llvm-project/lldb/source/Symbol/Symtab.cpp

1180 lines
40 KiB
C++

//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <map>
#include <set>
#include "Plugins/Language/ObjC/ObjCLanguage.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/RichManglingContext.h"
#include "lldb/Core/STLUtils.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/Timer.h"
#include "llvm/ADT/StringRef.h"
using namespace lldb;
using namespace lldb_private;
Symtab::Symtab(ObjectFile *objfile)
: m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
m_name_indexes_computed(false) {}
Symtab::~Symtab() {}
void Symtab::Reserve(size_t count) {
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.reserve(count);
}
Symbol *Symtab::Resize(size_t count) {
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.resize(count);
return m_symbols.empty() ? nullptr : &m_symbols[0];
}
uint32_t Symtab::AddSymbol(const Symbol &symbol) {
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
uint32_t symbol_idx = m_symbols.size();
m_name_to_index.Clear();
m_file_addr_to_index.Clear();
m_symbols.push_back(symbol);
m_file_addr_to_index_computed = false;
m_name_indexes_computed = false;
return symbol_idx;
}
size_t Symtab::GetNumSymbols() const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
return m_symbols.size();
}
void Symtab::SectionFileAddressesChanged() {
m_name_to_index.Clear();
m_file_addr_to_index_computed = false;
}
void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
const FileSpec &file_spec = m_objfile->GetFileSpec();
const char *object_name = nullptr;
if (m_objfile->GetModule())
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
if (file_spec)
s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
file_spec.GetPath().c_str(), object_name ? "(" : "",
object_name ? object_name : "", object_name ? ")" : "",
(uint64_t)m_symbols.size());
else
s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
if (!m_symbols.empty()) {
switch (sort_order) {
case eSortOrderNone: {
s->PutCString(":\n");
DumpSymbolHeader(s);
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
s->Indent();
pos->Dump(s, target, std::distance(begin, pos));
}
} break;
case eSortOrderByName: {
// Although we maintain a lookup by exact name map, the table isn't
// sorted by name. So we must make the ordered symbol list up ourselves.
s->PutCString(" (sorted by name):\n");
DumpSymbolHeader(s);
typedef std::multimap<const char *, const Symbol *,
CStringCompareFunctionObject>
CStringToSymbol;
CStringToSymbol name_map;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
pos != end; ++pos) {
const char *name = pos->GetName().AsCString();
if (name && name[0])
name_map.insert(std::make_pair(name, &(*pos)));
}
for (CStringToSymbol::const_iterator pos = name_map.begin(),
end = name_map.end();
pos != end; ++pos) {
s->Indent();
pos->second->Dump(s, target, pos->second - &m_symbols[0]);
}
} break;
case eSortOrderByAddress:
s->PutCString(" (sorted by address):\n");
DumpSymbolHeader(s);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const size_t num_entries = m_file_addr_to_index.GetSize();
for (size_t i = 0; i < num_entries; ++i) {
s->Indent();
const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
m_symbols[symbol_idx].Dump(s, target, symbol_idx);
}
break;
}
}
}
void Symtab::Dump(Stream *s, Target *target,
std::vector<uint32_t> &indexes) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
const size_t num_symbols = GetNumSymbols();
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
(uint64_t)indexes.size(), (uint64_t)m_symbols.size());
s->IndentMore();
if (!indexes.empty()) {
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
DumpSymbolHeader(s);
for (pos = indexes.begin(); pos != end; ++pos) {
size_t idx = *pos;
if (idx < num_symbols) {
s->Indent();
m_symbols[idx].Dump(s, target, idx);
}
}
}
s->IndentLess();
}
void Symtab::DumpSymbolHeader(Stream *s) {
s->Indent(" Debug symbol\n");
s->Indent(" |Synthetic symbol\n");
s->Indent(" ||Externally Visible\n");
s->Indent(" |||\n");
s->Indent("Index UserID DSX Type File Address/Value Load "
"Address Size Flags Name\n");
s->Indent("------- ------ --- --------------- ------------------ "
"------------------ ------------------ ---------- "
"----------------------------------\n");
}
static int CompareSymbolID(const void *key, const void *p) {
const user_id_t match_uid = *(const user_id_t *)key;
const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
if (match_uid < symbol_uid)
return -1;
if (match_uid > symbol_uid)
return 1;
return 0;
}
Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
Symbol *symbol =
(Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
sizeof(m_symbols[0]), CompareSymbolID);
return symbol;
}
Symbol *Symtab::SymbolAtIndex(size_t idx) {
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return nullptr;
}
const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return nullptr;
}
//----------------------------------------------------------------------
// InitNameIndexes
//----------------------------------------------------------------------
static bool lldb_skip_name(llvm::StringRef mangled,
Mangled::ManglingScheme scheme) {
switch (scheme) {
case Mangled::eManglingSchemeItanium: {
if (mangled.size() < 3 || !mangled.startswith("_Z"))
return true;
// Avoid the following types of symbols in the index.
