llvm-project/mlir/lib/Transforms/LowerVectorTransfers.cpp

449 lines
18 KiB
C++

//===- LowerVectorTransfers.cpp - LowerVectorTransfers Pass Impl *- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements target-dependent lowering of vector transfer operations.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/EDSC/MLIREmitter.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/SuperVectorOps/SuperVectorOps.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/MLPatternLoweringPass.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
///
/// Implements lowering of VectorTransferReadOp and VectorTransferWriteOp to a
/// proper abstraction for the hardware.
///
/// For now only a simple loop nest is emitted.
///
using llvm::dbgs;
using llvm::SetVector;
using namespace mlir;
#define DEBUG_TYPE "lower-vector-transfers"
namespace {
/// Helper structure to hold information about loop nest, clipped accesses to
/// the original scalar MemRef as well as full accesses to temporary MemRef in
/// local storage.
struct VectorTransferAccessInfo {
// `ivs` are bound for `For` Stmt at `For` Stmt construction time.
llvm::SmallVector<edsc::Expr, 8> ivs;
llvm::SmallVector<edsc::Expr, 8> lowerBoundsExprs;
llvm::SmallVector<edsc::Expr, 8> upperBoundsExprs;
llvm::SmallVector<edsc::Expr, 8> stepExprs;
llvm::SmallVector<edsc::Expr, 8> clippedScalarAccessExprs;
llvm::SmallVector<edsc::Expr, 8> tmpAccessExprs;
};
template <typename VectorTransferOpTy> class VectorTransferRewriter {
public:
/// Perform the rewrite using the `emitter`.
VectorTransferRewriter(VectorTransferOpTy *transfer,
MLFuncLoweringRewriter *rewriter,
MLFuncGlobalLoweringState *state);
/// Perform the rewrite using the `emitter`.
void rewrite();
/// Helper class which creates clipped memref accesses to support lowering of
/// the vector_transfer operation.
VectorTransferAccessInfo makeVectorTransferAccessInfo();
private:
VectorTransferOpTy *transfer;
MLFuncLoweringRewriter *rewriter;
MLFuncGlobalLoweringState *state;
MemRefType memrefType;
ArrayRef<int64_t> memrefShape;
VectorType vectorType;
ArrayRef<int64_t> vectorShape;
AffineMap permutationMap;
/// Used for staging the transfer in a local scalar buffer.
MemRefType tmpMemRefType;
/// View of tmpMemRefType as one vector, used in vector load/store to tmp
/// buffer.
MemRefType vectorMemRefType;
// EDSC `emitter` and Exprs that are pre-bound at construction time.
edsc::MLIREmitter emitter;
// vectorSizes are bound to the actual constant sizes of vectorType.
llvm::SmallVector<edsc::Expr, 8> vectorSizes;
// accesses are bound to transfer->getIndices()
llvm::SmallVector<edsc::Expr, 8> accesses;
// `zero` and `one` are bound emitter.zero() and emitter.one().
// `scalarMemRef` is bound to `transfer->getMemRef()`.
edsc::Expr zero, one, scalarMemRef;
};
} // end anonymous namespace
/// Consider the case:
///
/// ```mlir {.mlir}
/// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
/// // vector<32x256xf32> and pad with %f0 to handle the boundary case:
/// %f0 = constant 0.0f : f32
/// for %i0 = 0 to %0 {
/// for %i1 = 0 to %1 step 256 {
/// for %i2 = 0 to %2 step 32 {
/// %v = vector_transfer_read %A, %i0, %i1, %i2, %f0
/// {permutation_map: (d0, d1, d2) -> (d2, d1)} :
/// (memref<?x?x?xf32>, index, index, f32) -> vector<32x256xf32>
/// }}}
/// ```
///
/// The following constructs the `loadAccessExpr` that supports the emission of
/// MLIR resembling:
///
/// ```mlir
/// for %d1 = 0 to 256 {
/// for %d2 = 0 to 32 {
/// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
/// %tmp[%d2, %d1] = %s
/// }
/// }
/// ```
///
/// Notice in particular the order of loops iterating over the vector size
/// (i.e. 256x32 instead of 32x256). This results in contiguous accesses along
/// the most minor dimension of the original scalar tensor. On many hardware
/// architectures this will result in better utilization of the underlying
/// memory subsystem (e.g. prefetchers, DMAs, #memory transactions, etc...).
