llvm-project/llvm/test/Transforms/SROA/basictest.ll

1246 lines
50 KiB
LLVM

; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
declare void @llvm.lifetime.start(i64, i8* nocapture)
declare void @llvm.lifetime.end(i64, i8* nocapture)
define i32 @test0() {
; CHECK: @test0
; CHECK-NOT: alloca
; CHECK: ret i32
entry:
%a1 = alloca i32
%a2 = alloca float
%a1.i8 = bitcast i32* %a1 to i8*
call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
store i32 0, i32* %a1
%v1 = load i32* %a1
call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
%a2.i8 = bitcast float* %a2 to i8*
call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
store float 0.0, float* %a2
%v2 = load float * %a2
%v2.int = bitcast float %v2 to i32
%sum1 = add i32 %v1, %v2.int
call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
ret i32 %sum1
}
define i32 @test1() {
; CHECK: @test1
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca { i32, float }
%Y = getelementptr { i32, float }* %X, i64 0, i32 0
store i32 0, i32* %Y
%Z = load i32* %Y
ret i32 %Z
}
define i64 @test2(i64 %X) {
; CHECK: @test2
; CHECK-NOT: alloca
; CHECK: ret i64 %X
entry:
%A = alloca [8 x i8]
%B = bitcast [8 x i8]* %A to i64*
store i64 %X, i64* %B
br label %L2
L2:
%Z = load i64* %B
ret i64 %Z
}
define void @test3(i8* %dst, i8* %src) {
; CHECK: @test3
entry:
%a = alloca [300 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test3_a1:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
%b = getelementptr [300 x i8]* %a, i64 0, i64 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
; CHECK-NEXT: %[[test3_r1:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 142
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 158
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 200
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 207
; CHECK-NEXT: %[[test3_r2:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 208
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 215
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
; Clobber a single element of the array, this should be promotable.
%c = getelementptr [300 x i8]* %a, i64 0, i64 42
store i8 0, i8* %c
; Make a sequence of overlapping stores to the array. These overlap both in
; forward strides and in shrinking accesses.
%overlap.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 142
%overlap.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 143
%overlap.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 144
%overlap.4.i8 = getelementptr [300 x i8]* %a, i64 0, i64 145
%overlap.5.i8 = getelementptr [300 x i8]* %a, i64 0, i64 146
%overlap.6.i8 = getelementptr [300 x i8]* %a, i64 0, i64 147
%overlap.7.i8 = getelementptr [300 x i8]* %a, i64 0, i64 148
%overlap.8.i8 = getelementptr [300 x i8]* %a, i64 0, i64 149
%overlap.9.i8 = getelementptr [300 x i8]* %a, i64 0, i64 150
%overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
%overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
%overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
%overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
%overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
%overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
%overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
%overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
%overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
%overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
%overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
store i8 1, i8* %overlap.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap.1.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap.1.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i64 1, i64* %overlap.1.i64
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
store i64 2, i64* %overlap.2.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
store i64 3, i64* %overlap.3.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
store i64 4, i64* %overlap.4.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
store i64 5, i64* %overlap.5.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 4
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
store i64 6, i64* %overlap.6.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 5
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
store i64 7, i64* %overlap.7.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 6
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
store i64 8, i64* %overlap.8.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 7
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
store i64 9, i64* %overlap.9.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 8
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
; Make two sequences of overlapping stores with more gaps and irregularities.
%overlap2.1.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 200
%overlap2.1.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 201
%overlap2.1.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 202
%overlap2.1.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 203
%overlap2.2.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 208
%overlap2.2.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 209
%overlap2.2.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 210
%overlap2.2.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 211
%overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
%overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
%overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
%overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
%overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
store i8 1, i8* %overlap2.1.0.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap2.1.0.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap2.1.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i32 2, i32* %overlap2.1.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
store i32 3, i32* %overlap2.1.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
store i32 4, i32* %overlap2.1.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
%overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
%overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
%overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
%overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
%overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
store i32 1, i32* %overlap2.2.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i8 1, i8* %overlap2.2.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap2.2.1.i16
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap2.2.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i32 3, i32* %overlap2.2.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
store i32 4, i32* %overlap2.2.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
%overlap2.prefix = getelementptr i8* %overlap2.1.1.i8, i64 -4
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 39
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 3
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
; Bridge between the overlapping areas
call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
; ...promoted i8 store...