switch (mangled[2]) {
case 'G': // guard variables
case 'T': // virtual tables, VTT structures, typeinfo structures + names
case 'Z': // named local entities (if we eventually handle
// eSymbolTypeData, we will want this back)
return true;
default:
break;
}
// Include this name in the index.
return false;
}
// No filters for this scheme yet. Include all names in indexing.
case Mangled::eManglingSchemeMSVC:
return false;
// Don't try and demangle things we can't categorize.
case Mangled::eManglingSchemeNone:
return true;
}
llvm_unreachable("unknown scheme!");
}
void Symtab::InitNameIndexes() {
// Protected function, no need to lock mutex...
if (!m_name_indexes_computed) {
m_name_indexes_computed = true;
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
// Create the name index vector to be able to quickly search by name
const size_t num_symbols = m_symbols.size();
#if 1
m_name_to_index.Reserve(num_symbols);
#else
// TODO: benchmark this to see if we save any memory. Otherwise we
// will always keep the memory reserved in the vector unless we pull some
// STL swap magic and then recopy...
uint32_t actual_count = 0;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
pos != end; ++pos) {
const Mangled &mangled = pos->GetMangled();
if (mangled.GetMangledName())
++actual_count;
if (mangled.GetDemangledName())
++actual_count;
}
m_name_to_index.Reserve(actual_count);
#endif
// The "const char *" in "class_contexts" and backlog::value_type::second
// must come from a ConstString::GetCString()
std::set<const char *> class_contexts;
std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
backlog.reserve(num_symbols / 2);
// Instantiation of the demangler is expensive, so better use a single one
// for all entries during batch processing.
RichManglingContext rmc;
NameToIndexMap::Entry entry;
for (entry.value = 0; entry.value < num_symbols; ++entry.value) {
Symbol *symbol = &m_symbols[entry.value];
// Don't let trampolines get into the lookup by name map If we ever need
// the trampoline symbols to be searchable by name we can remove this and
// then possibly add a new bool to any of the Symtab functions that
// lookup symbols by name to indicate if they want trampolines.
if (symbol->IsTrampoline())
continue;
// If the symbol's name string matched a Mangled::ManglingScheme, it is
// stored in the mangled field.
Mangled &mangled = symbol->GetMangled();
entry.cstring = mangled.GetMangledName();
if (entry.cstring) {
m_name_to_index.Append(entry);
if (symbol->ContainsLinkerAnnotations()) {
// If the symbol has linker annotations, also add the version without
// the annotations.
entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
entry.cstring.GetStringRef()));
m_name_to_index.Append(entry);
}
const SymbolType type = symbol->GetType();
if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
RegisterMangledNameEntry(entry, class_contexts, backlog, rmc);
}
}
// Symbol name strings that didn't match a Mangled::ManglingScheme, are
// stored in the demangled field.
entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
if (entry.cstring) {
m_name_to_index.Append(entry);
if (symbol->ContainsLinkerAnnotations()) {
// If the symbol has linker annotations, also add the version without
// the annotations.
entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations(
entry.cstring.GetStringRef()));
m_name_to_index.Append(entry);
}
}
// If the demangled name turns out to be an ObjC name, and is a category
// name, add the version without categories to the index too.
ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true);
if (objc_method.IsValid(true)) {
entry.cstring = objc_method.GetSelector();
m_selector_to_index.Append(entry);
ConstString objc_method_no_category(
objc_method.GetFullNameWithoutCategory(true));
if (objc_method_no_category) {
entry.cstring = objc_method_no_category;
m_name_to_index.Append(entry);
}
}
}
for (const auto &record : backlog) {
RegisterBacklogEntry(record.first, record.second, class_contexts);
}
m_name_to_index.Sort();
m_name_to_index.SizeToFit();
m_selector_to_index.Sort();
m_selector_to_index.SizeToFit();
m_basename_to_index.Sort();
m_basename_to_index.SizeToFit();
m_method_to_index.Sort();
m_method_to_index.SizeToFit();
}
}
void Symtab::RegisterMangledNameEntry(
NameToIndexMap::Entry &entry, std::set<const char *> &class_contexts,
std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
RichManglingContext &rmc) {
// Only register functions that have a base name.
rmc.ParseFunctionBaseName();
llvm::StringRef base_name = rmc.GetBufferRef();
if (base_name.empty())
return;
// The base name will be our entry's name.
entry.cstring = ConstString(base_name);
rmc.ParseFunctionDeclContextName();
llvm::StringRef decl_context = rmc.GetBufferRef();
// Register functions with no context.
if (decl_context.empty()) {
// This has to be a basename
m_basename_to_index.Append(entry);
// If there is no context (no namespaces or class scopes that come before
// the function name) then this also could be a fullname.
m_name_to_index.Append(entry);
return;
}
// Make sure we have a pool-string pointer and see if we already know the
// context name.
const char *decl_context_ccstr = ConstString(decl_context).GetCString();
auto it = class_contexts.find(decl_context_ccstr);
// Register constructors and destructors. They are methods and create
// declaration contexts.
if (rmc.IsCtorOrDtor()) {
m_method_to_index.Append(entry);
if (it == class_contexts.end())
class_contexts.insert(it, decl_context_ccstr);
return;
}
// Register regular methods with a known declaration context.
if (it != class_contexts.end()) {
m_method_to_index.Append(entry);
return;
}
// Regular methods in unknown declaration contexts are put to the backlog. We
// will revisit them once we processed all remaining symbols.
backlog.push_back(std::make_pair(entry, decl_context_ccstr));
}
void Symtab::RegisterBacklogEntry(
const NameToIndexMap::Entry &entry, const char *decl_context,
const std::set<const char *> &class_contexts) {
auto it = class_contexts.find(decl_context);
if (it != class_contexts.end()) {
m_method_to_index.Append(entry);
} else {
// If we got here, we have something that had a context (was inside
// a namespace or class) yet we don't know the entry
m_method_to_index.Append(entry);
m_basename_to_index.Append(entry);
}
}
void Symtab::PreloadSymbols() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
InitNameIndexes();
}
void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
bool add_demangled, bool add_mangled,
NameToIndexMap &name_to_index_map) const {
if (add_demangled || add_mangled) {
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
std::lock_guard<std::recursive_mutex> guard(m_mutex);
// Create the name index vector to be able to quickly search by name
NameToIndexMap::Entry entry;
const size_t num_indexes = indexes.size();
for (size_t i = 0; i < num_indexes; ++i) {
entry.value = indexes[i];
assert(i < m_symbols.size());
const Symbol *symbol = &m_symbols[entry.value];
const Mangled &mangled = symbol->GetMangled();
if (add_demangled) {
entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
if (entry.cstring)
name_to_index_map.Append(entry);
}
if (add_mangled) {
entry.cstring = mangled.GetMangledName();
if (entry.cstring)
name_to_index_map.Append(entry);
}
}
}
}
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
std::vector<uint32_t> &indexes,
uint32_t start_idx,
uint32_t end_index) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i) {
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
SymbolType symbol_type, uint32_t flags_value,
std::vector<uint32_t> &indexes, uint32_t start_idx,
uint32_t end_index) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i) {
if ((symbol_type == eSymbolTypeAny ||
m_symbols[i].GetType() == symbol_type) &&
m_symbols[i].GetFlags() == flags_value)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
Debug symbol_debug_type,
Visibility symbol_visibility,
std::vector<uint32_t> &indexes,
uint32_t start_idx,
uint32_t end_index) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[i].GetType() == symbol_type) {
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
indexes.push_back(i);
}
}
return indexes.size() - prev_size;
}
uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
if (!m_symbols.empty()) {
const Symbol *first_symbol = &m_symbols[0];
if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
return symbol - first_symbol;
}
return UINT32_MAX;
}
struct SymbolSortInfo {
const bool sort_by_load_addr;
const Symbol *symbols;
};
namespace {
struct SymbolIndexComparator {
const std::vector<Symbol> &symbols;
std::vector<lldb::addr_t> &addr_cache;
// Getting from the symbol to the Address to the File Address involves some
// work. Since there are potentially many symbols here, and we're using this
// for sorting so we're going to be computing the address many times, cache
// that in addr_cache. The array passed in has to be the same size as the
// symbols array passed into the member variable symbols, and should be
// initialized with LLDB_INVALID_ADDRESS.
// NOTE: You have to make addr_cache externally and pass it in because
// std::stable_sort
// makes copies of the comparator it is initially passed in, and you end up
// spending huge amounts of time copying this array...
SymbolIndexComparator(const std::vector<Symbol> &s,
std::vector<lldb::addr_t> &a)
: symbols(s), addr_cache(a) {
assert(symbols.size() == addr_cache.size());
}
bool operator()(uint32_t index_a, uint32_t index_b) {
addr_t value_a = addr_cache[index_a];
if (value_a == LLDB_INVALID_ADDRESS) {
value_a = symbols[index_a].GetAddressRef().GetFileAddress();
addr_cache[index_a] = value_a;
}
addr_t value_b = addr_cache[index_b];
if (value_b == LLDB_INVALID_ADDRESS) {
value_b = symbols[index_b].GetAddressRef().GetFileAddress();
addr_cache[index_b] = value_b;
}
if (value_a == value_b) {
// The if the values are equal, use the original symbol user ID
lldb::user_id_t uid_a = symbols[index_a].GetID();
lldb::user_id_t uid_b = symbols[index_b].GetID();
if (uid_a < uid_b)
return true;
if (uid_a > uid_b)
return false;
return false;
} else if (value_a < value_b)
return true;
return false;
}
};
}
void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
bool remove_duplicates) const {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
// No need to sort if we have zero or one items...
if (indexes.size() <= 1)
return;
// Sort the indexes in place using std::stable_sort.
// NOTE: The use of std::stable_sort instead of std::sort here is strictly for
// performance,
// not correctness. The indexes vector tends to be "close" to sorted, which
// the stable sort handles better.
