forked from OSchip/llvm-project
8244 lines
287 KiB
C++
8244 lines
287 KiB
C++
//===- SIInstrInfo.cpp - SI Instruction Information ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// SI Implementation of TargetInstrInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIInstrInfo.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUInstrInfo.h"
|
|
#include "GCNHazardRecognizer.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "si-instr-info"
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "AMDGPUGenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
|
|
class AAResults;
|
|
|
|
namespace AMDGPU {
|
|
#define GET_D16ImageDimIntrinsics_IMPL
|
|
#define GET_ImageDimIntrinsicTable_IMPL
|
|
#define GET_RsrcIntrinsics_IMPL
|
|
#include "AMDGPUGenSearchableTables.inc"
|
|
}
|
|
}
|
|
|
|
|
|
// Must be at least 4 to be able to branch over minimum unconditional branch
|
|
// code. This is only for making it possible to write reasonably small tests for
|
|
// long branches.
|
|
static cl::opt<unsigned>
|
|
BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16),
|
|
cl::desc("Restrict range of branch instructions (DEBUG)"));
|
|
|
|
static cl::opt<bool> Fix16BitCopies(
|
|
"amdgpu-fix-16-bit-physreg-copies",
|
|
cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"),
|
|
cl::init(true),
|
|
cl::ReallyHidden);
|
|
|
|
SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST)
|
|
: AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN),
|
|
RI(ST), ST(ST) {
|
|
SchedModel.init(&ST);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetInstrInfo callbacks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static unsigned getNumOperandsNoGlue(SDNode *Node) {
|
|
unsigned N = Node->getNumOperands();
|
|
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
|
|
--N;
|
|
return N;
|
|
}
|
|
|
|
/// Returns true if both nodes have the same value for the given
|
|
/// operand \p Op, or if both nodes do not have this operand.
|
|
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
|
|
unsigned Opc0 = N0->getMachineOpcode();
|
|
unsigned Opc1 = N1->getMachineOpcode();
|
|
|
|
int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
|
|
int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
|
|
|
|
if (Op0Idx == -1 && Op1Idx == -1)
|
|
return true;
|
|
|
|
|
|
if ((Op0Idx == -1 && Op1Idx != -1) ||
|
|
(Op1Idx == -1 && Op0Idx != -1))
|
|
return false;
|
|
|
|
// getNamedOperandIdx returns the index for the MachineInstr's operands,
|
|
// which includes the result as the first operand. We are indexing into the
|
|
// MachineSDNode's operands, so we need to skip the result operand to get
|
|
// the real index.
|
|
--Op0Idx;
|
|
--Op1Idx;
|
|
|
|
return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
|
|
}
|
|
|
|
bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AAResults *AA) const {
|
|
if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isSDWA(MI) || isSALU(MI)) {
|
|
// Normally VALU use of exec would block the rematerialization, but that
|
|
// is OK in this case to have an implicit exec read as all VALU do.
|
|
// We really want all of the generic logic for this except for this.
|
|
|
|
// Another potential implicit use is mode register. The core logic of
|
|
// the RA will not attempt rematerialization if mode is set anywhere
|
|
// in the function, otherwise it is safe since mode is not changed.
|
|
|
|
// There is difference to generic method which does not allow
|
|
// rematerialization if there are virtual register uses. We allow this,
|
|
// therefore this method includes SOP instructions as well.
|
|
return !MI.hasImplicitDef() &&
|
|
MI.getNumImplicitOperands() == MI.getDesc().getNumImplicitUses() &&
|
|
!MI.mayRaiseFPException();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const {
|
|
// Any implicit use of exec by VALU is not a real register read.
|
|
return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() &&
|
|
isVALU(*MO.getParent());
|
|
}
|
|
|
|
bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
|
|
int64_t &Offset0,
|
|
int64_t &Offset1) const {
|
|
if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
|
|
return false;
|
|
|
|
unsigned Opc0 = Load0->getMachineOpcode();
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
|
|
// Make sure both are actually loads.
|
|
if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
|
|
return false;
|
|
|
|
if (isDS(Opc0) && isDS(Opc1)) {
|
|
|
|
// FIXME: Handle this case:
|
|
if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
|
|
return false;
|
|
|
|
// Check base reg.
|
|
if (Load0->getOperand(0) != Load1->getOperand(0))
|
|
return false;
|
|
|
|
// Skip read2 / write2 variants for simplicity.
|
|
// TODO: We should report true if the used offsets are adjacent (excluded
|
|
// st64 versions).
|
|
int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
|
|
int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
|
|
if (Offset0Idx == -1 || Offset1Idx == -1)
|
|
return false;
|
|
|
|
// XXX - be careful of datalesss loads
|
|
// getNamedOperandIdx returns the index for MachineInstrs. Since they
|
|
// include the output in the operand list, but SDNodes don't, we need to
|
|
// subtract the index by one.
|
|
Offset0Idx -= get(Opc0).NumDefs;
|
|
Offset1Idx -= get(Opc1).NumDefs;
|
|
Offset0 = cast<ConstantSDNode>(Load0->getOperand(Offset0Idx))->getZExtValue();
|
|
Offset1 = cast<ConstantSDNode>(Load1->getOperand(Offset1Idx))->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
if (isSMRD(Opc0) && isSMRD(Opc1)) {
|
|
// Skip time and cache invalidation instructions.
|
|
if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::sbase) == -1 ||
|
|
AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::sbase) == -1)
|
|
return false;
|
|
|
|
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
|
|
|
|
// Check base reg.
|
|
if (Load0->getOperand(0) != Load1->getOperand(0))
|
|
return false;
|
|
|
|
const ConstantSDNode *Load0Offset =
|
|
dyn_cast<ConstantSDNode>(Load0->getOperand(1));
|
|
const ConstantSDNode *Load1Offset =
|
|
dyn_cast<ConstantSDNode>(Load1->getOperand(1));
|
|
|
|
if (!Load0Offset || !Load1Offset)
|
|
return false;
|
|
|
|
Offset0 = Load0Offset->getZExtValue();
|
|
Offset1 = Load1Offset->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
// MUBUF and MTBUF can access the same addresses.
|
|
if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
|
|
|
|
// MUBUF and MTBUF have vaddr at different indices.
|
|
if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
|
|
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
|
|
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
|
|
return false;
|
|
|
|
int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
|
|
int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
|
|
|
|
if (OffIdx0 == -1 || OffIdx1 == -1)
|
|
return false;
|
|
|
|
// getNamedOperandIdx returns the index for MachineInstrs. Since they
|
|
// include the output in the operand list, but SDNodes don't, we need to
|
|
// subtract the index by one.
|
|
OffIdx0 -= get(Opc0).NumDefs;
|
|
OffIdx1 -= get(Opc1).NumDefs;
|
|
|
|
SDValue Off0 = Load0->getOperand(OffIdx0);
|
|
SDValue Off1 = Load1->getOperand(OffIdx1);
|
|
|
|
// The offset might be a FrameIndexSDNode.
|
|
if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
|
|
return false;
|
|
|
|
Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
|
|
Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isStride64(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AMDGPU::DS_READ2ST64_B32:
|
|
case AMDGPU::DS_READ2ST64_B64:
|
|
case AMDGPU::DS_WRITE2ST64_B32:
|
|
case AMDGPU::DS_WRITE2ST64_B64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
|
|
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore())
|
|
return false;
|
|
|
|
unsigned Opc = LdSt.getOpcode();
|
|
OffsetIsScalable = false;
|
|
const MachineOperand *BaseOp, *OffsetOp;
|
|
int DataOpIdx;
|
|
|
|
if (isDS(LdSt)) {
|
|
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr);
|
|
OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
if (OffsetOp) {
|
|
// Normal, single offset LDS instruction.
|
|
if (!BaseOp) {
|
|
// DS_CONSUME/DS_APPEND use M0 for the base address.
|
|
// TODO: find the implicit use operand for M0 and use that as BaseOp?
|
|
return false;
|
|
}
|
|
BaseOps.push_back(BaseOp);
|
|
Offset = OffsetOp->getImm();
|
|
// Get appropriate operand, and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
if (DataOpIdx == -1)
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
} else {
|
|
// The 2 offset instructions use offset0 and offset1 instead. We can treat
|
|
// these as a load with a single offset if the 2 offsets are consecutive.
|
|
// We will use this for some partially aligned loads.
|
|
const MachineOperand *Offset0Op =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset0);
|
|
const MachineOperand *Offset1Op =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset1);
|
|
|
|
unsigned Offset0 = Offset0Op->getImm();
|
|
unsigned Offset1 = Offset1Op->getImm();
|
|
if (Offset0 + 1 != Offset1)
|
|
return false;
|
|
|
|
// Each of these offsets is in element sized units, so we need to convert
|
|
// to bytes of the individual reads.
|
|
|
|
unsigned EltSize;
|
|
if (LdSt.mayLoad())
|
|
EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16;
|
|
else {
|
|
assert(LdSt.mayStore());
|
|
int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
|
|
EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8;
|
|
}
|
|
|
|
if (isStride64(Opc))
|
|
EltSize *= 64;
|
|
|
|
BaseOps.push_back(BaseOp);
|
|
Offset = EltSize * Offset0;
|
|
// Get appropriate operand(s), and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
if (DataOpIdx == -1) {
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
|
|
Width += getOpSize(LdSt, DataOpIdx);
|
|
} else {
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (isMUBUF(LdSt) || isMTBUF(LdSt)) {
|
|
const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc);
|
|
if (!RSrc) // e.g. BUFFER_WBINVL1_VOL
|
|
return false;
|
|
BaseOps.push_back(RSrc);
|
|
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
|
|
if (BaseOp && !BaseOp->isFI())
|
|
BaseOps.push_back(BaseOp);
|
|
const MachineOperand *OffsetImm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
Offset = OffsetImm->getImm();
|
|
const MachineOperand *SOffset =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::soffset);
|
|
if (SOffset) {
|
|
if (SOffset->isReg())
|
|
BaseOps.push_back(SOffset);
|
|
else
|
|
Offset += SOffset->getImm();
|
|
}
|
|
// Get appropriate operand, and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
if (DataOpIdx == -1)
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
return true;
|
|
}
|
|
|
|
if (isMIMG(LdSt)) {
|
|
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
|
|
BaseOps.push_back(&LdSt.getOperand(SRsrcIdx));
|
|
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
|
|
if (VAddr0Idx >= 0) {
|
|
// GFX10 possible NSA encoding.
|
|
for (int I = VAddr0Idx; I < SRsrcIdx; ++I)
|
|
BaseOps.push_back(&LdSt.getOperand(I));
|
|
} else {
|
|
BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr));
|
|
}
|
|
Offset = 0;
|
|
// Get appropriate operand, and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
return true;
|
|
}
|
|
|
|
if (isSMRD(LdSt)) {
|
|
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase);
|
|
if (!BaseOp) // e.g. S_MEMTIME
|
|
return false;
|
|
BaseOps.push_back(BaseOp);
|
|
OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
Offset = OffsetOp ? OffsetOp->getImm() : 0;
|
|
// Get appropriate operand, and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
return true;
|
|
}
|
|
|
|
if (isFLAT(LdSt)) {
|
|
// Instructions have either vaddr or saddr or both or none.
|
|
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
|
|
if (BaseOp)
|
|
BaseOps.push_back(BaseOp);
|
|
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr);
|
|
if (BaseOp)
|
|
BaseOps.push_back(BaseOp);
|
|
Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm();
|
|
// Get appropriate operand, and compute width accordingly.
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
if (DataOpIdx == -1)
|
|
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
|
|
Width = getOpSize(LdSt, DataOpIdx);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
|
|
ArrayRef<const MachineOperand *> BaseOps1,
|
|
const MachineInstr &MI2,
|
|
ArrayRef<const MachineOperand *> BaseOps2) {
|
|
// Only examine the first "base" operand of each instruction, on the
|
|
// assumption that it represents the real base address of the memory access.
|
|
// Other operands are typically offsets or indices from this base address.
|
|
if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
|
|
return true;
|
|
|
|
if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
|
|
return false;
|
|
|
|
auto MO1 = *MI1.memoperands_begin();
|
|
auto MO2 = *MI2.memoperands_begin();
|
|
if (MO1->getAddrSpace() != MO2->getAddrSpace())
|
|
return false;
|
|
|
|
auto Base1 = MO1->getValue();
|
|
auto Base2 = MO2->getValue();
|
|
if (!Base1 || !Base2)
|
|
return false;
|
|
Base1 = getUnderlyingObject(Base1);
|
|
Base2 = getUnderlyingObject(Base2);
|
|
|
|
if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
|
|
return false;
|
|
|
|
return Base1 == Base2;
|
|
}
|
|
|
|
bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
|
|
ArrayRef<const MachineOperand *> BaseOps2,
|
|
unsigned NumLoads,
|
|
unsigned NumBytes) const {
|
|
// If the mem ops (to be clustered) do not have the same base ptr, then they
|
|
// should not be clustered
|
|
if (!BaseOps1.empty() && !BaseOps2.empty()) {
|
|
const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
|
|
const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
|
|
if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
|
|
return false;
|
|
} else if (!BaseOps1.empty() || !BaseOps2.empty()) {
|
|
// If only one base op is empty, they do not have the same base ptr
|
|
return false;
|
|
}
|
|
|
|
// In order to avoid regester pressure, on an average, the number of DWORDS
|
|
// loaded together by all clustered mem ops should not exceed 8. This is an
|
|
// empirical value based on certain observations and performance related
|
|
// experiments.
|
|
// The good thing about this heuristic is - it avoids clustering of too many
|
|
// sub-word loads, and also avoids clustering of wide loads. Below is the
|
|
// brief summary of how the heuristic behaves for various `LoadSize`.
|
|
// (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops
|
|
// (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops
|
|
// (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops
|
|
// (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops
|
|
// (5) LoadSize >= 17: do not cluster
|
|
const unsigned LoadSize = NumBytes / NumLoads;
|
|
const unsigned NumDWORDs = ((LoadSize + 3) / 4) * NumLoads;
|
|
return NumDWORDs <= 8;
|
|
}
|
|
|
|
// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
|
|
// the first 16 loads will be interleaved with the stores, and the next 16 will
|
|
// be clustered as expected. It should really split into 2 16 store batches.
|
|
//
|
|
// Loads are clustered until this returns false, rather than trying to schedule
|
|
// groups of stores. This also means we have to deal with saying different
|
|
// address space loads should be clustered, and ones which might cause bank
|
|
// conflicts.
|
|
//
|
|
// This might be deprecated so it might not be worth that much effort to fix.
|
|
bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
|
|
int64_t Offset0, int64_t Offset1,
|
|
unsigned NumLoads) const {
|
|
assert(Offset1 > Offset0 &&
|
|
"Second offset should be larger than first offset!");
|
|
// If we have less than 16 loads in a row, and the offsets are within 64
|
|
// bytes, then schedule together.
|
|
|
|
// A cacheline is 64 bytes (for global memory).
|
|
return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
|
|
}
|
|
|
|
static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc,
|
|
const char *Msg = "illegal SGPR to VGPR copy") {
|
|
MachineFunction *MF = MBB.getParent();
|
|
DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error);
|
|
LLVMContext &C = MF->getFunction().getContext();
|
|
C.diagnose(IllegalCopy);
|
|
|
|
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
/// Handle copying from SGPR to AGPR, or from AGPR to AGPR. It is not possible
|
|
/// to directly copy, so an intermediate VGPR needs to be used.
