forked from OSchip/llvm-project
623 lines
21 KiB
C++
623 lines
21 KiB
C++
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Ted Kremenek and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements extra semantic analysis beyond what is enforced
|
|
// by the C type system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
using namespace clang;
|
|
|
|
/// CheckFunctionCall - Check a direct function call for various correctness
|
|
/// and safety properties not strictly enforced by the C type system.
|
|
bool
|
|
Sema::CheckFunctionCall(Expr *Fn,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc,
|
|
FunctionDecl *FDecl,
|
|
Expr** Args, unsigned NumArgsInCall) {
|
|
|
|
// Get the IdentifierInfo* for the called function.
|
|
IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
|
|
if (FnInfo->getBuiltinID() ==
|
|
Builtin::BI__builtin___CFStringMakeConstantString) {
|
|
assert(NumArgsInCall == 1 &&
|
|
"Wrong number of arguments to builtin CFStringMakeConstantString");
|
|
return CheckBuiltinCFStringArgument(Args[0]);
|
|
}
|
|
|
|
// Search the KnownFunctionIDs for the identifier.
|
|
unsigned i = 0, e = id_num_known_functions;
|
|
for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
|
|
if (i == e) return false;
|
|
|
|
// Printf checking.
|
|
if (i <= id_vprintf) {
|
|
// Retrieve the index of the format string parameter and determine
|
|
// if the function is passed a va_arg argument.
|
|
unsigned format_idx = 0;
|
|
bool HasVAListArg = false;
|
|
|
|
switch (i) {
|
|
default: assert(false && "No format string argument index.");
|
|
case id_printf: format_idx = 0; break;
|
|
case id_fprintf: format_idx = 1; break;
|
|
case id_sprintf: format_idx = 1; break;
|
|
case id_snprintf: format_idx = 2; break;
|
|
case id_asprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
|
|
case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
|
|
case id_vprintf: format_idx = 0; HasVAListArg = true; break;
|
|
}
|
|
|
|
CheckPrintfArguments(Fn, LParenLoc, RParenLoc, HasVAListArg,
|
|
FDecl, format_idx, Args, NumArgsInCall);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
|
|
/// CFString constructor is correct
|
|
bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
|
|
// FIXME: This should go in a helper.
|
|
while (1) {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
|
|
Arg = PE->getSubExpr();
|
|
else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
|
|
|
|
if (!Literal || Literal->isWide()) {
|
|
Diag(Arg->getLocStart(),
|
|
diag::err_cfstring_literal_not_string_constant,
|
|
Arg->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
const char *Data = Literal->getStrData();
|
|
unsigned Length = Literal->getByteLength();
|
|
|
|
for (unsigned i = 0; i < Length; ++i) {
|
|
if (!isascii(Data[i])) {
|
|
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
|
|
diag::warn_cfstring_literal_contains_non_ascii_character,
|
|
Arg->getSourceRange());
|
|
break;
|
|
}
|
|
|
|
if (!Data[i]) {
|
|
Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
|
|
diag::warn_cfstring_literal_contains_nul_character,
|
|
Arg->getSourceRange());
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckPrintfArguments - Check calls to printf (and similar functions) for
|
|
/// correct use of format strings.
|
|
///
|
|
/// HasVAListArg - A predicate indicating whether the printf-like
|
|
/// function is passed an explicit va_arg argument (e.g., vprintf)
|
|
///
|
|
/// format_idx - The index into Args for the format string.
|
|
///
|
|
/// Improper format strings to functions in the printf family can be
|
|
/// the source of bizarre bugs and very serious security holes. A
|
|
/// good source of information is available in the following paper
|
|
/// (which includes additional references):
|
|
///
|
|
/// FormatGuard: Automatic Protection From printf Format String
|
|
/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
|
|
///
|
|
/// Functionality implemented:
|
|
///
|
|
/// We can statically check the following properties for string
|
|
/// literal format strings for non v.*printf functions (where the
|
|
/// arguments are passed directly):
|
|
//
|
|
/// (1) Are the number of format conversions equal to the number of
|
|
/// data arguments?
|
|
///
|
|
/// (2) Does each format conversion correctly match the type of the
|
|
/// corresponding data argument? (TODO)
|
|
///
|
|
/// Moreover, for all printf functions we can:
|
|
///
|
|
/// (3) Check for a missing format string (when not caught by type checking).
|
|
///
|
|
/// (4) Check for no-operation flags; e.g. using "#" with format
|
|
/// conversion 'c' (TODO)
|
|
///
|
|
/// (5) Check the use of '%n', a major source of security holes.
