llvm-project/llvm/lib/Target/AMDGPU/SIMachineFunctionInfo.h

963 lines
28 KiB
C++

//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUMachineFunction.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
class MachineFrameInfo;
class MachineFunction;
class SIMachineFunctionInfo;
class SIRegisterInfo;
class TargetRegisterClass;
class AMDGPUPseudoSourceValue : public PseudoSourceValue {
public:
enum AMDGPUPSVKind : unsigned {
PSVBuffer = PseudoSourceValue::TargetCustom,
PSVImage,
GWSResource
};
protected:
AMDGPUPseudoSourceValue(unsigned Kind, const TargetInstrInfo &TII)
: PseudoSourceValue(Kind, TII) {}
public:
bool isConstant(const MachineFrameInfo *) const override {
// This should probably be true for most images, but we will start by being
// conservative.
return false;
}
bool isAliased(const MachineFrameInfo *) const override {
return true;
}
bool mayAlias(const MachineFrameInfo *) const override {
return true;
}
};
class AMDGPUBufferPseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
explicit AMDGPUBufferPseudoSourceValue(const TargetInstrInfo &TII)
: AMDGPUPseudoSourceValue(PSVBuffer, TII) {}
static bool classof(const PseudoSourceValue *V) {
return V->kind() == PSVBuffer;
}
void printCustom(raw_ostream &OS) const override { OS << "BufferResource"; }
};
class AMDGPUImagePseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
// TODO: Is the img rsrc useful?
explicit AMDGPUImagePseudoSourceValue(const TargetInstrInfo &TII)
: AMDGPUPseudoSourceValue(PSVImage, TII) {}
static bool classof(const PseudoSourceValue *V) {
return V->kind() == PSVImage;
}
void printCustom(raw_ostream &OS) const override { OS << "ImageResource"; }
};
class AMDGPUGWSResourcePseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
explicit AMDGPUGWSResourcePseudoSourceValue(const TargetInstrInfo &TII)
: AMDGPUPseudoSourceValue(GWSResource, TII) {}
static bool classof(const PseudoSourceValue *V) {
return V->kind() == GWSResource;
}
// These are inaccessible memory from IR.
bool isAliased(const MachineFrameInfo *) const override {
return false;
}
// These are inaccessible memory from IR.
bool mayAlias(const MachineFrameInfo *) const override {
return false;
}
void printCustom(raw_ostream &OS) const override {
OS << "GWSResource";
}
};
namespace yaml {
struct SIArgument {
bool IsRegister;
union {
StringValue RegisterName;
unsigned StackOffset;
};
Optional<unsigned> Mask;
// Default constructor, which creates a stack argument.
SIArgument() : IsRegister(false), StackOffset(0) {}
SIArgument(const SIArgument &Other) {
IsRegister = Other.IsRegister;
if (IsRegister) {
::new ((void *)std::addressof(RegisterName))
StringValue(Other.RegisterName);
} else
StackOffset = Other.StackOffset;
Mask = Other.Mask;
}
SIArgument &operator=(const SIArgument &Other) {
IsRegister = Other.IsRegister;
if (IsRegister) {
::new ((void *)std::addressof(RegisterName))
StringValue(Other.RegisterName);
} else
StackOffset = Other.StackOffset;
Mask = Other.Mask;
return *this;
}
~SIArgument() {
if (IsRegister)
RegisterName.~StringValue();
}
// Helper to create a register or stack argument.
static inline SIArgument createArgument(bool IsReg) {
if (IsReg)
return SIArgument(IsReg);
return SIArgument();
}
private:
// Construct a register argument.