|
|
static void indirectCopyToAGPR(const SIInstrInfo &TII,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc,
|
|
RegScavenger &RS,
|
|
Register ImpDefSuperReg = Register(),
|
|
Register ImpUseSuperReg = Register()) {
|
|
const SIRegisterInfo &RI = TII.getRegisterInfo();
|
|
|
|
assert(AMDGPU::SReg_32RegClass.contains(SrcReg) ||
|
|
AMDGPU::AGPR_32RegClass.contains(SrcReg));
|
|
|
|
// First try to find defining accvgpr_write to avoid temporary registers.
|
|
for (auto Def = MI, E = MBB.begin(); Def != E; ) {
|
|
--Def;
|
|
if (!Def->definesRegister(SrcReg, &RI))
|
|
continue;
|
|
if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
|
|
break;
|
|
|
|
MachineOperand &DefOp = Def->getOperand(1);
|
|
assert(DefOp.isReg() || DefOp.isImm());
|
|
|
|
if (DefOp.isReg()) {
|
|
// Check that register source operand if not clobbered before MI.
|
|
// Immediate operands are always safe to propagate.
|
|
bool SafeToPropagate = true;
|
|
for (auto I = Def; I != MI && SafeToPropagate; ++I)
|
|
if (I->modifiesRegister(DefOp.getReg(), &RI))
|
|
SafeToPropagate = false;
|
|
|
|
if (!SafeToPropagate)
|
|
break;
|
|
|
|
DefOp.setIsKill(false);
|
|
}
|
|
|
|
MachineInstrBuilder Builder =
|
|
BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
|
|
.add(DefOp);
|
|
if (ImpDefSuperReg)
|
|
Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit);
|
|
|
|
if (ImpUseSuperReg) {
|
|
Builder.addReg(ImpUseSuperReg,
|
|
getKillRegState(KillSrc) | RegState::Implicit);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
RS.enterBasicBlock(MBB);
|
|
RS.forward(MI);
|
|
|
|
// Ideally we want to have three registers for a long reg_sequence copy
|
|
// to hide 2 waitstates between v_mov_b32 and accvgpr_write.
|
|
unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
|
|
*MBB.getParent());
|
|
|
|
// Registers in the sequence are allocated contiguously so we can just
|
|
// use register number to pick one of three round-robin temps.
|
|
unsigned RegNo = DestReg % 3;
|
|
Register Tmp = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0);
|
|
if (!Tmp)
|
|
report_fatal_error("Cannot scavenge VGPR to copy to AGPR");
|
|
RS.setRegUsed(Tmp);
|
|
|
|
if (!TII.getSubtarget().hasGFX90AInsts()) {
|
|
// Only loop through if there are any free registers left, otherwise
|
|
// scavenger may report a fatal error without emergency spill slot
|
|
// or spill with the slot.
|
|
while (RegNo-- && RS.FindUnusedReg(&AMDGPU::VGPR_32RegClass)) {
|
|
Register Tmp2 = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0);
|
|
if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs)
|
|
break;
|
|
Tmp = Tmp2;
|
|
RS.setRegUsed(Tmp);
|
|
}
|
|
}
|
|
|
|
// Insert copy to temporary VGPR.
|
|
unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32;
|
|
if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) {
|
|
TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64;
|
|
} else {
|
|
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
|
|
}
|
|
|
|
MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
if (ImpUseSuperReg) {
|
|
UseBuilder.addReg(ImpUseSuperReg,
|
|
getKillRegState(KillSrc) | RegState::Implicit);
|
|
}
|
|
|
|
MachineInstrBuilder DefBuilder
|
|
= BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
|
|
.addReg(Tmp, RegState::Kill);
|
|
|
|
if (ImpDefSuperReg)
|
|
DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit);
|
|
}
|
|
|
|
static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, const DebugLoc &DL,
|
|
MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
|
|
const TargetRegisterClass *RC, bool Forward) {
|
|
const SIRegisterInfo &RI = TII.getRegisterInfo();
|
|
ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4);
|
|
MachineBasicBlock::iterator I = MI;
|
|
MachineInstr *FirstMI = nullptr, *LastMI = nullptr;
|
|
|
|
for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) {
|
|
int16_t SubIdx = BaseIndices[Idx];
|
|
Register Reg = RI.getSubReg(DestReg, SubIdx);
|
|
unsigned Opcode = AMDGPU::S_MOV_B32;
|
|
|
|
// Is SGPR aligned? If so try to combine with next.
|
|
Register Src = RI.getSubReg(SrcReg, SubIdx);
|
|
bool AlignedDest = ((Reg - AMDGPU::SGPR0) % 2) == 0;
|
|
bool AlignedSrc = ((Src - AMDGPU::SGPR0) % 2) == 0;
|
|
if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) {
|
|
// Can use SGPR64 copy
|
|
unsigned Channel = RI.getChannelFromSubReg(SubIdx);
|
|
SubIdx = RI.getSubRegFromChannel(Channel, 2);
|
|
Opcode = AMDGPU::S_MOV_B64;
|
|
Idx++;
|
|
}
|
|
|
|
LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), RI.getSubReg(DestReg, SubIdx))
|
|
.addReg(RI.getSubReg(SrcReg, SubIdx))
|
|
.addReg(SrcReg, RegState::Implicit);
|
|
|
|
if (!FirstMI)
|
|
FirstMI = LastMI;
|
|
|
|
if (!Forward)
|
|
I--;
|
|
}
|
|
|
|
assert(FirstMI && LastMI);
|
|
if (!Forward)
|
|
std::swap(FirstMI, LastMI);
|
|
|
|
FirstMI->addOperand(
|
|
MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/));
|
|
|
|
if (KillSrc)
|
|
LastMI->addRegisterKilled(SrcReg, &RI);
|
|
}
|
|
|
|
void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
const TargetRegisterClass *RC = RI.getPhysRegClass(DestReg);
|
|
|
|
// FIXME: This is hack to resolve copies between 16 bit and 32 bit
|
|
// registers until all patterns are fixed.
|
|
if (Fix16BitCopies &&
|
|
((RI.getRegSizeInBits(*RC) == 16) ^
|
|
(RI.getRegSizeInBits(*RI.getPhysRegClass(SrcReg)) == 16))) {
|
|
MCRegister &RegToFix = (RI.getRegSizeInBits(*RC) == 16) ? DestReg : SrcReg;
|
|
MCRegister Super = RI.get32BitRegister(RegToFix);
|
|
assert(RI.getSubReg(Super, AMDGPU::lo16) == RegToFix);
|
|
RegToFix = Super;
|
|
|
|
if (DestReg == SrcReg) {
|
|
// Insert empty bundle since ExpandPostRA expects an instruction here.
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE));
|
|
return;
|
|
}
|
|
|
|
RC = RI.getPhysRegClass(DestReg);
|
|
}
|
|
|
|
if (RC == &AMDGPU::VGPR_32RegClass) {
|
|
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_32RegClass.contains(SrcReg) ||
|
|
AMDGPU::AGPR_32RegClass.contains(SrcReg));
|
|
unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ?
|
|
AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32;
|
|
BuildMI(MBB, MI, DL, get(Opc), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (RC == &AMDGPU::SReg_32_XM0RegClass ||
|
|
RC == &AMDGPU::SReg_32RegClass) {
|
|
if (SrcReg == AMDGPU::SCC) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg)
|
|
.addImm(1)
|
|
.addImm(0);
|
|
return;
|
|
}
|
|
|
|
if (DestReg == AMDGPU::VCC_LO) {
|
|
if (AMDGPU::SReg_32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
// FIXME: Hack until VReg_1 removed.
|
|
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
|
|
return;
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (RC == &AMDGPU::SReg_64RegClass) {
|
|
if (SrcReg == AMDGPU::SCC) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg)
|
|
.addImm(1)
|
|
.addImm(0);
|
|
return;
|
|
}
|
|
|
|
if (DestReg == AMDGPU::VCC) {
|
|
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
// FIXME: Hack until VReg_1 removed.
|
|
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
|
|
return;
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (DestReg == AMDGPU::SCC) {
|
|
// Copying 64-bit or 32-bit sources to SCC barely makes sense,
|
|
// but SelectionDAG emits such copies for i1 sources.
|
|
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
|
|
// This copy can only be produced by patterns
|
|
// with explicit SCC, which are known to be enabled
|
|
// only for subtargets with S_CMP_LG_U64 present.
|
|
assert(ST.hasScalarCompareEq64());
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64))
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0);
|
|
} else {
|
|
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32))
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (RC == &AMDGPU::AGPR_32RegClass) {
|
|
if (AMDGPU::VGPR_32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
// FIXME: Pass should maintain scavenger to avoid scan through the block on
|
|
// every AGPR spill.
|
|
RegScavenger RS;
|
|
indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS);
|
|
return;
|
|
}
|
|
|
|
const unsigned Size = RI.getRegSizeInBits(*RC);
|
|
if (Size == 16) {
|
|
assert(AMDGPU::VGPR_LO16RegClass.contains(SrcReg) ||
|
|
AMDGPU::VGPR_HI16RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
|
|
AMDGPU::AGPR_LO16RegClass.contains(SrcReg));
|
|
|
|
bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg);
|
|
bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg);
|
|
bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg);
|
|
bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
|
|
bool DstLow = AMDGPU::VGPR_LO16RegClass.contains(DestReg) ||
|
|
AMDGPU::SReg_LO16RegClass.contains(DestReg) ||
|
|
AMDGPU::AGPR_LO16RegClass.contains(DestReg);
|
|
bool SrcLow = AMDGPU::VGPR_LO16RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
|
|
AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
|
|
MCRegister NewDestReg = RI.get32BitRegister(DestReg);
|
|
MCRegister NewSrcReg = RI.get32BitRegister(SrcReg);
|
|
|
|
if (IsSGPRDst) {
|
|
if (!IsSGPRSrc) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
|
|
return;
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg)
|
|
.addReg(NewSrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (IsAGPRDst || IsAGPRSrc) {
|
|
if (!DstLow || !SrcLow) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
|
|
"Cannot use hi16 subreg with an AGPR!");
|
|
}
|
|
|
|
copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc);
|
|
return;
|
|
}
|
|
|
|
if (IsSGPRSrc && !ST.hasSDWAScalar()) {
|
|
if (!DstLow || !SrcLow) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
|
|
"Cannot use hi16 subreg on VI!");
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg)
|
|
.addReg(NewSrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg)
|
|
.addImm(0) // src0_modifiers
|
|
.addReg(NewSrcReg)
|
|
.addImm(0) // clamp
|
|
.addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0
|
|
: AMDGPU::SDWA::SdwaSel::WORD_1)
|
|
.addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE)
|
|
.addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0
|
|
: AMDGPU::SDWA::SdwaSel::WORD_1)
|
|
.addReg(NewDestReg, RegState::Implicit | RegState::Undef);
|
|
// First implicit operand is $exec.
|
|
MIB->tieOperands(0, MIB->getNumOperands() - 1);
|
|
return;
|
|
}
|
|
|
|
const TargetRegisterClass *SrcRC = RI.getPhysRegClass(SrcReg);
|
|
if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) {
|
|
if (ST.hasPackedFP32Ops()) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg)
|
|
.addImm(SISrcMods::OP_SEL_1)
|
|
.addReg(SrcReg)
|
|
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
|
|
.addReg(SrcReg)
|
|
.addImm(0) // op_sel_lo
|
|
.addImm(0) // op_sel_hi
|
|
.addImm(0) // neg_lo
|
|
.addImm(0) // neg_hi
|
|
.addImm(0) // clamp
|
|
.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg);
|
|
if (RI.isSGPRClass(RC)) {
|
|
if (!RI.isSGPRClass(SrcRC)) {
|
|
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
|
|
return;
|
|
}
|
|
expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RC, Forward);
|
|
return;
|
|
}
|
|
|
|
unsigned EltSize = 4;
|
|
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
|
|
if (RI.isAGPRClass(RC)) {
|
|
if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC))
|
|
Opcode = AMDGPU::V_ACCVGPR_MOV_B32;
|
|
else if (RI.hasVGPRs(SrcRC))
|
|
Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
|
|
else
|
|
Opcode = AMDGPU::INSTRUCTION_LIST_END;
|
|
} else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) {
|
|
Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64;
|
|
} else if ((Size % 64 == 0) && RI.hasVGPRs(RC) &&
|
|
(RI.isProperlyAlignedRC(*RC) &&
|
|
(SrcRC == RC || RI.isSGPRClass(SrcRC)))) {
|
|
// TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov.
|
|
if (ST.hasPackedFP32Ops()) {
|
|
Opcode = AMDGPU::V_PK_MOV_B32;
|
|
EltSize = 8;
|
|
}
|
|
}
|
|
|
|
// For the cases where we need an intermediate instruction/temporary register
|
|
// (destination is an AGPR), we need a scavenger.
|
|
//
|
|
// FIXME: The pass should maintain this for us so we don't have to re-scan the
|
|
// whole block for every handled copy.
|
|
std::unique_ptr<RegScavenger> RS;
|
|
if (Opcode == AMDGPU::INSTRUCTION_LIST_END)
|
|
RS.reset(new RegScavenger());
|
|
|
|
ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize);
|
|
|
|
// If there is an overlap, we can't kill the super-register on the last
|
|
// instruction, since it will also kill the components made live by this def.
|
|
const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg);
|
|
|
|
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
|
|
unsigned SubIdx;
|
|
if (Forward)
|
|
SubIdx = SubIndices[Idx];
|
|
else
|
|
SubIdx = SubIndices[SubIndices.size() - Idx - 1];
|
|
|
|
bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1;
|
|
|
|
if (Opcode == AMDGPU::INSTRUCTION_LIST_END) {
|
|
Register ImpDefSuper = Idx == 0 ? Register(DestReg) : Register();
|
|
Register ImpUseSuper = SrcReg;
|
|
indirectCopyToAGPR(*this, MBB, MI, DL, RI.getSubReg(DestReg, SubIdx),
|
|
RI.getSubReg(SrcReg, SubIdx), UseKill, *RS,
|
|
ImpDefSuper, ImpUseSuper);
|
|
} else if (Opcode == AMDGPU::V_PK_MOV_B32) {
|
|
Register DstSubReg = RI.getSubReg(DestReg, SubIdx);
|
|
Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DstSubReg)
|
|
.addImm(SISrcMods::OP_SEL_1)
|
|
.addReg(SrcSubReg)
|
|
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
|
|
.addReg(SrcSubReg)
|
|
.addImm(0) // op_sel_lo
|
|
.addImm(0) // op_sel_hi
|
|
.addImm(0) // neg_lo
|
|
.addImm(0) // neg_hi
|
|
.addImm(0) // clamp
|
|
.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
|
|
if (Idx == 0)
|
|
MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
|
|
} else {
|
|
MachineInstrBuilder Builder =
|
|
BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx))
|
|
.addReg(RI.getSubReg(SrcReg, SubIdx));
|
|
if (Idx == 0)
|
|
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
|
|
|
|
Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
|
|
}
|
|
}
|
|
}
|
|
|
|
int SIInstrInfo::commuteOpcode(unsigned Opcode) const {
|
|
int NewOpc;
|
|
|
|
// Try to map original to commuted opcode
|
|
NewOpc = AMDGPU::getCommuteRev(Opcode);
|
|
if (NewOpc != -1)
|
|
// Check if the commuted (REV) opcode exists on the target.