///
/// This additionally performs clipping as described in
/// `VectorTransferRewriter<VectorTransferReadOp>::rewrite` by emitting:
///
/// ```mlir-dsc
/// select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one))
/// ```
template <typename VectorTransferOpTy>
VectorTransferAccessInfo
VectorTransferRewriter<VectorTransferOpTy>::makeVectorTransferAccessInfo() {
using namespace mlir::edsc;
using namespace edsc::op;
// Create new Exprs for ivs, they will be bound at `For` Stmt
// construction.
auto ivs = makeNewExprs(vectorShape.size(), this->rewriter->getIndexType());
// Create and bind Exprs to refer to the Value for memref sizes.
auto memRefSizes = emitter.makeBoundMemRefShape(transfer->getMemRef());
// Create the edsc::Expr for the clipped and transposes access expressions
// using the permutationMap. Additionally, capture the index accessing the
// most minor dimension.
int coalescingIndex = -1;
auto clippedScalarAccessExprs = copyExprs(accesses);
auto tmpAccessExprs = copyExprs(ivs);
llvm::DenseSet<unsigned> clipped;
for (auto it : llvm::enumerate(permutationMap.getResults())) {
if (auto affineExpr = it.value().template dyn_cast<AffineDimExpr>()) {
auto pos = affineExpr.getPosition();
auto i = clippedScalarAccessExprs[pos];
auto ii = ivs[it.index()];
auto N = memRefSizes[pos];
clippedScalarAccessExprs[pos] =
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
if (pos == clippedScalarAccessExprs.size() - 1) {
// If a result of the permutation_map accesses the most minor dimension
// then we record it.
coalescingIndex = it.index();
}
// Temporarily record already clipped accesses to avoid double clipping.
// TODO(ntv): remove when fully unrolled dimensions are clipped properly.
clipped.insert(pos);
} else {
// Sanity check.
assert(it.value().template cast<AffineConstantExpr>().getValue() == 0 &&
"Expected dim or 0 in permutationMap");
}
}
// At this point, fully unrolled dimensions have not been clipped because they
// do not appear in the permutation map. As a consequence they may access out
// of bounds. We currently do not have enough information to determine which
// of those access dimensions have been fully unrolled.
// Clip one more time to ensure correctness for fully-unrolled dimensions.
// TODO(ntv): clip just what is needed once we pass the proper information.
// TODO(ntv): when we get there, also ensure we only clip when dimensions are
// not divisible (i.e. simple test that can be hoisted outside loop).
for (unsigned pos = 0; pos < clippedScalarAccessExprs.size(); ++pos) {
if (clipped.count(pos) > 0) {
continue;
}
auto i = clippedScalarAccessExprs[pos];
auto N = memRefSizes[pos];
clippedScalarAccessExprs[pos] =
select(i < zero, zero, select(i < N, i, N - one));
}
// Create the proper bindables for lbs, ubs and steps. Additionally, if we
// recorded a coalescing index, permute the loop informations.
