![]() This patch refines //when// driver diagnostics are formatted so that `flang-new` and `flang-new -fc1` behave consistently with `clang` and `clang -cc1`, respectively. This change only applies to driver diagnostics. Scanning, parsing and semantic diagnostics are separate and not covered here. **NEW BEHAVIOUR** To illustrate the new behaviour, consider the following input file: ```! file.f90 program m integer :: i = k end ``` In the following invocations, "error: Semantic errors in file.f90" _will be_ formatted: ``` $ flang-new file.f90 error: Semantic errors in file.f90 ./file.f90:2:18: error: Must be a constant value integer :: i = k $ flang-new -fc1 -fcolor-diagnostics file.f90 error: Semantic errors in file.f90 ./file.f90:2:18: error: Must be a constant value integer :: i = k ``` However, in the following invocations, "error: Semantic errors in file.f90" _will not be_ formatted: ``` $ flang-new -fno-color-diagnostics file.f90 error: Semantic errors in file.f90 ./file.f90:2:18: error: Must be a constant value integer :: i = k $ flang-new -fc1 file.f90 error: Semantic errors in file.f90 ./file.f90:2:18: error: Must be a constant value integer :: i = k ``` Before this change, none of the above would be formatted. Note also that the default behaviour in `flang-new` is different to `flang-new -fc1` (this is consistent with Clang). **NOTES ON IMPLEMENTATION** Note that the diagnostic options are parsed in `createAndPopulateDiagOpt`s in driver.cpp. That's where the driver's `DiagnosticEngine` options are set. Like most command-line compiler driver options, these flags are "claimed" in Flang.cpp (i.e. when creating a frontend driver invocation) by calling `getLastArg` rather than in driver.cpp. In Clang's Options.td, `defm color_diagnostics` is replaced with two separate definitions: `def fcolor_diagnostics` and def fno_color_diagnostics`. That's because originally `color_diagnostics` derived from `OptInCC1FFlag`, which is a multiclass for opt-in options in CC1. In order to preserve the current behaviour in `clang -cc1` (i.e. to keep `-fno-color-diagnostics` unavailable in `clang -cc1`) and to implement similar behaviour in `flang-new -fc1`, we can't re-use `OptInCC1FFlag`. Formatting is only available in consoles that support it and will normally mean that the message is printed in bold + color. Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com> Reviewed By: rovka Differential Revision: https://reviews.llvm.org/D126164 |
||
---|---|---|
.github | ||
bolt | ||
clang | ||
clang-tools-extra | ||
cmake | ||
compiler-rt | ||
cross-project-tests | ||
flang | ||
libc | ||
libclc | ||
libcxx | ||
libcxxabi | ||
libunwind | ||
lld | ||
lldb | ||
llvm | ||
llvm-libgcc | ||
mlir | ||
openmp | ||
polly | ||
pstl | ||
runtimes | ||
third-party | ||
utils | ||
.arcconfig | ||
.arclint | ||
.clang-format | ||
.clang-tidy | ||
.git-blame-ignore-revs | ||
.gitignore | ||
.mailmap | ||
CONTRIBUTING.md | ||
README.md | ||
SECURITY.md |
README.md
The LLVM Compiler Infrastructure
This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from here.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
cmake -S llvm -B build -G <generator> [options]
Some common build system generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some common options:
-
-DLLVM_ENABLE_PROJECTS='...'
and-DLLVM_ENABLE_RUNTIMES='...'
--- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build.LLVM_ENABLE_PROJECTS
can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl.LLVM_ENABLE_RUNTIMES
can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either inLLVM_ENABLE_PROJECTS
or inLLVM_ENABLE_RUNTIMES
.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local
). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like/usr
is not advised, but/usr/local
is fine. -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build build [-- [options] <target>]
or your build system specified above directly.-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, use the option-j NNN
, whereNNN
is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with-j$(nproc)
.
-
-
For more information see CMake.
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.
Getting in touch
Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.