != 0;
|
|
break;
|
|
|
|
case BinaryOperator::Comma:
|
|
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
|
|
// *except* when they are contained within a subexpression that is not
|
|
// evaluated". Note that Assignment can never happen due to constraints
|
|
// on the LHS subexpr, so we don't need to check it here.
|
|
if (isEvaluated) {
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// The result of the constant expr is the RHS.
|
|
Result = RHS;
|
|
return true;
|
|
}
|
|
|
|
assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
|
|
break;
|
|
}
|
|
case CastExprClass: {
|
|
const CastExpr *Exp = cast<CastExpr>(this);
|
|
// C99 6.6p6: shall only convert arithmetic types to integer types.
|
|
if (!Exp->getSubExpr()->getType()->isArithmeticType() ||
|
|
!Exp->getDestType()->isIntegerType()) {
|
|
if (Loc) *Loc = Exp->getSubExpr()->getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// Handle simple integer->integer casts.
|
|
if (Exp->getSubExpr()->getType()->isIntegerType()) {
|
|
if (!Exp->getSubExpr()->isIntegerConstantExpr(Result, Loc, isEvaluated))
|
|
return false;
|
|
// FIXME: do the conversion on Result.
|
|
break;
|
|
}
|
|
|
|
// Allow floating constants that are the immediate operands of casts or that
|
|
// are parenthesized.
|
|
const Expr *Operand = Exp->getSubExpr();
|
|
while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
|
|
Operand = PE->getSubExpr();
|
|
|
|
if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand)) {
|
|
// FIXME: Evaluate this correctly!
|
|
Result = (int)FL->getValue();
|
|
break;
|
|
}
|
|
if (Loc) *Loc = Operand->getLocStart();
|
|
return false;
|
|
}
|
|
case ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
|
|
if (!Exp->getCond()->isIntegerConstantExpr(Result, Loc, isEvaluated))
|
|
return false;
|
|
|
|
const Expr *TrueExp = Exp->getLHS();
|
|
const Expr *FalseExp = Exp->getRHS();
|
|
if (Result == 0) std::swap(TrueExp, FalseExp);
|
|
|
|
// Evaluate the false one first, discard the result.
|
|
if (!FalseExp->isIntegerConstantExpr(Result, Loc, false))
|
|
return false;
|
|
// Evalute the true one, capture the result.
|
|
if (!TrueExp->isIntegerConstantExpr(Result, Loc, isEvaluated))
|
|
return false;
|
|
// FIXME: promotions on result.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Cases that are valid constant exprs fall through to here.
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
|
|
/// integer constant expression with the value zero, or if this is one that is
|
|
/// cast to void*.
|
|
bool Expr::isNullPointerConstant() const {
|
|
// Strip off a cast to void*, if it exists.
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
|
|
// Check that it is a cast to void*.
|
|
if (const PointerType *PT = dyn_cast<PointerType>(CE->getType())) {
|
|
QualType Pointee = PT->getPointeeType();
|
|
if (Pointee.getQualifiers() == 0 && Pointee->isVoidType() && // to void*
|
|
CE->getSubExpr()->getType()->isIntegerType()) // from int.
|
|
return CE->getSubExpr()->isNullPointerConstant();
|
|
}
|
|
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
|
|
// Accept ((void*)0) as a null pointer constant, as many other
|
|
// implementations do.
|
|
return PE->getSubExpr()->isNullPointerConstant();
|
|
}
|
|
|
|
// This expression must be an integer type.
|
|
if (!getType()->isIntegerType())
|
|
return false;
|
|
|
|
// If we have an integer constant expression, we need to *evaluate* it and
|
|
// test for the value 0.
|
|
llvm::APSInt Val(32);
|
|
return isIntegerConstantExpr(Val, 0, true) && Val == 0;
|
|
}
|