|
|
///
|
|
/// (6) Check for malformed format conversions that don't specify anything.
|
|
///
|
|
/// (7) Check for empty format strings. e.g: printf("");
|
|
///
|
|
/// (8) Check that the format string is a wide literal.
|
|
///
|
|
/// All of these checks can be done by parsing the format string.
|
|
///
|
|
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
|
|
void
|
|
Sema::CheckPrintfArguments(Expr *Fn,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc,
|
|
bool HasVAListArg, FunctionDecl *FDecl,
|
|
unsigned format_idx, Expr** Args,
|
|
unsigned NumArgsInCall) {
|
|
// CHECK: printf-like function is called with no format string.
|
|
if (format_idx >= NumArgsInCall) {
|
|
Diag(RParenLoc, diag::warn_printf_missing_format_string,
|
|
Fn->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
Expr *OrigFormatExpr = Args[format_idx];
|
|
// FIXME: This should go in a helper.
|
|
while (1) {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(OrigFormatExpr))
|
|
OrigFormatExpr = PE->getSubExpr();
|
|
else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(OrigFormatExpr))
|
|
OrigFormatExpr = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
// CHECK: format string is not a string literal.
|
|
//
|
|
// Dynamically generated format strings are difficult to
|
|
// automatically vet at compile time. Requiring that format strings
|
|
// are string literals: (1) permits the checking of format strings by
|
|
// the compiler and thereby (2) can practically remove the source of
|
|
// many format string exploits.
|
|
StringLiteral *FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
|
|
|
|
if (FExpr == NULL) {
|
|
Diag(Args[format_idx]->getLocStart(),
|
|
diag::warn_printf_not_string_constant, Fn->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// CHECK: is the format string a wide literal?
|
|
if (FExpr->isWide()) {
|
|
Diag(Args[format_idx]->getLocStart(),
|
|
diag::warn_printf_format_string_is_wide_literal,
|
|
Fn->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
const char * const Str = FExpr->getStrData();
|
|
|
|
// CHECK: empty format string?
|
|
const unsigned StrLen = FExpr->getByteLength();
|
|
|
|
if (StrLen == 0) {
|
|
Diag(Args[format_idx]->getLocStart(),
|
|
diag::warn_printf_empty_format_string, Fn->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// We process the format string using a binary state machine. The
|
|
// current state is stored in CurrentState.
|
|
enum {
|
|
state_OrdChr,
|
|
state_Conversion
|
|
} CurrentState = state_OrdChr;
|
|
|
|
// numConversions - The number of conversions seen so far. This is
|
|
// incremented as we traverse the format string.
|
|
unsigned numConversions = 0;
|
|
|
|
// numDataArgs - The number of data arguments after the format
|
|
// string. This can only be determined for non vprintf-like
|
|
// functions. For those functions, this value is 1 (the sole
|
|
// va_arg argument).
|
|
unsigned numDataArgs = NumArgsInCall-(format_idx+1);
|
|
|
|
// Inspect the format string.
|
|
unsigned StrIdx = 0;
|
|
|
|
// LastConversionIdx - Index within the format string where we last saw
|
|
// a '%' character that starts a new format conversion.
|
|
unsigned LastConversionIdx = 0;
|
|
|
|
for ( ; StrIdx < StrLen ; ++StrIdx ) {
|
|
|
|
// Is the number of detected conversion conversions greater than
|
|
// the number of matching data arguments? If so, stop.
|
|
if (!HasVAListArg && numConversions > numDataArgs) break;
|
|
|
|
// Handle "\0"
|
|
if(Str[StrIdx] == '\0' ) {
|
|
// The string returned by getStrData() is not null-terminated,
|
|
// so the presence of a null character is likely an error.
|
|
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),StrIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_format_string_contains_null_char,
|
|
Fn->getSourceRange());
|
|
|
|
return;
|
|
}
|
|
|
|
// Ordinary characters (not processing a format conversion).
|
|
if (CurrentState == state_OrdChr) {
|
|
if (Str[StrIdx] == '%') {
|
|
CurrentState = state_Conversion;
|
|
LastConversionIdx = StrIdx;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Seen '%'. Now processing a format conversion.
|
|
switch (Str[StrIdx]) {
|
|
// Characters which can terminate a format conversion
|
|
// (e.g. "%d"). Characters that specify length modifiers or
|
|
// other flags are handled by the default case below.
|
|
//
|
|
// TODO: additional checks will go into the following cases.
