forked from OSchip/llvm-project
1541 lines
63 KiB
C++
1541 lines
63 KiB
C++
//===- Sparsification.cpp - Implementation of sparsification --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements converting sparse tensor types to actual sparse code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TensorEncoding.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Declarations of data structures.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Iteration graph sorting.
|
|
enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
|
|
|
|
// Reduction kinds.
|
|
enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
|
|
|
|
// Code generation.
|
|
struct CodeGen {
|
|
CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
|
|
OpOperand *op)
|
|
: options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
|
|
pointers(numTensors, std::vector<Value>(numLoops)),
|
|
indices(numTensors, std::vector<Value>(numLoops)),
|
|
highs(numTensors, std::vector<Value>(numLoops)),
|
|
pidxs(numTensors, std::vector<Value>(numLoops)),
|
|
idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
|
|
redKind(kNoReduc), sparseOut(op), lexIdx(), curVecLength(1),
|
|
curVecMask() {}
|
|
/// Sparsification options.
|
|
SparsificationOptions options;
|
|
/// Universal dense indices and upper bounds (by index). The loops array
|
|
/// is updated with the value of the universal dense index in the current
|
|
/// loop. The sizes array is set once with the inferred dimension sizes.
|
|
std::vector<Value> loops;
|
|
std::vector<Value> sizes;
|
|
/// Buffers for storing dense and sparse numerical values (by tensor).
|
|
/// This array is set once during bufferization of all tensors.
|
|
std::vector<Value> buffers;
|
|
/// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
|
|
/// This array is set once during bufferization of all sparse tensors.
|
|
std::vector<std::vector<Value>> pointers;
|
|
std::vector<std::vector<Value>> indices;
|
|
/// Sparse iteration information (by tensor and index). These arrays
|
|
/// are updated to remain current within the current loop.
|
|
std::vector<std::vector<Value>> highs;
|
|
std::vector<std::vector<Value>> pidxs;
|
|
std::vector<std::vector<Value>> idxs;
|
|
/// Current reduction, updated during code generation. When indices of a
|
|
/// reduction are exhausted, all inner loops can use a scalarized reduction.
|
|
unsigned redExp;
|
|
Value redVal;
|
|
Reduction redKind;
|
|
// Sparse tensor as output.
|
|
OpOperand *sparseOut;
|
|
Value lexIdx;
|
|
// Current vector length and mask.
|
|
unsigned curVecLength;
|
|
Value curVecMask;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler analysis methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper method to apply dimension ordering permutation.
|
|
static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
|
|
if (enc) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
return order.getDimPosition(d);
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
/// Helper method to translate dim level type to internal representation.
|
|
static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
|
|
if (enc) {
|
|
SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
|
|
if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
|
|
return Dim::kSparse;
|
|
if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
|
|
return Dim::kSingle;
|
|
}
|
|
return Dim::kDense;
|
|
}
|
|
|
|
/// Helper method to inspect affine expressions. Rejects cases where the
|
|
/// same index is used more than once. Also rejects affine expressions
|
|
/// that are not a direct index for annotated tensors.
|
|
// TODO: accept more affine cases for sparse tensors
|
|
static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
|
|
bool isDense) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
if (!merger.isDim(tensor, idx, Dim::kUndef))
|
|
return false; // used more than once
|
|
merger.setDim(tensor, idx, dim);
|
|
return true;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
if (!isDense)
|
|
return false;
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
|
|
findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
|
|
}
|
|
case AffineExprKind::Constant:
|
|
return isDense;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Helper method to inspect sparse encodings in the tensor types.
|
|
/// Fills the per-dimension sparsity information for all tensors.
|
|
/// Returns true if the sparse annotations and affine subscript
|
|
/// expressions of all tensors are admissable. Returns false if
|
|
/// no annotations are found or inadmissable constructs occur.
|
|
static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
|
|
bool annotated = false;
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
auto map = op.getTiedIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
if (enc)
|
|
annotated = true;
|
|
assert(map.getNumResults() == op.getRank(t));
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
unsigned tensor = t->getOperandNumber();
|
|
AffineExpr a = map.getResult(perm(enc, d));
|
|
if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
|
|
return false; // inadmissable affine expression
|
|
}
|
|
}
|
|
return annotated;
|
|
}
|
|
|
|
/// A DFS helper to compute a topological sort. Note that recursion is
|
|
/// bounded by the number of implicit loops, which is always small.
|
|
/// Returns false when a cycle is detected.
|
|
static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
|
|
std::vector<unsigned> &topSort,
|
|
std::vector<std::vector<bool>> &adjM) {
|
|
if (visit[i] != 0)
|
|
return visit[i] != 1; // 1 denotes cycle!
|
|
visit[i] = 1;
|
|
for (unsigned j = 0, e = visit.size(); j < e; j++)
|
|
if (adjM[i][j])
|
|
if (!topSortDFS(j, visit, topSort, adjM))
|
|
return false;
|
|
visit[i] = 2;
|
|
topSort.push_back(i);
|
|
return true;
|
|
}
|
|
|
|
/// Helper method to add all constraints from the indices in one affine
|
|
/// expression before all indices in the other affine expression. For
|
|
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
|
|
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
|
|
AffineExpr a, AffineExpr b, unsigned fidx) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
if (b)
|
|
addAffineOrderings(adjM, b, AffineExpr(), idx);
|
|
else
|
|
adjM[fidx][idx] = true;
|
|
break;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
|
|
addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Computes a topologically sorted iteration graph for the linalg operation.
|
|
/// Ensures all tensors are visited in natural index order. This is essential
|
|
/// for sparse storage formats since these only support access along fixed
|
|
/// dimensions. Even for dense storage formats, however, the natural index
|
|
/// order yields innermost unit-stride access with better spatial locality.
|
|
static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
|
|
std::vector<unsigned> &topSort,
|
|
unsigned mask) {
|
|
// Set up an n x n from/to adjacency matrix of the iteration graph
|
|
// for the implicit loop indices i_0 .. i_n-1.
|
|
unsigned n = op.getNumLoops();
|
|
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
|
|
|
|
// Iterate over the indexing maps of every tensor in the tensor expression.