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
; Entirely within the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
; Trailing past the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 5
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
; CHECK-NEXT: store i8 0, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 142
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 158
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 200
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 207
; CHECK-NEXT: store i8 42, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 208
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 215
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
ret void
}
define void @test4(i8* %dst, i8* %src) {
; CHECK: @test4
entry:
%a = alloca [100 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test4_a1:.*]] = alloca [20 x i8]
; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
%b = getelementptr [100 x i8]* %a, i64 0, i64 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r1:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 22
; CHECK-NEXT: %[[test4_r2:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 23
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 30
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r3:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
; CHECK-NEXT: %[[test4_r4:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r5:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 52
; CHECK-NEXT: %[[test4_r6:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 53
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 60
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
%a.src.1 = getelementptr [100 x i8]* %a, i64 0, i64 20
%a.dst.1 = getelementptr [100 x i8]* %a, i64 0, i64 40
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; Clobber a single element of the array, this should be promotable, and be deleted.
%c = getelementptr [100 x i8]* %a, i64 0, i64 42
store i8 0, i8* %c
%a.src.2 = getelementptr [100 x i8]* %a, i64 0, i64 50
call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 22
; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 23
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 30
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 52
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 53
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 60
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
ret void
}
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
define i16 @test5() {
; CHECK: @test5
; CHECK-NOT: alloca float
; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
; CHECK-NEXT: ret i16 %[[trunc]]
entry:
%a = alloca [4 x i8]
%fptr = bitcast [4 x i8]* %a to float*
store float 0.0, float* %fptr
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 2
%iptr = bitcast i8* %ptr to i16*
%val = load i16* %iptr
ret i16 %val
}
define i32 @test6() {
; CHECK: @test6
; CHECK: alloca i32
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: load i32*
; CHECK-NEXT: ret i32
entry:
%a = alloca [4 x i8]
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
%iptr = bitcast i8* %ptr to i32*
%val = load i32* %iptr
ret i32 %val
}
define void @test7(i8* %src, i8* %dst) {
; CHECK: @test7
; CHECK: alloca i32
; CHECK-NEXT: bitcast i8* %src to i32*
; CHECK-NEXT: load volatile i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: bitcast i8* %dst to i32*
; CHECK-NEXT: load volatile i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: ret
entry:
%a = alloca [4 x i8]
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
ret void
}
%S1 = type { i32, i32, [16 x i8] }
%S2 = type { %S1*, %S2* }
define %S2 @test8(%S2* %s2) {
; CHECK: @test8
entry:
%new = alloca %S2
; CHECK-NOT: alloca
%s2.next.ptr = getelementptr %S2* %s2, i64 0, i32 1
%s2.next = load %S2** %s2.next.ptr
; CHECK: %[[gep:.*]] = getelementptr %S2* %s2, i64 0, i32 1
; CHECK-NEXT: %[[next:.*]] = load %S2** %[[gep]]
%s2.next.s1.ptr = getelementptr %S2* %s2.next, i64 0, i32 0
%s2.next.s1 = load %S1** %s2.next.s1.ptr
%new.s1.ptr = getelementptr %S2* %new, i64 0, i32 0
store %S1* %s2.next.s1, %S1** %new.s1.ptr
%s2.next.next.ptr = getelementptr %S2* %s2.next, i64 0, i32 1
%s2.next.next = load %S2** %s2.next.next.ptr
%new.next.ptr = getelementptr %S2* %new, i64 0, i32 1
store %S2* %s2.next.next, %S2** %new.next.ptr
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 0
; CHECK-NEXT: %[[next_s1:.*]] = load %S1** %[[gep]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 1
; CHECK-NEXT: %[[next_next:.*]] = load %S2** %[[gep]]
%new.s1 = load %S1** %new.s1.ptr
%result1 = insertvalue %S2 undef, %S1* %new.s1, 0
; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
%new.next = load %S2** %new.next.ptr
%result2 = insertvalue %S2 %result1, %S2* %new.next, 1
; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
ret %S2 %result2
; CHECK-NEXT: ret %S2 %[[result2]]
}
define i64 @test9() {
; Ensure we can handle loads off the end of an alloca even when wrapped in
; weird bit casts and types. This is valid IR due to the alignment and masking
; off the bits past the end of the alloca.
