forked from OSchip/llvm-project
838 lines
31 KiB
C++
838 lines
31 KiB
C++
//===- ARM.cpp ------------------------------------------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "InputFiles.h"
|
||
#include "Symbols.h"
|
||
#include "SyntheticSections.h"
|
||
#include "Target.h"
|
||
#include "Thunks.h"
|
||
#include "lld/Common/ErrorHandler.h"
|
||
#include "llvm/Object/ELF.h"
|
||
#include "llvm/Support/Endian.h"
|
||
|
||
using namespace llvm;
|
||
using namespace llvm::support::endian;
|
||
using namespace llvm::ELF;
|
||
using namespace lld;
|
||
using namespace lld::elf;
|
||
|
||
namespace {
|
||
class ARM final : public TargetInfo {
|
||
public:
|
||
ARM();
|
||
uint32_t calcEFlags() const override;
|
||
RelExpr getRelExpr(RelType type, const Symbol &s,
|
||
const uint8_t *loc) const override;
|
||
RelType getDynRel(RelType type) const override;
|
||
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
|
||
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
||
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
|
||
void writePltHeader(uint8_t *buf) const override;
|
||
void writePlt(uint8_t *buf, const Symbol &sym,
|
||
uint64_t pltEntryAddr) const override;
|
||
void addPltSymbols(InputSection &isec, uint64_t off) const override;
|
||
void addPltHeaderSymbols(InputSection &isd) const override;
|
||
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
||
uint64_t branchAddr, const Symbol &s,
|
||
int64_t a) const override;
|
||
uint32_t getThunkSectionSpacing() const override;
|
||
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
|
||
void relocate(uint8_t *loc, const Relocation &rel,
|
||
uint64_t val) const override;
|
||
};
|
||
} // namespace
|
||
|
||
ARM::ARM() {
|
||
copyRel = R_ARM_COPY;
|
||
relativeRel = R_ARM_RELATIVE;
|
||
iRelativeRel = R_ARM_IRELATIVE;
|
||
gotRel = R_ARM_GLOB_DAT;
|
||
noneRel = R_ARM_NONE;
|
||
pltRel = R_ARM_JUMP_SLOT;
|
||
symbolicRel = R_ARM_ABS32;
|
||
tlsGotRel = R_ARM_TLS_TPOFF32;
|
||
tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
|
||
tlsOffsetRel = R_ARM_TLS_DTPOFF32;
|
||
gotBaseSymInGotPlt = false;
|
||
pltHeaderSize = 32;
|
||
pltEntrySize = 16;
|
||
ipltEntrySize = 16;
|
||
trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
|
||
needsThunks = true;
|
||
defaultMaxPageSize = 65536;
|
||
}
|
||
|
||
uint32_t ARM::calcEFlags() const {
|
||
// The ABIFloatType is used by loaders to detect the floating point calling
|
||
// convention.
|
||
uint32_t abiFloatType = 0;
|
||
if (config->armVFPArgs == ARMVFPArgKind::Base ||
|
||
config->armVFPArgs == ARMVFPArgKind::Default)
|
||
abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
|
||
else if (config->armVFPArgs == ARMVFPArgKind::VFP)
|
||
abiFloatType = EF_ARM_ABI_FLOAT_HARD;
|
||
|
||
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
|
||
// but we don't have any firm guarantees of conformance. Linux AArch64
|
||
// kernels (as of 2016) require an EABI version to be set.