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
auto map = op.getTiedIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
assert(map.getNumDims() == n);
|
|
// Skip dense tensor constraints when not requested.
|
|
if (!(mask & SortMask::kIncludeDense) && !enc)
|
|
continue;
|
|
// Each tensor expression and optional dimension ordering (row-major
|
|
// by default) puts an ordering constraint on the loop indices. For
|
|
// example, the tensor expresion A_ijk forces the ordering i < j < k
|
|
// on the loop indices if no explicit dimension ordering is given.
|
|
for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr f = map.getResult(perm(enc, d - 1));
|
|
AffineExpr t = map.getResult(perm(enc, d));
|
|
addAffineOrderings(adjM, f, t, 0);
|
|
}
|
|
// Push unrelated loops into sparse iteration space, so these
|
|
// will be skipped more often.
|
|
if (mask & SortMask::kIncludeUndef) {
|
|
unsigned tensor = t->getOperandNumber();
|
|
for (unsigned i = 0; i < n; i++)
|
|
if (merger.isDim(tensor, i, Dim::kSparse))
|
|
for (unsigned j = 0; j < n; j++)
|
|
if (merger.isDim(tensor, j, Dim::kUndef))
|
|
adjM[i][j] = true;
|
|
}
|
|
}
|
|
|
|
// Topologically sort the iteration graph to determine loop order.
|
|
// Report failure for a cyclic iteration graph.
|
|
topSort.clear();
|
|
topSort.reserve(n);
|
|
std::vector<unsigned> visit(n, 0);
|
|
for (unsigned i = 0; i < n; i++)
|
|
if (visit[i] == 0)
|
|
if (!topSortDFS(i, visit, topSort, adjM))
|
|
return false; // cycle!
|
|
std::reverse(std::begin(topSort), std::end(topSort));
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if tensor has an in-place annotation.
|
|
static bool isInPlace(Value val) {
|
|
if (auto arg = val.dyn_cast<BlockArgument>())
|
|
if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
|
|
if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
|
|
arg.getArgNumber(),
|
|
linalg::comprehensive_bufferize::BufferizableOpInterface::
|
|
kInplaceableAttrName))
|
|
return attr.getValue();
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if tensor materializes uninitialized into the computation.
|
|
static bool isMaterializing(Value val) {
|
|
return val.getDefiningOp<linalg::InitTensorOp>() ||
|
|
val.getDefiningOp<InitOp>();
|
|
}
|
|
|
|
/// Returns true when the tensor expression is admissable for codegen.
|
|
/// Since all sparse input tensors are admissable, we just need to check
|
|
/// whether the output tensor in the tensor expression codegen is admissable.
|
|
/// Sets `sparseOut` when a "truly dynamic" sparse tensor output occurs.
|
|
static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
|
|
unsigned exp, OpOperand **sparseOut) {
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
|
unsigned tensor = lhs->getOperandNumber();
|
|
auto enc = getSparseTensorEncoding(lhs->get().getType());
|
|
// An non-annotated output tensor is assumed dense, and becomes a random
|
|
// access n-dim memref. Admissable since insertions cannot occur.
|
|
if (!enc)
|
|
return true;
|
|
// An all-dense annotated "sparse" output tensor becomes a linearized random
|
|
// access 1-dim memref. Also admissable since insertions cannot occur.
|
|
bool allDense = true;
|
|
unsigned numLoops = op.iterator_types().getValue().size();
|
|
for (unsigned i = 0; i < numLoops; i++)
|
|
if (merger.isDim(tensor, i, Dim::kSparse)) {
|
|
allDense = false;
|
|
break;
|
|
}
|
|
if (allDense)
|
|
return true;
|
|
// A tensor expression with a sparse output tensor that changes its values
|
|
// but not its nonzero structure, an operation called "simply dynamic" in
|
|
// [Bik96,Ch9], is also admissable without special codegen, provided
|
|
// the tensor's underlying sparse storage scheme can be modified in place.
|
|
if (merger.isConjunction(tensor, exp) && isInPlace(lhs->get()))
|
|
return true;
|
|
// Accept "truly dynamic" if the output tensor materializes uninitialized
|
|
// into the computation and insertions occur in lexicographic index order.
|
|
if (isMaterializing(lhs->get())) {
|
|
// In this first sparse tensor output implementation, this is enforced by
|
|
// rejecting any reduction loops (since the sparse parallel loops give a
|
|
// lexicographically sorted and injective view into that tensor).
|
|
// TODO: generalize to include reductions
|
|
for (auto attr : op.iterator_types())
|
|
if (isReductionIterator(attr))
|
|
return false;
|
|
*sparseOut = lhs;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (reductions).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Maps reduction kind to name encoding.
|
|
static StringRef getReductionName(Reduction kind) {
|
|
switch (kind) {
|
|
case kNoReduc:
|
|
break;
|
|
case kSum:
|
|
return "add";
|
|
case kProduct:
|
|
return "mul";
|
|
case kAnd:
|
|
return "and";
|
|
case kOr:
|
|
return "or";
|
|
case kXor:
|
|
return "xor";
|
|
}
|
|
llvm_unreachable("unknown reduction kind");
|
|
}
|
|
|
|
/// Maps operation to reduction.
|
|
static Reduction getReduction(Kind kind) {
|
|
switch (kind) {
|
|
case Kind::kAddF:
|
|
case Kind::kAddI:
|
|
case Kind::kSubF:
|
|
case Kind::kSubI:
|
|
return kSum;
|
|
case Kind::kMulF:
|
|
case Kind::kMulI:
|
|
return kProduct;
|
|
case Kind::kAndI:
|
|
return kAnd;
|
|
case Kind::kOrI:
|
|
return kOr;
|
|
case Kind::kXorI:
|
|
return kXor;
|
|
default:
|
|
llvm_unreachable("unexpected reduction operator");
|
|
}
|
|
}
|
|
|
|
/// Generates an initial value for a vector reduction, following the scheme
|
|
/// given in Chapter 5 of "The Software Vectorization Handbook", where the
|
|
/// initial scalar value is correctly embedded in the vector reduction value,
|
|
/// and a straightforward horizontal reduction will complete the operation.
|
|
static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Location loc, VectorType vtp) {
|
|
Value r = codegen.redVal;
|
|
switch (codegen.redKind) {
|
|
case kNoReduc:
|
|
break;
|
|
case kSum:
|
|
case kXor: {
|
|
// Initialize reduction vector to: | 0 | .. | 0 | r |
|
|
Attribute zero = rewriter.getZeroAttr(vtp);
|
|
Value vec = rewriter.create<arith::ConstantOp>(loc, vtp, zero);
|
|
return rewriter.create<vector::InsertElementOp>(
|
|
loc, r, vec, rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
|
}
|
|
case kProduct: {
|
|
// Initialize reduction vector to: | 1 | .. | 1 | r |
|
|
Type etp = vtp.getElementType();
|
|
Attribute one;
|
|
if (etp.isa<FloatType>())
|
|
one = rewriter.getFloatAttr(etp, 1.0);
|
|
else
|
|
one = rewriter.getIntegerAttr(etp, 1);
|
|
Value vec = rewriter.create<arith::ConstantOp>(
|
|
loc, vtp, DenseElementsAttr::get(vtp, one));
|
|
return rewriter.create<vector::InsertElementOp>(
|
|
loc, r, vec, rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
|
}
|
|
case kAnd:
|
|
case kOr:
|
|
// Initialize reduction vector to: | r | .. | r | r |
|
|
return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
|
|
}
|
|
llvm_unreachable("unknown reduction kind");
|
|
}
|
|
|
|
/// Generates final value for a vector reduction.