SIArgument(bool) : IsRegister(true), RegisterName() {}
};
template <> struct MappingTraits<SIArgument> {
static void mapping(IO &YamlIO, SIArgument &A) {
if (YamlIO.outputting()) {
if (A.IsRegister)
YamlIO.mapRequired("reg", A.RegisterName);
else
YamlIO.mapRequired("offset", A.StackOffset);
} else {
auto Keys = YamlIO.keys();
if (is_contained(Keys, "reg")) {
A = SIArgument::createArgument(true);
YamlIO.mapRequired("reg", A.RegisterName);
} else if (is_contained(Keys, "offset"))
YamlIO.mapRequired("offset", A.StackOffset);
else
YamlIO.setError("missing required key 'reg' or 'offset'");
}
YamlIO.mapOptional("mask", A.Mask);
}
static const bool flow = true;
};
struct SIArgumentInfo {
Optional<SIArgument> PrivateSegmentBuffer;
Optional<SIArgument> DispatchPtr;
Optional<SIArgument> QueuePtr;
Optional<SIArgument> KernargSegmentPtr;
Optional<SIArgument> DispatchID;
Optional<SIArgument> FlatScratchInit;
Optional<SIArgument> PrivateSegmentSize;
Optional<SIArgument> WorkGroupIDX;
Optional<SIArgument> WorkGroupIDY;
Optional<SIArgument> WorkGroupIDZ;
Optional<SIArgument> WorkGroupInfo;
Optional<SIArgument> PrivateSegmentWaveByteOffset;
Optional<SIArgument> ImplicitArgPtr;
Optional<SIArgument> ImplicitBufferPtr;
Optional<SIArgument> WorkItemIDX;
Optional<SIArgument> WorkItemIDY;
Optional<SIArgument> WorkItemIDZ;
};
template <> struct MappingTraits<SIArgumentInfo> {
static void mapping(IO &YamlIO, SIArgumentInfo &AI) {
YamlIO.mapOptional("privateSegmentBuffer", AI.PrivateSegmentBuffer);
YamlIO.mapOptional("dispatchPtr", AI.DispatchPtr);
YamlIO.mapOptional("queuePtr", AI.QueuePtr);
YamlIO.mapOptional("kernargSegmentPtr", AI.KernargSegmentPtr);
YamlIO.mapOptional("dispatchID", AI.DispatchID);
YamlIO.mapOptional("flatScratchInit", AI.FlatScratchInit);
YamlIO.mapOptional("privateSegmentSize", AI.PrivateSegmentSize);
YamlIO.mapOptional("workGroupIDX", AI.WorkGroupIDX);
YamlIO.mapOptional("workGroupIDY", AI.WorkGroupIDY);
YamlIO.mapOptional("workGroupIDZ", AI.WorkGroupIDZ);
YamlIO.mapOptional("workGroupInfo", AI.WorkGroupInfo);
YamlIO.mapOptional("privateSegmentWaveByteOffset",
AI.PrivateSegmentWaveByteOffset);
YamlIO.mapOptional("implicitArgPtr", AI.ImplicitArgPtr);
YamlIO.mapOptional("implicitBufferPtr", AI.ImplicitBufferPtr);
YamlIO.mapOptional("workItemIDX", AI.WorkItemIDX);
YamlIO.mapOptional("workItemIDY", AI.WorkItemIDY);
YamlIO.mapOptional("workItemIDZ", AI.WorkItemIDZ);
}
};
// Default to default mode for default calling convention.
struct SIMode {
bool IEEE = true;
bool DX10Clamp = true;
bool FP32InputDenormals = true;
bool FP32OutputDenormals = true;
bool FP64FP16InputDenormals = true;
bool FP64FP16OutputDenormals = true;
SIMode() = default;
SIMode(const AMDGPU::SIModeRegisterDefaults &Mode) {
IEEE = Mode.IEEE;
DX10Clamp = Mode.DX10Clamp;
FP32InputDenormals = Mode.FP32InputDenormals;
FP32OutputDenormals = Mode.FP32OutputDenormals;
FP64FP16InputDenormals = Mode.FP64FP16InputDenormals;
FP64FP16OutputDenormals = Mode.FP64FP16OutputDenormals;
}
bool operator ==(const SIMode Other) const {
return IEEE == Other.IEEE &&
DX10Clamp == Other.DX10Clamp &&
FP32InputDenormals == Other.FP32InputDenormals &&
FP32OutputDenormals == Other.FP32OutputDenormals &&
FP64FP16InputDenormals == Other.FP64FP16InputDenormals &&
FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals;
}
};
template <> struct MappingTraits<SIMode> {
static void mapping(IO &YamlIO, SIMode &Mode) {
YamlIO.mapOptional("ieee", Mode.IEEE, true);
YamlIO.mapOptional("dx10-clamp", Mode.DX10Clamp, true);
YamlIO.mapOptional("fp32-input-denormals", Mode.FP32InputDenormals, true);
YamlIO.mapOptional("fp32-output-denormals", Mode.FP32OutputDenormals, true);
YamlIO.mapOptional("fp64-fp16-input-denormals", Mode.FP64FP16InputDenormals, true);
YamlIO.mapOptional("fp64-fp16-output-denormals", Mode.FP64FP16OutputDenormals, true);
}
};
struct SIMachineFunctionInfo final : public yaml::MachineFunctionInfo {
uint64_t ExplicitKernArgSize = 0;
unsigned MaxKernArgAlign = 0;
unsigned LDSSize = 0;
Align DynLDSAlign;
bool IsEntryFunction = false;
bool NoSignedZerosFPMath = false;
bool MemoryBound = false;
bool WaveLimiter = false;
bool HasSpilledSGPRs = false;
bool HasSpilledVGPRs = false;
uint32_t HighBitsOf32BitAddress = 0;
// TODO: 10 may be a better default since it's the maximum.