|
|
case 'i':
|
|
case 'd':
|
|
case 'o':
|
|
case 'u':
|
|
case 'x':
|
|
case 'X':
|
|
case 'D':
|
|
case 'O':
|
|
case 'U':
|
|
case 'e':
|
|
case 'E':
|
|
case 'f':
|
|
case 'F':
|
|
case 'g':
|
|
case 'G':
|
|
case 'a':
|
|
case 'A':
|
|
case 'c':
|
|
case 'C':
|
|
case 'S':
|
|
case 's':
|
|
case 'p':
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
break;
|
|
|
|
// CHECK: Are we using "%n"? Issue a warning.
|
|
case 'n': {
|
|
++numConversions;
|
|
CurrentState = state_OrdChr;
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
|
|
break;
|
|
}
|
|
|
|
// Handle "%%"
|
|
case '%':
|
|
// Sanity check: Was the first "%" character the previous one?
|
|
// If not, we will assume that we have a malformed format
|
|
// conversion, and that the current "%" character is the start
|
|
// of a new conversion.
|
|
if (StrIdx - LastConversionIdx == 1)
|
|
CurrentState = state_OrdChr;
|
|
else {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion,
|
|
std::string(Str+LastConversionIdx, Str+StrIdx),
|
|
Fn->getSourceRange());
|
|
|
|
// This conversion is broken. Advance to the next format
|
|
// conversion.
|
|
LastConversionIdx = StrIdx;
|
|
++numConversions;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
// This case catches all other characters: flags, widths, etc.
|
|
// We should eventually process those as well.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CurrentState == state_Conversion) {
|
|
// Issue a warning: invalid format conversion.
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
|
|
LastConversionIdx+1);
|
|
|
|
Diag(Loc, diag::warn_printf_invalid_conversion,
|
|
std::string(Str+LastConversionIdx,
|
|
Str+std::min(LastConversionIdx+2, StrLen)),
|
|
Fn->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
if (!HasVAListArg) {
|
|
// CHECK: Does the number of format conversions exceed the number
|
|
// of data arguments?
|
|
if (numConversions > numDataArgs) {
|
|
SourceLocation Loc =
|
|
PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
|
|
LastConversionIdx);
|
|
|
|
Diag(Loc, diag::warn_printf_insufficient_data_args,
|
|
Fn->getSourceRange());
|
|
}
|
|
// CHECK: Does the number of data arguments exceed the number of
|
|
// format conversions in the format string?
|
|
else if (numConversions < numDataArgs)
|
|
Diag(Args[format_idx+numConversions+1]->getLocStart(),
|
|
diag::warn_printf_too_many_data_args, Fn->getSourceRange());
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Return Address of Stack Variable --------------------------===//
|
|
|
|
static DeclRefExpr* EvalVal(Expr *E);
|
|
static DeclRefExpr* EvalAddr(Expr* E);
|
|
|
|
/// CheckReturnStackAddr - Check if a return statement returns the address
|
|
/// of a stack variable.
|
|
void
|
|
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc) {
|
|
|
|
// Perform checking for returned stack addresses.
|
|
if (lhsType->isPointerType()) {
|
|
if (DeclRefExpr *DR = EvalAddr(RetValExp))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
|
|
DR->getDecl()->getIdentifier()->getName(),
|
|
RetValExp->getSourceRange());
|
|
}
|
|
// Perform checking for stack values returned by reference.
|
|
else if (lhsType->isReferenceType()) {
|
|
// Check for an implicit cast to a reference.
|
|
if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
|
|
if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
|
|
Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
|
|
DR->getDecl()->getIdentifier()->getName(),
|
|
RetValExp->getSourceRange());
|
|
}
|
|
}
|
|
|
|
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
|
|
/// check if the expression in a return statement evaluates to an address
|
|
/// to a location on the stack. The recursion is used to traverse the
|
|
/// AST of the return expression, with recursion backtracking when we
|
|
/// encounter a subexpression that (1) clearly does not lead to the address
|
|
/// of a stack variable or (2) is something we cannot determine leads to
|
|
/// the address of a stack variable based on such local checking.
|
|
///
|
|
/// EvalAddr processes expressions that are pointers, and EvalVal handles
|
|
/// expressions that are rvalues or variable references.
|
|
/// At the base case of the recursion is a check for a DeclRefExpr* in
|
|
/// the refers to a stack variable.
|
|
///
|
|
/// This implementation handles:
|
|
///
|
|
/// * pointer-to-pointer casts
|
|
/// * implicit conversions from array references to pointers
|
|
/// * taking the address of fields
|
|
/// * arbitrary interplay between "&" and "*" operators
|
|
/// * pointer arithmetic from an address of a stack variable
|
|
/// * taking the address of an array element where the array is on the stack
|
|
static DeclRefExpr* EvalAddr(Expr *E) {
|
|
|
|
// We should only be called for evaluating pointer expressions.