|
|
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
|
|
|
|
// Try to map commuted to original opcode
|
|
NewOpc = AMDGPU::getCommuteOrig(Opcode);
|
|
if (NewOpc != -1)
|
|
// Check if the original (non-REV) opcode exists on the target.
|
|
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
|
|
|
|
return Opcode;
|
|
}
|
|
|
|
void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, unsigned DestReg,
|
|
int64_t Value) const {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg);
|
|
if (RegClass == &AMDGPU::SReg_32RegClass ||
|
|
RegClass == &AMDGPU::SGPR_32RegClass ||
|
|
RegClass == &AMDGPU::SReg_32_XM0RegClass ||
|
|
RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
|
|
.addImm(Value);
|
|
return;
|
|
}
|
|
|
|
if (RegClass == &AMDGPU::SReg_64RegClass ||
|
|
RegClass == &AMDGPU::SGPR_64RegClass ||
|
|
RegClass == &AMDGPU::SReg_64_XEXECRegClass) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
|
|
.addImm(Value);
|
|
return;
|
|
}
|
|
|
|
if (RegClass == &AMDGPU::VGPR_32RegClass) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
|
|
.addImm(Value);
|
|
return;
|
|
}
|
|
if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg)
|
|
.addImm(Value);
|
|
return;
|
|
}
|
|
|
|
unsigned EltSize = 4;
|
|
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
|
|
if (RI.isSGPRClass(RegClass)) {
|
|
if (RI.getRegSizeInBits(*RegClass) > 32) {
|
|
Opcode = AMDGPU::S_MOV_B64;
|
|
EltSize = 8;
|
|
} else {
|
|
Opcode = AMDGPU::S_MOV_B32;
|
|
EltSize = 4;
|
|
}
|
|
}
|
|
|
|
ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize);
|
|
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
|
|
int64_t IdxValue = Idx == 0 ? Value : 0;
|
|
|
|
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
|
|
get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx]));
|
|
Builder.addImm(IdxValue);
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const {
|
|
return &AMDGPU::VGPR_32RegClass;
|
|
}
|
|
|
|
void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, Register DstReg,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register TrueReg,
|
|
Register FalseReg) const {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *BoolXExecRC =
|
|
RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass &&
|
|
"Not a VGPR32 reg");
|
|
|
|
if (Cond.size() == 1) {
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
|
|
.add(Cond[0]);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
} else if (Cond.size() == 2) {
|
|
assert(Cond[0].isImm() && "Cond[0] is not an immediate");
|
|
switch (Cond[0].getImm()) {
|
|
case SIInstrInfo::SCC_TRUE: {
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
|
|
: AMDGPU::S_CSELECT_B64), SReg)
|
|
.addImm(1)
|
|
.addImm(0);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
break;
|
|
}
|
|
case SIInstrInfo::SCC_FALSE: {
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
|
|
: AMDGPU::S_CSELECT_B64), SReg)
|
|
.addImm(0)
|
|
.addImm(1);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
break;
|
|
}
|
|
case SIInstrInfo::VCCNZ: {
|
|
MachineOperand RegOp = Cond[1];
|
|
RegOp.setImplicit(false);
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
|
|
.add(RegOp);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
break;
|
|
}
|
|
case SIInstrInfo::VCCZ: {
|
|
MachineOperand RegOp = Cond[1];
|
|
RegOp.setImplicit(false);
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
|
|
.add(RegOp);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addReg(SReg);
|
|
break;
|
|
}
|
|
case SIInstrInfo::EXECNZ: {
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
|
|
: AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
|
|
.addImm(0);
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
|
|
: AMDGPU::S_CSELECT_B64), SReg)
|
|
.addImm(1)
|
|
.addImm(0);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
break;
|
|
}
|
|
case SIInstrInfo::EXECZ: {
|
|
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
|
|
: AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
|
|
.addImm(0);
|
|
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
|
|
: AMDGPU::S_CSELECT_B64), SReg)
|
|
.addImm(0)
|
|
.addImm(1);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
|
|
.addImm(0)
|
|
.addReg(FalseReg)
|
|
.addImm(0)
|
|
.addReg(TrueReg)
|
|
.addReg(SReg);
|
|
llvm_unreachable("Unhandled branch predicate EXECZ");
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("invalid branch predicate");
|
|
}
|
|
} else {
|
|
llvm_unreachable("Can only handle Cond size 1 or 2");
|
|
}
|
|
}
|
|
|
|
Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL,
|
|
Register SrcReg, int Value) const {
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg)
|
|
.addImm(Value)
|
|
.addReg(SrcReg);
|
|
|
|
return Reg;
|
|
}
|
|
|
|
Register SIInstrInfo::insertNE(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL,
|
|
Register SrcReg, int Value) const {
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg)
|
|
.addImm(Value)
|
|
.addReg(SrcReg);
|
|
|
|
return Reg;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
|
|
|
|
if (RI.isAGPRClass(DstRC))
|
|
return AMDGPU::COPY;
|
|
if (RI.getRegSizeInBits(*DstRC) == 32) {
|
|
return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
|
|
} else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) {
|
|
return AMDGPU::S_MOV_B64;
|
|
} else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) {
|
|
return AMDGPU::V_MOV_B64_PSEUDO;
|
|
}
|
|
return AMDGPU::COPY;
|
|
}
|
|
|
|
const MCInstrDesc &
|
|
SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize,
|
|
bool IsIndirectSrc) const {
|
|
if (IsIndirectSrc) {
|
|
if (VecSize <= 32) // 4 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1);
|
|
if (VecSize <= 64) // 8 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2);
|
|
if (VecSize <= 96) // 12 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3);
|
|
if (VecSize <= 128) // 16 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4);
|
|
if (VecSize <= 160) // 20 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5);
|
|
if (VecSize <= 256) // 32 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8);
|
|
if (VecSize <= 512) // 64 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16);
|
|
if (VecSize <= 1024) // 128 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32);
|
|
|
|
llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos");
|
|
}
|
|
|
|
if (VecSize <= 32) // 4 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1);
|
|
if (VecSize <= 64) // 8 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2);
|
|
if (VecSize <= 96) // 12 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3);
|
|
if (VecSize <= 128) // 16 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4);
|
|
if (VecSize <= 160) // 20 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5);
|
|
if (VecSize <= 256) // 32 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8);
|
|
if (VecSize <= 512) // 64 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16);
|
|
if (VecSize <= 1024) // 128 bytes
|
|
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32);
|
|
|
|
llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos");
|
|
}
|
|
|
|
static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) {
|
|
if (VecSize <= 32) // 4 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1;
|
|
if (VecSize <= 64) // 8 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2;
|
|
if (VecSize <= 96) // 12 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3;
|
|
if (VecSize <= 128) // 16 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4;
|
|
if (VecSize <= 160) // 20 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5;
|
|
if (VecSize <= 256) // 32 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8;
|
|
if (VecSize <= 512) // 64 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16;
|
|
if (VecSize <= 1024) // 128 bytes
|
|
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32;
|
|
|
|
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
|
|
}
|
|
|
|
static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) {
|
|
if (VecSize <= 32) // 4 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1;
|
|
if (VecSize <= 64) // 8 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2;
|
|
if (VecSize <= 96) // 12 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3;
|
|
if (VecSize <= 128) // 16 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4;
|
|
if (VecSize <= 160) // 20 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5;
|
|
if (VecSize <= 256) // 32 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8;
|
|
if (VecSize <= 512) // 64 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16;
|
|
if (VecSize <= 1024) // 128 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32;
|
|
|
|
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
|
|
}
|
|
|
|
static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) {
|
|
if (VecSize <= 64) // 8 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1;
|
|
if (VecSize <= 128) // 16 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2;
|
|
if (VecSize <= 256) // 32 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4;
|
|
if (VecSize <= 512) // 64 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8;
|
|
if (VecSize <= 1024) // 128 bytes
|
|
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16;
|
|
|
|
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
|
|
}
|
|
|
|
const MCInstrDesc &
|
|
SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize,
|
|
bool IsSGPR) const {
|
|
if (IsSGPR) {
|
|
switch (EltSize) {
|
|
case 32:
|
|
return get(getIndirectSGPRWriteMovRelPseudo32(VecSize));
|
|
case 64:
|
|
return get(getIndirectSGPRWriteMovRelPseudo64(VecSize));
|
|
default:
|
|
llvm_unreachable("invalid reg indexing elt size");
|
|
}
|
|
}
|
|
|
|
assert(EltSize == 32 && "invalid reg indexing elt size");
|
|
return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize));
|
|
}
|
|
|
|
static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_S32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_S64_SAVE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_S96_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_S128_SAVE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_S160_SAVE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_S192_SAVE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_S224_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_S256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_S512_SAVE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_S1024_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_V32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_V64_SAVE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_V96_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_V128_SAVE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_V160_SAVE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_V192_SAVE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_V224_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_V256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_V512_SAVE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_V1024_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getAGPRSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_A32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_A64_SAVE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_A96_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_A128_SAVE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_A160_SAVE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_A192_SAVE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_A224_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_A256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_A512_SAVE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_A1024_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getAVSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_AV32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_AV64_SAVE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_AV96_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_AV128_SAVE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_AV160_SAVE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_AV192_SAVE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_AV224_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_AV256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_AV512_SAVE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_AV1024_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register SrcReg, bool isKill,
|
|
int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
|
|
const DebugLoc &DL = MBB.findDebugLoc(MI);
|
|
|
|
MachinePointerInfo PtrInfo
|
|
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex),
|
|
FrameInfo.getObjectAlign(FrameIndex));
|
|
unsigned SpillSize = TRI->getSpillSize(*RC);
|
|
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
if (RI.isSGPRClass(RC)) {
|
|
MFI->setHasSpilledSGPRs();
|
|
assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled");
|
|
assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI &&
|
|
SrcReg != AMDGPU::EXEC && "exec should not be spilled");
|
|
|
|
// We are only allowed to create one new instruction when spilling
|
|
// registers, so we need to use pseudo instruction for spilling SGPRs.
|
|
const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize));
|
|
|
|
// The SGPR spill/restore instructions only work on number sgprs, so we need
|
|
// to make sure we are using the correct register class.
|
|
if (SrcReg.isVirtual() && SpillSize == 4) {
|
|
MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, OpDesc)
|
|
.addReg(SrcReg, getKillRegState(isKill)) // data
|
|
.addFrameIndex(FrameIndex) // addr
|
|
.addMemOperand(MMO)
|
|
.addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit);
|
|
|
|
if (RI.spillSGPRToVGPR())
|
|
FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill);
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode = RI.isVectorSuperClass(RC) ? getAVSpillSaveOpcode(SpillSize)
|
|
: RI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(SpillSize)
|
|
: getVGPRSpillSaveOpcode(SpillSize);
|
|
MFI->setHasSpilledVGPRs();
|
|
|
|
BuildMI(MBB, MI, DL, get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(isKill)) // data
|
|
.addFrameIndex(FrameIndex) // addr
|
|
.addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
|
|
.addImm(0) // offset
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_S32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_S64_RESTORE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_S96_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_S128_RESTORE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_S160_RESTORE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_S192_RESTORE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_S224_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_S256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_S512_RESTORE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_S1024_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_V32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_V64_RESTORE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_V96_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_V128_RESTORE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_V160_RESTORE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_V192_RESTORE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_V224_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_V256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_V512_RESTORE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_V1024_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getAGPRSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_A32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_A64_RESTORE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_A96_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_A128_RESTORE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_A160_RESTORE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_A192_RESTORE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_A224_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_A256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_A512_RESTORE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_A1024_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getAVSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_AV32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_AV64_RESTORE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_AV96_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_AV128_RESTORE;
|
|
case 20:
|
|
return AMDGPU::SI_SPILL_AV160_RESTORE;
|
|
case 24:
|
|
return AMDGPU::SI_SPILL_AV192_RESTORE;
|
|
case 28:
|
|
return AMDGPU::SI_SPILL_AV224_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_AV256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_AV512_RESTORE;
|
|
case 128:
|
|
return AMDGPU::SI_SPILL_AV1024_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
|
|
const DebugLoc &DL = MBB.findDebugLoc(MI);
|
|
unsigned SpillSize = TRI->getSpillSize(*RC);
|
|
|
|
MachinePointerInfo PtrInfo
|
|
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
|
|
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex),
|
|
FrameInfo.getObjectAlign(FrameIndex));
|
|
|
|
if (RI.isSGPRClass(RC)) {
|
|
MFI->setHasSpilledSGPRs();
|
|
assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into");
|
|
assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI &&
|
|
DestReg != AMDGPU::EXEC && "exec should not be spilled");
|
|
|
|
// FIXME: Maybe this should not include a memoperand because it will be
|
|
// lowered to non-memory instructions.
|
|
const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize));
|
|
if (DestReg.isVirtual() && SpillSize == 4) {
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
|
|
}
|
|
|
|
if (RI.spillSGPRToVGPR())
|
|
FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill);
|
|
BuildMI(MBB, MI, DL, OpDesc, DestReg)
|
|
.addFrameIndex(FrameIndex) // addr
|
|
.addMemOperand(MMO)
|
|
.addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit);
|
|
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode = RI.isVectorSuperClass(RC)
|
|
? getAVSpillRestoreOpcode(SpillSize)
|
|
: RI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(SpillSize)
|
|
: getVGPRSpillRestoreOpcode(SpillSize);
|
|
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
|
|
.addFrameIndex(FrameIndex) // vaddr
|
|
.addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
|
|
.addImm(0) // offset
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
insertNoops(MBB, MI, 1);
|
|
}
|
|
|
|
void SIInstrInfo::insertNoops(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned Quantity) const {
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
while (Quantity > 0) {
|
|
unsigned Arg = std::min(Quantity, 8u);
|
|
Quantity -= Arg;
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const {
|
|
auto MF = MBB.getParent();
|
|
SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
|
|
|
|
assert(Info->isEntryFunction());
|
|
|
|
if (MBB.succ_empty()) {
|
|
bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end();
|
|
if (HasNoTerminator) {
|
|
if (Info->returnsVoid()) {
|
|
BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0);
|
|
} else {
|
|
BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
if (MI.isMetaInstruction())
|
|
return 0;
|
|
return 1; // FIXME: Do wait states equal cycles?
|
|
|
|
case AMDGPU::S_NOP:
|
|
return MI.getOperand(0).getImm() + 1;
|
|
|
|
// FIXME: Any other pseudo instruction?
|
|
// SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The
|
|
// hazard, even if one exist, won't really be visible. Should we handle it?