unsigned Occupancy = 0;
StringValue ScratchRSrcReg = "$private_rsrc_reg";
StringValue FrameOffsetReg = "$fp_reg";
StringValue StackPtrOffsetReg = "$sp_reg";
Optional<SIArgumentInfo> ArgInfo;
SIMode Mode;
Optional<FrameIndex> ScavengeFI;
SIMachineFunctionInfo() = default;
SIMachineFunctionInfo(const llvm::SIMachineFunctionInfo &,
const TargetRegisterInfo &TRI,
const llvm::MachineFunction &MF);
void mappingImpl(yaml::IO &YamlIO) override;
~SIMachineFunctionInfo() = default;
};
template <> struct MappingTraits<SIMachineFunctionInfo> {
static void mapping(IO &YamlIO, SIMachineFunctionInfo &MFI) {
YamlIO.mapOptional("explicitKernArgSize", MFI.ExplicitKernArgSize,
UINT64_C(0));
YamlIO.mapOptional("maxKernArgAlign", MFI.MaxKernArgAlign, 0u);
YamlIO.mapOptional("ldsSize", MFI.LDSSize, 0u);
YamlIO.mapOptional("dynLDSAlign", MFI.DynLDSAlign, Align());
YamlIO.mapOptional("isEntryFunction", MFI.IsEntryFunction, false);
YamlIO.mapOptional("noSignedZerosFPMath", MFI.NoSignedZerosFPMath, false);
YamlIO.mapOptional("memoryBound", MFI.MemoryBound, false);
YamlIO.mapOptional("waveLimiter", MFI.WaveLimiter, false);
YamlIO.mapOptional("hasSpilledSGPRs", MFI.HasSpilledSGPRs, false);
YamlIO.mapOptional("hasSpilledVGPRs", MFI.HasSpilledVGPRs, false);
YamlIO.mapOptional("scratchRSrcReg", MFI.ScratchRSrcReg,
StringValue("$private_rsrc_reg"));
YamlIO.mapOptional("frameOffsetReg", MFI.FrameOffsetReg,
StringValue("$fp_reg"));
YamlIO.mapOptional("stackPtrOffsetReg", MFI.StackPtrOffsetReg,
StringValue("$sp_reg"));
YamlIO.mapOptional("argumentInfo", MFI.ArgInfo);
YamlIO.mapOptional("mode", MFI.Mode, SIMode());
YamlIO.mapOptional("highBitsOf32BitAddress",
MFI.HighBitsOf32BitAddress, 0u);
YamlIO.mapOptional("occupancy", MFI.Occupancy, 0);
YamlIO.mapOptional("scavengeFI", MFI.ScavengeFI);
}
};
} // end namespace yaml
/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
/// tells the hardware which interpolation parameters to load.
class SIMachineFunctionInfo final : public AMDGPUMachineFunction {
friend class GCNTargetMachine;
Register TIDReg = AMDGPU::NoRegister;
// Registers that may be reserved for spilling purposes. These may be the same
// as the input registers.
Register ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG;
// This is the the unswizzled offset from the current dispatch's scratch wave
// base to the beginning of the current function's frame.
Register FrameOffsetReg = AMDGPU::FP_REG;
// This is an ABI register used in the non-entry calling convention to
// communicate the unswizzled offset from the current dispatch's scratch wave
// base to the beginning of the new function's frame.
Register StackPtrOffsetReg = AMDGPU::SP_REG;
AMDGPUFunctionArgInfo ArgInfo;
// Graphics info.
unsigned PSInputAddr = 0;
unsigned PSInputEnable = 0;
/// Number of bytes of arguments this function has on the stack. If the callee
/// is expected to restore the argument stack this should be a multiple of 16,
/// all usable during a tail call.
