forked from OSchip/llvm-project
49b6f81a74
Summary: This reverts D50129 / rL338834: [XRay][tools] Use Support/JSON.h in llvm-xray convert Abstractions are great. Readable code is great. JSON support library is a *good* idea. However unfortunately, there is an internal detail that one needs to be aware of in `llvm::json::Object` - it uses `llvm::DenseMap`. So for **every** `llvm::json::Object`, even if you only store a single `int` entry there, you pay the whole price of `llvm::DenseMap`. Unfortunately, it matters for `llvm-xray`. I was trying to analyse the `llvm-exegesis` analysis mode performance, and for that i wanted to view the LLVM X-Ray log visualization in Chrome trace viewer. And the `llvm-xray convert` is sluggish, and sometimes even ended up being killed by OOM. `xray-log.llvm-exegesis.lwZ0sT` was acquired from `llvm-exegesis` (compiled with ` -fxray-instruction-threshold=128`) analysis mode over `-benchmarks-file` with 10099 points (one full latency measurement set), with normal runtime of 0.387s. Timings: Old: (copied from D58580) ``` $ perf stat -r 5 ./bin/llvm-xray convert -sort -symbolize -instr_map=./bin/llvm-exegesis -output-format=trace_event -output=/tmp/trace.yml xray-log.llvm-exegesis.lwZ0sT Performance counter stats for './bin/llvm-xray convert -sort -symbolize -instr_map=./bin/llvm-exegesis -output-format=trace_event -output=/tmp/trace.yml xray-log.llvm-exegesis.lwZ0sT' (5 runs): 21346.24 msec task-clock # 1.000 CPUs utilized ( +- 0.28% ) 314 context-switches # 14.701 M/sec ( +- 59.13% ) 1 cpu-migrations # 0.037 M/sec ( +-100.00% ) 2181354 page-faults # 102191.251 M/sec ( +- 0.02% ) 85477442102 cycles # 4004415.019 GHz ( +- 0.28% ) (83.33%) 14526427066 stalled-cycles-frontend # 16.99% frontend cycles idle ( +- 0.70% ) (83.33%) 32371533721 stalled-cycles-backend # 37.87% backend cycles idle ( +- 0.27% ) (33.34%) 67896890228 instructions # 0.79 insn per cycle # 0.48 stalled cycles per insn ( +- 0.03% ) (50.00%) 14592654840 branches # 683631198.653 M/sec ( +- 0.02% ) (66.67%) 212207534 branch-misses # 1.45% of all branches ( +- 0.94% ) (83.34%) 21.3502 +- 0.0585 seconds time elapsed ( +- 0.27% ) ``` New: ``` $ perf stat -r 9 ./bin/llvm-xray convert -sort -symbolize -instr_map=./bin/llvm-exegesis -output-format=trace_event -output=/tmp/trace.yml xray-log.llvm-exegesis.lwZ0sT Performance counter stats for './bin/llvm-xray convert -sort -symbolize -instr_map=./bin/llvm-exegesis -output-format=trace_event -output=/tmp/trace.yml xray-log.llvm-exegesis.lwZ0sT' (9 runs): 7178.38 msec task-clock # 1.000 CPUs utilized ( +- 0.26% ) 182 context-switches # 25.402 M/sec ( +- 28.84% ) 0 cpu-migrations # 0.046 M/sec ( +- 70.71% ) 33701 page-faults # 4694.994 M/sec ( +- 0.88% ) 28761053971 cycles # 4006833.933 GHz ( +- 0.26% ) (83.32%) 2028297997 stalled-cycles-frontend # 7.05% frontend cycles idle ( +- 1.61% ) (83.32%) 10773154901 stalled-cycles-backend # 37.46% backend cycles idle ( +- 0.38% ) (33.36%) 36199132874 instructions # 1.26 insn per cycle # 0.30 stalled cycles per insn ( +- 0.03% ) (50.02%) 6434504227 branches # 896420204.421 M/sec ( +- 0.03% ) (66.68%) 73355176 branch-misses # 1.14% of all branches ( +- 1.46% ) (83.33%) 7.1807 +- 0.0190 seconds time elapsed ( +- 0.26% ) ``` So using `llvm::json` nearly triples run-time on that test case. (+3x is times, not percent.) Memory: Old: ``` total runtime: 39.88s. bytes allocated in total (ignoring deallocations): 79.07GB (1.98GB/s) calls to allocation functions: 33267816 (834135/s) temporary memory allocations: 5832298 (146235/s) peak heap memory consumption: 9.21GB peak RSS (including heaptrack overhead): 147.98GB total memory leaked: 1.09MB ``` New: ``` total runtime: 17.42s. bytes allocated in total (ignoring deallocations): 5.12GB (293.86MB/s) calls to allocation functions: 21382982 (1227284/s) temporary memory allocations: 232858 (13364/s) peak heap memory consumption: 350.69MB peak RSS (including heaptrack overhead): 2.55GB total memory leaked: 79.95KB ``` Diff: ``` total runtime: -22.46s. bytes allocated in total (ignoring deallocations): -73.95GB (3.29GB/s) calls to allocation functions: -11884834 (529155/s) temporary memory allocations: -5599440 (249307/s) peak heap memory consumption: -8.86GB peak RSS (including heaptrack overhead): 0B total memory leaked: -1.01MB ``` So using `llvm::json` increases *peak* memory consumption on *this* testcase ~+27x. And total allocation count +15x. Both of these numbers are times, *not* percent. And note that memory usage is clearly unbound with `llvm::json`, it directly depends on the length of the log, so peak memory consumption is always increasing. This isn't so with the dumb code, there is no accumulating memory consumption, peak memory consumption is fixed. Naturally, that means it will handle *much* larger logs without OOM'ing. Readability is good, but the price is simply unacceptable here. Too bad none of this analysis was done as part of the development/review D50129 itself. Reviewers: dberris, kpw, sammccall Reviewed By: dberris Subscribers: riccibruno, hans, courbet, jdoerfert, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D58584 llvm-svn: 354764 |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
func-id-helper.cpp | ||
func-id-helper.h | ||
llvm-xray.cpp | ||
trie-node.h | ||
xray-account.cpp | ||
xray-account.h | ||
xray-color-helper.cpp | ||
xray-color-helper.h | ||
xray-converter.cpp | ||
xray-converter.h | ||
xray-extract.cpp | ||
xray-fdr-dump.cpp | ||
xray-graph-diff.cpp | ||
xray-graph-diff.h | ||
xray-graph.cpp | ||
xray-graph.h | ||
xray-registry.cpp | ||
xray-registry.h | ||
xray-stacks.cpp |