std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
SymbolIndexComparator comparator(m_symbols, addr_cache);
std::stable_sort(indexes.begin(), indexes.end(), comparator);
// Remove any duplicates if requested
if (remove_duplicates) {
auto last = std::unique(indexes.begin(), indexes.end());
indexes.erase(last, indexes.end());
}
}
uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
if (symbol_name) {
if (!m_name_indexes_computed)
InitNameIndexes();
return m_name_to_index.GetValues(symbol_name, indexes);
}
return 0;
}
uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name,
Debug symbol_debug_type,
Visibility symbol_visibility,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
if (symbol_name) {
const size_t old_size = indexes.size();
if (!m_name_indexes_computed)
InitNameIndexes();
std::vector<uint32_t> all_name_indexes;
const size_t name_match_count =
m_name_to_index.GetValues(symbol_name, all_name_indexes);
for (size_t i = 0; i < name_match_count; ++i) {
if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
symbol_visibility))
indexes.push_back(all_name_indexes[i]);
}
return indexes.size() - old_size;
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name,
SymbolType symbol_type,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end()) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[*pos].GetType() == symbol_type)
++pos;
else
pos = indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
const ConstString &symbol_name, SymbolType symbol_type,
Debug symbol_debug_type, Visibility symbol_visibility,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
symbol_visibility, indexes) > 0) {
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end()) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[*pos].GetType() == symbol_type)
++pos;
else
pos = indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
const RegularExpression &regexp, SymbolType symbol_type,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (uint32_t i = 0; i < sym_end; i++) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[i].GetType() == symbol_type) {
const char *name = m_symbols[i].GetName().AsCString();
if (name) {
if (regexp.Execute(name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
const RegularExpression &regexp, SymbolType symbol_type,
Debug symbol_debug_type, Visibility symbol_visibility,
std::vector<uint32_t> &indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (uint32_t i = 0; i < sym_end; i++) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[i].GetType() == symbol_type) {
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false)
continue;
const char *name = m_symbols[i].GetName().AsCString();
if (name) {
if (regexp.Execute(name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
Debug symbol_debug_type,
Visibility symbol_visibility,
uint32_t &start_idx) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
const size_t count = m_symbols.size();
for (size_t idx = start_idx; idx < count; ++idx) {
if (symbol_type == eSymbolTypeAny ||
m_symbols[idx].GetType() == symbol_type) {
if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
start_idx = idx;
return &m_symbols[idx];
}
}
}
return nullptr;
}
size_t
Symtab::FindAllSymbolsWithNameAndType(const ConstString &name,
SymbolType symbol_type,
std::vector<uint32_t> &symbol_indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
// Initialize all of the lookup by name indexes before converting NAME to a
// uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name) {
// The string table did have a string that matched, but we need to check
// the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
}
return symbol_indexes.size();
}
size_t Symtab::FindAllSymbolsWithNameAndType(
const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type,
Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
// Initialize all of the lookup by name indexes before converting NAME to a
// uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name) {
// The string table did have a string that matched, but we need to check
// the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
symbol_visibility, symbol_indexes);
}
return symbol_indexes.size();
}
size_t Symtab::FindAllSymbolsMatchingRexExAndType(
const RegularExpression &regex, SymbolType symbol_type,
Debug symbol_debug_type, Visibility symbol_visibility,
std::vector<uint32_t> &symbol_indexes) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
symbol_visibility, symbol_indexes);
return symbol_indexes.size();
}
Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name,
SymbolType symbol_type,
Debug symbol_debug_type,
Visibility symbol_visibility) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
if (!m_name_indexes_computed)
InitNameIndexes();
if (name) {
std::vector<uint32_t> matching_indexes;
// The string table did have a string that matched, but we need to check
// the symbols and match the symbol_type if any was given.
if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
symbol_visibility,
matching_indexes)) {
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
for (pos = matching_indexes.begin(); pos != end; ++pos) {
Symbol *symbol = SymbolAtIndex(*pos);
if (symbol->Compare(name, symbol_type))
return symbol;
}
}
}
return nullptr;
}
typedef struct {
const Symtab *symtab;
const addr_t file_addr;
Symbol *match_symbol;
const uint32_t *match_index_ptr;
addr_t match_offset;
} SymbolSearchInfo;
// Add all the section file start address & size to the RangeVector, recusively
// adding any children sections.
static void AddSectionsToRangeMap(SectionList *sectlist,
RangeVector<addr_t, addr_t> &section_ranges) {
const int num_sections = sectlist->GetNumSections(0);
for (int i = 0; i < num_sections; i++) {
SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
if (sect_sp) {
SectionList &child_sectlist = sect_sp->GetChildren();
// If this section has children, add the children to the RangeVector.