|
|
assert (E->getType()->isPointerType() && "EvalAddr only works on pointers");
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is AddrOf. All others don't make sense as pointers.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::AddrOf)
|
|
return EvalVal(U->getSubExpr());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
// Handle pointer arithmetic. All other binary operators are not valid
|
|
// in this context.
|
|
BinaryOperator *B = cast<BinaryOperator>(E);
|
|
BinaryOperator::Opcode op = B->getOpcode();
|
|
|
|
if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
|
|
return NULL;
|
|
|
|
Expr *Base = B->getLHS();
|
|
|
|
// Determine which argument is the real pointer base. It could be
|
|
// the RHS argument instead of the LHS.
|
|
if (!Base->getType()->isPointerType()) Base = B->getRHS();
|
|
|
|
assert (Base->getType()->isPointerType());
|
|
return EvalAddr(Base);
|
|
}
|
|
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// valid DeclRefExpr*s. If one of them is valid, we return it.
|
|
case Stmt::ConditionalOperatorClass: {
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
if (DeclRefExpr* LHS = EvalAddr(C->getLHS()))
|
|
return LHS;
|
|
else
|
|
return EvalAddr(C->getRHS());
|
|
}
|
|
|
|
// For implicit casts, we need to handle conversions from arrays to
|
|
// pointer values, and implicit pointer-to-pointer conversions.
|
|
case Stmt::ImplicitCastExprClass: {
|
|
ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
|
|
Expr* SubExpr = IE->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isPointerType())
|
|
return EvalAddr(SubExpr);
|
|
else
|
|
return EvalVal(SubExpr);
|
|
}
|
|
|
|
// For casts, we handle pointer-to-pointer conversions (which
|
|
// is essentially a no-op from our mini-interpreter's standpoint).
|
|
// For other casts we abort.
|
|
case Stmt::CastExprClass: {
|
|
CastExpr *C = cast<CastExpr>(E);
|
|
Expr *SubExpr = C->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isPointerType())
|
|
return EvalAddr(SubExpr);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// C++ casts. For dynamic casts, static casts, and const casts, we
|
|
// are always converting from a pointer-to-pointer, so we just blow
|
|
// through the cast. In the case the dynamic cast doesn't fail
|
|
// (and return NULL), we take the conservative route and report cases
|
|
// where we return the address of a stack variable. For Reinterpre
|
|
case Stmt::CXXCastExprClass: {
|
|
CXXCastExpr *C = cast<CXXCastExpr>(E);
|
|
|
|
if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
|
|
Expr *S = C->getSubExpr();
|
|
if (S->getType()->isPointerType())
|
|
return EvalAddr(S);
|
|
else
|
|
return NULL;
|
|
}
|
|
else
|
|
return EvalAddr(C->getSubExpr());
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
|
|
/// See the comments for EvalAddr for more details.
|
|
static DeclRefExpr* EvalVal(Expr *E) {
|
|
|
|
// We should only be called for evaluating non-pointer expressions.
|
|
assert (!E->getType()->isPointerType() && "EvalVal doesn't work on pointers");
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
// DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
|
|
// at code that refers to a variable's name. We check if it has local
|
|
// storage within the function, and if so, return the expression.
|
|
DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
|
|
if(V->hasLocalStorage()) return DR;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
// Ignore parentheses.
|
|
return EvalVal(cast<ParenExpr>(E)->getSubExpr());
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is Deref. All others don't resolve to a "name." This includes
|
|
// handling all sorts of rvalues passed to a unary operator.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UnaryOperator::Deref)
|
|
return EvalAddr(U->getSubExpr());
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// Array subscripts are potential references to data on the stack. We
|
|
// retrieve the DeclRefExpr* for the array variable if it indeed
|
|
// has local storage.
|
|
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// non-NULL DeclRefExpr's. If one is non-NULL, we return it.
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
if (DeclRefExpr *LHS = EvalVal(C->getLHS()))
|
|
return LHS;
|
|
else
|
|
return EvalVal(C->getRHS());
|
|
}
|
|
|
|
// Accesses to members are potential references to data on the stack.
|
|
case Stmt::MemberExprClass: {
|
|
MemberExpr *M = cast<MemberExpr>(E);
|
|
|
|
// Check for indirect access. We only want direct field accesses.
|
|
if (!M->isArrow())
|
|
return EvalVal(M->getBase());
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|