///
/// The alternative would forbid tail call optimisation in some cases: if we
/// want to transfer control from a function with 8-bytes of stack-argument
/// space to a function with 16-bytes then misalignment of this value would
/// make a stack adjustment necessary, which could not be undone by the
/// callee.
unsigned BytesInStackArgArea = 0;
bool ReturnsVoid = true;
// A pair of default/requested minimum/maximum flat work group sizes.
// Minimum - first, maximum - second.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = {0, 0};
// A pair of default/requested minimum/maximum number of waves per execution
// unit. Minimum - first, maximum - second.
std::pair<unsigned, unsigned> WavesPerEU = {0, 0};
std::unique_ptr<const AMDGPUBufferPseudoSourceValue> BufferPSV;
std::unique_ptr<const AMDGPUImagePseudoSourceValue> ImagePSV;
std::unique_ptr<const AMDGPUGWSResourcePseudoSourceValue> GWSResourcePSV;
private:
unsigned LDSWaveSpillSize = 0;
unsigned NumUserSGPRs = 0;
unsigned NumSystemSGPRs = 0;
bool HasSpilledSGPRs = false;
bool HasSpilledVGPRs = false;
bool HasNonSpillStackObjects = false;
bool IsStackRealigned = false;
unsigned NumSpilledSGPRs = 0;
unsigned NumSpilledVGPRs = 0;
// Feature bits required for inputs passed in user SGPRs.
bool PrivateSegmentBuffer : 1;
bool DispatchPtr : 1;
bool QueuePtr : 1;
bool KernargSegmentPtr : 1;
bool DispatchID : 1;
bool FlatScratchInit : 1;
// Feature bits required for inputs passed in system SGPRs.
bool WorkGroupIDX : 1; // Always initialized.
bool WorkGroupIDY : 1;
bool WorkGroupIDZ : 1;
bool WorkGroupInfo : 1;
bool PrivateSegmentWaveByteOffset : 1;
bool WorkItemIDX : 1; // Always initialized.
bool WorkItemIDY : 1;
bool WorkItemIDZ : 1;
// Private memory buffer
// Compute directly in sgpr[0:1]
// Other shaders indirect 64-bits at sgpr[0:1]
bool ImplicitBufferPtr : 1;
// Pointer to where the ABI inserts special kernel arguments separate from the
// user arguments. This is an offset from the KernargSegmentPtr.
bool ImplicitArgPtr : 1;
// The hard-wired high half of the address of the global information table
// for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since
// current hardware only allows a 16 bit value.
unsigned GITPtrHigh;
unsigned HighBitsOf32BitAddress;
unsigned GDSSize;
// Current recorded maximum possible occupancy.
unsigned Occupancy;
mutable Optional<bool> UsesAGPRs;
MCPhysReg getNextUserSGPR() const;
MCPhysReg getNextSystemSGPR() const;
public:
struct SpilledReg {
Register VGPR;
int Lane = -1;
SpilledReg() = default;
SpilledReg(Register R, int L) : VGPR (R), Lane (L) {}
bool hasLane() { return Lane != -1;}
bool hasReg() { return VGPR != 0;}
};
struct SGPRSpillVGPR {
// VGPR used for SGPR spills
Register VGPR;
// If the VGPR is is used for SGPR spills in a non-entrypoint function, the
// stack slot used to save/restore it in the prolog/epilog.
Optional<int> FI;
SGPRSpillVGPR(Register V, Optional<int> F) : VGPR(V), FI(F) {}
};
struct VGPRSpillToAGPR {
SmallVector<MCPhysReg, 32> Lanes;
bool FullyAllocated = false;
bool IsDead = false;
};
// Map WWM VGPR to a stack slot that is used to save/restore it in the
// prolog/epilog.
MapVector<Register, Optional<int>> WWMReservedRegs;
private:
// Track VGPR + wave index for each subregister of the SGPR spilled to
// frameindex key.
DenseMap<int, std::vector<SpilledReg>> SGPRToVGPRSpills;
unsigned NumVGPRSpillLanes = 0;
SmallVector<SGPRSpillVGPR, 2> SpillVGPRs;
DenseMap<int, VGPRSpillToAGPR> VGPRToAGPRSpills;
// AGPRs used for VGPR spills.
