forked from OSchip/llvm-project
578 lines
21 KiB
C++
578 lines
21 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
bool llvm::VerifyDomInfo = false;
|
|
static cl::opt<bool, true>
|
|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
|
|
cl::desc("Verify dominator info (time consuming)"));
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
static constexpr bool ExpensiveChecksEnabled = true;
|
|
#else
|
|
static constexpr bool ExpensiveChecksEnabled = false;
|
|
#endif
|
|
|
|
bool BasicBlockEdge::isSingleEdge() const {
|
|
const TerminatorInst *TI = Start->getTerminator();
|
|
unsigned NumEdgesToEnd = 0;
|
|
for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
|
|
if (TI->getSuccessor(i) == End)
|
|
++NumEdgesToEnd;
|
|
if (NumEdgesToEnd >= 2)
|
|
return false;
|
|
}
|
|
assert(NumEdgesToEnd == 1);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Provide public access to DominatorTree information. Implementation details
|
|
// can be found in Dominators.h, GenericDomTree.h, and
|
|
// GenericDomTreeConstruction.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template class llvm::DomTreeNodeBase<BasicBlock>;
|
|
template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
|
|
template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
|
|
|
|
template struct llvm::DomTreeBuilder::Update<BasicBlock *>;
|
|
|
|
template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
|
|
DomTreeBuilder::BBDomTree &DT);
|
|
template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
|
|
DomTreeBuilder::BBPostDomTree &DT);
|
|
|
|
template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
|
|
DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
|
|
template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
|
|
DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
|
|
|
|
template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
|
|
DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
|
|
template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
|
|
DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
|
|
|
|
template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
|
|
DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
|
|
template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
|
|
DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
|
|
|
|
template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
|
|
const DomTreeBuilder::BBDomTree &DT,
|
|
DomTreeBuilder::BBDomTree::VerificationLevel VL);
|
|
template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
|
|
const DomTreeBuilder::BBPostDomTree &DT,
|
|
DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
|
|
|
|
bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis, all analyses on functions, or the function's
|
|
// CFG have been preserved.
|
|
auto PAC = PA.getChecker<DominatorTreeAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
|
|
PAC.preservedSet<CFGAnalyses>());
|
|
}
|
|
|
|
// dominates - Return true if Def dominates a use in User. This performs
|
|
// the special checks necessary if Def and User are in the same basic block.
|
|
// Note that Def doesn't dominate a use in Def itself!
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const Instruction *User) const {
|
|
const BasicBlock *UseBB = User->getParent();
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// An instruction doesn't dominate a use in itself.
|
|
if (Def == User)
|
|
return false;
|
|
|
|
// The value defined by an invoke dominates an instruction only if it
|
|
// dominates every instruction in UseBB.
|
|
// A PHI is dominated only if the instruction dominates every possible use in
|
|
// the UseBB.
|
|
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
|
|
return dominates(Def, UseBB);
|
|
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != User; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I == Def;
|
|
}
|
|
|
|
// true if Def would dominate a use in any instruction in UseBB.
|
|
// note that dominates(Def, Def->getParent()) is false.
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const BasicBlock *UseBB) const {
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if DefBB == UseBB.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
if (DefBB == UseBB)
|
|
return false;
|
|
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
if (const auto *II = dyn_cast<InvokeInst>(Def)) {
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
BasicBlockEdge E(DefBB, NormalDest);
|
|
return dominates(E, UseBB);
|
|
}
|
|
|
|
return dominates(DefBB, UseBB);
|
|
}
|
|
|
|
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
|
|
const BasicBlock *UseBB) const {
|
|
// If the BB the edge ends in doesn't dominate the use BB, then the
|
|
// edge also doesn't.
|
|
const BasicBlock *Start = BBE.getStart();
|
|
const BasicBlock *End = BBE.getEnd();
|
|
if (!dominates(End, UseBB))
|
|
return false;
|
|
|
|
// Simple case: if the end BB has a single predecessor, the fact that it
|
|
// dominates the use block implies that the edge also does.
|
|
if (End->getSinglePredecessor())
|
|
return true;
|
|
|
|
// The normal edge from the invoke is critical. Conceptually, what we would
|
|
// like to do is split it and check if the new block dominates the use.
|
|
// With X being the new block, the graph would look like:
|
|
//
|
|
// DefBB
|
|
// /\ . .
|
|
// / \ . .
|
|
// / \ . .
|
|
// / \ | |
|
|
// A X B C
|
|
// | \ | /
|
|
// . \|/
|
|
// . NormalDest
|
|
// .