|
|
case AMDGPU::SI_MASKED_UNREACHABLE:
|
|
case AMDGPU::WAVE_BARRIER:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
switch (MI.getOpcode()) {
|
|
default: return TargetInstrInfo::expandPostRAPseudo(MI);
|
|
case AMDGPU::S_MOV_B64_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_MOV_B64));
|
|
break;
|
|
|
|
case AMDGPU::S_MOV_B32_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_MOV_B32));
|
|
break;
|
|
|
|
case AMDGPU::S_XOR_B64_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_XOR_B64));
|
|
break;
|
|
|
|
case AMDGPU::S_XOR_B32_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_XOR_B32));
|
|
break;
|
|
case AMDGPU::S_OR_B64_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_OR_B64));
|
|
break;
|
|
case AMDGPU::S_OR_B32_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_OR_B32));
|
|
break;
|
|
|
|
case AMDGPU::S_ANDN2_B64_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_ANDN2_B64));
|
|
break;
|
|
|
|
case AMDGPU::S_ANDN2_B32_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_ANDN2_B32));
|
|
break;
|
|
|
|
case AMDGPU::S_AND_B64_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_AND_B64));
|
|
break;
|
|
|
|
case AMDGPU::S_AND_B32_term:
|
|
// This is only a terminator to get the correct spill code placement during
|
|
// register allocation.
|
|
MI.setDesc(get(AMDGPU::S_AND_B32));
|
|
break;
|
|
|
|
case AMDGPU::V_MOV_B64_PSEUDO: {
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
|
|
Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
|
|
|
|
const MachineOperand &SrcOp = MI.getOperand(1);
|
|
// FIXME: Will this work for 64-bit floating point immediates?
|
|
assert(!SrcOp.isFPImm());
|
|
if (SrcOp.isImm()) {
|
|
APInt Imm(64, SrcOp.getImm());
|
|
APInt Lo(32, Imm.getLoBits(32).getZExtValue());
|
|
APInt Hi(32, Imm.getHiBits(32).getZExtValue());
|
|
if (ST.hasPackedFP32Ops() && Lo == Hi && isInlineConstant(Lo)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
|
|
.addImm(SISrcMods::OP_SEL_1)
|
|
.addImm(Lo.getSExtValue())
|
|
.addImm(SISrcMods::OP_SEL_1)
|
|
.addImm(Lo.getSExtValue())
|
|
.addImm(0) // op_sel_lo
|
|
.addImm(0) // op_sel_hi
|
|
.addImm(0) // neg_lo
|
|
.addImm(0) // neg_hi
|
|
.addImm(0); // clamp
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
|
|
.addImm(Lo.getSExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
|
|
.addImm(Hi.getSExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
}
|
|
} else {
|
|
assert(SrcOp.isReg());
|
|
if (ST.hasPackedFP32Ops() &&
|
|
!RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
|
|
.addImm(SISrcMods::OP_SEL_1) // src0_mod
|
|
.addReg(SrcOp.getReg())
|
|
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod
|
|
.addReg(SrcOp.getReg())
|
|
.addImm(0) // op_sel_lo
|
|
.addImm(0) // op_sel_hi
|
|
.addImm(0) // neg_lo
|
|
.addImm(0) // neg_hi
|
|
.addImm(0); // clamp
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
|
|
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
|
|
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
}
|
|
}
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_MOV_B64_DPP_PSEUDO: {
|
|
expandMovDPP64(MI);
|
|
break;
|
|
}
|
|
case AMDGPU::S_MOV_B64_IMM_PSEUDO: {
|
|
const MachineOperand &SrcOp = MI.getOperand(1);
|
|
assert(!SrcOp.isFPImm());
|
|
APInt Imm(64, SrcOp.getImm());
|
|
if (Imm.isIntN(32) || isInlineConstant(Imm)) {
|
|
MI.setDesc(get(AMDGPU::S_MOV_B64));
|
|
break;
|
|
}
|
|
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
|
|
Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
|
|
|
|
APInt Lo(32, Imm.getLoBits(32).getZExtValue());
|
|
APInt Hi(32, Imm.getHiBits(32).getZExtValue());
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo)
|
|
.addImm(Lo.getSExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi)
|
|
.addImm(Hi.getSExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_SET_INACTIVE_B32: {
|
|
unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
|
|
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
|
|
FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
|
|
.add(MI.getOperand(2));
|
|
BuildMI(MBB, MI, DL, get(NotOpc), Exec)
|
|
.addReg(Exec);
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_SET_INACTIVE_B64: {
|
|
unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
|
|
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
|
|
FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
|
|
MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
|
|
MI.getOperand(0).getReg())
|
|
.add(MI.getOperand(2));
|
|
expandPostRAPseudo(*Copy);
|
|
BuildMI(MBB, MI, DL, get(NotOpc), Exec)
|
|
.addReg(Exec);
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8:
|
|
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: {
|
|
const TargetRegisterClass *EltRC = getOpRegClass(MI, 2);
|
|
|
|
unsigned Opc;
|
|
if (RI.hasVGPRs(EltRC)) {
|
|
Opc = AMDGPU::V_MOVRELD_B32_e32;
|
|
} else {
|
|
Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64
|
|
: AMDGPU::S_MOVRELD_B32;
|
|
}
|
|
|
|
const MCInstrDesc &OpDesc = get(Opc);
|
|
Register VecReg = MI.getOperand(0).getReg();
|
|
bool IsUndef = MI.getOperand(1).isUndef();
|
|
unsigned SubReg = MI.getOperand(3).getImm();
|
|
assert(VecReg == MI.getOperand(1).getReg());
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, DL, OpDesc)
|
|
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
|
|
.add(MI.getOperand(2))
|
|
.addReg(VecReg, RegState::ImplicitDefine)
|
|
.addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
|
|
|
|
const int ImpDefIdx =
|
|
OpDesc.getNumOperands() + OpDesc.getNumImplicitUses();
|
|
const int ImpUseIdx = ImpDefIdx + 1;
|
|
MIB->tieOperands(ImpDefIdx, ImpUseIdx);
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16:
|
|
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: {
|
|
assert(ST.useVGPRIndexMode());
|
|
Register VecReg = MI.getOperand(0).getReg();
|
|
bool IsUndef = MI.getOperand(1).isUndef();
|
|
Register Idx = MI.getOperand(3).getReg();
|
|
Register SubReg = MI.getOperand(4).getImm();
|
|
|
|
MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.addReg(Idx)
|
|
.addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
|
|
SetOn->getOperand(3).setIsUndef();
|
|
|
|
const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, DL, OpDesc)
|
|
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
|
|
.add(MI.getOperand(2))
|
|
.addReg(VecReg, RegState::ImplicitDefine)
|
|
.addReg(VecReg,
|
|
RegState::Implicit | (IsUndef ? RegState::Undef : 0));
|
|
|
|
const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.getNumImplicitUses();
|
|
const int ImpUseIdx = ImpDefIdx + 1;
|
|
MIB->tieOperands(ImpDefIdx, ImpUseIdx);
|
|
|
|
MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
|
|
finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator()));
|
|
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16:
|
|
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: {
|
|
assert(ST.useVGPRIndexMode());
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register VecReg = MI.getOperand(1).getReg();
|
|
bool IsUndef = MI.getOperand(1).isUndef();
|
|
Register Idx = MI.getOperand(2).getReg();
|
|
Register SubReg = MI.getOperand(3).getImm();
|
|
|
|
MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.addReg(Idx)
|
|
.addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
|
|
SetOn->getOperand(3).setIsUndef();
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read))
|
|
.addDef(Dst)
|
|
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
|
|
.addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
|
|
|
|
MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
|
|
finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator()));
|
|
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::SI_PC_ADD_REL_OFFSET: {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
|
|
Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
|
|
|
|
// Create a bundle so these instructions won't be re-ordered by the
|
|
// post-RA scheduler.
|
|
MIBundleBuilder Bundler(MBB, MI);
|
|
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
|
|
|
|
// Add 32-bit offset from this instruction to the start of the
|
|
// constant data.
|
|
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
|
|
.addReg(RegLo)
|
|
.add(MI.getOperand(1)));
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
|
|
.addReg(RegHi);
|
|
MIB.add(MI.getOperand(2));
|
|
|
|
Bundler.append(MIB);
|
|
finalizeBundle(MBB, Bundler.begin());
|
|
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::ENTER_STRICT_WWM: {
|
|
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
|
|
// Whole Wave Mode is entered.
|
|
MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
|
|
: AMDGPU::S_OR_SAVEEXEC_B64));
|
|
break;
|
|
}
|
|
case AMDGPU::ENTER_STRICT_WQM: {
|
|
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
|
|
// STRICT_WQM is entered.
|
|
const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64;
|
|
const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
|
|
BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec);
|
|
BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec);
|
|
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::EXIT_STRICT_WWM:
|
|
case AMDGPU::EXIT_STRICT_WQM: {
|
|
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
|
|
// WWM/STICT_WQM is exited.
|
|
MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64));
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::pair<MachineInstr*, MachineInstr*>
|
|
SIInstrInfo::expandMovDPP64(MachineInstr &MI) const {
|
|
assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO);
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned Part = 0;
|
|
MachineInstr *Split[2];
|
|
|
|
for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) {
|
|
auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp));
|
|
if (Dst.isPhysical()) {
|
|
MovDPP.addDef(RI.getSubReg(Dst, Sub));
|
|
} else {
|
|
assert(MRI.isSSA());
|
|
auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
MovDPP.addDef(Tmp);
|
|
}
|
|
|
|
for (unsigned I = 1; I <= 2; ++I) { // old and src operands.
|
|
const MachineOperand &SrcOp = MI.getOperand(I);
|
|
assert(!SrcOp.isFPImm());
|
|
if (SrcOp.isImm()) {
|
|
APInt Imm(64, SrcOp.getImm());
|
|
Imm.ashrInPlace(Part * 32);
|
|
MovDPP.addImm(Imm.getLoBits(32).getZExtValue());
|
|
} else {
|
|
assert(SrcOp.isReg());
|
|
Register Src = SrcOp.getReg();
|
|
if (Src.isPhysical())
|
|
MovDPP.addReg(RI.getSubReg(Src, Sub));
|
|
else
|
|
MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub);
|
|
}
|
|
}
|
|
|
|
for (unsigned I = 3; I < MI.getNumExplicitOperands(); ++I)
|
|
MovDPP.addImm(MI.getOperand(I).getImm());
|
|
|
|
Split[Part] = MovDPP;
|
|
++Part;
|
|
}
|
|
|
|
if (Dst.isVirtual())
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst)
|
|
.addReg(Split[0]->getOperand(0).getReg())
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(Split[1]->getOperand(0).getReg())
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MI.eraseFromParent();
|
|
return std::make_pair(Split[0], Split[1]);
|
|
}
|
|
|
|
bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI,
|
|
MachineOperand &Src0,
|
|
unsigned Src0OpName,
|
|
MachineOperand &Src1,
|
|
unsigned Src1OpName) const {
|
|
MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName);
|
|
if (!Src0Mods)
|
|
return false;
|
|
|
|
MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName);
|
|
assert(Src1Mods &&
|
|
"All commutable instructions have both src0 and src1 modifiers");
|
|
|
|
int Src0ModsVal = Src0Mods->getImm();
|
|
int Src1ModsVal = Src1Mods->getImm();
|
|
|
|
Src1Mods->setImm(Src0ModsVal);
|
|
Src0Mods->setImm(Src1ModsVal);
|
|
return true;
|
|
}
|
|
|
|
static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI,
|
|
MachineOperand &RegOp,
|
|
MachineOperand &NonRegOp) {
|
|
Register Reg = RegOp.getReg();
|
|
unsigned SubReg = RegOp.getSubReg();
|
|
bool IsKill = RegOp.isKill();
|
|
bool IsDead = RegOp.isDead();
|
|
bool IsUndef = RegOp.isUndef();
|
|
bool IsDebug = RegOp.isDebug();
|
|
|
|
if (NonRegOp.isImm())
|
|
RegOp.ChangeToImmediate(NonRegOp.getImm());
|
|
else if (NonRegOp.isFI())
|
|
RegOp.ChangeToFrameIndex(NonRegOp.getIndex());
|
|
else if (NonRegOp.isGlobal()) {
|
|
RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(),
|
|
NonRegOp.getTargetFlags());
|
|
} else
|
|
return nullptr;
|
|
|
|
// Make sure we don't reinterpret a subreg index in the target flags.
|
|
RegOp.setTargetFlags(NonRegOp.getTargetFlags());
|
|
|
|
NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug);
|
|
NonRegOp.setSubReg(SubReg);
|
|
|
|
return &MI;
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned Src0Idx,
|
|
unsigned Src1Idx) const {
|
|
assert(!NewMI && "this should never be used");
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
int CommutedOpcode = commuteOpcode(Opc);
|
|
if (CommutedOpcode == -1)
|
|
return nullptr;
|
|
|
|
assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) ==
|
|
static_cast<int>(Src0Idx) &&
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) ==
|
|
static_cast<int>(Src1Idx) &&
|
|
"inconsistency with findCommutedOpIndices");
|
|
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
|
|
MachineInstr *CommutedMI = nullptr;
|
|
if (Src0.isReg() && Src1.isReg()) {
|
|
if (isOperandLegal(MI, Src1Idx, &Src0)) {
|
|
// Be sure to copy the source modifiers to the right place.
|
|
CommutedMI
|
|
= TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx);
|
|
}
|
|
|
|
} else if (Src0.isReg() && !Src1.isReg()) {
|
|
// src0 should always be able to support any operand type, so no need to
|
|
// check operand legality.
|
|
CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1);
|
|
} else if (!Src0.isReg() && Src1.isReg()) {
|
|
if (isOperandLegal(MI, Src1Idx, &Src0))
|
|
CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0);
|
|
} else {
|
|
// FIXME: Found two non registers to commute. This does happen.
|
|
return nullptr;
|
|
}
|
|
|
|
if (CommutedMI) {
|
|
swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers,
|
|
Src1, AMDGPU::OpName::src1_modifiers);
|
|
|
|
CommutedMI->setDesc(get(CommutedOpcode));
|
|
}
|
|
|
|
return CommutedMI;
|
|
}
|
|
|
|
// This needs to be implemented because the source modifiers may be inserted
|
|
// between the true commutable operands, and the base
|
|
// TargetInstrInfo::commuteInstruction uses it.
|
|
bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx0,
|
|
unsigned &SrcOpIdx1) const {
|
|
return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1);
|
|
}
|
|
|
|
bool SIInstrInfo::findCommutedOpIndices(MCInstrDesc Desc, unsigned &SrcOpIdx0,
|
|
unsigned &SrcOpIdx1) const {
|
|
if (!Desc.isCommutable())
|
|
return false;
|
|
|
|
unsigned Opc = Desc.getOpcode();
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
if (Src0Idx == -1)
|
|
return false;
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
if (Src1Idx == -1)
|
|
return false;
|
|
|
|
return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
|
|
}
|
|
|
|
bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
|
|
int64_t BrOffset) const {
|
|
// BranchRelaxation should never have to check s_setpc_b64 because its dest
|
|
// block is unanalyzable.
|
|
assert(BranchOp != AMDGPU::S_SETPC_B64);
|
|
|
|
// Convert to dwords.
|
|
BrOffset /= 4;
|
|
|
|
// The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is
|
|
// from the next instruction.