SmallVector<MCPhysReg, 32> SpillAGPR;
// VGPRs used for AGPR spills.
SmallVector<MCPhysReg, 32> SpillVGPR;
// Emergency stack slot. Sometimes, we create this before finalizing the stack
// frame, so save it here and add it to the RegScavenger later.
Optional<int> ScavengeFI;
public: // FIXME
/// If this is set, an SGPR used for save/restore of the register used for the
/// frame pointer.
Register SGPRForFPSaveRestoreCopy;
Optional<int> FramePointerSaveIndex;
/// If this is set, an SGPR used for save/restore of the register used for the
/// base pointer.
Register SGPRForBPSaveRestoreCopy;
Optional<int> BasePointerSaveIndex;
bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg);
public:
SIMachineFunctionInfo(const MachineFunction &MF);
bool initializeBaseYamlFields(const yaml::SIMachineFunctionInfo &YamlMFI,
const MachineFunction &MF,
PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange);
void reserveWWMRegister(Register Reg, Optional<int> FI) {
WWMReservedRegs.insert(std::make_pair(Reg, FI));
}
ArrayRef<SpilledReg> getSGPRToVGPRSpills(int FrameIndex) const {
auto I = SGPRToVGPRSpills.find(FrameIndex);
return (I == SGPRToVGPRSpills.end()) ?
ArrayRef<SpilledReg>() : makeArrayRef(I->second);
}
ArrayRef<SGPRSpillVGPR> getSGPRSpillVGPRs() const { return SpillVGPRs; }
void setSGPRSpillVGPRs(Register NewVGPR, Optional<int> newFI, int Index) {
SpillVGPRs[Index].VGPR = NewVGPR;
SpillVGPRs[Index].FI = newFI;
}
bool removeVGPRForSGPRSpill(Register ReservedVGPR, MachineFunction &MF);
ArrayRef<MCPhysReg> getAGPRSpillVGPRs() const {
return SpillAGPR;
}
ArrayRef<MCPhysReg> getVGPRSpillAGPRs() const {
return SpillVGPR;
}
MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const {
auto I = VGPRToAGPRSpills.find(FrameIndex);
return (I == VGPRToAGPRSpills.end()) ? (MCPhysReg)AMDGPU::NoRegister
: I->second.Lanes[Lane];
}
void setVGPRToAGPRSpillDead(int FrameIndex) {
auto I = VGPRToAGPRSpills.find(FrameIndex);
if (I != VGPRToAGPRSpills.end())
I->second.IsDead = true;
}
bool haveFreeLanesForSGPRSpill(const MachineFunction &MF,
unsigned NumLane) const;
bool allocateSGPRSpillToVGPR(MachineFunction &MF, int FI);
bool allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR);
void removeDeadFrameIndices(MachineFrameInfo &MFI);
int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI);
Optional<int> getOptionalScavengeFI() const { return ScavengeFI; }
bool hasCalculatedTID() const { return TIDReg != 0; };
Register getTIDReg() const { return TIDReg; };
void setTIDReg(Register Reg) { TIDReg = Reg; }
unsigned getBytesInStackArgArea() const {
return BytesInStackArgArea;
}
void setBytesInStackArgArea(unsigned Bytes) {
BytesInStackArgArea = Bytes;
}
// Add user SGPRs.
Register addPrivateSegmentBuffer(const SIRegisterInfo &TRI);
Register addDispatchPtr(const SIRegisterInfo &TRI);
Register addQueuePtr(const SIRegisterInfo &TRI);
Register addKernargSegmentPtr(const SIRegisterInfo &TRI);
Register addDispatchID(const SIRegisterInfo &TRI);
Register addFlatScratchInit(const SIRegisterInfo &TRI);
Register addImplicitBufferPtr(const SIRegisterInfo &TRI);
// Add system SGPRs.