;
; CHECK: @test9
; CHECK-NOT: alloca
; CHECK: %[[b2:.*]] = zext i8 26 to i64
; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
; CHECK-NEXT: ret i64 %[[result]]
entry:
%a = alloca { [3 x i8] }, align 8
%gep1 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 0
store i8 0, i8* %gep1, align 1
%gep2 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 1
store i8 0, i8* %gep2, align 1
%gep3 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 2
store i8 26, i8* %gep3, align 1
%cast = bitcast { [3 x i8] }* %a to { i64 }*
%elt = getelementptr inbounds { i64 }* %cast, i32 0, i32 0
%load = load i64* %elt
%result = and i64 %load, 16777215
ret i64 %result
}
define %S2* @test10() {
; CHECK: @test10
; CHECK-NOT: alloca %S2*
; CHECK: ret %S2* null
entry:
%a = alloca [8 x i8]
%ptr = getelementptr [8 x i8]* %a, i32 0, i32 0
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
%s2ptrptr = bitcast i8* %ptr to %S2**
%s2ptr = load %S2** %s2ptrptr
ret %S2* %s2ptr
}
define i32 @test11() {
; CHECK: @test11
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca i32
br i1 undef, label %good, label %bad
good:
%Y = getelementptr i32* %X, i64 0
store i32 0, i32* %Y
%Z = load i32* %Y
ret i32 %Z
bad:
%Y2 = getelementptr i32* %X, i64 1
store i32 0, i32* %Y2
%Z2 = load i32* %Y2
ret i32 %Z2
}
define i8 @test12() {
; We fully promote these to the i24 load or store size, resulting in just masks
; and other operations that instcombine will fold, but no alloca.
;
; CHECK: @test12
entry:
%a = alloca [3 x i8]
%b = alloca [3 x i8]
; CHECK-NOT: alloca
%a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %a0ptr
%a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %a1ptr
%a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %a2ptr
%aiptr = bitcast [3 x i8]* %a to i24*
%ai = load i24* %aiptr
; CHECK-NOT: store
; CHECK-NOT: load
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
%biptr = bitcast [3 x i8]* %b to i24*
store i24 %ai, i24* %biptr
%b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0
%b0 = load i8* %b0ptr
%b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1
%b1 = load i8* %b1ptr
%b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2
%b2 = load i8* %b2ptr
; CHECK-NOT: store
; CHECK-NOT: load
; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
%bsum0 = add i8 %b0, %b1
%bsum1 = add i8 %bsum0, %b2
ret i8 %bsum1
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
; CHECK-NEXT: ret i8 %[[sum1]]
}
define i32 @test13() {
; Ensure we don't crash and handle undefined loads that straddle the end of the
; allocation.
; CHECK: @test13
; CHECK: %[[value:.*]] = zext i8 0 to i16
; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
; CHECK-NEXT: ret i32 %[[ret]]
entry:
%a = alloca [3 x i8], align 2
%b0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %b0ptr
%b1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %b1ptr
%b2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %b2ptr
%iptrcast = bitcast [3 x i8]* %a to i16*
%iptrgep = getelementptr i16* %iptrcast, i64 1
%i = load i16* %iptrgep
%ret = zext i16 %i to i32
ret i32 %ret
}
%test14.struct = type { [3 x i32] }
define void @test14(...) nounwind uwtable {
; This is a strange case where we split allocas into promotable partitions, but
; also gain enough data to prove they must be dead allocas due to GEPs that walk
; across two adjacent allocas. Test that we don't try to promote or otherwise
; do bad things to these dead allocas, they should just be removed.