|
|
BrOffset -= 1;
|
|
|
|
return isIntN(BranchOffsetBits, BrOffset);
|
|
}
|
|
|
|
MachineBasicBlock *SIInstrInfo::getBranchDestBlock(
|
|
const MachineInstr &MI) const {
|
|
if (MI.getOpcode() == AMDGPU::S_SETPC_B64) {
|
|
// This would be a difficult analysis to perform, but can always be legal so
|
|
// there's no need to analyze it.
|
|
return nullptr;
|
|
}
|
|
|
|
return MI.getOperand(0).getMBB();
|
|
}
|
|
|
|
void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock &DestBB,
|
|
MachineBasicBlock &RestoreBB,
|
|
const DebugLoc &DL, int64_t BrOffset,
|
|
RegScavenger *RS) const {
|
|
assert(RS && "RegScavenger required for long branching");
|
|
assert(MBB.empty() &&
|
|
"new block should be inserted for expanding unconditional branch");
|
|
assert(MBB.pred_size() == 1);
|
|
assert(RestoreBB.empty() &&
|
|
"restore block should be inserted for restoring clobbered registers");
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
// FIXME: Virtual register workaround for RegScavenger not working with empty
|
|
// blocks.
|
|
Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
|
|
auto I = MBB.end();
|
|
|
|
// We need to compute the offset relative to the instruction immediately after
|
|
// s_getpc_b64. Insert pc arithmetic code before last terminator.
|
|
MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg);
|
|
|
|
auto &MCCtx = MF->getContext();
|
|
MCSymbol *PostGetPCLabel =
|
|
MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true);
|
|
GetPC->setPostInstrSymbol(*MF, PostGetPCLabel);
|
|
|
|
MCSymbol *OffsetLo =
|
|
MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true);
|
|
MCSymbol *OffsetHi =
|
|
MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32))
|
|
.addReg(PCReg, RegState::Define, AMDGPU::sub0)
|
|
.addReg(PCReg, 0, AMDGPU::sub0)
|
|
.addSym(OffsetLo, MO_FAR_BRANCH_OFFSET);
|
|
BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32))
|
|
.addReg(PCReg, RegState::Define, AMDGPU::sub1)
|
|
.addReg(PCReg, 0, AMDGPU::sub1)
|
|
.addSym(OffsetHi, MO_FAR_BRANCH_OFFSET);
|
|
|
|
// Insert the indirect branch after the other terminator.
|
|
BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64))
|
|
.addReg(PCReg);
|
|
|
|
// FIXME: If spilling is necessary, this will fail because this scavenger has
|
|
// no emergency stack slots. It is non-trivial to spill in this situation,
|
|
// because the restore code needs to be specially placed after the
|
|
// jump. BranchRelaxation then needs to be made aware of the newly inserted
|
|
// block.
|
|
//
|
|
// If a spill is needed for the pc register pair, we need to insert a spill
|
|
// restore block right before the destination block, and insert a short branch
|
|
// into the old destination block's fallthrough predecessor.
|
|
// e.g.:
|
|
//
|
|
// s_cbranch_scc0 skip_long_branch:
|
|
//
|
|
// long_branch_bb:
|
|
// spill s[8:9]
|
|
// s_getpc_b64 s[8:9]
|
|
// s_add_u32 s8, s8, restore_bb
|
|
// s_addc_u32 s9, s9, 0
|
|
// s_setpc_b64 s[8:9]
|
|
//
|
|
// skip_long_branch:
|
|
// foo;
|
|
//
|
|
// .....
|
|
//
|
|
// dest_bb_fallthrough_predecessor:
|
|
// bar;
|
|
// s_branch dest_bb
|
|
//
|
|
// restore_bb:
|
|
// restore s[8:9]
|
|
// fallthrough dest_bb
|
|
///
|
|
// dest_bb:
|
|
// buzz;
|
|
|
|
RS->enterBasicBlockEnd(MBB);
|
|
Register Scav = RS->scavengeRegisterBackwards(
|
|
AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC),
|
|
/* RestoreAfter */ false, 0, /* AllowSpill */ false);
|
|
if (Scav) {
|
|
RS->setRegUsed(Scav);
|
|
MRI.replaceRegWith(PCReg, Scav);
|
|
MRI.clearVirtRegs();
|
|
} else {
|
|
// As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for
|
|
// SGPR spill.
|
|
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS);
|
|
MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1);
|
|
MRI.clearVirtRegs();
|
|
}
|
|
|
|
MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol();
|
|
// Now, the distance could be defined.
|
|
auto *Offset = MCBinaryExpr::createSub(
|
|
MCSymbolRefExpr::create(DestLabel, MCCtx),
|
|
MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx);
|
|
// Add offset assignments.
|
|
auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx);
|
|
OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx));
|
|
auto *ShAmt = MCConstantExpr::create(32, MCCtx);
|
|
OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx));
|
|
}
|
|
|
|
unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
|
|
switch (Cond) {
|
|
case SIInstrInfo::SCC_TRUE:
|
|
return AMDGPU::S_CBRANCH_SCC1;
|
|
case SIInstrInfo::SCC_FALSE:
|
|
return AMDGPU::S_CBRANCH_SCC0;
|
|
case SIInstrInfo::VCCNZ:
|
|
return AMDGPU::S_CBRANCH_VCCNZ;
|
|
case SIInstrInfo::VCCZ:
|
|
return AMDGPU::S_CBRANCH_VCCZ;
|
|
case SIInstrInfo::EXECNZ:
|
|
return AMDGPU::S_CBRANCH_EXECNZ;
|
|
case SIInstrInfo::EXECZ:
|
|
return AMDGPU::S_CBRANCH_EXECZ;
|
|
default:
|
|
llvm_unreachable("invalid branch predicate");
|
|
}
|
|
}
|
|
|
|
SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case AMDGPU::S_CBRANCH_SCC0:
|
|
return SCC_FALSE;
|
|
case AMDGPU::S_CBRANCH_SCC1:
|
|
return SCC_TRUE;
|
|
case AMDGPU::S_CBRANCH_VCCNZ:
|
|
return VCCNZ;
|
|
case AMDGPU::S_CBRANCH_VCCZ:
|
|
return VCCZ;
|
|
case AMDGPU::S_CBRANCH_EXECNZ:
|
|
return EXECNZ;
|
|
case AMDGPU::S_CBRANCH_EXECZ:
|
|
return EXECZ;
|
|
default:
|
|
return INVALID_BR;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
if (I->getOpcode() == AMDGPU::S_BRANCH) {
|
|
// Unconditional Branch
|
|
TBB = I->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
MachineBasicBlock *CondBB = nullptr;
|
|
|
|
if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
|
|
CondBB = I->getOperand(1).getMBB();
|
|
Cond.push_back(I->getOperand(0));
|
|
} else {
|
|
BranchPredicate Pred = getBranchPredicate(I->getOpcode());
|
|
if (Pred == INVALID_BR)
|
|
return true;
|
|
|
|
CondBB = I->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(Pred));
|
|
Cond.push_back(I->getOperand(1)); // Save the branch register.
|
|
}
|
|
++I;
|
|
|
|
if (I == MBB.end()) {
|
|
// Conditional branch followed by fall-through.
|
|
TBB = CondBB;
|
|
return false;
|
|
}
|
|
|
|
if (I->getOpcode() == AMDGPU::S_BRANCH) {
|
|
TBB = CondBB;
|
|
FBB = I->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
MachineBasicBlock::iterator I = MBB.getFirstTerminator();
|
|
auto E = MBB.end();
|
|
if (I == E)
|
|
return false;
|
|
|
|
// Skip over the instructions that are artificially terminators for special
|
|
// exec management.
|
|
while (I != E && !I->isBranch() && !I->isReturn()) {
|
|
switch (I->getOpcode()) {
|
|
case AMDGPU::S_MOV_B64_term:
|
|
case AMDGPU::S_XOR_B64_term:
|
|
case AMDGPU::S_OR_B64_term:
|
|
case AMDGPU::S_ANDN2_B64_term:
|
|
case AMDGPU::S_AND_B64_term:
|
|
case AMDGPU::S_MOV_B32_term:
|
|
case AMDGPU::S_XOR_B32_term:
|
|
case AMDGPU::S_OR_B32_term:
|
|
case AMDGPU::S_ANDN2_B32_term:
|
|
case AMDGPU::S_AND_B32_term:
|
|
break;
|
|
case AMDGPU::SI_IF:
|
|
case AMDGPU::SI_ELSE:
|
|
case AMDGPU::SI_KILL_I1_TERMINATOR:
|
|
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
|
|
// FIXME: It's messy that these need to be considered here at all.
|
|
return true;
|
|
default:
|
|
llvm_unreachable("unexpected non-branch terminator inst");
|
|
}
|
|
|
|
++I;
|
|
}
|
|
|
|
if (I == E)
|
|
return false;
|
|
|
|
return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify);
|
|
}
|
|
|
|
unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
unsigned Count = 0;
|
|
unsigned RemovedSize = 0;
|
|
for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) {
|
|
// Skip over artificial terminators when removing instructions.
|
|
if (MI.isBranch() || MI.isReturn()) {
|
|
RemovedSize += getInstSizeInBytes(MI);
|
|
MI.eraseFromParent();
|
|
++Count;
|
|
}
|
|
}
|
|
|
|
if (BytesRemoved)
|
|
*BytesRemoved = RemovedSize;
|
|
|
|
return Count;
|
|
}
|
|
|
|
// Copy the flags onto the implicit condition register operand.
|
|
static void preserveCondRegFlags(MachineOperand &CondReg,
|
|
const MachineOperand &OrigCond) {
|
|
CondReg.setIsUndef(OrigCond.isUndef());
|
|
CondReg.setIsKill(OrigCond.isKill());
|
|
}
|
|
|
|
unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded) const {
|
|
if (!FBB && Cond.empty()) {
|
|
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
|
|
.addMBB(TBB);
|
|
if (BytesAdded)
|
|
*BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
|
|
return 1;
|
|
}
|
|
|
|
if(Cond.size() == 1 && Cond[0].isReg()) {
|
|
BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO))
|
|
.add(Cond[0])
|
|
.addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
assert(TBB && Cond[0].isImm());
|
|
|
|
unsigned Opcode
|
|
= getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
|
|
|
|
if (!FBB) {
|
|
Cond[1].isUndef();
|
|
MachineInstr *CondBr =
|
|
BuildMI(&MBB, DL, get(Opcode))
|
|
.addMBB(TBB);
|
|
|
|
// Copy the flags onto the implicit condition register operand.
|
|
preserveCondRegFlags(CondBr->getOperand(1), Cond[1]);
|
|
fixImplicitOperands(*CondBr);
|
|
|
|
if (BytesAdded)
|
|
*BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
|
|
return 1;
|
|
}
|
|
|
|
assert(TBB && FBB);
|
|
|
|
MachineInstr *CondBr =
|
|
BuildMI(&MBB, DL, get(Opcode))
|
|
.addMBB(TBB);
|
|
fixImplicitOperands(*CondBr);
|
|
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
|
|
.addMBB(FBB);
|
|
|
|
MachineOperand &CondReg = CondBr->getOperand(1);
|
|
CondReg.setIsUndef(Cond[1].isUndef());
|
|
CondReg.setIsKill(Cond[1].isKill());
|
|
|
|
if (BytesAdded)
|
|
*BytesAdded = ST.hasOffset3fBug() ? 16 : 8;
|
|
|
|
return 2;
|
|
}
|
|
|
|
bool SIInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (Cond.size() != 2) {
|
|
return true;
|
|
}
|
|
|
|
if (Cond[0].isImm()) {
|
|
Cond[0].setImm(-Cond[0].getImm());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register DstReg, Register TrueReg,
|
|
Register FalseReg, int &CondCycles,
|
|
int &TrueCycles, int &FalseCycles) const {
|
|
switch (Cond[0].getImm()) {
|
|
case VCCNZ:
|
|
case VCCZ: {
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(TrueReg);
|
|
if (MRI.getRegClass(FalseReg) != RC)
|
|
return false;
|
|
|
|
int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32;
|
|
CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
|
|
|
|
// Limit to equal cost for branch vs. N v_cndmask_b32s.
|
|
return RI.hasVGPRs(RC) && NumInsts <= 6;
|
|
}
|
|
case SCC_TRUE:
|
|
case SCC_FALSE: {
|
|
// FIXME: We could insert for VGPRs if we could replace the original compare
|
|
// with a vector one.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(TrueReg);
|
|
if (MRI.getRegClass(FalseReg) != RC)
|
|
return false;
|
|
|
|
int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32;
|
|
|
|
// Multiples of 8 can do s_cselect_b64
|
|
if (NumInsts % 2 == 0)
|
|
NumInsts /= 2;
|
|
|
|
CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
|
|
return RI.isSGPRClass(RC);
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, const DebugLoc &DL,
|
|
Register DstReg, ArrayRef<MachineOperand> Cond,
|
|
Register TrueReg, Register FalseReg) const {
|
|
BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm());
|
|
if (Pred == VCCZ || Pred == SCC_FALSE) {
|
|
Pred = static_cast<BranchPredicate>(-Pred);
|
|
std::swap(TrueReg, FalseReg);
|
|
}
|
|
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg);
|
|
unsigned DstSize = RI.getRegSizeInBits(*DstRC);
|
|
|
|
if (DstSize == 32) {
|
|
MachineInstr *Select;
|
|
if (Pred == SCC_TRUE) {
|
|
Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg)
|
|
.addReg(TrueReg)
|
|
.addReg(FalseReg);
|
|
} else {
|
|
// Instruction's operands are backwards from what is expected.
|
|
Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg)
|
|
.addReg(FalseReg)
|
|
.addReg(TrueReg);
|
|
}
|
|
|
|
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
|
|
return;
|
|
}
|
|
|
|
if (DstSize == 64 && Pred == SCC_TRUE) {
|
|
MachineInstr *Select =
|
|
BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg)
|
|
.addReg(TrueReg)
|
|
.addReg(FalseReg);
|
|
|
|
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
|
|
return;
|
|
}
|
|
|
|
static const int16_t Sub0_15[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
|
|
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
|
|
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
|
|
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
|
|
};
|
|
|
|
static const int16_t Sub0_15_64[] = {
|
|
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
|
|
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
|
|
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
|
|
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
|
|
};
|
|
|
|
unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32;
|
|
const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass;
|
|
const int16_t *SubIndices = Sub0_15;
|
|
int NElts = DstSize / 32;
|
|
|
|
// 64-bit select is only available for SALU.
|
|
// TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit.