Register addWorkGroupIDX() {
ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDX.getRegister();
}
Register addWorkGroupIDY() {
ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDY.getRegister();
}
Register addWorkGroupIDZ() {
ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDZ.getRegister();
}
Register addWorkGroupInfo() {
ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupInfo.getRegister();
}
// Add special VGPR inputs
void setWorkItemIDX(ArgDescriptor Arg) {
ArgInfo.WorkItemIDX = Arg;
}
void setWorkItemIDY(ArgDescriptor Arg) {
ArgInfo.WorkItemIDY = Arg;
}
void setWorkItemIDZ(ArgDescriptor Arg) {
ArgInfo.WorkItemIDZ = Arg;
}
Register addPrivateSegmentWaveByteOffset() {
ArgInfo.PrivateSegmentWaveByteOffset
= ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
void setPrivateSegmentWaveByteOffset(Register Reg) {
ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg);
}
bool hasPrivateSegmentBuffer() const {
return PrivateSegmentBuffer;
}
bool hasDispatchPtr() const {
return DispatchPtr;
}
bool hasQueuePtr() const {
return QueuePtr;
}
bool hasKernargSegmentPtr() const {
return KernargSegmentPtr;
}
bool hasDispatchID() const {
return DispatchID;
}
bool hasFlatScratchInit() const {
return FlatScratchInit;
}
bool hasWorkGroupIDX() const {
return WorkGroupIDX;
}
bool hasWorkGroupIDY() const {
return WorkGroupIDY;
}
bool hasWorkGroupIDZ() const {
return WorkGroupIDZ;
}
bool hasWorkGroupInfo() const {
return WorkGroupInfo;
}
bool hasPrivateSegmentWaveByteOffset() const {
return PrivateSegmentWaveByteOffset;
}
bool hasWorkItemIDX() const {
return WorkItemIDX;
}
bool hasWorkItemIDY() const {
return WorkItemIDY;
}
bool hasWorkItemIDZ() const {
return WorkItemIDZ;
}
bool hasImplicitArgPtr() const {
return ImplicitArgPtr;
}
bool hasImplicitBufferPtr() const {
return ImplicitBufferPtr;
}
AMDGPUFunctionArgInfo &getArgInfo() {
return ArgInfo;
}
const AMDGPUFunctionArgInfo &getArgInfo() const {
return ArgInfo;
}
std::tuple<const ArgDescriptor *, const TargetRegisterClass *, LLT>
getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
return ArgInfo.getPreloadedValue(Value);
}
MCRegister getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
auto Arg = std::get<0>(ArgInfo.getPreloadedValue(Value));
return Arg ? Arg->getRegister() : MCRegister();
}
unsigned getGITPtrHigh() const {
return GITPtrHigh;
}
Register getGITPtrLoReg(const MachineFunction &MF) const;
uint32_t get32BitAddressHighBits() const {
return HighBitsOf32BitAddress;
}
unsigned getGDSSize() const {
return GDSSize;
}
unsigned getNumUserSGPRs() const {
return NumUserSGPRs;
}
unsigned getNumPreloadedSGPRs() const {
return NumUserSGPRs + NumSystemSGPRs;
}
Register getPrivateSegmentWaveByteOffsetSystemSGPR() const {
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
/// Returns the physical register reserved for use as the resource
/// descriptor for scratch accesses.
Register getScratchRSrcReg() const {
return ScratchRSrcReg;
}
void setScratchRSrcReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
ScratchRSrcReg = Reg;
}
Register getFrameOffsetReg() const {
return FrameOffsetReg;
}
void setFrameOffsetReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
FrameOffsetReg = Reg;
}
void setStackPtrOffsetReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
StackPtrOffsetReg = Reg;
}
// Note the unset value for this is AMDGPU::SP_REG rather than
// NoRegister. This is mostly a workaround for MIR tests where state that
// can't be directly computed from the function is not preserved in serialized
// MIR.