|
||
return EF_ARM_EABI_VER5 | abiFloatType;
|
||
}
|
||
|
||
RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
|
||
const uint8_t *loc) const {
|
||
switch (type) {
|
||
case R_ARM_THM_JUMP11:
|
||
return R_PC;
|
||
case R_ARM_CALL:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_PREL31:
|
||
case R_ARM_THM_JUMP19:
|
||
case R_ARM_THM_JUMP24:
|
||
case R_ARM_THM_CALL:
|
||
return R_PLT_PC;
|
||
case R_ARM_GOTOFF32:
|
||
// (S + A) - GOT_ORG
|
||
return R_GOTREL;
|
||
case R_ARM_GOT_BREL:
|
||
// GOT(S) + A - GOT_ORG
|
||
return R_GOT_OFF;
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_TLS_IE32:
|
||
// GOT(S) + A - P
|
||
return R_GOT_PC;
|
||
case R_ARM_SBREL32:
|
||
return R_ARM_SBREL;
|
||
case R_ARM_TARGET1:
|
||
return config->target1Rel ? R_PC : R_ABS;
|
||
case R_ARM_TARGET2:
|
||
if (config->target2 == Target2Policy::Rel)
|
||
return R_PC;
|
||
if (config->target2 == Target2Policy::Abs)
|
||
return R_ABS;
|
||
return R_GOT_PC;
|
||
case R_ARM_TLS_GD32:
|
||
return R_TLSGD_PC;
|
||
case R_ARM_TLS_LDM32:
|
||
return R_TLSLD_PC;
|
||
case R_ARM_TLS_LDO32:
|
||
return R_DTPREL;
|
||
case R_ARM_BASE_PREL:
|
||
// B(S) + A - P
|
||
// FIXME: currently B(S) assumed to be .got, this may not hold for all
|
||
// platforms.
|
||
return R_GOTONLY_PC;
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_REL32:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
return R_PC;
|
||
case R_ARM_ALU_PC_G0:
|
||
case R_ARM_LDR_PC_G0:
|
||
case R_ARM_THM_ALU_PREL_11_0:
|
||
case R_ARM_THM_PC8:
|
||
case R_ARM_THM_PC12:
|
||
return R_ARM_PCA;
|
||
case R_ARM_MOVW_BREL_NC:
|
||
case R_ARM_MOVW_BREL:
|
||
case R_ARM_MOVT_BREL:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
case R_ARM_THM_MOVW_BREL:
|
||
case R_ARM_THM_MOVT_BREL:
|
||
return R_ARM_SBREL;
|
||
case R_ARM_NONE:
|
||
return R_NONE;
|
||
case R_ARM_TLS_LE32:
|
||
return R_TPREL;
|
||
case R_ARM_V4BX:
|
||
// V4BX is just a marker to indicate there's a "bx rN" instruction at the
|
||
// given address. It can be used to implement a special linker mode which
|
||
// rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
|
||
// not ARMv4 output, we can just ignore it.
|
||
return R_NONE;
|
||
default:
|
||
return R_ABS;
|
||
}
|
||
}
|
||
|
||
RelType ARM::getDynRel(RelType type) const {
|
||
if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
|
||
return R_ARM_ABS32;
|
||
return R_ARM_NONE;
|
||
}
|
||
|
||
void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
|
||
write32le(buf, in.plt->getVA());
|
||
}
|
||
|
||
void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
|
||
// An ARM entry is the address of the ifunc resolver function.
|
||
write32le(buf, s.getVA());
|
||
}
|
||
|
||
// Long form PLT Header that does not have any restrictions on the displacement
|
||
// of the .plt from the .plt.got.
|
||
static void writePltHeaderLong(uint8_t *buf) {
|
||
const uint8_t pltData[] = {
|
||
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
|
||
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
|
||
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
|
||
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
|
||
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
|
||
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
|
||
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
|
||
0xd4, 0xd4, 0xd4, 0xd4};
|
||
memcpy(buf, pltData, sizeof(pltData));
|
||
uint64_t gotPlt = in.gotPlt->getVA();
|
||
uint64_t l1 = in.plt->getVA() + 8;
|
||
write32le(buf + 16, gotPlt - l1 - 8);
|
||
}
|
||
|
||
// The default PLT header requires the .plt.got to be within 128 Mb of the
|
||
// .plt in the positive direction.
|
||
void ARM::writePltHeader(uint8_t *buf) const {
|
||
// Use a similar sequence to that in writePlt(), the difference is the calling
|
||
// conventions mean we use lr instead of ip. The PLT entry is responsible for
|
||
// saving lr on the stack, the dynamic loader is responsible for reloading
|
||
// it.
|
||
const uint32_t pltData[] = {
|
||
0xe52de004, // L1: str lr, [sp,#-4]!
|
||
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
|
||
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
|
||
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
|
||
};
|
||
|
||
uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
|
||
if (!llvm::isUInt<27>(offset)) {
|
||
// We cannot encode the Offset, use the long form.