; CHECK: @test14
; CHECK-NEXT: entry:
; CHECK-NEXT: ret void
entry:
%a = alloca %test14.struct
%p = alloca %test14.struct*
%0 = bitcast %test14.struct* %a to i8*
%1 = getelementptr i8* %0, i64 12
%2 = bitcast i8* %1 to %test14.struct*
%3 = getelementptr inbounds %test14.struct* %2, i32 0, i32 0
%4 = getelementptr inbounds %test14.struct* %a, i32 0, i32 0
%5 = bitcast [3 x i32]* %3 to i32*
%6 = bitcast [3 x i32]* %4 to i32*
%7 = load i32* %6, align 4
store i32 %7, i32* %5, align 4
%8 = getelementptr inbounds i32* %5, i32 1
%9 = getelementptr inbounds i32* %6, i32 1
%10 = load i32* %9, align 4
store i32 %10, i32* %8, align 4
%11 = getelementptr inbounds i32* %5, i32 2
%12 = getelementptr inbounds i32* %6, i32 2
%13 = load i32* %12, align 4
store i32 %13, i32* %11, align 4
ret void
}
define i32 @test15(i1 %flag) nounwind uwtable {
; Ensure that when there are dead instructions using an alloca that are not
; loads or stores we still delete them during partitioning and rewriting.
; Otherwise we'll go to promote them while thy still have unpromotable uses.
; CHECK: @test15
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: br label %loop
entry:
%l0 = alloca i64
%l1 = alloca i64
%l2 = alloca i64
%l3 = alloca i64
br label %loop
loop:
%dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
store i64 1879048192, i64* %l0, align 8
%bc0 = bitcast i64* %l0 to i8*
%gep0 = getelementptr i8* %bc0, i64 3
%dead0 = bitcast i8* %gep0 to i64*
store i64 1879048192, i64* %l1, align 8
%bc1 = bitcast i64* %l1 to i8*
%gep1 = getelementptr i8* %bc1, i64 3
%dead1 = getelementptr i8* %gep1, i64 1
store i64 1879048192, i64* %l2, align 8
%bc2 = bitcast i64* %l2 to i8*
%gep2.1 = getelementptr i8* %bc2, i64 1
%gep2.2 = getelementptr i8* %bc2, i64 3
; Note that this select should get visited multiple times due to using two
; different GEPs off the same alloca. We should only delete it once.
%dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
store i64 1879048192, i64* %l3, align 8
%bc3 = bitcast i64* %l3 to i8*
%gep3 = getelementptr i8* %bc3, i64 3
br label %loop
}
define void @test16(i8* %src, i8* %dst) {
; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
; CHECK: @test16
; CHECK-NOT: alloca
; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24*
; CHECK-NEXT: load i24* %[[srccast]]
; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
%ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
%cast = bitcast i8* %ptr to i24*
store i24 0, i24* %cast
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
ret void
}
define void @test17(i8* %src, i8* %dst) {
; Ensure that we can rewrite unpromotable memcpys which extend past the end of
; the alloca.
; CHECK: @test17
; CHECK: %[[a:.*]] = alloca [3 x i8]
; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8]* %[[a]], i32 0, i32 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
%ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
ret void
}
define void @test18(i8* %src, i8* %dst, i32 %size) {
; Preserve transfer instrinsics with a variable size, even if they overlap with
; fixed size operations. Further, continue to split and promote allocas preceding
; the variable sized intrinsic.
; CHECK: @test18
; CHECK: %[[a:.*]] = alloca [34 x i8]
; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8* %src, i64 4
; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
; CHECK-NEXT: %[[srcload:.*]] = load i32* %[[srccast1]]
; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8* %dst, i64 4
; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
; CHECK-NEXT: ret void
entry:
%a = alloca [42 x i8]
%ptr = getelementptr [42 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
%ptr2 = getelementptr [42 x i8]* %a, i32 0, i32 8
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
%cast = bitcast i8* %ptr to i32*
store i32 42, i32* %cast
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
ret void
}
%opaque = type opaque
define i32 @test19(%opaque* %x) {
; This input will cause us to try to compute a natural GEP when rewriting
; pointers in such a way that we try to GEP through the opaque type. Previously,
; a check for an unsized type was missing and this crashed. Ensure it behaves
; reasonably now.