|
|
static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Location loc, VectorType vtp) {
|
|
StringRef name = getReductionName(codegen.redKind);
|
|
StringAttr kind = rewriter.getStringAttr(name);
|
|
return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind,
|
|
codegen.redVal, ValueRange{});
|
|
}
|
|
|
|
/// Updates scalarized reduction value.
|
|
static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
|
|
assert(codegen.redKind != kNoReduc);
|
|
codegen.redVal = merger.exp(codegen.redExp).val = reduc;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (statements and expressions).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Maps sparse integer option to actual integral storage type.
|
|
static Type genIntType(PatternRewriter &rewriter, unsigned width) {
|
|
if (width == 0)
|
|
return rewriter.getIndexType();
|
|
return rewriter.getIntegerType(width);
|
|
}
|
|
|
|
/// Generates buffer for the output tensor. Note that all sparse kernels
|
|
/// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
|
|
/// the output buffer is already initialized to all zeroes and only nonzeroes
|
|
/// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
|
|
/// only nonzeroes values are used for the updates and no assumption on the
|
|
/// original contents of the output buffer is necessary..
|
|
static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, MemRefType denseTp,
|
|
ArrayRef<Value> args) {
|
|
Location loc = op.getLoc();
|
|
Value tensor = op.getOutputOperand(0)->get();
|
|
// The output tensor simply could materialize from the buffer that will
|
|
// be generated for the tensor present in the outs() clause. This has
|
|
// the major advantage that the sparse kernel only updates the nonzero
|
|
// positions for the output tensor.
|
|
if (isInPlace(tensor))
|
|
return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
|
|
// By default, a new buffer is allocated which is initialized to the
|
|
// tensor defined in the outs() clause. This is always correct but
|
|
// introduces a dense initialization component that may negatively
|
|
// impact the running complexity of the sparse kernel. If the tensor
|
|
// materializes into the computation, we need to preserve the zero
|
|
// initialization assumption of all sparse output buffers.
|
|
if (isMaterializing(tensor)) {
|
|
Type tp = denseTp.getElementType();
|
|
Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
|
|
Value zero =
|
|
rewriter.create<arith::ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
|
|
rewriter.create<linalg::FillOp>(loc, zero, alloc);
|
|
return alloc;
|
|
}
|
|
Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
|
|
Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
|
|
rewriter.create<memref::CopyOp>(loc, init, alloc);
|
|
return alloc;
|
|
}
|
|
|
|
/// Local bufferization of all dense and sparse data structures.
|
|
/// This code enables testing the first prototype sparse compiler.
|
|
// TODO: replace this with a proliferated bufferization strategy
|
|
static void genBuffers(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op) {
|
|
Location loc = op.getLoc();
|
|
assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
|
|
// For every tensor, find lower and upper bound on dimensions, set the
|
|
// same bounds on loop indices, and obtain dense or sparse buffer(s).
|
|
SmallVector<Value, 4> args;
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
unsigned tensor = t->getOperandNumber();
|
|
auto shape = op.getShape(t);
|
|
auto map = op.getTiedIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
// Scan all dimensions of current tensor.
|
|
args.clear();
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr a = map.getResult(perm(enc, d));
|
|
if (a.getKind() != AffineExprKind::DimId)
|
|
continue; // compound
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
// Handle sparse storage schemes.
|
|
if (merger.isDim(tensor, idx, Dim::kSparse)) {
|
|
auto dynShape = {ShapedType::kDynamicSize};
|
|
auto ptrTp = MemRefType::get(
|
|
dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
|
|
auto indTp = MemRefType::get(
|
|
dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
|
|
Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d);
|
|
// Generate sparse primitives to obtains pointer and indices.
|
|
codegen.pointers[tensor][idx] =
|
|
rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
|
|
codegen.indices[tensor][idx] =
|
|
rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
|
|
}
|
|
// Find upper bound in current dimension.
|
|
unsigned p = perm(enc, d);
|
|
Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
|
|
if (shape[p] == MemRefType::kDynamicSize)
|
|
args.push_back(up);
|
|
assert(codegen.highs[tensor][idx] == nullptr);
|
|
codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
|
|
}
|
|
// Perform the required bufferization. Dense inputs materialize
|
|
// from the input tensors. Dense outputs need special handling.
|
|
// Sparse inputs use sparse primitives to obtain the values.
|
|
// We also accept in-place all-dense annotated "sparse" outputs.
|
|
Type elementType = getElementTypeOrSelf(t->get().getType());
|
|
if (!enc) {
|
|
// Non-annotated dense tensors.
|
|
auto denseTp = MemRefType::get(shape, elementType);
|
|
if (tensor < op.getNumInputs())
|
|
codegen.buffers[tensor] =
|
|
rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
|
|
else
|
|
codegen.buffers[tensor] =
|
|
genOutputBuffer(codegen, rewriter, op, denseTp, args);
|
|
} else if (t == codegen.sparseOut) {
|
|
// True sparse output needs a lexIdx array.
|
|
Value rank = rewriter.create<arith::ConstantIndexOp>(loc, op.getRank(t));
|
|
auto dynShape = {ShapedType::kDynamicSize};
|
|
auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
|
|
codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
|
|
} else {
|
|
// Annotated sparse tensors.
|
|
auto dynShape = {ShapedType::kDynamicSize};
|
|
auto sparseTp = MemRefType::get(dynShape, elementType);
|
|
codegen.buffers[tensor] =
|
|
rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs vector type.
|
|
static VectorType vectorType(CodeGen &codegen, Type etp) {
|
|
return VectorType::get(codegen.curVecLength, etp);
|
|
}
|
|
|
|
/// Constructs vector type from pointer.
|
|
static VectorType vectorType(CodeGen &codegen, Value ptr) {
|
|
return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
|
|
}
|
|
|
|
/// Constructs vector iteration mask.
|
|
static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Value iv, Value lo, Value hi, Value step) {
|
|
Location loc = iv.getLoc();
|
|
VectorType mtp = vectorType(codegen, genIntType(rewriter, 1));
|
|
// Special case if the vector length evenly divides the trip count (for
|
|
// example, "for i = 0, 128, 16"). A constant all-true mask is generated
|
|
// so that all subsequent masked memory operations are immediately folded
|
|
// into unconditional memory operations.
|
|
IntegerAttr loInt, hiInt, stepInt;
|
|
if (matchPattern(lo, m_Constant(&loInt)) &&
|
|
matchPattern(hi, m_Constant(&hiInt)) &&
|
|
matchPattern(step, m_Constant(&stepInt))) {
|
|
if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
|
|
return rewriter.create<vector::BroadcastOp>(
|
|
loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1));
|
|
}
|
|
// Otherwise, generate a vector mask that avoids overrunning the upperbound
|
|
// during vector execution. Here we rely on subsequent loop optimizations to
|
|
// avoid executing the mask in all iterations, for example, by splitting the
|
|
// loop into an unconditional vector loop and a scalar cleanup loop.