auto lbs = makeNewExprs(ivs.size(), this->rewriter->getIndexType());
auto ubs = copyExprs(vectorSizes);
auto steps = makeNewExprs(ivs.size(), this->rewriter->getIndexType());
if (coalescingIndex >= 0) {
std::swap(ivs[coalescingIndex], ivs.back());
std::swap(lbs[coalescingIndex], lbs.back());
std::swap(ubs[coalescingIndex], ubs.back());
std::swap(steps[coalescingIndex], steps.back());
}
emitter
.template bindZipRangeConstants<ConstantIndexOp>(
llvm::zip(lbs, SmallVector<int64_t, 8>(ivs.size(), 0)))
.template bindZipRangeConstants<ConstantIndexOp>(
llvm::zip(steps, SmallVector<int64_t, 8>(ivs.size(), 1)));
return VectorTransferAccessInfo{ivs,
copyExprs(lbs),
ubs,
copyExprs(steps),
clippedScalarAccessExprs,
tmpAccessExprs};
}
template <typename VectorTransferOpTy>
VectorTransferRewriter<VectorTransferOpTy>::VectorTransferRewriter(
VectorTransferOpTy *transfer, MLFuncLoweringRewriter *rewriter,
MLFuncGlobalLoweringState *state)
: transfer(transfer), rewriter(rewriter), state(state),
memrefType(transfer->getMemRefType()), memrefShape(memrefType.getShape()),
vectorType(transfer->getVectorType()), vectorShape(vectorType.getShape()),
permutationMap(transfer->getPermutationMap()),
tmpMemRefType(
MemRefType::get(vectorShape, vectorType.getElementType(), {}, 0)),
vectorMemRefType(MemRefType::get({1}, vectorType, {}, 0)),
emitter(edsc::MLIREmitter(rewriter->getBuilder(), transfer->getLoc())),
vectorSizes(
edsc::makeNewExprs(vectorShape.size(), rewriter->getIndexType())),
zero(emitter.zero()), one(emitter.one()),
scalarMemRef(transfer->getMemRefType()) {
// Bind the Bindable.
SmallVector<Value *, 8> transferIndices(transfer->getIndices());
accesses = edsc::makeNewExprs(transferIndices.size(),
this->rewriter->getIndexType());
emitter.bind(edsc::Bindable(scalarMemRef), transfer->getMemRef())
.template bindZipRangeConstants<ConstantIndexOp>(
llvm::zip(vectorSizes, vectorShape))
.template bindZipRange(llvm::zip(accesses, transfer->getIndices()));
};
/// Lowers VectorTransferReadOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 3. vector_load from local buffer (viewed as a memref<1 x vector>);
/// 4. local memory deallocation.
///
/// Lowers the data transfer part of a VectorTransferReadOp while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be read multiple
/// times and concurrently.
///
/// Important notes about clipping and "full-tiles only" abstraction:
/// =================================================================
/// When using clipping for dealing with boundary conditions, the same edge
/// value will appear multiple times (a.k.a edge padding). This is fine if the
/// subsequent vector operations are all data-parallel but **is generally
/// incorrect** in the presence of reductions or extract operations.
///
/// More generally, clipping is a scalar abstraction that is expected to work
/// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs.
/// To deal with real vector_load and DMAs, a "padded allocation + view"
/// abstraction with the ability to read out-of-memref-bounds (but still within
/// the allocated region) is necessary.
///
/// Whether using scalar loops or vector_load/DMAs to perform the transfer,
/// junk values will be materialized in the vectors and generally need to be
/// filtered out and replaced by the "neutral element". This neutral element is
/// op-dependent so, in the future, we expect to create a vector filter and
/// apply it to a splatted constant vector with the proper neutral element at
/// each ssa-use. This filtering is not necessary for pure data-parallel
/// operations.
///
/// In the case of vector_store/DMAs, Read-Modify-Write will be required, which
/// also have concurrency implications. Note that by using clipped scalar stores
/// in the presence of data-parallel only operations, we generate code that
/// writes the same value multiple time on the edge locations.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
template <> void VectorTransferRewriter<VectorTransferReadOp>::rewrite() {
using namespace mlir::edsc;
// Build the AccessInfo which contain all the information needed to build the
// perfectly nest loop nest to perform clipped reads and local writes.
auto accessInfo = makeVectorTransferAccessInfo();
// clang-format off
auto &ivs = accessInfo.ivs;
auto &lbs = accessInfo.lowerBoundsExprs;
auto &ubs = accessInfo.upperBoundsExprs;
auto &steps = accessInfo.stepExprs;
auto vectorType = this->transfer->getVectorType();
auto scalarType = this->transfer->getMemRefType().getElementType();
Expr scalarValue(scalarType), vectorValue(vectorType), tmpAlloc(tmpMemRefType), tmpDealloc(Type{}), vectorView(vectorMemRefType);
auto block = edsc::block({
tmpAlloc = alloc(tmpMemRefType),
vectorView = vector_type_cast(Expr(tmpAlloc), vectorMemRefType),
For(ivs, lbs, ubs, steps, {
scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
}),
vectorValue = load(vectorView, {zero}),
tmpDealloc = dealloc(tmpAlloc)
});
// clang-format on
// Emit the MLIR.