|
|
//
|
|
// Given the definition of dominance, NormalDest is dominated by X iff X
|
|
// dominates all of NormalDest's predecessors (X, B, C in the example). X
|
|
// trivially dominates itself, so we only have to find if it dominates the
|
|
// other predecessors. Since the only way out of X is via NormalDest, X can
|
|
// only properly dominate a node if NormalDest dominates that node too.
|
|
int IsDuplicateEdge = 0;
|
|
for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
|
|
PI != E; ++PI) {
|
|
const BasicBlock *BB = *PI;
|
|
if (BB == Start) {
|
|
// If there are multiple edges between Start and End, by definition they
|
|
// can't dominate anything.
|
|
if (IsDuplicateEdge++)
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (!dominates(End, BB))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
|
|
Instruction *UserInst = cast<Instruction>(U.getUser());
|
|
// A PHI in the end of the edge is dominated by it.
|
|
PHINode *PN = dyn_cast<PHINode>(UserInst);
|
|
if (PN && PN->getParent() == BBE.getEnd() &&
|
|
PN->getIncomingBlock(U) == BBE.getStart())
|
|
return true;
|
|
|
|
// Otherwise use the edge-dominates-block query, which
|
|
// handles the crazy critical edge cases properly.
|
|
const BasicBlock *UseBB;
|
|
if (PN)
|
|
UseBB = PN->getIncomingBlock(U);
|
|
else
|
|
UseBB = UserInst->getParent();
|
|
return dominates(BBE, UseBB);
|
|
}
|
|
|
|
bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
|
|
Instruction *UserInst = cast<Instruction>(U.getUser());
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Determine the block in which the use happens. PHI nodes use
|
|
// their operands on edges; simulate this by thinking of the use
|
|
// happening at the end of the predecessor block.
|
|
const BasicBlock *UseBB;
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
|
UseBB = PN->getIncomingBlock(U);
|
|
else
|
|
UseBB = UserInst->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// Invoke instructions define their return values on the edges to their normal
|
|
// successors, so we have to handle them specially.
|
|
// Among other things, this means they don't dominate anything in
|
|
// their own block, except possibly a phi, so we don't need to
|
|
// walk the block in any case.
|
|
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
BasicBlockEdge E(DefBB, NormalDest);
|
|
return dominates(E, U);
|
|
}
|
|
|
|
// If the def and use are in different blocks, do a simple CFG dominator
|
|
// tree query.
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Ok, def and use are in the same block. If the def is an invoke, it
|
|
// doesn't dominate anything in the block. If it's a PHI, it dominates
|
|
// everything in the block.
|
|
if (isa<PHINode>(UserInst))
|
|
return true;
|
|
|
|
// Otherwise, just loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != UserInst; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I != UserInst;
|
|
}
|
|
|
|
bool DominatorTree::isReachableFromEntry(const Use &U) const {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
|
|
// ConstantExprs aren't really reachable from the entry block, but they
|
|
// don't need to be treated like unreachable code either.
|
|
if (!I) return true;
|
|
|
|
// PHI nodes use their operands on their incoming edges.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
return isReachableFromEntry(PN->getIncomingBlock(U));
|
|
|
|
// Everything else uses their operands in their own block.
|
|
return isReachableFromEntry(I->getParent());
|
|
}
|
|
|
|
void DominatorTree::verifyDomTree() const {
|
|
// Perform the expensive checks only when VerifyDomInfo is set.
|
|
VerificationLevel VL = VerificationLevel::Fast;
|
|
if (VerifyDomInfo)
|
|
VL = VerificationLevel::Full;
|
|
else if (ExpensiveChecksEnabled)
|
|
VL = VerificationLevel::Basic;
|
|
|
|
if (!verify(VL)) {
|
|
errs() << "\n~~~~~~~~~~~\n\t\tDomTree verification failed!\n~~~~~~~~~~~\n";
|
|
errs() << "\nCFG:\n";
|
|
getRoot()->getParent()->print(errs());
|
|
errs().flush();
|
|
abort();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTreeAnalysis and related pass implementations
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the DominatorTreeAnalysis which is used with the new pass
|
|
// manager. It also implements some methods from utility passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DominatorTree DominatorTreeAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &) {
|
|
DominatorTree DT;
|
|
DT.recalculate(F);
|
|
return DT;
|
|
}
|
|
|
|
AnalysisKey DominatorTreeAnalysis::Key;
|
|
|
|
DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
OS << "DominatorTree for function: " << F.getName() << "\n";
|
|
AM.getResult<DominatorTreeAnalysis>(F).print(OS);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTreeWrapperPass Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The implementation details of the wrapper pass that holds a DominatorTree
|
|
// suitable for use with the legacy pass manager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char DominatorTreeWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
|
|
"Dominator Tree Construction", true, true)
|
|
|
|
bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
|
|
DT.recalculate(F);
|
|
return false;
|
|
}
|
|
|
|
void DominatorTreeWrapperPass::verifyAnalysis() const {
|
|
if (ExpensiveChecksEnabled || VerifyDomInfo)
|
|
DT.verifyDomTree();
|
|
}
|
|
|
|
void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
DT.print(OS);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DeferredDominance Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The implementation details of the DeferredDominance class which allows
|
|
// one to queue updates to a DominatorTree.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Queues multiple updates and discards duplicates.