Register getStackPtrOffsetReg() const {
return StackPtrOffsetReg;
}
Register getQueuePtrUserSGPR() const {
return ArgInfo.QueuePtr.getRegister();
}
Register getImplicitBufferPtrUserSGPR() const {
return ArgInfo.ImplicitBufferPtr.getRegister();
}
bool hasSpilledSGPRs() const {
return HasSpilledSGPRs;
}
void setHasSpilledSGPRs(bool Spill = true) {
HasSpilledSGPRs = Spill;
}
bool hasSpilledVGPRs() const {
return HasSpilledVGPRs;
}
void setHasSpilledVGPRs(bool Spill = true) {
HasSpilledVGPRs = Spill;
}
bool hasNonSpillStackObjects() const {
return HasNonSpillStackObjects;
}
void setHasNonSpillStackObjects(bool StackObject = true) {
HasNonSpillStackObjects = StackObject;
}
bool isStackRealigned() const {
return IsStackRealigned;
}
void setIsStackRealigned(bool Realigned = true) {
IsStackRealigned = Realigned;
}
unsigned getNumSpilledSGPRs() const {
return NumSpilledSGPRs;
}
unsigned getNumSpilledVGPRs() const {
return NumSpilledVGPRs;
}
void addToSpilledSGPRs(unsigned num) {
NumSpilledSGPRs += num;
}
void addToSpilledVGPRs(unsigned num) {
NumSpilledVGPRs += num;
}
unsigned getPSInputAddr() const {
return PSInputAddr;
}
unsigned getPSInputEnable() const {
return PSInputEnable;
}
bool isPSInputAllocated(unsigned Index) const {
return PSInputAddr & (1 << Index);
}
void markPSInputAllocated(unsigned Index) {
PSInputAddr |= 1 << Index;
}
void markPSInputEnabled(unsigned Index) {
PSInputEnable |= 1 << Index;
}
bool returnsVoid() const {
return ReturnsVoid;
}
void setIfReturnsVoid(bool Value) {
ReturnsVoid = Value;
}
/// \returns A pair of default/requested minimum/maximum flat work group sizes
/// for this function.
std::pair<unsigned, unsigned> getFlatWorkGroupSizes() const {
return FlatWorkGroupSizes;
}
/// \returns Default/requested minimum flat work group size for this function.
unsigned getMinFlatWorkGroupSize() const {
return FlatWorkGroupSizes.first;
}
/// \returns Default/requested maximum flat work group size for this function.
unsigned getMaxFlatWorkGroupSize() const {
return FlatWorkGroupSizes.second;
}
/// \returns A pair of default/requested minimum/maximum number of waves per
/// execution unit.
std::pair<unsigned, unsigned> getWavesPerEU() const {
return WavesPerEU;
}
/// \returns Default/requested minimum number of waves per execution unit.
unsigned getMinWavesPerEU() const {
return WavesPerEU.first;
}
/// \returns Default/requested maximum number of waves per execution unit.
unsigned getMaxWavesPerEU() const {
return WavesPerEU.second;
}
/// \returns SGPR used for \p Dim's work group ID.
Register getWorkGroupIDSGPR(unsigned Dim) const {
switch (Dim) {
case 0:
assert(hasWorkGroupIDX());
return ArgInfo.WorkGroupIDX.getRegister();
case 1:
assert(hasWorkGroupIDY());
return ArgInfo.WorkGroupIDY.getRegister();
case 2:
assert(hasWorkGroupIDZ());
return ArgInfo.WorkGroupIDZ.getRegister();
}
llvm_unreachable("unexpected dimension");
}
unsigned getLDSWaveSpillSize() const {
return LDSWaveSpillSize;
}
const AMDGPUBufferPseudoSourceValue *getBufferPSV(const SIInstrInfo &TII) {
if (!BufferPSV)
BufferPSV = std::make_unique<AMDGPUBufferPseudoSourceValue>(TII);
return BufferPSV.get();
}
const AMDGPUImagePseudoSourceValue *getImagePSV(const SIInstrInfo &TII) {
if (!ImagePSV)
ImagePSV = std::make_unique<AMDGPUImagePseudoSourceValue>(TII);
return ImagePSV.get();
}
const AMDGPUGWSResourcePseudoSourceValue *getGWSPSV(const SIInstrInfo &TII) {
if (!GWSResourcePSV) {
GWSResourcePSV =
std::make_unique<AMDGPUGWSResourcePseudoSourceValue>(TII);
}
return GWSResourcePSV.get();
}
unsigned getOccupancy() const {
return Occupancy;
}
unsigned getMinAllowedOccupancy() const {
if (!isMemoryBound() && !needsWaveLimiter())
return Occupancy;
return (Occupancy < 4) ? Occupancy : 4;
}
void limitOccupancy(const MachineFunction &MF);
void limitOccupancy(unsigned Limit) {
if (Occupancy > Limit)
Occupancy = Limit;
}
void increaseOccupancy(const MachineFunction &MF, unsigned Limit) {
if (Occupancy < Limit)
Occupancy = Limit;
limitOccupancy(MF);
}
// \returns true if a function needs or may need AGPRs.
bool usesAGPRs(const MachineFunction &MF) const;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H