emitter.emitStmts(block.getBody());
// Finalize rewriting.
transfer->replaceAllUsesWith(emitter.getValue(vectorValue));
transfer->erase();
}
/// Lowers VectorTransferWriteOp into a combination of:
/// 1. local memory allocation;
/// 2. vector_store to local buffer (viewed as a memref<1 x vector>);
/// 3. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 4. local memory deallocation.
///
/// More specifically, lowers the data transfer part while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be written to multiple
/// times and concurrently.
///
/// See `Important notes about clipping and full-tiles only abstraction` in the
/// description of `readClipped` above.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
template <> void VectorTransferRewriter<VectorTransferWriteOp>::rewrite() {
using namespace mlir::edsc;
// Build the AccessInfo which contain all the information needed to build the
// perfectly nest loop nest to perform local reads and clipped writes.
auto accessInfo = makeVectorTransferAccessInfo();
// Bind vector value for the vector_transfer_write.
Expr vectorValue(transfer->getVectorType());
emitter.bind(Bindable(vectorValue), transfer->getVector());
// clang-format off
auto &ivs = accessInfo.ivs;
auto &lbs = accessInfo.lowerBoundsExprs;
auto &ubs = accessInfo.upperBoundsExprs;
auto &steps = accessInfo.stepExprs;
auto scalarType = tmpMemRefType.getElementType();
Expr scalarValue(scalarType), tmpAlloc(tmpMemRefType), tmpDealloc(Type{}), vectorView(vectorMemRefType);
auto block = edsc::block({
tmpAlloc = alloc(tmpMemRefType),
vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
store(vectorValue, vectorView, MutableArrayRef<Expr>{zero}),
For(ivs, lbs, ubs, steps, {
scalarValue = load(tmpAlloc, accessInfo.tmpAccessExprs),
store(scalarValue, scalarMemRef, accessInfo.clippedScalarAccessExprs),
}),
tmpDealloc = dealloc(tmpAlloc)});
// clang-format on
// Emit the MLIR.
emitter.emitStmts(block.getBody());
// Finalize rewriting.
transfer->erase();
}
namespace {
template <typename VectorTransferOpTy>
class VectorTransferExpander : public MLLoweringPattern {
public:
explicit VectorTransferExpander(MLIRContext *context)
: MLLoweringPattern(VectorTransferOpTy::getOperationName(), 1, context) {}
PatternMatchResult match(Instruction *op) const override {
if (m_Op<VectorTransferOpTy>().match(op))
return matchSuccess();
return matchFailure();
}
void rewriteOpInst(Instruction *op, MLFuncGlobalLoweringState *funcWiseState,
std::unique_ptr<PatternState> opState,
MLFuncLoweringRewriter *rewriter) const override {
VectorTransferRewriter<VectorTransferOpTy>(
&*op->dyn_cast<VectorTransferOpTy>(), rewriter, funcWiseState)
.rewrite();
}
};
struct LowerVectorTransfersPass
: public FunctionPass<LowerVectorTransfersPass> {
void runOnFunction() {
Function *f = getFunction();
applyMLPatternsGreedily<VectorTransferExpander<VectorTransferReadOp>,
VectorTransferExpander<VectorTransferWriteOp>>(f);
}
// Thread-safe RAII context with local scope. BumpPtrAllocator freed on exit.
edsc::ScopedEDSCContext raiiContext;
};
} // end anonymous namespace
FunctionPassBase *mlir::createLowerVectorTransfersPass() {
return new LowerVectorTransfersPass();
}
static PassRegistration<LowerVectorTransfersPass>
pass("lower-vector-transfers", "Materializes vector transfer ops to a "
"proper abstraction for the hardware");
#undef DEBUG_TYPE