|
|
auto minMap = AffineMap::get(
|
|
/*dimCount=*/2, /*symbolCount=*/1,
|
|
{rewriter.getAffineSymbolExpr(0),
|
|
rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
|
|
rewriter.getContext());
|
|
Value end =
|
|
rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
|
|
return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
|
|
}
|
|
|
|
/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
|
|
static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Value ptr, ArrayRef<Value> args) {
|
|
Location loc = ptr.getLoc();
|
|
VectorType vtp = vectorType(codegen, ptr);
|
|
Value pass =
|
|
rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
|
|
if (args.back().getType().isa<VectorType>()) {
|
|
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
|
|
Value indexVec = args.back();
|
|
scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
return rewriter.create<vector::GatherOp>(
|
|
loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
|
|
}
|
|
return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
|
|
codegen.curVecMask, pass);
|
|
}
|
|
|
|
/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
|
|
static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Value rhs, Value ptr, ArrayRef<Value> args) {
|
|
Location loc = ptr.getLoc();
|
|
if (args.back().getType().isa<VectorType>()) {
|
|
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
|
|
Value indexVec = args.back();
|
|
scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
|
|
codegen.curVecMask, rhs);
|
|
return;
|
|
}
|
|
rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
|
|
rhs);
|
|
}
|
|
|
|
/// Generates a vectorized invariant. Here we rely on subsequent loop
|
|
/// optimizations to hoist the invariant broadcast out of the vector loop.
|
|
static Value genVectorInvariantValue(CodeGen &codegen,
|
|
PatternRewriter &rewriter, Value val) {
|
|
VectorType vtp = vectorType(codegen, val.getType());
|
|
return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
|
|
}
|
|
|
|
/// Generates an affine expression.
|
|
//
|
|
// TODO: generalize for sparse tensor subscripts
|
|
//
|
|
static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
|
|
AffineExpr a, Location loc) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
return codegen.loops[idx]; // universal dense index
|
|
}
|
|
case AffineExprKind::Add: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return rewriter.create<arith::AddIOp>(
|
|
loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
|
|
genAffine(codegen, rewriter, binOp.getRHS(), loc));
|
|
}
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return rewriter.create<arith::MulIOp>(
|
|
loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
|
|
genAffine(codegen, rewriter, binOp.getRHS(), loc));
|
|
}
|
|
case AffineExprKind::Constant: {
|
|
int64_t c = a.cast<AffineConstantExpr>().getValue();
|
|
return rewriter.create<arith::ConstantIndexOp>(loc, c);
|
|
}
|
|
default:
|
|
llvm_unreachable("unexpected affine subscript");
|
|
}
|
|
}
|
|
|
|
/// Generates subscript for load/store on a dense or sparse tensor.
|
|
static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, OpOperand *t,
|
|
SmallVector<Value, 4> &args) {
|
|
unsigned tensor = t->getOperandNumber();
|
|
auto map = op.getTiedIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
unsigned rank = map.getNumResults();
|
|
if (enc) {
|
|
// Note that currently, all sparse subscripts are simple.
|
|
// TODO: accept affine too?
|
|
AffineExpr a = map.getResult(perm(enc, rank - 1));
|
|
assert(a.getKind() == AffineExprKind::DimId);
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
assert(codegen.pidxs[tensor][idx] != nullptr);
|
|
args.push_back(codegen.pidxs[tensor][idx]); // position index
|
|
} else {
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
AffineExpr a = map.getResult(perm(enc, d));
|
|
args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
|
|
}
|
|
}
|
|
return codegen.buffers[tensor];
|
|
}
|
|
|
|
/// Generates a load on a dense or sparse tensor.
|
|
static Value genTensorLoad(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned exp) {
|
|
// Test if the load was hoisted to a higher loop nest.
|
|
Value val = merger.exp(exp).val;
|
|
if (val) {
|
|
if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
|
|
return genVectorInvariantValue(codegen, rewriter, val);
|
|
return val;
|
|
}
|
|
// Actual load.
|
|
SmallVector<Value, 4> args;
|
|
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
|
|
Value ptr = genSubscript(codegen, rewriter, op, t, args);
|
|
if (codegen.curVecLength > 1)
|
|
return genVectorLoad(codegen, rewriter, ptr, args);
|
|
return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
|
|
}
|
|
|
|
/// Generates a store on a dense or sparse tensor.
|
|
static void genTensorStore(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
Value rhs) {
|
|
Location loc = op.getLoc();
|
|
// Test if this is a scalarized reduction.
|
|
if (codegen.redVal) {
|
|
if (codegen.curVecLength > 1)
|
|
rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
|
|
codegen.redVal);
|
|
updateReduc(merger, codegen, rhs);
|
|
return;
|
|
}
|
|
// Insertion.
|
|
OpOperand *t = op.getOutputOperand(0);
|
|
if (t == codegen.sparseOut) {
|
|
rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
|
|
return;
|
|
}
|
|
// Actual store.
|
|
SmallVector<Value, 4> args;
|
|
Value ptr = genSubscript(codegen, rewriter, op, t, args);
|
|
if (codegen.curVecLength > 1)
|
|
genVectorStore(codegen, rewriter, rhs, ptr, args);
|
|
else
|
|
rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
|
|
}
|
|
|
|
/// Generates a pointer/index load from the sparse storage scheme. Narrower
|
|
/// data types need to be zero extended before casting the value into the
|
|
/// index type used for looping and indexing.
|
|
static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
|
|
Value ptr, Value s) {
|
|
// See https://llvm.org/docs/GetElementPtr.html for some background on
|
|
// the complications described below.
|
|
if (codegen.curVecLength > 1) {
|
|
// Since the index vector is used in a subsequent gather/scatter operations,
|
|
// which effectively defines an unsigned pointer + signed index, we must
|
|
// zero extend the vector to an index width. For 8-bit and 16-bit values,
|
|
// an 32-bit index width suffices. For 32-bit values, zero extending the
|
|
// elements into 64-bit loses some performance since the 32-bit indexed
|
|
// gather/scatter is more efficient than the 64-bit index variant (if the
|
|
// negative 32-bit index space is unused, the enableSIMDIndex32 flag can
|
|
// preserve this performance). For 64-bit values, there is no good way
|
|
// to state that the indices are unsigned, with creates the potential of
|
|
// incorrect address calculations in the unlikely case we need such
|
|
// extremely large offsets.