|
|
void DeferredDominance::applyUpdates(
|
|
ArrayRef<DominatorTree::UpdateType> Updates) {
|
|
SmallVector<DominatorTree::UpdateType, 8> Seen;
|
|
for (auto U : Updates)
|
|
// Avoid duplicates to applyUpdate() to save on analysis.
|
|
if (std::none_of(Seen.begin(), Seen.end(),
|
|
[U](DominatorTree::UpdateType S) { return S == U; })) {
|
|
Seen.push_back(U);
|
|
applyUpdate(U.getKind(), U.getFrom(), U.getTo());
|
|
}
|
|
}
|
|
|
|
/// \brief Helper method for a single edge insertion. It's almost always better
|
|
/// to batch updates and call applyUpdates to quickly remove duplicate edges.
|
|
/// This is best used when there is only a single insertion needed to update
|
|
/// Dominators.
|
|
void DeferredDominance::insertEdge(BasicBlock *From, BasicBlock *To) {
|
|
applyUpdate(DominatorTree::Insert, From, To);
|
|
}
|
|
|
|
/// \brief Helper method for a single edge deletion. It's almost always better
|
|
/// to batch updates and call applyUpdates to quickly remove duplicate edges.
|
|
/// This is best used when there is only a single deletion needed to update
|
|
/// Dominators.
|
|
void DeferredDominance::deleteEdge(BasicBlock *From, BasicBlock *To) {
|
|
applyUpdate(DominatorTree::Delete, From, To);
|
|
}
|
|
|
|
/// \brief Delays the deletion of a basic block until a flush() event.
|
|
void DeferredDominance::deleteBB(BasicBlock *DelBB) {
|
|
assert(DelBB && "Invalid push_back of nullptr DelBB.");
|
|
assert(pred_empty(DelBB) && "DelBB has one or more predecessors.");
|
|
// DelBB is unreachable and all its instructions are dead.
|
|
while (!DelBB->empty()) {
|
|
Instruction &I = DelBB->back();
|
|
// Replace used instructions with an arbitrary value (undef).
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(llvm::UndefValue::get(I.getType()));
|
|
DelBB->getInstList().pop_back();
|
|
}
|
|
// Make sure DelBB has a valid terminator instruction. As long as DelBB is a
|
|
// Child of Function F it must contain valid IR.
|
|
new UnreachableInst(DelBB->getContext(), DelBB);
|
|
DeletedBBs.insert(DelBB);
|
|
}
|
|
|
|
/// \brief Returns true if DelBB is awaiting deletion at a flush() event.
|
|
bool DeferredDominance::pendingDeletedBB(BasicBlock *DelBB) {
|
|
if (DeletedBBs.empty())
|
|
return false;
|
|
return DeletedBBs.count(DelBB) != 0;
|
|
}
|
|
|
|
/// \brief Returns true if pending DT updates are queued for a flush() event.
|
|
bool DeferredDominance::pending() { return !PendUpdates.empty(); }
|
|
|
|
/// \brief Flushes all pending updates and block deletions. Returns a
|
|
/// correct DominatorTree reference to be used by the caller for analysis.
|
|
DominatorTree &DeferredDominance::flush() {
|
|
// Updates to DT must happen before blocks are deleted below. Otherwise the
|
|
// DT traversal will encounter badref blocks and assert.
|
|
if (!PendUpdates.empty()) {
|
|
DT.applyUpdates(PendUpdates);
|
|
PendUpdates.clear();
|
|
}
|
|
flushDelBB();
|
|
return DT;
|
|
}
|
|
|
|
/// \brief Drops all internal state and forces a (slow) recalculation of the
|
|
/// DominatorTree based on the current state of the LLVM IR in F. This should
|
|
/// only be used in corner cases such as the Entry block of F being deleted.
|
|
void DeferredDominance::recalculate(Function &F) {
|
|
// flushDelBB must be flushed before the recalculation. The state of the IR
|
|
// must be consistent before the DT traversal algorithm determines the
|
|
// actual DT.
|
|
if (flushDelBB() || !PendUpdates.empty()) {
|
|
DT.recalculate(F);
|
|
PendUpdates.clear();
|
|
}
|
|
}
|
|
|
|
/// \brief Debug method to help view the state of pending updates.