|
|
if (Pred == SCC_TRUE) {
|
|
if (NElts % 2) {
|
|
SelOp = AMDGPU::S_CSELECT_B32;
|
|
EltRC = &AMDGPU::SGPR_32RegClass;
|
|
} else {
|
|
SelOp = AMDGPU::S_CSELECT_B64;
|
|
EltRC = &AMDGPU::SGPR_64RegClass;
|
|
SubIndices = Sub0_15_64;
|
|
NElts /= 2;
|
|
}
|
|
}
|
|
|
|
MachineInstrBuilder MIB = BuildMI(
|
|
MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg);
|
|
|
|
I = MIB->getIterator();
|
|
|
|
SmallVector<Register, 8> Regs;
|
|
for (int Idx = 0; Idx != NElts; ++Idx) {
|
|
Register DstElt = MRI.createVirtualRegister(EltRC);
|
|
Regs.push_back(DstElt);
|
|
|
|
unsigned SubIdx = SubIndices[Idx];
|
|
|
|
MachineInstr *Select;
|
|
if (SelOp == AMDGPU::V_CNDMASK_B32_e32) {
|
|
Select =
|
|
BuildMI(MBB, I, DL, get(SelOp), DstElt)
|
|
.addReg(FalseReg, 0, SubIdx)
|
|
.addReg(TrueReg, 0, SubIdx);
|
|
} else {
|
|
Select =
|
|
BuildMI(MBB, I, DL, get(SelOp), DstElt)
|
|
.addReg(TrueReg, 0, SubIdx)
|
|
.addReg(FalseReg, 0, SubIdx);
|
|
}
|
|
|
|
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
|
|
fixImplicitOperands(*Select);
|
|
|
|
MIB.addReg(DstElt)
|
|
.addImm(SubIdx);
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::V_MOV_B32_e32:
|
|
case AMDGPU::V_MOV_B32_e64:
|
|
case AMDGPU::V_MOV_B64_PSEUDO:
|
|
case AMDGPU::S_MOV_B32:
|
|
case AMDGPU::S_MOV_B64:
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
|
|
case AMDGPU::V_ACCVGPR_READ_B32_e64:
|
|
case AMDGPU::V_ACCVGPR_MOV_B32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned SIInstrInfo::getAddressSpaceForPseudoSourceKind(
|
|
unsigned Kind) const {
|
|
switch(Kind) {
|
|
case PseudoSourceValue::Stack:
|
|
case PseudoSourceValue::FixedStack:
|
|
return AMDGPUAS::PRIVATE_ADDRESS;
|
|
case PseudoSourceValue::ConstantPool:
|
|
case PseudoSourceValue::GOT:
|
|
case PseudoSourceValue::JumpTable:
|
|
case PseudoSourceValue::GlobalValueCallEntry:
|
|
case PseudoSourceValue::ExternalSymbolCallEntry:
|
|
case PseudoSourceValue::TargetCustom:
|
|
return AMDGPUAS::CONSTANT_ADDRESS;
|
|
}
|
|
return AMDGPUAS::FLAT_ADDRESS;
|
|
}
|
|
|
|
static void removeModOperands(MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src0_modifiers);
|
|
int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src1_modifiers);
|
|
int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src2_modifiers);
|
|
|
|
MI.RemoveOperand(Src2ModIdx);
|
|
MI.RemoveOperand(Src1ModIdx);
|
|
MI.RemoveOperand(Src0ModIdx);
|
|
}
|
|
|
|
bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
Register Reg, MachineRegisterInfo *MRI) const {
|
|
if (!MRI->hasOneNonDBGUse(Reg))
|
|
return false;
|
|
|
|
switch (DefMI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AMDGPU::S_MOV_B64:
|
|
// TODO: We could fold 64-bit immediates, but this get compilicated
|
|
// when there are sub-registers.
|
|
return false;
|
|
|
|
case AMDGPU::V_MOV_B32_e32:
|
|
case AMDGPU::S_MOV_B32:
|
|
case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
|
|
break;
|
|
}
|
|
|
|
const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0);
|
|
assert(ImmOp);
|
|
// FIXME: We could handle FrameIndex values here.
|
|
if (!ImmOp->isImm())
|
|
return false;
|
|
|
|
unsigned Opc = UseMI.getOpcode();
|
|
if (Opc == AMDGPU::COPY) {
|
|
Register DstReg = UseMI.getOperand(0).getReg();
|
|
bool Is16Bit = getOpSize(UseMI, 0) == 2;
|
|
bool isVGPRCopy = RI.isVGPR(*MRI, DstReg);
|
|
unsigned NewOpc = isVGPRCopy ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32;
|
|
APInt Imm(32, ImmOp->getImm());
|
|
|
|
if (UseMI.getOperand(1).getSubReg() == AMDGPU::hi16)
|
|
Imm = Imm.ashr(16);
|
|
|
|
if (RI.isAGPR(*MRI, DstReg)) {
|
|
if (!isInlineConstant(Imm))
|
|
return false;
|
|
NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
|
|
}
|
|
|
|
if (Is16Bit) {
|
|
if (isVGPRCopy)
|
|
return false; // Do not clobber vgpr_hi16
|
|
|
|
if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16)
|
|
return false;
|
|
|
|
UseMI.getOperand(0).setSubReg(0);
|
|
if (DstReg.isPhysical()) {
|
|
DstReg = RI.get32BitRegister(DstReg);
|
|
UseMI.getOperand(0).setReg(DstReg);
|
|
}
|
|
assert(UseMI.getOperand(1).getReg().isVirtual());
|
|
}
|
|
|
|
UseMI.setDesc(get(NewOpc));
|
|
UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue());
|
|
UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent());
|
|
return true;
|
|
}
|
|
|
|
if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
|
|
Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
|
|
Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) {
|
|
// Don't fold if we are using source or output modifiers. The new VOP2
|
|
// instructions don't have them.
|
|
if (hasAnyModifiersSet(UseMI))
|
|
return false;
|
|
|
|
// If this is a free constant, there's no reason to do this.
|
|
// TODO: We could fold this here instead of letting SIFoldOperands do it
|
|
// later.
|
|
MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
|
|
|
|
// Any src operand can be used for the legality check.
|
|
if (isInlineConstant(UseMI, *Src0, *ImmOp))
|
|
return false;
|
|
|
|
bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64;
|
|
bool IsFMA = Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64;
|
|
MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
|
|
MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
|
|
|
|
// Multiplied part is the constant: Use v_madmk_{f16, f32}.
|
|
// We should only expect these to be on src0 due to canonicalizations.
|
|
if (Src0->isReg() && Src0->getReg() == Reg) {
|
|
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
|
|
return false;
|
|
|
|
if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
|
|
return false;
|
|
|
|
unsigned NewOpc =
|
|
IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 : AMDGPU::V_FMAMK_F16)
|
|
: (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16);
|
|
if (pseudoToMCOpcode(NewOpc) == -1)
|
|
return false;
|
|
|
|
// We need to swap operands 0 and 1 since madmk constant is at operand 1.
|
|
|
|
const int64_t Imm = ImmOp->getImm();
|
|
|
|
// FIXME: This would be a lot easier if we could return a new instruction
|
|
// instead of having to modify in place.
|
|
|
|
// Remove these first since they are at the end.
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
|
|
|
|
Register Src1Reg = Src1->getReg();
|
|
unsigned Src1SubReg = Src1->getSubReg();
|
|
Src0->setReg(Src1Reg);
|
|
Src0->setSubReg(Src1SubReg);
|
|
Src0->setIsKill(Src1->isKill());
|
|
|
|
if (Opc == AMDGPU::V_MAC_F32_e64 ||
|
|
Opc == AMDGPU::V_MAC_F16_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F16_e64)
|
|
UseMI.untieRegOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
|
|
|
|
Src1->ChangeToImmediate(Imm);
|
|
|
|
removeModOperands(UseMI);
|
|
UseMI.setDesc(get(NewOpc));
|
|
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
if (DeleteDef)
|
|
DefMI.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Added part is the constant: Use v_madak_{f16, f32}.
|
|
if (Src2->isReg() && Src2->getReg() == Reg) {
|
|
// Not allowed to use constant bus for another operand.
|
|
// We can however allow an inline immediate as src0.
|
|
bool Src0Inlined = false;
|
|
if (Src0->isReg()) {
|
|
// Try to inline constant if possible.
|
|
// If the Def moves immediate and the use is single
|
|
// We are saving VGPR here.
|
|
MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg());
|
|
if (Def && Def->isMoveImmediate() &&
|
|
isInlineConstant(Def->getOperand(1)) &&
|
|
MRI->hasOneUse(Src0->getReg())) {
|
|
Src0->ChangeToImmediate(Def->getOperand(1).getImm());
|
|
Src0Inlined = true;
|
|
} else if ((Src0->getReg().isPhysical() &&
|
|
(ST.getConstantBusLimit(Opc) <= 1 &&
|
|
RI.isSGPRClass(RI.getPhysRegClass(Src0->getReg())))) ||
|
|
(Src0->getReg().isVirtual() &&
|
|
(ST.getConstantBusLimit(Opc) <= 1 &&
|
|
RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))))
|
|
return false;
|
|
// VGPR is okay as Src0 - fallthrough
|
|
}
|
|
|
|
if (Src1->isReg() && !Src0Inlined ) {
|
|
// We have one slot for inlinable constant so far - try to fill it
|
|
MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg());
|
|
if (Def && Def->isMoveImmediate() &&
|
|
isInlineConstant(Def->getOperand(1)) &&
|
|
MRI->hasOneUse(Src1->getReg()) &&
|
|
commuteInstruction(UseMI)) {
|
|
Src0->ChangeToImmediate(Def->getOperand(1).getImm());
|
|
} else if ((Src1->getReg().isPhysical() &&
|
|
RI.isSGPRClass(RI.getPhysRegClass(Src1->getReg()))) ||
|
|
(Src1->getReg().isVirtual() &&
|
|
RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))))
|
|
return false;
|
|
// VGPR is okay as Src1 - fallthrough
|
|
}
|
|
|
|
unsigned NewOpc =
|
|
IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 : AMDGPU::V_FMAAK_F16)
|
|
: (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16);
|
|
if (pseudoToMCOpcode(NewOpc) == -1)
|
|
return false;
|
|
|
|
const int64_t Imm = ImmOp->getImm();
|
|
|
|
// FIXME: This would be a lot easier if we could return a new instruction
|
|
// instead of having to modify in place.
|
|
|
|
// Remove these first since they are at the end.
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
|
|
|
|
if (Opc == AMDGPU::V_MAC_F32_e64 ||
|
|
Opc == AMDGPU::V_MAC_F16_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F16_e64)
|
|
UseMI.untieRegOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
|
|
|
|
// ChangingToImmediate adds Src2 back to the instruction.
|
|
Src2->ChangeToImmediate(Imm);
|
|
|
|
// These come before src2.
|
|
removeModOperands(UseMI);
|
|
UseMI.setDesc(get(NewOpc));
|
|
// It might happen that UseMI was commuted
|
|
// and we now have SGPR as SRC1. If so 2 inlined
|
|
// constant and SGPR are illegal.
|
|
legalizeOperands(UseMI);
|
|
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
if (DeleteDef)
|
|
DefMI.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1,
|
|
ArrayRef<const MachineOperand *> BaseOps2) {
|
|
if (BaseOps1.size() != BaseOps2.size())
|
|
return false;
|
|
for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) {
|
|
if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
|
|
int WidthB, int OffsetB) {
|
|
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
|
|
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
return LowOffset + LowWidth <= HighOffset;
|
|
}
|
|
|
|
bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
|
|
const MachineInstr &MIb) const {
|
|
SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1;
|
|
int64_t Offset0, Offset1;
|
|
unsigned Dummy0, Dummy1;
|
|
bool Offset0IsScalable, Offset1IsScalable;
|
|
if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable,
|
|
Dummy0, &RI) ||
|
|
!getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable,
|
|
Dummy1, &RI))
|
|
return false;
|
|
|
|
if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1))
|
|
return false;
|
|
|
|
if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
|
|
// FIXME: Handle ds_read2 / ds_write2.
|
|
return false;
|
|
}
|
|
unsigned Width0 = MIa.memoperands().front()->getSize();
|
|
unsigned Width1 = MIb.memoperands().front()->getSize();
|
|
return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1);
|
|
}
|
|
|
|
bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
|
|
const MachineInstr &MIb) const {
|
|
assert(MIa.mayLoadOrStore() &&
|
|
"MIa must load from or modify a memory location");
|
|
assert(MIb.mayLoadOrStore() &&
|
|
"MIb must load from or modify a memory location");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// XXX - Can we relax this between address spaces?
|
|
if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// TODO: Should we check the address space from the MachineMemOperand? That
|
|
// would allow us to distinguish objects we know don't alias based on the
|
|
// underlying address space, even if it was lowered to a different one,
|
|
// e.g. private accesses lowered to use MUBUF instructions on a scratch
|
|
// buffer.
|
|
if (isDS(MIa)) {
|
|
if (isDS(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb);
|
|
}
|
|
|
|
if (isMUBUF(MIa) || isMTBUF(MIa)) {
|
|
if (isMUBUF(MIb) || isMTBUF(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb) && !isSMRD(MIb);
|
|
}
|
|
|
|
if (isSMRD(MIa)) {
|
|
if (isSMRD(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb) && !isMUBUF(MIb) && !isMTBUF(MIb);
|
|
}
|
|
|
|
if (isFLAT(MIa)) {
|
|
if (isFLAT(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI,
|
|
int64_t &Imm, MachineInstr **DefMI = nullptr) {
|
|
if (Reg.isPhysical())
|
|
return false;
|
|
auto *Def = MRI.getUniqueVRegDef(Reg);
|
|
if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) {
|
|
Imm = Def->getOperand(1).getImm();
|
|
if (DefMI)
|
|
*DefMI = Def;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm,
|
|
MachineInstr **DefMI = nullptr) {
|
|
if (!MO->isReg())
|
|
return false;
|
|
const MachineFunction *MF = MO->getParent()->getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
return getFoldableImm(MO->getReg(), MRI, Imm, DefMI);
|
|
}
|
|
|
|
static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI,
|
|
MachineInstr &NewMI) {
|
|
if (LV) {
|
|
unsigned NumOps = MI.getNumOperands();
|
|
for (unsigned I = 1; I < NumOps; ++I) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (Op.isReg() && Op.isKill())
|
|
LV->replaceKillInstruction(Op.getReg(), MI, NewMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI,
|
|
LiveVariables *LV,
|
|
LiveIntervals *LIS) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
bool IsF16 = false;
|
|
bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
|
|
Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
|
|
bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
return nullptr;
|
|
case AMDGPU::V_MAC_F16_e64:
|
|
case AMDGPU::V_FMAC_F16_e64:
|
|
IsF16 = true;
|
|
LLVM_FALLTHROUGH;
|
|
case AMDGPU::V_MAC_F32_e64:
|
|
case AMDGPU::V_FMAC_F32_e64:
|
|
case AMDGPU::V_FMAC_F64_e64:
|
|
break;
|
|
case AMDGPU::V_MAC_F16_e32:
|
|
case AMDGPU::V_FMAC_F16_e32:
|
|
IsF16 = true;
|
|
LLVM_FALLTHROUGH;
|
|
case AMDGPU::V_MAC_F32_e32:
|
|
case AMDGPU::V_FMAC_F32_e32:
|
|
case AMDGPU::V_FMAC_F64_e32: {
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::src0);
|
|
const MachineOperand *Src0 = &MI.getOperand(Src0Idx);
|
|
if (!Src0->isReg() && !Src0->isImm())
|
|
return nullptr;
|
|
|
|
if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0))
|
|
return nullptr;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
|
|
const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src0Mods =
|
|
getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
|
|
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
const MachineOperand *Src1Mods =
|
|
getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
|
|
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
|
|
const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod);
|
|
MachineInstrBuilder MIB;
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
|
|
if (!Src0Mods && !Src1Mods && !Clamp && !Omod && !IsF64 &&
|
|
// If we have an SGPR input, we will violate the constant bus restriction.