|
|
Type etp = ptr.getType().cast<MemRefType>().getElementType();
|
|
Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
|
|
if (!etp.isa<IndexType>()) {
|
|
if (etp.getIntOrFloatBitWidth() < 32)
|
|
vload = rewriter.create<arith::ExtUIOp>(
|
|
loc, vload, vectorType(codegen, genIntType(rewriter, 32)));
|
|
else if (etp.getIntOrFloatBitWidth() < 64 &&
|
|
!codegen.options.enableSIMDIndex32)
|
|
vload = rewriter.create<arith::ExtUIOp>(
|
|
loc, vload, vectorType(codegen, genIntType(rewriter, 64)));
|
|
}
|
|
return vload;
|
|
}
|
|
// For the scalar case, we simply zero extend narrower indices into 64-bit
|
|
// values before casting to index without a performance penalty. Here too,
|
|
// however, indices that already are 64-bit, in theory, cannot express the
|
|
// full range as explained above.
|
|
Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
|
|
if (!load.getType().isa<IndexType>()) {
|
|
if (load.getType().getIntOrFloatBitWidth() < 64)
|
|
load =
|
|
rewriter.create<arith::ExtUIOp>(loc, load, genIntType(rewriter, 64));
|
|
load =
|
|
rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType());
|
|
}
|
|
return load;
|
|
}
|
|
|
|
/// Generates an invariant value.
|
|
static Value genInvariantValue(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, unsigned exp) {
|
|
Value val = merger.exp(exp).val;
|
|
if (codegen.curVecLength > 1)
|
|
return genVectorInvariantValue(codegen, rewriter, val);
|
|
return val;
|
|
}
|
|
|
|
/// Generates an address computation "sz * p + i".
|
|
static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
|
|
Location loc, Value size, Value p, Value i) {
|
|
Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
|
|
if (auto vtp = i.getType().dyn_cast<VectorType>()) {
|
|
Value inv =
|
|
rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType());
|
|
mul = genVectorInvariantValue(codegen, rewriter, inv);
|
|
}
|
|
return rewriter.create<arith::AddIOp>(loc, mul, i);
|
|
}
|
|
|
|
/// Recursively generates tensor expression.
|
|
static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, unsigned exp) {
|
|
Location loc = op.getLoc();
|
|
if (exp == -1u)
|
|
return Value();
|
|
if (merger.exp(exp).kind == Kind::kTensor)
|
|
return genTensorLoad(merger, codegen, rewriter, op, exp);
|
|
if (merger.exp(exp).kind == Kind::kInvariant)
|
|
return genInvariantValue(merger, codegen, rewriter, exp);
|
|
Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
|
|
Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
|
|
return merger.buildExp(rewriter, loc, exp, v0, v1);
|
|
}
|
|
|
|
/// Determines if affine expression is invariant.
|
|
static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
|
|
unsigned ldx, bool &atLevel) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
unsigned idx = a.cast<AffineDimExpr>().getPosition();
|
|
if (idx == ldx)
|
|
atLevel = true;
|
|
return codegen.loops[idx] != nullptr; // no longer in play?
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
|
|
isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Hoists loop invariant tensor loads for which indices have been exhausted.
|
|
static void genInvariants(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned exp, unsigned ldx, bool atStart,
|
|
Kind last = Kind::kTensor) {
|
|
if (exp == -1u)
|
|
return;
|
|
if (merger.exp(exp).kind == Kind::kTensor) {
|
|
// Inspect tensor indices.
|
|
bool atLevel = ldx == -1u;
|
|
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
|
|
auto map = op.getTiedIndexingMap(t);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr a = map.getResult(perm(enc, d));
|
|
if (!isInvariantAffine(codegen, a, ldx, atLevel))
|
|
return; // still in play
|
|
}
|
|
// All exhausted at this level (atLevel denotes exactly at this level).
|
|
if (!atLevel)
|
|
return;
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
|
if (lhs == t) {
|
|
// Start or end a scalarized reduction
|
|
if (atStart) {
|
|
Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
|
|
codegen.redKind = getReduction(last);
|
|
codegen.redExp = exp;
|
|
updateReduc(merger, codegen, load);
|
|
} else {
|
|
Value redVal = codegen.redVal;
|
|
updateReduc(merger, codegen, Value());
|
|
codegen.redExp = -1u;
|
|
codegen.redKind = kNoReduc;
|
|
genTensorStore(merger, codegen, rewriter, op, redVal);
|
|
}
|
|
} else {
|
|
// Start or end loop invariant hoisting of a tensor load.
|
|
merger.exp(exp).val =
|
|
atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
|
|
}
|
|
} else if (merger.exp(exp).kind != Kind::kInvariant) {
|
|
// Traverse into the binary operations. Note that we only hoist
|
|
// tensor loads, since subsequent MLIR/LLVM passes know how to
|
|
// deal with all other kinds of derived loop invariants.
|
|
Kind last = merger.exp(exp).kind;
|
|
unsigned e0 = merger.exp(exp).children.e0;
|
|
unsigned e1 = merger.exp(exp).children.e1;
|
|
genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
|
|
genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
|
|
}
|
|
}
|
|
|
|
/// Generates initialization code for the subsequent loop sequence at
|
|
/// current index level. Returns true if the loop sequence needs to
|
|
/// maintain the universal index.
|
|
static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, std::vector<unsigned> &topSort,
|
|
unsigned at, llvm::BitVector &inits) {
|
|
bool needsUniv = false;
|
|
Location loc = op.getLoc();
|
|
unsigned idx = topSort[at];
|
|
|
|
// Initialize sparse positions.
|
|
for (unsigned b = 0, be = inits.size(); b < be; b++) {
|
|
if (inits[b]) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
if (merger.isDim(b, Dim::kSparse)) {
|
|
// Initialize sparse index.
|
|
unsigned pat = at;
|
|
for (; pat != 0; pat--) {
|
|
if (codegen.pidxs[tensor][topSort[pat - 1]])
|
|
break;
|
|
}
|
|
Value ptr = codegen.pointers[tensor][idx];
|
|
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
|
|
: codegen.pidxs[tensor][topSort[pat - 1]];
|
|
codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
|
|
Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
|
|
codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
|
|
} else {
|
|
// Dense index still in play.
|
|
needsUniv = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize the universal dense index.
|
|
codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
return needsUniv;
|
|
}
|
|
|
|
/// Returns vectorization strategy. Any implicit inner loop in the Linalg
|
|
/// operation is a candidate. Whether it is actually converted to SIMD code
|
|
/// depends on the requested strategy.
|
|
static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
|
|
switch (codegen.options.vectorizationStrategy) {
|
|
case SparseVectorizationStrategy::kNone:
|
|
return false;
|
|
case SparseVectorizationStrategy::kDenseInnerLoop:
|
|
return isInner && !isSparse;
|
|
case SparseVectorizationStrategy::kAnyStorageInnerLoop:
|
|
return isInner;
|
|
}
|
|
llvm_unreachable("unexpected vectorization strategy");
|
|
}
|
|
|
|
/// Returns parallelization strategy. Any implicit loop in the Linalg operation
|
|
/// that is marked "parallel" is a candidate. Whether it is actually converted
|
|
/// to a parallel operation depends on the requested strategy.