// Else add this section to the RangeVector.
if (child_sectlist.GetNumSections(0) > 0) {
AddSectionsToRangeMap(&child_sectlist, section_ranges);
} else {
size_t size = sect_sp->GetByteSize();
if (size > 0) {
addr_t base_addr = sect_sp->GetFileAddress();
RangeVector<addr_t, addr_t>::Entry entry;
entry.SetRangeBase(base_addr);
entry.SetByteSize(size);
section_ranges.Append(entry);
}
}
}
}
}
void Symtab::InitAddressIndexes() {
// Protected function, no need to lock mutex...
if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
m_file_addr_to_index_computed = true;
FileRangeToIndexMap::Entry entry;
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
if (pos->ValueIsAddress()) {
entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
entry.SetByteSize(pos->GetByteSize());
entry.data = std::distance(begin, pos);
m_file_addr_to_index.Append(entry);
}
}
const size_t num_entries = m_file_addr_to_index.GetSize();
if (num_entries > 0) {
m_file_addr_to_index.Sort();
// Create a RangeVector with the start & size of all the sections for
// this objfile. We'll need to check this for any FileRangeToIndexMap
// entries with an uninitialized size, which could potentially be a large
// number so reconstituting the weak pointer is busywork when it is
// invariant information.
SectionList *sectlist = m_objfile->GetSectionList();
RangeVector<addr_t, addr_t> section_ranges;
if (sectlist) {
AddSectionsToRangeMap(sectlist, section_ranges);
section_ranges.Sort();
}
// Iterate through the FileRangeToIndexMap and fill in the size for any
// entries that didn't already have a size from the Symbol (e.g. if we
// have a plain linker symbol with an address only, instead of debug info
// where we get an address and a size and a type, etc.)
for (size_t i = 0; i < num_entries; i++) {
FileRangeToIndexMap::Entry *entry =
m_file_addr_to_index.GetMutableEntryAtIndex(i);
if (entry->GetByteSize() == 0) {
addr_t curr_base_addr = entry->GetRangeBase();
const RangeVector<addr_t, addr_t>::Entry *containing_section =
section_ranges.FindEntryThatContains(curr_base_addr);
// Use the end of the section as the default max size of the symbol
addr_t sym_size = 0;
if (containing_section) {
sym_size =
containing_section->GetByteSize() -
(entry->GetRangeBase() - containing_section->GetRangeBase());
}
for (size_t j = i; j < num_entries; j++) {
FileRangeToIndexMap::Entry *next_entry =
m_file_addr_to_index.GetMutableEntryAtIndex(j);
addr_t next_base_addr = next_entry->GetRangeBase();
if (next_base_addr > curr_base_addr) {
addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
// Take the difference between this symbol and the next one as
// its size, if it is less than the size of the section.
if (sym_size == 0 || size_to_next_symbol < sym_size) {
sym_size = size_to_next_symbol;
}
break;
}
}
if (sym_size > 0) {
entry->SetByteSize(sym_size);
Symbol &symbol = m_symbols[entry->data];
symbol.SetByteSize(sym_size);
symbol.SetSizeIsSynthesized(true);
}
}
}
// Sort again in case the range size changes the ordering
m_file_addr_to_index.Sort();
}
}
}
void Symtab::CalculateSymbolSizes() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!m_symbols.empty()) {
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const size_t num_entries = m_file_addr_to_index.GetSize();
for (size_t i = 0; i < num_entries; ++i) {
// The entries in the m_file_addr_to_index have calculated the sizes
// already so we will use this size if we need to.