|
|
(ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() ||
|
|
!RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) {
|
|
MachineInstr *DefMI;
|
|
const auto killDef = [&DefMI, &MBB, this]() -> void {
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
// The only user is the instruction which will be killed.
|
|
if (!MRI.hasOneNonDBGUse(DefMI->getOperand(0).getReg()))
|
|
return;
|
|
// We cannot just remove the DefMI here, calling pass will crash.
|
|
DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF));
|
|
for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I)
|
|
DefMI->RemoveOperand(I);
|
|
};
|
|
|
|
int64_t Imm;
|
|
if (getFoldableImm(Src2, Imm, &DefMI)) {
|
|
unsigned NewOpc =
|
|
IsFMA ? (IsF16 ? AMDGPU::V_FMAAK_F16 : AMDGPU::V_FMAAK_F32)
|
|
: (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32);
|
|
if (pseudoToMCOpcode(NewOpc) != -1) {
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(*Dst)
|
|
.add(*Src0)
|
|
.add(*Src1)
|
|
.addImm(Imm);
|
|
updateLiveVariables(LV, MI, *MIB);
|
|
if (LIS)
|
|
LIS->ReplaceMachineInstrInMaps(MI, *MIB);
|
|
killDef();
|
|
return MIB;
|
|
}
|
|
}
|
|
unsigned NewOpc = IsFMA
|
|
? (IsF16 ? AMDGPU::V_FMAMK_F16 : AMDGPU::V_FMAMK_F32)
|
|
: (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32);
|
|
if (getFoldableImm(Src1, Imm, &DefMI)) {
|
|
if (pseudoToMCOpcode(NewOpc) != -1) {
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(*Dst)
|
|
.add(*Src0)
|
|
.addImm(Imm)
|
|
.add(*Src2);
|
|
updateLiveVariables(LV, MI, *MIB);
|
|
if (LIS)
|
|
LIS->ReplaceMachineInstrInMaps(MI, *MIB);
|
|
killDef();
|
|
return MIB;
|
|
}
|
|
}
|
|
if (getFoldableImm(Src0, Imm, &DefMI)) {
|
|
if (pseudoToMCOpcode(NewOpc) != -1 &&
|
|
isOperandLegal(
|
|
MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0),
|
|
Src1)) {
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(*Dst)
|
|
.add(*Src1)
|
|
.addImm(Imm)
|
|
.add(*Src2);
|
|
updateLiveVariables(LV, MI, *MIB);
|
|
if (LIS)
|
|
LIS->ReplaceMachineInstrInMaps(MI, *MIB);
|
|
killDef();
|
|
return MIB;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned NewOpc = IsFMA ? (IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64
|
|
: IsF64 ? AMDGPU::V_FMA_F64_e64
|
|
: AMDGPU::V_FMA_F32_e64)
|
|
: (IsF16 ? AMDGPU::V_MAD_F16_e64 : AMDGPU::V_MAD_F32_e64);
|
|
if (pseudoToMCOpcode(NewOpc) == -1)
|
|
return nullptr;
|
|
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(*Dst)
|
|
.addImm(Src0Mods ? Src0Mods->getImm() : 0)
|
|
.add(*Src0)
|
|
.addImm(Src1Mods ? Src1Mods->getImm() : 0)
|
|
.add(*Src1)
|
|
.addImm(0) // Src mods
|
|
.add(*Src2)
|
|
.addImm(Clamp ? Clamp->getImm() : 0)
|
|
.addImm(Omod ? Omod->getImm() : 0);
|
|
updateLiveVariables(LV, MI, *MIB);
|
|
if (LIS)
|
|
LIS->ReplaceMachineInstrInMaps(MI, *MIB);
|
|
return MIB;
|
|
}
|
|
|
|
// It's not generally safe to move VALU instructions across these since it will
|
|
// start using the register as a base index rather than directly.
|
|
// XXX - Why isn't hasSideEffects sufficient for these?
|
|
static bool changesVGPRIndexingMode(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::S_SET_GPR_IDX_ON:
|
|
case AMDGPU::S_SET_GPR_IDX_MODE:
|
|
case AMDGPU::S_SET_GPR_IDX_OFF:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
// Skipping the check for SP writes in the base implementation. The reason it
|
|
// was added was apparently due to compile time concerns.
|
|
//
|
|
// TODO: Do we really want this barrier? It triggers unnecessary hazard nops
|
|
// but is probably avoidable.
|
|
|
|
// Copied from base implementation.
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI.isTerminator() || MI.isPosition())
|
|
return true;
|
|
|
|
// INLINEASM_BR can jump to another block
|
|
if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
|
|
return true;
|
|
|
|
// Target-independent instructions do not have an implicit-use of EXEC, even
|
|
// when they operate on VGPRs. Treating EXEC modifications as scheduling
|
|
// boundaries prevents incorrect movements of such instructions.
|
|
return MI.modifiesRegister(AMDGPU::EXEC, &RI) ||
|
|
MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
|
|
MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
|
|
changesVGPRIndexingMode(MI);
|
|
}
|
|
|
|
bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const {
|
|
return Opcode == AMDGPU::DS_ORDERED_COUNT ||
|
|
Opcode == AMDGPU::DS_GWS_INIT ||
|
|
Opcode == AMDGPU::DS_GWS_SEMA_V ||
|
|
Opcode == AMDGPU::DS_GWS_SEMA_BR ||
|
|
Opcode == AMDGPU::DS_GWS_SEMA_P ||
|
|
Opcode == AMDGPU::DS_GWS_SEMA_RELEASE_ALL ||
|
|
Opcode == AMDGPU::DS_GWS_BARRIER;
|
|
}
|
|
|
|
bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) {
|
|
// Skip the full operand and register alias search modifiesRegister
|
|
// does. There's only a handful of instructions that touch this, it's only an
|
|
// implicit def, and doesn't alias any other registers.
|
|
if (const MCPhysReg *ImpDef = MI.getDesc().getImplicitDefs()) {
|
|
for (; ImpDef && *ImpDef; ++ImpDef) {
|
|
if (*ImpDef == AMDGPU::MODE)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
if (MI.mayStore() && isSMRD(MI))
|
|
return true; // scalar store or atomic
|
|
|
|
// This will terminate the function when other lanes may need to continue.
|
|
if (MI.isReturn())
|
|
return true;
|
|
|
|
// These instructions cause shader I/O that may cause hardware lockups
|
|
// when executed with an empty EXEC mask.
|
|
//
|
|
// Note: exp with VM = DONE = 0 is automatically skipped by hardware when
|
|
// EXEC = 0, but checking for that case here seems not worth it
|
|
// given the typical code patterns.
|
|
if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT ||
|
|
isEXP(Opcode) ||
|
|
Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP ||
|
|
Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER)
|
|
return true;
|
|
|
|
if (MI.isCall() || MI.isInlineAsm())
|
|
return true; // conservative assumption
|
|
|
|
// A mode change is a scalar operation that influences vector instructions.
|
|
if (modifiesModeRegister(MI))
|
|
return true;
|
|
|
|
// These are like SALU instructions in terms of effects, so it's questionable
|
|
// whether we should return true for those.
|
|
//
|
|
// However, executing them with EXEC = 0 causes them to operate on undefined
|
|
// data, which we avoid by returning true here.
|
|
if (Opcode == AMDGPU::V_READFIRSTLANE_B32 ||
|
|
Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI,
|
|
const MachineInstr &MI) const {
|
|
if (MI.isMetaInstruction())
|
|
return false;
|
|
|
|
// This won't read exec if this is an SGPR->SGPR copy.
|
|
if (MI.isCopyLike()) {
|
|
if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg()))
|
|
return true;
|
|
|
|
// Make sure this isn't copying exec as a normal operand
|
|
return MI.readsRegister(AMDGPU::EXEC, &RI);
|
|
}
|
|
|
|
// Make a conservative assumption about the callee.
|
|
if (MI.isCall())
|
|
return true;
|
|
|
|
// Be conservative with any unhandled generic opcodes.
|
|
if (!isTargetSpecificOpcode(MI.getOpcode()))
|
|
return true;
|
|
|
|
return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI);
|
|
}
|
|
|
|
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
|
|
switch (Imm.getBitWidth()) {
|
|
case 1: // This likely will be a condition code mask.
|
|
return true;
|
|
|
|
case 32:
|
|
return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(),
|
|
ST.hasInv2PiInlineImm());
|
|
case 64:
|
|
return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(),
|
|
ST.hasInv2PiInlineImm());
|
|
case 16:
|
|
return ST.has16BitInsts() &&
|
|
AMDGPU::isInlinableLiteral16(Imm.getSExtValue(),
|
|
ST.hasInv2PiInlineImm());
|
|
default:
|
|
llvm_unreachable("invalid bitwidth");
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
|
|
uint8_t OperandType) const {
|
|
if (!MO.isImm() ||
|
|
OperandType < AMDGPU::OPERAND_SRC_FIRST ||
|
|
OperandType > AMDGPU::OPERAND_SRC_LAST)
|
|
return false;
|
|
|
|
// MachineOperand provides no way to tell the true operand size, since it only
|
|
// records a 64-bit value. We need to know the size to determine if a 32-bit
|
|
// floating point immediate bit pattern is legal for an integer immediate. It
|
|
// would be for any 32-bit integer operand, but would not be for a 64-bit one.
|
|
|
|
int64_t Imm = MO.getImm();
|
|
switch (OperandType) {
|
|
case AMDGPU::OPERAND_REG_IMM_INT32:
|
|
case AMDGPU::OPERAND_REG_IMM_FP32:
|
|
case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
|
|
case AMDGPU::OPERAND_REG_IMM_V2FP32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
|
|
case AMDGPU::OPERAND_REG_IMM_V2INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_V2INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP32: {
|
|
int32_t Trunc = static_cast<int32_t>(Imm);
|
|
return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm());
|
|
}
|
|
case AMDGPU::OPERAND_REG_IMM_INT64:
|
|
case AMDGPU::OPERAND_REG_IMM_FP64:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
|
|
return AMDGPU::isInlinableLiteral64(MO.getImm(),
|
|
ST.hasInv2PiInlineImm());
|
|
case AMDGPU::OPERAND_REG_IMM_INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
|
|
// We would expect inline immediates to not be concerned with an integer/fp
|
|
// distinction. However, in the case of 16-bit integer operations, the
|
|
// "floating point" values appear to not work. It seems read the low 16-bits
|
|
// of 32-bit immediates, which happens to always work for the integer
|
|
// values.
|
|
//
|
|
// See llvm bugzilla 46302.
|
|
//
|
|
// TODO: Theoretically we could use op-sel to use the high bits of the
|
|
// 32-bit FP values.
|
|
return AMDGPU::isInlinableIntLiteral(Imm);
|
|
case AMDGPU::OPERAND_REG_IMM_V2INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
|
|
// This suffers the same problem as the scalar 16-bit cases.
|
|
return AMDGPU::isInlinableIntLiteralV216(Imm);
|
|
case AMDGPU::OPERAND_REG_IMM_FP16:
|
|
case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP16: {
|
|
if (isInt<16>(Imm) || isUInt<16>(Imm)) {
|
|
// A few special case instructions have 16-bit operands on subtargets
|
|
// where 16-bit instructions are not legal.
|
|
// TODO: Do the 32-bit immediates work? We shouldn't really need to handle
|
|
// constants in these cases
|
|
int16_t Trunc = static_cast<int16_t>(Imm);
|
|
return ST.has16BitInsts() &&
|
|
AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case AMDGPU::OPERAND_REG_IMM_V2FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: {
|
|
uint32_t Trunc = static_cast<uint32_t>(Imm);
|
|
return AMDGPU::isInlinableLiteralV216(Trunc, ST.hasInv2PiInlineImm());
|
|
}
|
|
case AMDGPU::OPERAND_KIMM32:
|
|
case AMDGPU::OPERAND_KIMM16:
|
|
return false;
|
|
default:
|
|
llvm_unreachable("invalid bitwidth");
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isLiteralConstantLike(const MachineOperand &MO,
|
|
const MCOperandInfo &OpInfo) const {
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
return false;
|
|
case MachineOperand::MO_Immediate:
|
|
return !isInlineConstant(MO, OpInfo);
|
|
case MachineOperand::MO_FrameIndex:
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_MCSymbol:
|
|
return true;
|
|
default:
|
|
llvm_unreachable("unexpected operand type");
|
|
}
|
|
}
|
|
|
|
static bool compareMachineOp(const MachineOperand &Op0,
|
|
const MachineOperand &Op1) {
|
|
if (Op0.getType() != Op1.getType())
|
|
return false;
|
|
|
|
switch (Op0.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
return Op0.getReg() == Op1.getReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return Op0.getImm() == Op1.getImm();
|
|
default:
|
|
llvm_unreachable("Didn't expect to be comparing these operand types");
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
|
|
const MachineOperand &MO) const {
|
|
const MCInstrDesc &InstDesc = MI.getDesc();
|
|
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
|
|
|
|
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
|
|
|
|
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
|
|
return true;
|
|
|
|
if (OpInfo.RegClass < 0)
|
|
return false;
|
|
|
|
if (MO.isImm() && isInlineConstant(MO, OpInfo)) {
|
|
if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() &&
|
|
OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::src2))
|
|
return false;
|
|
return RI.opCanUseInlineConstant(OpInfo.OperandType);
|
|
}
|
|
|
|
if (!RI.opCanUseLiteralConstant(OpInfo.OperandType))
|
|
return false;
|
|
|
|
if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo))
|
|
return true;
|
|
|
|
return ST.hasVOP3Literal();
|
|
}
|
|
|
|
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
|
|
// GFX90A does not have V_MUL_LEGACY_F32_e32.
|
|
if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts())
|
|
return false;
|
|
|
|
int Op32 = AMDGPU::getVOPe32(Opcode);
|
|
if (Op32 == -1)
|
|
return false;
|
|
|
|
return pseudoToMCOpcode(Op32) != -1;
|
|
}
|
|
|
|
bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
|
|
// The src0_modifier operand is present on all instructions
|
|
// that have modifiers.
|
|
|
|
return AMDGPU::getNamedOperandIdx(Opcode,
|
|
AMDGPU::OpName::src0_modifiers) != -1;
|
|
}
|
|
|
|
bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
|
|
unsigned OpName) const {
|
|
const MachineOperand *Mods = getNamedOperand(MI, OpName);
|
|
return Mods && Mods->getImm();
|
|
}
|
|
|
|
bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const {
|
|
return hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::clamp) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::omod);
|
|
}
|
|
|
|
bool SIInstrInfo::canShrink(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) const {
|
|
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
// Can't shrink instruction with three operands.
|
|
if (Src2) {
|
|
switch (MI.getOpcode()) {
|
|
default: return false;
|
|
|
|
case AMDGPU::V_ADDC_U32_e64:
|
|
case AMDGPU::V_SUBB_U32_e64:
|
|
case AMDGPU::V_SUBBREV_U32_e64: {
|
|
const MachineOperand *Src1
|
|
= getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()))
|
|
return false;
|
|
// Additional verification is needed for sdst/src2.