; CHECK: @test19
; CHECK-NOT: alloca
; CHECK: ret i32 undef
entry:
%a = alloca { i64, i8* }
%cast1 = bitcast %opaque* %x to i8*
%cast2 = bitcast { i64, i8* }* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
%gep = getelementptr inbounds { i64, i8* }* %a, i32 0, i32 0
%val = load i64* %gep
ret i32 undef
}
define i32 @test20() {
; Ensure we can track negative offsets (before the beginning of the alloca) and
; negative relative offsets from offsets starting past the end of the alloca.
; CHECK: @test20
; CHECK-NOT: alloca
; CHECK: %[[sum1:.*]] = add i32 1, 2
; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
; CHECK: ret i32 %[[sum2]]
entry:
%a = alloca [3 x i32]
%gep1 = getelementptr [3 x i32]* %a, i32 0, i32 0
store i32 1, i32* %gep1
%gep2.1 = getelementptr [3 x i32]* %a, i32 0, i32 -2
%gep2.2 = getelementptr i32* %gep2.1, i32 3
store i32 2, i32* %gep2.2
%gep3.1 = getelementptr [3 x i32]* %a, i32 0, i32 14
%gep3.2 = getelementptr i32* %gep3.1, i32 -12
store i32 3, i32* %gep3.2
%load1 = load i32* %gep1
%load2 = load i32* %gep2.2
%load3 = load i32* %gep3.2
%sum1 = add i32 %load1, %load2
%sum2 = add i32 %sum1, %load3
ret i32 %sum2
}
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
define i8 @test21() {
; Test allocations and offsets which border on overflow of the int64_t used
; internally. This is really awkward to really test as LLVM doesn't really
; support such extreme constructs cleanly.
; CHECK: @test21
; CHECK-NOT: alloca
; CHECK: or i8 -1, -1
entry:
%a = alloca [2305843009213693951 x i8]
%gep0 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
store i8 255, i8* %gep0
%gep1 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
%gep2 = getelementptr i8* %gep1, i64 -1
call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
%gep3 = getelementptr i8* %gep1, i64 9223372036854775807
%gep4 = getelementptr i8* %gep3, i64 9223372036854775807
%gep5 = getelementptr i8* %gep4, i64 -6917529027641081857
store i8 255, i8* %gep5
%cast1 = bitcast i8* %gep4 to i32*
store i32 0, i32* %cast1
%load = load i8* %gep0
%gep6 = getelementptr i8* %gep0, i32 1
%load2 = load i8* %gep6
%result = or i8 %load, %load2
ret i8 %result
}
%PR13916.struct = type { i8 }
define void @PR13916.1() {
; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
; the case where there is a directly identical value for both source and dest.
; CHECK: @PR13916.1
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%a = alloca i8
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
%tmp2 = load i8* %a
ret void
}
define void @PR13916.2() {
; Check whether we continue to handle them correctly when they start off with
; different pointer value chains, but during rewriting we coalesce them into the
; same value.
; CHECK: @PR13916.2
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%a = alloca %PR13916.struct, align 1
br i1 undef, label %if.then, label %if.end
if.then:
%tmp0 = bitcast %PR13916.struct* %a to i8*
%tmp1 = bitcast %PR13916.struct* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
br label %if.end
if.end:
%gep = getelementptr %PR13916.struct* %a, i32 0, i32 0
%tmp2 = load i8* %gep
ret void
}
define void @PR13990() {
; Ensure we can handle cases where processing one alloca causes the other
; alloca to become dead and get deleted. This might crash or fail under
; Valgrind if we regress.