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void DeferredDominance::dump() const {
|
|
raw_ostream &OS = llvm::dbgs();
|
|
OS << "PendUpdates:\n";
|
|
int I = 0;
|
|
for (auto U : PendUpdates) {
|
|
OS << " " << I << " : ";
|
|
++I;
|
|
if (U.getKind() == DominatorTree::Insert)
|
|
OS << "Insert, ";
|
|
else
|
|
OS << "Delete, ";
|
|
BasicBlock *From = U.getFrom();
|
|
if (From) {
|
|
auto S = From->getName();
|
|
if (!From->hasName())
|
|
S = "(no name)";
|
|
OS << S << "(" << From << "), ";
|
|
} else {
|
|
OS << "(badref), ";
|
|
}
|
|
BasicBlock *To = U.getTo();
|
|
if (To) {
|
|
auto S = To->getName();
|
|
if (!To->hasName())
|
|
S = "(no_name)";
|
|
OS << S << "(" << To << ")\n";
|
|
} else {
|
|
OS << "(badref)\n";
|
|
}
|
|
}
|
|
OS << "DeletedBBs:\n";
|
|
I = 0;
|
|
for (auto BB : DeletedBBs) {
|
|
OS << " " << I << " : ";
|
|
++I;
|
|
if (BB->hasName())
|
|
OS << BB->getName() << "(";
|
|
else
|
|
OS << "(no_name)(";
|
|
OS << BB << ")\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/// Apply an update (Kind, From, To) to the internal queued updates. The
|
|
/// update is only added when determined to be necessary. Checks for
|
|
/// self-domination, unnecessary updates, duplicate requests, and balanced
|
|
/// pairs of requests are all performed. Returns true if the update is
|
|
/// queued and false if it is discarded.
|
|
bool DeferredDominance::applyUpdate(DominatorTree::UpdateKind Kind,
|
|
BasicBlock *From, BasicBlock *To) {
|
|
if (From == To)
|
|
return false; // Cannot dominate self; discard update.
|
|
|
|
// Discard updates by inspecting the current state of successors of From.
|
|
// Since applyUpdate() must be called *after* the Terminator of From is
|
|
// altered we can determine if the update is unnecessary.
|
|
bool HasEdge = std::any_of(succ_begin(From), succ_end(From),
|
|
[To](BasicBlock *B) { return B == To; });
|
|
if (Kind == DominatorTree::Insert && !HasEdge)
|
|
return false; // Unnecessary Insert: edge does not exist in IR.
|
|
if (Kind == DominatorTree::Delete && HasEdge)
|
|
return false; // Unnecessary Delete: edge still exists in IR.
|
|
|
|
// Analyze pending updates to determine if the update is unnecessary.
|
|
DominatorTree::UpdateType Update = {Kind, From, To};
|
|
DominatorTree::UpdateType Invert = {Kind != DominatorTree::Insert
|
|
? DominatorTree::Insert
|
|
: DominatorTree::Delete,
|
|
From, To};
|
|
for (auto I = PendUpdates.begin(), E = PendUpdates.end(); I != E; ++I) {
|
|
if (Update == *I)
|
|
return false; // Discard duplicate updates.
|
|
if (Invert == *I) {
|
|
// Update and Invert are both valid (equivalent to a no-op). Remove
|
|
// Invert from PendUpdates and discard the Update.
|
|
PendUpdates.erase(I);
|
|
return false;
|
|
}
|
|
}
|
|
PendUpdates.push_back(Update); // Save the valid update.
|
|
return true;
|
|
}
|
|
|
|
/// Performs all pending basic block deletions. We have to defer the deletion
|
|
/// of these blocks until after the DominatorTree updates are applied. The
|
|
/// internal workings of the DominatorTree code expect every update's From
|
|
/// and To blocks to exist and to be a member of the same Function.
|
|
bool DeferredDominance::flushDelBB() {
|
|
if (DeletedBBs.empty())
|
|
return false;
|
|
for (auto *BB : DeletedBBs)
|
|
BB->eraseFromParent();
|
|
DeletedBBs.clear();
|
|
return true;
|
|
}
|