|
||
writePltHeaderLong(buf);
|
||
return;
|
||
}
|
||
write32le(buf + 0, pltData[0]);
|
||
write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
|
||
write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
|
||
write32le(buf + 12, pltData[3] | (offset & 0xfff));
|
||
memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
|
||
memcpy(buf + 20, trapInstr.data(), 4);
|
||
memcpy(buf + 24, trapInstr.data(), 4);
|
||
memcpy(buf + 28, trapInstr.data(), 4);
|
||
}
|
||
|
||
void ARM::addPltHeaderSymbols(InputSection &isec) const {
|
||
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
|
||
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
|
||
}
|
||
|
||
// Long form PLT entries that do not have any restrictions on the displacement
|
||
// of the .plt from the .plt.got.
|
||
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
|
||
uint64_t pltEntryAddr) {
|
||
const uint8_t pltData[] = {
|
||
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
|
||
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
|
||
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
|
||
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
|
||
};
|
||
memcpy(buf, pltData, sizeof(pltData));
|
||
uint64_t l1 = pltEntryAddr + 4;
|
||
write32le(buf + 12, gotPltEntryAddr - l1 - 8);
|
||
}
|
||
|
||
// The default PLT entries require the .plt.got to be within 128 Mb of the
|
||
// .plt in the positive direction.
|
||
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
|
||
uint64_t pltEntryAddr) const {
|
||
// The PLT entry is similar to the example given in Appendix A of ELF for
|
||
// the Arm Architecture. Instead of using the Group Relocations to find the
|
||
// optimal rotation for the 8-bit immediate used in the add instructions we
|
||
// hard code the most compact rotations for simplicity. This saves a load
|
||
// instruction over the long plt sequences.
|
||
const uint32_t pltData[] = {
|
||
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
|
||
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
|
||
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
|
||
};
|
||
|
||
uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
|
||
if (!llvm::isUInt<27>(offset)) {
|
||
// We cannot encode the Offset, use the long form.
|
||
writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
|
||
return;
|
||
}
|
||
write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
|
||
write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
|
||
write32le(buf + 8, pltData[2] | (offset & 0xfff));
|
||
memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
|
||
}
|
||
|
||
void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
|
||
addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
|
||
addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
|
||
}
|
||
|
||
bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
||
uint64_t branchAddr, const Symbol &s,
|
||
int64_t a) const {
|
||
// If S is an undefined weak symbol and does not have a PLT entry then it
|
||
// will be resolved as a branch to the next instruction.
|
||
if (s.isUndefWeak() && !s.isInPlt())
|
||
return false;
|
||
// A state change from ARM to Thumb and vice versa must go through an
|
||
// interworking thunk if the relocation type is not R_ARM_CALL or
|
||
// R_ARM_THM_CALL.
|
||
switch (type) {
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_JUMP24:
|
||
// Source is ARM, all PLT entries are ARM so no interworking required.
|
||
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
|
||
if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
|
||
return true;
|
||
LLVM_FALLTHROUGH;
|
||
case R_ARM_CALL: {
|
||
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
|
||
return !inBranchRange(type, branchAddr, dst + a);
|
||
}
|
||
case R_ARM_THM_JUMP19:
|
||
case R_ARM_THM_JUMP24:
|
||
// Source is Thumb, all PLT entries are ARM so interworking is required.
|
||
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
|
||
if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
|
||
return true;
|
||
LLVM_FALLTHROUGH;
|
||
case R_ARM_THM_CALL: {
|
||
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
|
||
return !inBranchRange(type, branchAddr, dst + a);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
uint32_t ARM::getThunkSectionSpacing() const {
|
||
// The placing of pre-created ThunkSections is controlled by the value
|
||
// thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
|
||
// place the ThunkSection such that all branches from the InputSections
|
||
// prior to the ThunkSection can reach a Thunk placed at the end of the
|
||
// ThunkSection. Graphically:
|
||
// | up to thunkSectionSpacing .text input sections |
|
||
// | ThunkSection |
|
||
// | up to thunkSectionSpacing .text input sections |
|
||
// | ThunkSection |
|
||
|
||
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
|
||
// is to match the most common expected case of a Thumb 2 encoded BL, BLX or
|
||
// B.W:
|
||
// ARM B, BL, BLX range +/- 32MiB
|
||
// Thumb B.W, BL, BLX range +/- 16MiB
|
||
// Thumb B<cc>.W range +/- 1MiB
|
||
// If a branch cannot reach a pre-created ThunkSection a new one will be
|
||
// created so we can handle the rare cases of a Thumb 2 conditional branch.