; CHECK: @PR13990
; CHECK-NOT: alloca
; CHECK: unreachable
; CHECK: unreachable
entry:
%tmp1 = alloca i8*
%tmp2 = alloca i8*
br i1 undef, label %bb1, label %bb2
bb1:
store i8* undef, i8** %tmp2
br i1 undef, label %bb2, label %bb3
bb2:
%tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
br i1 undef, label %bb3, label %bb4
bb3:
unreachable
bb4:
unreachable
}
define double @PR13969(double %x) {
; Check that we detect when promotion will un-escape an alloca and iterate to
; re-try running SROA over that alloca. Without that, the two allocas that are
; stored into a dead alloca don't get rewritten and promoted.
; CHECK: @PR13969
entry:
%a = alloca double
%b = alloca double*
%c = alloca double
; CHECK-NOT: alloca
store double %x, double* %a
store double* %c, double** %b
store double* %a, double** %b
store double %x, double* %c
%ret = load double* %a
; CHECK-NOT: store
; CHECK-NOT: load
ret double %ret
; CHECK: ret double %x
}
%PR14034.struct = type { { {} }, i32, %PR14034.list }
%PR14034.list = type { %PR14034.list*, %PR14034.list* }
define void @PR14034() {
; This test case tries to form GEPs into the empty leading struct members, and
; subsequently crashed (under valgrind) before we fixed the PR. The important
; thing is to handle empty structs gracefully.
; CHECK: @PR14034
entry:
%a = alloca %PR14034.struct
%list = getelementptr %PR14034.struct* %a, i32 0, i32 2
%prev = getelementptr %PR14034.list* %list, i32 0, i32 1
store %PR14034.list* undef, %PR14034.list** %prev
%cast0 = bitcast %PR14034.struct* undef to i8*
%cast1 = bitcast %PR14034.struct* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
ret void
}
define i32 @test22(i32 %x) {
; Test that SROA and promotion is not confused by a grab bax mixture of pointer
; types involving wrapper aggregates and zero-length aggregate members.
; CHECK: @test22
entry:
%a1 = alloca { { [1 x { i32 }] } }
%a2 = alloca { {}, { float }, [0 x i8] }
%a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
; CHECK-NOT: alloca
%wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
%gep1 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
%gep2 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0
%ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
%load1 = load { [1 x { float }] }* %ptrcast1
%unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
%wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
%gep3 = getelementptr { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
%ptrcast2 = bitcast float* %gep3 to <4 x i8>*
%load3 = load <4 x i8>* %ptrcast2
%valcast1 = bitcast <4 x i8> %load3 to i32
%wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
%wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
%gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
%ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
%gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
%ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
%load4 = load { {}, float, {} }* %ptrcast4
%unwrap2 = extractvalue { {}, float, {} } %load4, 1
%valcast2 = bitcast float %unwrap2 to i32
ret i32 %valcast2
; CHECK: ret i32
}
define void @PR14059.1(double* %d) {
; In PR14059 a peculiar construct was identified as something that is used
; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
; of doubles via an array of i32 in order to place the data into integer
; registers. This in turn was missed as an optimization by SROA due to the
; partial loads and stores of integers to the double alloca we were trying to
; form and promote. The solution is to widen the integer operations to be
; whole-alloca operations, and perform the appropriate bitcasting on the
; *values* rather than the pointers. When this works, partial reads and writes
; via integers can be promoted away.
; CHECK: @PR14059.1
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%X.sroa.0.i = alloca double, align 8
%0 = bitcast double* %X.sroa.0.i to i8*
call void @llvm.lifetime.start(i64 -1, i8* %0)
; Store to the low 32-bits...
%X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
; Also use a memset to the middle 32-bits for fun.
%X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8* %0, i32 2
call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
; Or a memset of the whole thing.
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
; Write to the high 32-bits with a memcpy.
%X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8* %0, i32 4
%d.raw = bitcast double* %d to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
; Store to the high 32-bits...
%X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
; Do the actual math...
%X.sroa.0.0.load1.i = load double* %X.sroa.0.i, align 8
%accum.real.i = load double* %d, align 8
%add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
store double %add.r.i, double* %d, align 8
call void @llvm.lifetime.end(i64 -1, i8* %0)
ret void
}
define i64 @PR14059.2({ float, float }* %phi) {
; Check that SROA can split up alloca-wide integer loads and stores where the
; underlying alloca has smaller components that are accessed independently. This
; shows up particularly with ABI lowering patterns coming out of Clang that rely
; on the particular register placement of a single large integer return value.