|
|
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
|
|
bool isSparse, bool isVector) {
|
|
switch (codegen.options.parallelizationStrategy) {
|
|
case SparseParallelizationStrategy::kNone:
|
|
return false;
|
|
case SparseParallelizationStrategy::kDenseOuterLoop:
|
|
return isOuter && !isSparse && !isReduction && !isVector;
|
|
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
|
|
return isOuter && !isReduction && !isVector;
|
|
case SparseParallelizationStrategy::kDenseAnyLoop:
|
|
return !isSparse && !isReduction && !isVector;
|
|
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
|
|
return !isReduction && !isVector;
|
|
}
|
|
llvm_unreachable("unexpected parallelization strategy");
|
|
}
|
|
|
|
/// Checks unit stride for dense tensors. The iteration graph may have ignored
|
|
/// dense access patterns in order to avoid cycles (sparse access patterns are
|
|
/// always placed innermost), but that means dense access has become strided.
|
|
/// This prevents effective vectorization.
|
|
static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
|
|
unsigned idx) {
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
if (!getSparseTensorEncoding(t->get().getType())) {
|
|
auto map = op.getTiedIndexingMap(t);
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
AffineExpr a = map.getResult(d);
|
|
// Report non-unit stride if innermost index appears at an outer
|
|
// dimension (true non-unit stride) or if the innermost index appears
|
|
// in a compound subscript in the innermost dimension. Even if the
|
|
// latter is unit stride, it does not play well with scatter/gather.
|
|
// TODO: accept unit stride affine innermost like a[i,j+k+1]?
|
|
if (a.isFunctionOfDim(idx) &&
|
|
((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Generates a for-loop on a single index.
|
|
static Operation *genFor(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
bool isOuter, bool isInner, unsigned idx,
|
|
llvm::BitVector &indices) {
|
|
unsigned fb = indices.find_first();
|
|
unsigned tensor = merger.tensor(fb);
|
|
assert(idx == merger.index(fb));
|
|
auto iteratorTypes = op.iterator_types().getValue();
|
|
bool isReduction = isReductionIterator(iteratorTypes[idx]);
|
|
bool isSparse = merger.isDim(fb, Dim::kSparse);
|
|
bool isVector = !codegen.sparseOut &&
|
|
isVectorFor(codegen, isInner, isSparse) &&
|
|
denseUnitStrides(merger, op, idx);
|
|
bool isParallel =
|
|
!codegen.sparseOut &&
|
|
isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
|
|
|
|
// Prepare vector length.
|
|
if (isVector)
|
|
codegen.curVecLength = codegen.options.vectorLength;
|
|
|
|
// Loop bounds and increment.
|
|
Location loc = op.getLoc();
|
|
Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
|
|
Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
|
|
Value step =
|
|
rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength);
|
|
|
|
// Emit a parallel loop.
|
|
if (isParallel) {
|
|
assert(!isVector);
|
|
scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
|
|
if (isSparse)
|
|
codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
|
|
else
|
|
codegen.loops[idx] = parOp.getInductionVars()[0];
|
|
rewriter.setInsertionPointToStart(parOp.getBody());
|
|
return parOp;
|
|
}
|
|
|
|
// Emit a sequential or vector loop.
|
|
SmallVector<Value, 4> operands;
|
|
if (codegen.redVal) {
|
|
// In a vector loop, bring reduction into SIMD form, if not already.
|
|
if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
|
|
VectorType vtp = vectorType(codegen, codegen.redVal.getType());
|
|
Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
|
|
updateReduc(merger, codegen, vred);
|
|
}
|
|
operands.push_back(codegen.redVal);
|
|
}
|
|
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
|
|
if (codegen.redVal)
|
|
updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
|
|
// Assign induction variable to sparse or dense index.
|
|
Value iv = forOp.getInductionVar();
|
|
if (isSparse)
|
|
codegen.pidxs[tensor][idx] = iv;
|
|
else
|
|
codegen.loops[idx] = iv;
|
|
rewriter.setInsertionPointToStart(forOp.getBody());
|
|
// Share vector iteration mask between all subsequent loads/stores.
|
|
if (isVector)
|
|
codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
|
|
return forOp;
|
|
}
|
|
|
|
/// Emit a while-loop for co-iteration over multiple indices.
|
|
static Operation *genWhile(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned idx, bool needsUniv,
|
|
llvm::BitVector &indices) {
|
|
SmallVector<Type, 4> types;
|
|
SmallVector<Value, 4> operands;
|
|
// Construct the while-loop with a parameter for each index.
|
|
Type indexType = rewriter.getIndexType();
|
|
for (unsigned b = 0, be = indices.size(); b < be; b++) {
|
|
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
types.push_back(indexType);
|
|
operands.push_back(codegen.pidxs[tensor][idx]);
|
|
}
|
|
}
|
|
if (codegen.redVal) {
|
|
types.push_back(codegen.redVal.getType());
|
|
operands.push_back(codegen.redVal);
|
|
}
|
|
if (needsUniv) {
|
|
types.push_back(indexType);
|
|
operands.push_back(codegen.loops[idx]);
|
|
}
|
|
assert(types.size() == operands.size());
|
|
Location loc = op.getLoc();
|
|
scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
|
|
Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
|
|
Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
|
|
|
|
// Build the "before" region, which effectively consists
|
|
// of a conjunction of "i < upper" tests on all induction.
|
|
rewriter.setInsertionPointToStart(&whileOp.before().front());
|
|
Value cond;
|
|
unsigned o = 0;
|
|
for (unsigned b = 0, be = indices.size(); b < be; b++) {
|
|
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
Value op1 = before->getArgument(o);
|
|
Value op2 = codegen.highs[tensor][idx];
|
|
Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
op1, op2);
|
|
cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
|
|
codegen.pidxs[tensor][idx] = after->getArgument(o++);
|
|
}
|
|
}
|
|
if (codegen.redVal)
|
|
updateReduc(merger, codegen, after->getArgument(o++));
|
|
if (needsUniv)
|
|
codegen.loops[idx] = after->getArgument(o++);
|
|
assert(o == operands.size());
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
rewriter.setInsertionPointToStart(&whileOp.after().front());
|
|
return whileOp;
|
|
}
|
|
|
|
/// Generates a for-loop or a while-loop, depending on whether it implements
|
|
/// singleton iteration or co-iteration over the given conjunction.
|
|
static Operation *genLoop(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
std::vector<unsigned> &topSort, unsigned at,
|
|
bool needsUniv, llvm::BitVector &indices) {
|
|
unsigned idx = topSort[at];
|
|
if (indices.count() == 1) {
|
|
bool isOuter = at == 0;
|
|
bool isInner = at == topSort.size() - 1;
|
|
return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
|
|
indices);
|
|
}
|
|
return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
|
|
}
|
|
|
|
/// Generates the local variables for this loop, consisting of the sparse
|
|
/// indices, restored universal dense index, and dense positions.