|
||
// We intentionally use a lower size for thunkSectionSpacing than the maximum
|
||
// branch range so the end of the ThunkSection is more likely to be within
|
||
// range of the branch instruction that is furthest away. The value we shorten
|
||
// thunkSectionSpacing by is set conservatively to allow us to create 16,384
|
||
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
|
||
// one of the Thunks going out of range.
|
||
|
||
// On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
|
||
// range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
|
||
// ARMv6T2) the range is +/- 4MiB.
|
||
|
||
return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
|
||
: 0x400000 - 0x7500;
|
||
}
|
||
|
||
bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
|
||
if ((dst & 0x1) == 0)
|
||
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
|
||
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
|
||
// destination will be 4 byte aligned.
|
||
src &= ~0x3;
|
||
else
|
||
// Bit 0 == 1 denotes Thumb state, it is not part of the range.
|
||
dst &= ~0x1;
|
||
|
||
int64_t offset = dst - src;
|
||
switch (type) {
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_CALL:
|
||
return llvm::isInt<26>(offset);
|
||
case R_ARM_THM_JUMP19:
|
||
return llvm::isInt<21>(offset);
|
||
case R_ARM_THM_JUMP24:
|
||
case R_ARM_THM_CALL:
|
||
return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
|
||
: llvm::isInt<23>(offset);
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Helper to produce message text when LLD detects that a CALL relocation to
|
||
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
|
||
// or Thumb.
|
||
static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
|
||
assert(!s.isFunc());
|
||
if (s.isSection()) {
|
||
// Section symbols must be defined and in a section. Users cannot change
|
||
// the type. Use the section name as getName() returns an empty string.
|
||
warn(getErrorLocation(loc) + "branch and link relocation: " +
|
||
toString(relt) + " to STT_SECTION symbol " +
|
||
cast<Defined>(s).section->name + " ; interworking not performed");
|
||
} else {
|
||
// Warn with hint on how to alter the symbol type.
|
||
warn(getErrorLocation(loc) + "branch and link relocation: " +
|
||
toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
|
||
" interworking not performed; consider using directive '.type " +
|
||
s.getName() +
|
||
", %function' to give symbol type STT_FUNC if"
|
||
" interworking between ARM and Thumb is required");
|
||
}
|
||
}
|
||
|
||
// Utility functions taken from ARMAddressingModes.h, only changes are LLD
|
||
// coding style.
|
||
|
||
// Rotate a 32-bit unsigned value right by a specified amt of bits.
|
||
static uint32_t rotr32(uint32_t val, uint32_t amt) {
|
||
assert(amt < 32 && "Invalid rotate amount");
|
||
return (val >> amt) | (val << ((32 - amt) & 31));
|
||
}
|
||
|
||
// Rotate a 32-bit unsigned value left by a specified amt of bits.
|
||
static uint32_t rotl32(uint32_t val, uint32_t amt) {
|
||
assert(amt < 32 && "Invalid rotate amount");
|
||
return (val << amt) | (val >> ((32 - amt) & 31));
|
||
}
|
||
|
||
// Try to encode a 32-bit unsigned immediate imm with an immediate shifter
|
||
// operand, this form is an 8-bit immediate rotated right by an even number of
|
||
// bits. We compute the rotate amount to use. If this immediate value cannot be
|
||
// handled with a single shifter-op, determine a good rotate amount that will
|
||
// take a maximal chunk of bits out of the immediate.
|
||
static uint32_t getSOImmValRotate(uint32_t imm) {
|
||
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
|
||
// of zero.
|
||
if ((imm & ~255U) == 0)
|
||
return 0;
|
||
|
||
// Use CTZ to compute the rotate amount.