const FileRangeToIndexMap::Entry &entry =
m_file_addr_to_index.GetEntryRef(i);
Symbol &symbol = m_symbols[entry.data];
// If the symbol size is already valid, no need to do anything
if (symbol.GetByteSizeIsValid())
continue;
const addr_t range_size = entry.GetByteSize();
if (range_size > 0) {
symbol.SetByteSize(range_size);
symbol.SetSizeIsSynthesized(true);
}
}
}
}
Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const FileRangeToIndexMap::Entry *entry =
m_file_addr_to_index.FindEntryStartsAt(file_addr);
if (entry) {
Symbol *symbol = SymbolAtIndex(entry->data);
if (symbol->GetFileAddress() == file_addr)
return symbol;
}
return nullptr;
}
Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
const FileRangeToIndexMap::Entry *entry =
m_file_addr_to_index.FindEntryThatContains(file_addr);
if (entry) {
Symbol *symbol = SymbolAtIndex(entry->data);
if (symbol->ContainsFileAddress(file_addr))
return symbol;
}
return nullptr;
}
void Symtab::ForEachSymbolContainingFileAddress(
addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!m_file_addr_to_index_computed)
InitAddressIndexes();
std::vector<uint32_t> all_addr_indexes;
// Get all symbols with file_addr
const size_t addr_match_count =
m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
all_addr_indexes);
for (size_t i = 0; i < addr_match_count; ++i) {
Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
if (symbol->ContainsFileAddress(file_addr)) {
if (!callback(symbol))
break;
}
}
}
void Symtab::SymbolIndicesToSymbolContextList(
std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
// No need to protect this call using m_mutex all other method calls are
// already thread safe.
const bool merge_symbol_into_function = true;
size_t num_indices = symbol_indexes.size();
if (num_indices > 0) {
SymbolContext sc;
sc.module_sp = m_objfile->GetModule();
for (size_t i = 0; i < num_indices; i++) {
sc.symbol = SymbolAtIndex(symbol_indexes[i]);
if (sc.symbol)
sc_list.AppendIfUnique(sc, merge_symbol_into_function);
}
}
}
size_t Symtab::FindFunctionSymbols(const ConstString &name,
uint32_t name_type_mask,
SymbolContextList &sc_list) {
size_t count = 0;
std::vector<uint32_t> symbol_indexes;
// eFunctionNameTypeAuto should be pre-resolved by a call to
// Module::LookupInfo::LookupInfo()
assert((name_type_mask & eFunctionNameTypeAuto) == 0);
if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
std::vector<uint32_t> temp_symbol_indexes;
FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
if (temp_symbol_indexes_size > 0) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
SymbolContext sym_ctx;
sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
if (sym_ctx.symbol) {
switch (sym_ctx.symbol->GetType()) {
case eSymbolTypeCode:
case eSymbolTypeResolver:
case eSymbolTypeReExported:
symbol_indexes.push_back(temp_symbol_indexes[i]);
break;
default:
break;
}
}
}
}
}
if (name_type_mask & eFunctionNameTypeBase) {
// From mangled names we can't tell what is a basename and what is a method
// name, so we just treat them the same
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_basename_to_index.IsEmpty()) {
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_basename_to_index.FindFirstValueForName(name);
match != nullptr;
match = m_basename_to_index.FindNextValueForName(match)) {
symbol_indexes.push_back(match->value);
}
}
}
if (name_type_mask & eFunctionNameTypeMethod) {
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_method_to_index.IsEmpty()) {
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_method_to_index.FindFirstValueForName(name);
match != nullptr;
match = m_method_to_index.FindNextValueForName(match)) {
symbol_indexes.push_back(match->value);
}
}
}
if (name_type_mask & eFunctionNameTypeSelector) {
if (!m_name_indexes_computed)
InitNameIndexes();
if (!m_selector_to_index.IsEmpty()) {
const UniqueCStringMap<uint32_t>::Entry *match;
for (match = m_selector_to_index.FindFirstValueForName(name);
match != nullptr;
match = m_selector_to_index.FindNextValueForName(match)) {
symbol_indexes.push_back(match->value);
}
}
}
if (!symbol_indexes.empty()) {
std::sort(symbol_indexes.begin(), symbol_indexes.end());
symbol_indexes.erase(
std::unique(symbol_indexes.begin(), symbol_indexes.end()),
symbol_indexes.end());
count = symbol_indexes.size();
SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
}
return count;
}
const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
uint32_t child_idx = GetIndexForSymbol(child_symbol);
if (child_idx != UINT32_MAX && child_idx > 0) {
for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
const Symbol *symbol = SymbolAtIndex(idx);
const uint32_t sibling_idx = symbol->GetSiblingIndex();
if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
return symbol;
}
}
return NULL;
}