|
|
static void genLocals(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
std::vector<unsigned> &topSort, unsigned at,
|
|
bool needsUniv, llvm::BitVector &locals) {
|
|
Location loc = op.getLoc();
|
|
unsigned idx = topSort[at];
|
|
|
|
// Initialize sparse indices.
|
|
Value min;
|
|
for (unsigned b = 0, be = locals.size(); b < be; b++) {
|
|
if (locals[b] && merger.isDim(b, Dim::kSparse)) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
Value ptr = codegen.indices[tensor][idx];
|
|
Value s = codegen.pidxs[tensor][idx];
|
|
Value load = genLoad(codegen, rewriter, loc, ptr, s);
|
|
codegen.idxs[tensor][idx] = load;
|
|
if (!needsUniv) {
|
|
if (min) {
|
|
Value cmp = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::ult, load, min);
|
|
min = rewriter.create<SelectOp>(loc, cmp, load, min);
|
|
} else {
|
|
min = load;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge dense universal index over minimum.
|
|
if (min) {
|
|
assert(!needsUniv);
|
|
codegen.loops[idx] = min;
|
|
}
|
|
|
|
// Initialize dense positions. Note that we generate dense indices of the
|
|
// output tensor unconditionally, since they may not appear in the lattice,
|
|
// but may be needed for linearized codegen.
|
|
for (unsigned b = 0, be = locals.size(); b < be; b++) {
|
|
if ((locals[b] || merger.isOutTensor(b, idx)) &&
|
|
merger.isDim(b, Dim::kDense)) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
unsigned pat = at;
|
|
for (; pat != 0; pat--)
|
|
if (codegen.pidxs[tensor][topSort[pat - 1]])
|
|
break;
|
|
Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
|
|
: codegen.pidxs[tensor][topSort[pat - 1]];
|
|
codegen.pidxs[tensor][idx] = genAddress(
|
|
codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
|
|
}
|
|
}
|
|
|
|
// Move the insertion indices in lexicographic index order.
|
|
if (codegen.sparseOut) {
|
|
Value pos = rewriter.create<arith::ConstantIndexOp>(loc, at);
|
|
rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
|
|
pos);
|
|
}
|
|
}
|
|
|
|
/// Generates the induction structure for a while-loop.
|
|
static void genWhileInduction(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned idx, bool needsUniv,
|
|
llvm::BitVector &induction,
|
|
scf::WhileOp whileOp) {
|
|
Location loc = op.getLoc();
|
|
// Finalize each else branch of all if statements.
|
|
if (codegen.redVal) {
|
|
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
|
|
rewriter.getInsertionBlock()->getParentOp())) {
|
|
rewriter.create<scf::YieldOp>(loc, codegen.redVal);
|
|
updateReduc(merger, codegen, ifOp.getResult(0));
|
|
rewriter.setInsertionPointAfter(ifOp);
|
|
}
|
|
}
|
|
rewriter.setInsertionPointToEnd(&whileOp.after().front());
|
|
// Finalize the induction. Note that the induction could be performed
|
|
// in the individual if-branches to avoid re-evaluating the conditions.
|
|
// However, that would result in a rather elaborate forest of yield
|
|
// instructions during code generation. Moreover, performing the induction
|
|
// after the if-statements more closely resembles code generated by TACO.
|
|
unsigned o = 0;
|
|
SmallVector<Value, 4> operands;
|
|
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
for (unsigned b = 0, be = induction.size(); b < be; b++) {
|
|
if (induction[b] && merger.isDim(b, Dim::kSparse)) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
Value op1 = codegen.idxs[tensor][idx];
|
|
Value op2 = codegen.loops[idx];
|
|
Value op3 = codegen.pidxs[tensor][idx];
|
|
Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
op1, op2);
|
|
Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
|
|
operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
|
|
codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
|
|
}
|
|
}
|
|
if (codegen.redVal) {
|
|
operands.push_back(codegen.redVal);
|
|
updateReduc(merger, codegen, whileOp->getResult(o++));
|
|
}
|
|
if (needsUniv) {
|
|
operands.push_back(
|
|
rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
|
|
codegen.loops[idx] = whileOp->getResult(o++);
|
|
}
|
|
assert(o == operands.size());
|
|
rewriter.create<scf::YieldOp>(loc, operands);
|
|
rewriter.setInsertionPointAfter(whileOp);
|
|
}
|
|
|
|
/// Generates the induction structure for a for-loop.
|
|
static void genForInduction(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
Operation *loop) {
|
|
Location loc = op.getLoc();
|
|
unsigned o = 0;
|
|
SmallVector<Value, 4> operands;
|
|
if (codegen.redVal) {
|
|
operands.push_back(codegen.redVal);
|
|
updateReduc(merger, codegen, loop->getResult(o++));
|
|
}
|
|
assert(o == operands.size());
|
|
if (o > 0)
|
|
rewriter.create<scf::YieldOp>(loc, operands);
|
|
rewriter.setInsertionPointAfter(loop);
|
|
}
|
|
|
|
/// Generates a single if-statement within a while-loop.
|
|
static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned idx, llvm::BitVector &conditions) {
|
|
Location loc = op.getLoc();
|
|
SmallVector<Type, 4> types;
|
|
Value cond;
|
|
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
|
|
if (conditions[b]) {
|
|
unsigned tensor = merger.tensor(b);
|
|
assert(idx == merger.index(b));
|
|
Value clause;
|
|
if (merger.isDim(b, Dim::kSparse)) {
|
|
Value op1 = codegen.idxs[tensor][idx];
|
|
Value op2 = codegen.loops[idx];
|
|
clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
op1, op2);
|
|
} else {
|
|
clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true
|
|
}
|
|
cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
|
|
}
|
|
}
|
|
if (codegen.redVal)
|
|
types.push_back(codegen.redVal.getType());
|
|
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
|
|
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
|
|
return ifOp;
|
|
}
|
|
|
|
/// Generates end of true branch of if-statement within a while-loop.
|
|
static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, scf::IfOp ifOp, Value ifInput) {
|
|
if (codegen.redVal) {
|
|
rewriter.create<scf::YieldOp>(op.getLoc(), codegen.redVal);
|
|
updateReduc(merger, codegen, ifInput);
|
|
}
|
|
rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (loop sequence).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Starts a loop sequence at given level. Returns true if
|
|
/// the universal loop index must be maintained at this level.
|
|
static bool startLoopSeq(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
std::vector<unsigned> &topSort, unsigned exp,
|
|
unsigned at, unsigned idx, unsigned ldx,
|
|
unsigned lts) {
|
|
assert(codegen.curVecLength == 1);
|
|
assert(!codegen.loops[idx]);
|
|
// Emit invariants at this loop sequence level.
|
|
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
|
|
// Emit further intitialization at this loop sequence level.
|
|
unsigned l0 = merger.set(lts)[0];
|
|
bool needsUniv =
|
|
genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
|
|
// Maintain the universal index only if it is actually
|
|
// consumed by a subsequent lattice point.