|
||
unsigned tz = llvm::countTrailingZeros(imm);
|
||
|
||
// Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
|
||
// not 9.
|
||
unsigned rotAmt = tz & ~1;
|
||
|
||
// If we can handle this spread, return it.
|
||
if ((rotr32(imm, rotAmt) & ~255U) == 0)
|
||
return (32 - rotAmt) & 31; // HW rotates right, not left.
|
||
|
||
// For values like 0xF000000F, we should ignore the low 6 bits, then
|
||
// retry the hunt.
|
||
if (imm & 63U) {
|
||
unsigned tz2 = countTrailingZeros(imm & ~63U);
|
||
unsigned rotAmt2 = tz2 & ~1;
|
||
if ((rotr32(imm, rotAmt2) & ~255U) == 0)
|
||
return (32 - rotAmt2) & 31; // HW rotates right, not left.
|
||
}
|
||
|
||
// Otherwise, we have no way to cover this span of bits with a single
|
||
// shifter_op immediate. Return a chunk of bits that will be useful to
|
||
// handle.
|
||
return (32 - rotAmt) & 31; // HW rotates right, not left.
|
||
}
|
||
|
||
void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
||
switch (rel.type) {
|
||
case R_ARM_ABS32:
|
||
case R_ARM_BASE_PREL:
|
||
case R_ARM_GOTOFF32:
|
||
case R_ARM_GOT_BREL:
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_REL32:
|
||
case R_ARM_RELATIVE:
|
||
case R_ARM_SBREL32:
|
||
case R_ARM_TARGET1:
|
||
case R_ARM_TARGET2:
|
||
case R_ARM_TLS_GD32:
|
||
case R_ARM_TLS_IE32:
|
||
case R_ARM_TLS_LDM32:
|
||
case R_ARM_TLS_LDO32:
|
||
case R_ARM_TLS_LE32:
|
||
case R_ARM_TLS_TPOFF32:
|
||
case R_ARM_TLS_DTPOFF32:
|
||
write32le(loc, val);
|
||
break;
|
||
case R_ARM_PREL31:
|
||
checkInt(loc, val, 31, rel);
|
||
write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
|
||
break;
|
||
case R_ARM_CALL: {
|
||
// R_ARM_CALL is used for BL and BLX instructions, for symbols of type
|
||
// STT_FUNC we choose whether to write a BL or BLX depending on the
|
||
// value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
|
||
// not of type STT_FUNC then we must preserve the original instruction.
|
||
// PLT entries are always ARM state so we know we don't need to interwork.
|
||
assert(rel.sym); // R_ARM_CALL is always reached via relocate().
|
||
bool bit0Thumb = val & 1;
|
||
bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
|
||
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
|
||
// even when type not STT_FUNC.
|
||
if (!rel.sym->isFunc() && isBlx != bit0Thumb)
|
||
stateChangeWarning(loc, rel.type, *rel.sym);
|
||
if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
|
||
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
|
||
checkInt(loc, val, 26, rel);
|
||
write32le(loc, 0xfa000000 | // opcode
|
||
((val & 2) << 23) | // H
|
||
((val >> 2) & 0x00ffffff)); // imm24
|
||
break;
|
||
}
|
||
// BLX (always unconditional) instruction to an ARM Target, select an
|
||
// unconditional BL.
|
||
write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
|
||
// fall through as BL encoding is shared with B
|
||
}
|
||
LLVM_FALLTHROUGH;
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
checkInt(loc, val, 26, rel);
|
||
write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
|
||
break;
|
||
case R_ARM_THM_JUMP11:
|
||
checkInt(loc, val, 12, rel);
|
||
write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
|
||
break;
|
||
case R_ARM_THM_JUMP19:
|
||
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
|
||
checkInt(loc, val, 21, rel);
|
||
write16le(loc,
|
||
(read16le(loc) & 0xfbc0) | // opcode cond
|
||
((val >> 10) & 0x0400) | // S
|
||
((val >> 12) & 0x003f)); // imm6
|
||
write16le(loc + 2,
|
||
0x8000 | // opcode
|
||
((val >> 8) & 0x0800) | // J2
|
||
((val >> 5) & 0x2000) | // J1
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
case R_ARM_THM_CALL: {
|
||
// R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
|
||
// STT_FUNC we choose whether to write a BL or BLX depending on the
|
||
// value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
|
||
// not of type STT_FUNC then we must preserve the original instruction.