; CHECK: @PR14059.2
entry:
%retval = alloca { float, float }, align 4
; CHECK-NOT: alloca
%0 = bitcast { float, float }* %retval to i64*
store i64 0, i64* %0
; CHECK-NOT: store
%phi.realp = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
%phi.real = load float* %phi.realp
%phi.imagp = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
%phi.imag = load float* %phi.imagp
; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
; CHECK-NEXT: %[[real:.*]] = load float* %[[realp]]
; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
; CHECK-NEXT: %[[imag:.*]] = load float* %[[imagp]]
%real = getelementptr inbounds { float, float }* %retval, i32 0, i32 0
%imag = getelementptr inbounds { float, float }* %retval, i32 0, i32 1
store float %phi.real, float* %real
store float %phi.imag, float* %imag
; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
%1 = load i64* %0, align 1
ret i64 %1
; CHECK-NEXT: ret i64 %[[real_insert]]
}
define void @PR14105({ [16 x i8] }* %ptr) {
; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
; sign as negative. We use a volatile memcpy to ensure promotion never actually
; occurs.
; CHECK: @PR14105
entry:
%a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8
%gep = getelementptr inbounds { [16 x i8] }* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
%cast1 = bitcast { [16 x i8 ] }* %gep to i8*
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
ret void
; CHECK: ret
}
define void @PR14465() {
; Ensure that we don't crash when analyzing a alloca larger than the maximum
; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
; CHECK: @PR14465
%stack = alloca [1048576 x i32], align 16
; CHECK: alloca [1048576 x i32]
%cast = bitcast [1048576 x i32]* %stack to i8*
call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
ret void
; CHECK: ret
}
define void @PR14548(i1 %x) {
; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
; pattern caused crashes and invalid output in the PR, and its nature will
; trigger a mixture in several permutations as we resolve each alloca
; iteratively.
; Note that we don't do a particularly good *job* of handling these mixtures,
; but the hope is that this is very rare.
; CHECK: @PR14548
entry:
%a = alloca <{ i1 }>, align 8
%b = alloca <{ i1 }>, align 8
; CHECK: %[[a:.*]] = alloca i8, align 8
%b.i1 = bitcast <{ i1 }>* %b to i1*
store i1 %x, i1* %b.i1, align 8
%b.i8 = bitcast <{ i1 }>* %b to i8*
%foo = load i8* %b.i8, align 1
; CHECK-NEXT: {{.*}} = zext i1 %x to i8
; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8
; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8
; CHECK-NEXT: {{.*}} = load i8* %[[a]], align 8
%a.i8 = bitcast <{ i1 }>* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
%bar = load i8* %a.i8, align 1
%a.i1 = getelementptr inbounds <{ i1 }>* %a, i32 0, i32 0
%baz = load i1* %a.i1, align 1
; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
; CHECK-NEXT: {{.*}} = load i1* %[[a_cast]], align 8
ret void
}
define <3 x i8> @PR14572.1(i32 %x) {
; Ensure that a split integer store which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.1
entry:
%a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca
%cast = bitcast <3 x i8>* %a to i32*
store i32 %x, i32* %cast, align 1
%y = load <3 x i8>* %a, align 4
ret <3 x i8> %y
; CHECK: ret <3 x i8>
}
define i32 @PR14572.2(<3 x i8> %x) {
; Ensure that a split integer load which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.2
entry:
%a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca
store <3 x i8> %x, <3 x i8>* %a, align 1
%cast = bitcast <3 x i8>* %a to i32*
%y = load i32* %cast, align 4
ret i32 %y
; CHECK: ret i32
}
define i32 @PR14601(i32 %x) {
; Don't try to form a promotable integer alloca when there is a variable length
; memory intrinsic.
; CHECK: @PR14601
entry:
%a = alloca i32
; CHECK: alloca
%a.i8 = bitcast i32* %a to i8*
call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
%v = load i32* %a
ret i32 %v
}