|
|
if (needsUniv) {
|
|
unsigned lsize = merger.set(lts).size();
|
|
for (unsigned i = 1; i < lsize; i++) {
|
|
unsigned li = merger.set(lts)[i];
|
|
if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Starts a single loop in current sequence.
|
|
static Operation *startLoop(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
std::vector<unsigned> &topSort, unsigned at,
|
|
unsigned li, bool needsUniv) {
|
|
assert(codegen.curVecLength == 1);
|
|
// Emit the for/while-loop control.
|
|
Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
|
|
needsUniv, merger.lat(li).simple);
|
|
// Emit the locals for this loop.
|
|
genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
|
|
merger.lat(li).bits);
|
|
return loop;
|
|
}
|
|
|
|
/// Ends a single loop in current sequence. Returns new values for needsUniv.
|
|
static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, Operation *loop, unsigned idx,
|
|
unsigned li, bool needsUniv) {
|
|
codegen.curVecLength = 1;
|
|
// End a while-loop.
|
|
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
|
|
genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
|
|
merger.lat(li).bits, whileOp);
|
|
return needsUniv;
|
|
}
|
|
// End a for-loop.
|
|
genForInduction(merger, codegen, rewriter, op, loop);
|
|
return false;
|
|
}
|
|
|
|
/// Ends a loop sequence at given level.
|
|
static void endLoopSeq(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
unsigned exp, unsigned idx, unsigned ldx) {
|
|
assert(codegen.curVecLength == 1);
|
|
codegen.loops[idx] = Value();
|
|
// Bring a pending reduction back from SIMD form when sequence ends.
|
|
if (codegen.redVal)
|
|
if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
|
|
updateReduc(merger, codegen,
|
|
genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
|
|
// Unmark bookkeeping of invariants and loop index.
|
|
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
|
|
}
|
|
|
|
/// Recursively generates code while computing iteration lattices in order
|
|
/// to manage the complexity of implementing co-iteration over unions
|
|
/// and intersections of sparse iterations spaces.
|
|
static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
linalg::GenericOp op, std::vector<unsigned> &topSort,
|
|
unsigned exp, unsigned at) {
|
|
// At each leaf, assign remaining tensor (sub)expression to output tensor.
|
|
if (at == topSort.size()) {
|
|
Value rhs = genExp(merger, codegen, rewriter, op, exp);
|
|
genTensorStore(merger, codegen, rewriter, op, rhs);
|
|
return;
|
|
}
|
|
|
|
// Construct iteration lattices for current loop index, with L0 at top.
|
|
unsigned idx = topSort[at];
|
|
unsigned ldx = at == 0 ? -1u : topSort[at - 1];
|
|
unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
|
|
|
|
// Start a loop sequence.
|
|
bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
|
|
idx, ldx, lts);
|
|
|
|
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
|
|
unsigned lsize = merger.set(lts).size();
|
|
for (unsigned i = 0; i < lsize; i++) {
|
|
// Start a loop.
|
|
unsigned li = merger.set(lts)[i];
|
|
Operation *loop =
|
|
startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
|
|
|
|
// Visit all lattices points with Li >= Lj to generate the
|
|
// loop-body, possibly with if statements for coiteration.
|
|
Value ifInput = codegen.redVal;
|
|
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
|
|
for (unsigned j = 0; j < lsize; j++) {
|
|
unsigned lj = merger.set(lts)[j];
|
|
unsigned ej = merger.lat(lj).exp;
|
|
if (li == lj || merger.latGT(li, lj)) {
|
|
// Recurse into body of each branch.
|
|
if (isWhile) {
|
|
scf::IfOp ifOp =
|
|
genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
|
|
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
|
|
endIf(merger, codegen, rewriter, op, ifOp, ifInput);
|
|
} else {
|
|
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// End a loop.
|
|
needsUniv =
|
|
endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
|
|
}
|
|
|
|
// End a loop sequence.
|
|
endLoopSeq(merger, codegen, rewriter, op, exp, idx, ldx);
|
|
}
|
|
|
|
/// Converts the result computed by the sparse kernel into the required form.
|
|
static void genResult(Merger &merger, CodeGen &codegen,
|
|
PatternRewriter &rewriter, linalg::GenericOp op) {
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
|
Type resType = lhs->get().getType();
|
|
Value result;
|
|
if (getSparseTensorEncoding(resType)) {
|
|
// The sparse tensor rematerializes from the original sparse tensor's
|
|
// underlying sparse storage format.
|
|
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
|
|
codegen.sparseOut == lhs);
|
|
} else {
|
|
// To rematerialize an non-annotated tensor, simply load it
|
|
// from the bufferized value.
|
|
Value val = codegen.buffers.back(); // value array
|
|
rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, val);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler rewriting methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Sparse rewriting rule for generic Lingalg operation.
|
|
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
|
|
public:
|
|
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
|
|
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
|
|
|
|
LogicalResult matchAndRewrite(linalg::GenericOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Detects sparse annotations and translate the per-dimension sparsity
|
|
// information for all tensors to loop indices in the kernel.
|
|
assert(op.getNumOutputs() == 1);
|
|
unsigned numTensors = op.getNumInputsAndOutputs();
|
|
unsigned numLoops = op.iterator_types().getValue().size();
|
|
Merger merger(numTensors, numLoops);
|
|
if (!findSparseAnnotations(merger, op))
|
|
return failure();
|
|
|
|
// Computes a topologically sorted iteration graph to ensure
|
|
// tensors are visited in natural index order. Fails on cycles.
|
|
// This assumes that higher-level passes have already put the
|
|
// tensors in each tensor expression in a feasible order.
|
|
std::vector<unsigned> topSort;
|
|
if (!computeIterationGraph(merger, op, topSort,
|
|
SortMask::kIncludeUndef |
|
|
SortMask::kIncludeDense) &&
|
|
!computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
|
|
!computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
|
|
!computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
|
|
return failure();
|
|
|
|
// Builds the tensor expression for the Linalg operation in SSA form.
|
|
Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
|
|
if (!optExp.hasValue())
|
|
return failure();
|
|
unsigned exp = optExp.getValue();
|
|
|
|
// Rejects an inadmissable tensor expression.
|
|
OpOperand *sparseOut = nullptr;
|
|
if (!isAdmissableTensorExp(merger, op, exp, &sparseOut))
|
|
return failure();
|
|
|
|
// Recursively generates code.
|
|
CodeGen codegen(options, numTensors, numLoops, sparseOut);
|
|
genBuffers(merger, codegen, rewriter, op);
|
|
genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
|
|
genResult(merger, codegen, rewriter, op);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
/// Options to control sparse code generation.
|
|
SparsificationOptions options;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Populates the given patterns list with rewriting rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparsificationPatterns(
|
|
RewritePatternSet &patterns, const SparsificationOptions &options) {
|
|
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
|
|
}
|