|
||
// PLT entries are always ARM state so we know we need to interwork.
|
||
assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
|
||
bool bit0Thumb = val & 1;
|
||
bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
|
||
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
|
||
// even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
|
||
if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
|
||
stateChangeWarning(loc, rel.type, *rel.sym);
|
||
if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
|
||
// We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
|
||
// the BLX instruction may only be two byte aligned. This must be done
|
||
// before overflow check.
|
||
val = alignTo(val, 4);
|
||
write16le(loc + 2, read16le(loc + 2) & ~0x1000);
|
||
} else {
|
||
write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
|
||
}
|
||
if (!config->armJ1J2BranchEncoding) {
|
||
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
||
// different encoding rules and range due to J1 and J2 always being 1.
|
||
checkInt(loc, val, 23, rel);
|
||
write16le(loc,
|
||
0xf000 | // opcode
|
||
((val >> 12) & 0x07ff)); // imm11
|
||
write16le(loc + 2,
|
||
(read16le(loc + 2) & 0xd000) | // opcode
|
||
0x2800 | // J1 == J2 == 1
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
}
|
||
}
|
||
// Fall through as rest of encoding is the same as B.W
|
||
LLVM_FALLTHROUGH;
|
||
case R_ARM_THM_JUMP24:
|
||
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
|
||
checkInt(loc, val, 25, rel);
|
||
write16le(loc,
|
||
0xf000 | // opcode
|
||
((val >> 14) & 0x0400) | // S
|
||
((val >> 12) & 0x03ff)); // imm10
|
||
write16le(loc + 2,
|
||
(read16le(loc + 2) & 0xd000) | // opcode
|
||
(((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
|
||
(((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
case R_ARM_MOVW_ABS_NC:
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVW_BREL_NC:
|
||
write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
|
||
(val & 0x0fff));
|
||
break;
|
||
case R_ARM_MOVT_ABS:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_MOVT_BREL:
|
||
write32le(loc, (read32le(loc) & ~0x000f0fff) |
|
||
(((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
|
||
break;
|
||
case R_ARM_THM_MOVT_ABS:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
case R_ARM_THM_MOVT_BREL:
|
||
// Encoding T1: A = imm4:i:imm3:imm8
|
||
write16le(loc,
|
||
0xf2c0 | // opcode
|
||
((val >> 17) & 0x0400) | // i
|
||
((val >> 28) & 0x000f)); // imm4
|
||
write16le(loc + 2,
|
||
(read16le(loc + 2) & 0x8f00) | // opcode
|
||
((val >> 12) & 0x7000) | // imm3
|
||
((val >> 16) & 0x00ff)); // imm8
|
||
break;
|
||
case R_ARM_THM_MOVW_ABS_NC:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
// Encoding T3: A = imm4:i:imm3:imm8
|
||
write16le(loc,
|
||
0xf240 | // opcode
|
||
((val >> 1) & 0x0400) | // i
|
||
((val >> 12) & 0x000f)); // imm4
|
||
write16le(loc + 2,
|
||
(read16le(loc + 2) & 0x8f00) | // opcode
|
||
((val << 4) & 0x7000) | // imm3
|
||
(val & 0x00ff)); // imm8
|
||
break;
|
||
case R_ARM_ALU_PC_G0: {
|
||
// ADR (literal) add = bit23, sub = bit22
|
||
// literal is a 12-bit modified immediate, made up of a 4-bit even rotate
|
||
// right and an 8-bit immediate. The code-sequence here is derived from
|
||
// ARMAddressingModes.h in llvm/Target/ARM/MCTargetDesc. In our case we
|
||
// want to give an error if we cannot encode the constant.
|
||
uint32_t opcode = 0x00800000;
|
||
if (val >> 63) {
|
||
opcode = 0x00400000;
|
||
val = ~val + 1;
|
||
}
|
||
if ((val & ~255U) != 0) {
|
||
uint32_t rotAmt = getSOImmValRotate(val);
|
||
// Error if we cannot encode this with a single shift
|
||
if (rotr32(~255U, rotAmt) & val)
|
||
error(getErrorLocation(loc) + "unencodeable immediate " +
|
||
Twine(val).str() + " for relocation " + toString(rel.type));
|
||
val = rotl32(val, rotAmt) | ((rotAmt >> 1) << 8);
|
||
}
|
||
write32le(loc, (read32le(loc) & 0xff0ff000) | opcode | val);
|
||
break;
|
||
}
|
||
case R_ARM_LDR_PC_G0: {
|
||
// R_ARM_LDR_PC_G0 is S + A - P, we have ((S + A) | T) - P, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - P.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
// LDR (literal) u = bit23
|
||
int64_t imm = val;
|
||
uint32_t u = 0x00800000;
|
||
if (imm < 0) {
|
||
imm = -imm;
|
||
u = 0;
|
||
}
|
||
checkUInt(loc, imm, 12, rel);
|
||
write32le(loc, (read32le(loc) & 0xff7ff000) | u | imm);
|
||
break;
|
||
}
|
||
case R_ARM_THM_ALU_PREL_11_0: {
|
||
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
|
||
int64_t imm = val;
|
||
uint16_t sub = 0;
|
||
if (imm < 0) {
|
||
imm = -imm;
|
||
sub = 0x00a0;
|
||
}
|
||
checkUInt(loc, imm, 12, rel);
|
||
write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
|
||
write16le(loc + 2,
|
||
(read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
|
||
break;
|
||
}
|
||
case R_ARM_THM_PC8:
|
||
// ADR and LDR literal encoding T1 positive offset only imm8:00
|
||
// R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - Pa.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
checkUInt(loc, val, 10, rel);
|
||
checkAlignment(loc, val, 4, rel);
|
||
write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
|
||
break;
|
||
case R_ARM_THM_PC12: {
|
||
// LDR (literal) encoding T2, add = (U == '1') imm12
|
||
// imm12 is unsigned
|
||
// R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - Pa.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
int64_t imm12 = val;
|
||
uint16_t u = 0x0080;
|
||
if (imm12 < 0) {
|
||
imm12 = -imm12;
|
||
u = 0;
|
||
}
|
||
checkUInt(loc, imm12, 12, rel);
|
||
write16le(loc, read16le(loc) | u);
|
||
write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
|
||
break;
|
||
}
|
||
default:
|
||
error(getErrorLocation(loc) + "unrecognized relocation " +
|
||
toString(rel.type));
|
||
}
|
||
}
|
||
|
||
int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
|
||
switch (type) {
|
||
default:
|
||
return 0;
|
||
case R_ARM_ABS32:
|
||
case R_ARM_BASE_PREL:
|
||
case R_ARM_GOTOFF32:
|
||
case R_ARM_GOT_BREL:
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_REL32:
|
||
case R_ARM_TARGET1:
|
||
case R_ARM_TARGET2:
|
||
case R_ARM_TLS_GD32:
|
||
case R_ARM_TLS_LDM32:
|
||
case R_ARM_TLS_LDO32:
|
||
case R_ARM_TLS_IE32:
|
||
case R_ARM_TLS_LE32:
|
||
return SignExtend64<32>(read32le(buf));
|
||
case R_ARM_PREL31:
|
||
return SignExtend64<31>(read32le(buf));
|
||
case R_ARM_CALL:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
return SignExtend64<26>(read32le(buf) << 2);
|
||
case R_ARM_THM_JUMP11:
|
||
return SignExtend64<12>(read16le(buf) << 1);
|
||
case R_ARM_THM_JUMP19: {
|
||
// Encoding T3: A = S:J2:J1:imm10:imm6:0
|
||
uint16_t hi = read16le(buf);
|
||
uint16_t lo = read16le(buf + 2);
|
||
return SignExtend64<20>(((hi & 0x0400) << 10) | // S
|
||
((lo & 0x0800) << 8) | // J2
|
||
((lo & 0x2000) << 5) | // J1
|
||
((hi & 0x003f) << 12) | // imm6
|
||
((lo & 0x07ff) << 1)); // imm11:0
|
||
}
|
||
case R_ARM_THM_CALL:
|
||
if (!config->armJ1J2BranchEncoding) {
|
||
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
||
// different encoding rules and range due to J1 and J2 always being 1.
|
||
uint16_t hi = read16le(buf);
|
||
uint16_t lo = read16le(buf + 2);
|
||
return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
|
||
((lo & 0x7ff) << 1)); // imm11:0
|
||
break;
|
||
}
|
||
LLVM_FALLTHROUGH;
|
||
case R_ARM_THM_JUMP24: {
|
||
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
|
||
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
|
||
uint16_t hi = read16le(buf);
|
||
uint16_t lo = read16le(buf + 2);
|
||
return SignExtend64<24>(((hi & 0x0400) << 14) | // S
|
||
(~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
|
||
(~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
|
||
((hi & 0x003ff) << 12) | // imm0
|
||
((lo & 0x007ff) << 1)); // imm11:0
|
||
}
|
||
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
|
||
// MOVT is in the range -32768 <= A < 32768
|
||
case R_ARM_MOVW_ABS_NC:
|
||
case R_ARM_MOVT_ABS:
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_MOVW_BREL_NC:
|
||
case R_ARM_MOVT_BREL: {
|
||
uint64_t val = read32le(buf) & 0x000f0fff;
|
||
return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
|
||
}
|
||
case R_ARM_THM_MOVW_ABS_NC:
|
||
case R_ARM_THM_MOVT_ABS:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
case R_ARM_THM_MOVT_BREL: {
|
||
// Encoding T3: A = imm4:i:imm3:imm8
|
||
uint16_t hi = read16le(buf);
|
||
uint16_t lo = read16le(buf + 2);
|
||
return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
|
||
((hi & 0x0400) << 1) | // i
|
||
((lo & 0x7000) >> 4) | // imm3
|
||
(lo & 0x00ff)); // imm8
|
||
}
|
||
case R_ARM_ALU_PC_G0: {
|
||
// 12-bit immediate is a modified immediate made up of a 4-bit even
|
||
// right rotation and 8-bit constant. After the rotation the value
|
||
// is zero-extended. When bit 23 is set the instruction is an add, when
|
||
// bit 22 is set it is a sub.
|
||
uint32_t instr = read32le(buf);
|
||
uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
|
||
return (instr & 0x00400000) ? -val : val;
|
||
}
|
||
case R_ARM_LDR_PC_G0: {
|
||
// ADR (literal) add = bit23, sub = bit22
|
||
// LDR (literal) u = bit23 unsigned imm12
|
||
bool u = read32le(buf) & 0x00800000;
|
||
uint32_t imm12 = read32le(buf) & 0xfff;
|
||
return u ? imm12 : -imm12;
|
||
}
|
||
case R_ARM_THM_ALU_PREL_11_0: {
|
||
// Thumb2 ADR, which is an alias for a sub or add instruction with an
|
||
// unsigned immediate.
|
||
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
|
||
uint16_t hi = read16le(buf);
|
||
uint16_t lo = read16le(buf + 2);
|
||
uint64_t imm = (hi & 0x0400) << 1 | // i
|
||
(lo & 0x7000) >> 4 | // imm3
|
||
(lo & 0x00ff); // imm8
|
||
// For sub, addend is negative, add is positive.
|
||
return (hi & 0x00f0) ? -imm : imm;
|
||
}
|
||
case R_ARM_THM_PC8:
|
||
// ADR and LDR (literal) encoding T1
|
||
// From ELF for the ARM Architecture the initial signed addend is formed
|
||
// from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
|
||
// this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
|
||
return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
|
||
case R_ARM_THM_PC12: {
|
||
// LDR (literal) encoding T2, add = (U == '1') imm12
|
||
bool u = read16le(buf) & 0x0080;
|
||
uint64_t imm12 = read16le(buf + 2) & 0x0fff;
|
||
return u ? imm12 : -imm12;
|
||
}
|
||
}
|
||
}
|
||
|
||
TargetInfo *elf::getARMTargetInfo() {
|
||
static ARM target;
|
||
return ⌖
|
||
}
|