|
|
return true;
|
|
}
|
|
case AMDGPU::V_MAC_F16_e64:
|
|
case AMDGPU::V_MAC_F32_e64:
|
|
case AMDGPU::V_MAC_LEGACY_F32_e64:
|
|
case AMDGPU::V_FMAC_F16_e64:
|
|
case AMDGPU::V_FMAC_F32_e64:
|
|
case AMDGPU::V_FMAC_F64_e64:
|
|
case AMDGPU::V_FMAC_LEGACY_F32_e64:
|
|
if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
|
|
return false;
|
|
break;
|
|
|
|
case AMDGPU::V_CNDMASK_B32_e64:
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
|
|
return false;
|
|
|
|
// We don't need to check src0, all input types are legal, so just make sure
|
|
// src0 isn't using any modifiers.
|
|
if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
|
|
return false;
|
|
|
|
// Can it be shrunk to a valid 32 bit opcode?
|
|
if (!hasVALU32BitEncoding(MI.getOpcode()))
|
|
return false;
|
|
|
|
// Check output modifiers
|
|
return !hasModifiersSet(MI, AMDGPU::OpName::omod) &&
|
|
!hasModifiersSet(MI, AMDGPU::OpName::clamp);
|
|
}
|
|
|
|
// Set VCC operand with all flags from \p Orig, except for setting it as
|
|
// implicit.
|
|
static void copyFlagsToImplicitVCC(MachineInstr &MI,
|
|
const MachineOperand &Orig) {
|
|
|
|
for (MachineOperand &Use : MI.implicit_operands()) {
|
|
if (Use.isUse() &&
|
|
(Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) {
|
|
Use.setIsUndef(Orig.isUndef());
|
|
Use.setIsKill(Orig.isKill());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI,
|
|
unsigned Op32) const {
|
|
MachineBasicBlock *MBB = MI.getParent();;
|
|
MachineInstrBuilder Inst32 =
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32))
|
|
.setMIFlags(MI.getFlags());
|
|
|
|
// Add the dst operand if the 32-bit encoding also has an explicit $vdst.
|
|
// For VOPC instructions, this is replaced by an implicit def of vcc.
|
|
int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
|
|
if (Op32DstIdx != -1) {
|
|
// dst
|
|
Inst32.add(MI.getOperand(0));
|
|
} else {
|
|
assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) ||
|
|
(MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) &&
|
|
"Unexpected case");
|
|
}
|
|
|
|
Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0));
|
|
|
|
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src1)
|
|
Inst32.add(*Src1);
|
|
|
|
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
|
|
if (Src2) {
|
|
int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
|
|
if (Op32Src2Idx != -1) {
|
|
Inst32.add(*Src2);
|
|
} else {
|
|
// In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
|
|
// replaced with an implicit read of vcc or vcc_lo. The implicit read
|
|
// of vcc was already added during the initial BuildMI, but we
|
|
// 1) may need to change vcc to vcc_lo to preserve the original register
|
|
// 2) have to preserve the original flags.
|
|
fixImplicitOperands(*Inst32);
|
|
copyFlagsToImplicitVCC(*Inst32, *Src2);
|
|
}
|
|
}
|
|
|
|
return Inst32;
|
|
}
|
|
|
|
bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
|
|
const MachineOperand &MO,
|
|
const MCOperandInfo &OpInfo) const {
|
|
// Literal constants use the constant bus.
|
|
//if (isLiteralConstantLike(MO, OpInfo))
|
|
// return true;
|
|
if (MO.isImm())
|
|
return !isInlineConstant(MO, OpInfo);
|
|
|
|
if (!MO.isReg())
|
|
return true; // Misc other operands like FrameIndex
|
|
|
|
if (!MO.isUse())
|
|
return false;
|
|
|
|
if (MO.getReg().isVirtual())
|
|
return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
|
|
|
|
// Null is free
|
|
if (MO.getReg() == AMDGPU::SGPR_NULL)
|
|
return false;
|
|
|
|
// SGPRs use the constant bus
|
|
if (MO.isImplicit()) {
|
|
return MO.getReg() == AMDGPU::M0 ||
|
|
MO.getReg() == AMDGPU::VCC ||
|
|
MO.getReg() == AMDGPU::VCC_LO;
|
|
} else {
|
|
return AMDGPU::SReg_32RegClass.contains(MO.getReg()) ||
|
|
AMDGPU::SReg_64RegClass.contains(MO.getReg());
|
|
}
|
|
}
|
|
|
|
static Register findImplicitSGPRRead(const MachineInstr &MI) {
|
|
for (const MachineOperand &MO : MI.implicit_operands()) {
|
|
// We only care about reads.
|
|
if (MO.isDef())
|
|
continue;
|
|
|
|
switch (MO.getReg()) {
|
|
case AMDGPU::VCC:
|
|
case AMDGPU::VCC_LO:
|
|
case AMDGPU::VCC_HI:
|
|
case AMDGPU::M0:
|
|
case AMDGPU::FLAT_SCR:
|
|
return MO.getReg();
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return AMDGPU::NoRegister;
|
|
}
|
|
|
|
static bool shouldReadExec(const MachineInstr &MI) {
|
|
if (SIInstrInfo::isVALU(MI)) {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::V_READLANE_B32:
|
|
case AMDGPU::V_WRITELANE_B32:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (MI.isPreISelOpcode() ||
|
|
SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
|
|
SIInstrInfo::isSALU(MI) ||
|
|
SIInstrInfo::isSMRD(MI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isSubRegOf(const SIRegisterInfo &TRI,
|
|
const MachineOperand &SuperVec,
|
|
const MachineOperand &SubReg) {
|
|
if (SubReg.getReg().isPhysical())
|
|
return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg());
|
|
|
|
return SubReg.getSubReg() != AMDGPU::NoSubRegister &&
|
|
SubReg.getReg() == SuperVec.getReg();
|
|
}
|
|
|
|
bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
|
|
StringRef &ErrInfo) const {
|
|
uint16_t Opcode = MI.getOpcode();
|
|
if (SIInstrInfo::isGenericOpcode(MI.getOpcode()))
|
|
return true;
|
|
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
|
|
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
|
|
|
|
// Make sure the number of operands is correct.
|
|
const MCInstrDesc &Desc = get(Opcode);
|
|
if (!Desc.isVariadic() &&
|
|
Desc.getNumOperands() != MI.getNumExplicitOperands()) {
|
|
ErrInfo = "Instruction has wrong number of operands.";
|
|
return false;
|
|
}
|
|
|
|
if (MI.isInlineAsm()) {
|
|
// Verify register classes for inlineasm constraints.
|
|
for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands();
|
|
I != E; ++I) {
|
|
const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI);
|
|
if (!RC)
|
|
continue;
|
|
|
|
const MachineOperand &Op = MI.getOperand(I);
|
|
if (!Op.isReg())
|
|
continue;
|
|
|
|
Register Reg = Op.getReg();
|
|
if (!Reg.isVirtual() && !RC->contains(Reg)) {
|
|
ErrInfo = "inlineasm operand has incorrect register class.";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (isMIMG(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) {
|
|
ErrInfo = "missing memory operand from MIMG instruction.";
|
|
return false;
|
|
}
|
|
|
|
// Make sure the register classes are correct.
|
|
for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isFPImm()) {
|
|
ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
|
|
"all fp values to integers.";
|
|
return false;
|
|
}
|
|
|
|
int RegClass = Desc.OpInfo[i].RegClass;
|
|
|
|
switch (Desc.OpInfo[i].OperandType) {
|
|
case MCOI::OPERAND_REGISTER:
|
|
if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) {
|
|
ErrInfo = "Illegal immediate value for operand.";
|
|
return false;
|
|
}
|
|
break;
|
|
case AMDGPU::OPERAND_REG_IMM_INT32:
|
|
case AMDGPU::OPERAND_REG_IMM_FP32:
|
|
case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
|
|
break;
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_AC_FP64: {
|
|
if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) {
|
|
ErrInfo = "Illegal immediate value for operand.";
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case MCOI::OPERAND_IMMEDIATE:
|
|
case AMDGPU::OPERAND_KIMM32:
|
|
// Check if this operand is an immediate.
|
|
// FrameIndex operands will be replaced by immediates, so they are
|
|
// allowed.
|
|
if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
|
|
ErrInfo = "Expected immediate, but got non-immediate";
|
|
return false;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
// FIXME: Ideally we would have separate instruction definitions with the
|
|
// aligned register constraint.
|
|
// FIXME: We do not verify inline asm operands, but custom inline asm
|
|
// verification is broken anyway
|
|
if (ST.needsAlignedVGPRs()) {
|
|
const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg);
|
|
if (RI.hasVectorRegisters(RC) && MO.getSubReg()) {
|
|
const TargetRegisterClass *SubRC =
|
|
RI.getSubRegClass(RC, MO.getSubReg());
|
|
RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg());
|
|
if (RC)
|
|
RC = SubRC;
|
|
}
|
|
|
|
// Check that this is the aligned version of the class.
|
|
if (!RC || !RI.isProperlyAlignedRC(*RC)) {
|
|
ErrInfo = "Subtarget requires even aligned vector registers";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (RegClass != -1) {
|
|
if (Reg.isVirtual())
|
|
continue;
|
|
|
|
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
|
|
if (!RC->contains(Reg)) {
|
|
ErrInfo = "Operand has incorrect register class.";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify SDWA
|
|
if (isSDWA(MI)) {
|
|
if (!ST.hasSDWA()) {
|
|
ErrInfo = "SDWA is not supported on this target";
|
|
return false;
|
|
}
|
|
|
|
int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
|
|
|
|
const int OpIndicies[] = { DstIdx, Src0Idx, Src1Idx, Src2Idx };
|
|
|
|
for (int OpIdx: OpIndicies) {
|
|
if (OpIdx == -1)
|
|
continue;
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
|
|
if (!ST.hasSDWAScalar()) {
|
|
// Only VGPRS on VI
|
|
if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) {
|
|
ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI";
|
|
return false;
|
|
}
|
|
} else {
|
|
// No immediates on GFX9
|
|
if (!MO.isReg()) {
|
|
ErrInfo =
|
|
"Only reg allowed as operands in SDWA instructions on GFX9+";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ST.hasSDWAOmod()) {
|
|
// No omod allowed on VI
|
|
const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
|
|
if (OMod != nullptr &&
|
|
(!OMod->isImm() || OMod->getImm() != 0)) {
|
|
ErrInfo = "OMod not allowed in SDWA instructions on VI";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode);
|
|
if (isVOPC(BasicOpcode)) {
|
|
if (!ST.hasSDWASdst() && DstIdx != -1) {
|
|
// Only vcc allowed as dst on VI for VOPC
|
|
const MachineOperand &Dst = MI.getOperand(DstIdx);
|
|
if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) {
|
|
ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI";
|
|
return false;
|
|
}
|
|
} else if (!ST.hasSDWAOutModsVOPC()) {
|
|
// No clamp allowed on GFX9 for VOPC
|
|
const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
|
|
if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) {
|
|
ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI";
|
|
return false;
|
|
}
|
|
|
|
// No omod allowed on GFX9 for VOPC
|
|
const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
|
|
if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) {
|
|
ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused);
|
|
if (DstUnused && DstUnused->isImm() &&
|
|
DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) {
|
|
const MachineOperand &Dst = MI.getOperand(DstIdx);
|
|
if (!Dst.isReg() || !Dst.isTied()) {
|
|
ErrInfo = "Dst register should have tied register";
|
|
return false;
|
|
}
|
|
|
|
const MachineOperand &TiedMO =
|
|
MI.getOperand(MI.findTiedOperandIdx(DstIdx));
|
|
if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) {
|
|
ErrInfo =
|
|
"Dst register should be tied to implicit use of preserved register";
|
|
return false;
|
|
} else if (TiedMO.getReg().isPhysical() &&
|
|
Dst.getReg() != TiedMO.getReg()) {
|
|
ErrInfo = "Dst register should use same physical register as preserved";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify MIMG
|
|
if (isMIMG(MI.getOpcode()) && !MI.mayStore()) {
|
|
// Ensure that the return type used is large enough for all the options
|
|
// being used TFE/LWE require an extra result register.
|
|
const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask);
|
|
if (DMask) {
|
|
uint64_t DMaskImm = DMask->getImm();
|
|
uint32_t RegCount =
|
|
isGather4(MI.getOpcode()) ? 4 : countPopulation(DMaskImm);
|
|
const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe);
|
|
const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe);
|
|
const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16);
|
|
|
|
// Adjust for packed 16 bit values
|
|
if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem())
|
|
RegCount >>= 1;
|
|
|
|
// Adjust if using LWE or TFE
|
|
if ((LWE && LWE->getImm()) || (TFE && TFE->getImm()))
|
|
RegCount += 1;
|
|
|
|
const uint32_t DstIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
|
|
const MachineOperand &Dst = MI.getOperand(DstIdx);
|
|
if (Dst.isReg()) {
|
|
const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx);
|
|
uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32;
|
|
if (RegCount > DstSize) {
|
|
ErrInfo = "MIMG instruction returns too many registers for dst "
|
|
"register class";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify VOP*. Ignore multiple sgpr operands on writelane.
|
|
if (Desc.getOpcode() != AMDGPU::V_WRITELANE_B32
|
|
&& (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI) || isSDWA(MI))) {
|
|
// Only look at the true operands. Only a real operand can use the constant
|
|
// bus, and we don't want to check pseudo-operands like the source modifier
|
|
// flags.
|
|
const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
|
|
|
|
unsigned ConstantBusCount = 0;
|
|
bool UsesLiteral = false;
|
|
const MachineOperand *LiteralVal = nullptr;
|
|
|
|
if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1)
|
|
++ConstantBusCount;
|
|
|
|
SmallVector<Register, 2> SGPRsUsed;
|
|
Register SGPRUsed;
|
|
|
|
for (int OpIdx : OpIndices) {
|
|
if (OpIdx == -1)
|
|
break;
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) {
|
|
if (MO.isReg()) {
|
|
SGPRUsed = MO.getReg();
|
|
if (llvm::all_of(SGPRsUsed, [SGPRUsed](unsigned SGPR) {
|
|
return SGPRUsed != SGPR;
|
|
})) {
|
|
++ConstantBusCount;
|
|
SGPRsUsed.push_back(SGPRUsed);
|
|
}
|
|
} else {
|
|
if (!UsesLiteral) {
|
|
++ConstantBusCount;
|
|
UsesLiteral = true;
|
|
LiteralVal = &MO;
|
|
} else if (!MO.isIdenticalTo(*LiteralVal)) {
|
|
assert(isVOP3(MI));
|
|
ErrInfo = "VOP3 instruction uses more than one literal";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SGPRUsed = findImplicitSGPRRead(MI);
|
|
if (SGPRUsed != AMDGPU::NoRegister) {
|
|
// Implicit uses may safely overlap true overands
|
|
if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) {
|
|
return !RI.regsOverlap(SGPRUsed, SGPR);
|
|
})) {
|
|
++ConstantBusCount;
|
|
SGPRsUsed.push_back(SGPRUsed);
|
|
}
|
|
}
|
|
|
|
// v_writelane_b32 is an exception from constant bus restriction:
|
|
// vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const
|
|
if (ConstantBusCount > ST.getConstantBusLimit(Opcode) &&
|
|
Opcode != AMDGPU::V_WRITELANE_B32) {
|
|
ErrInfo = "VOP* instruction violates constant bus restriction";
|
|
return false;
|
|
}
|
|
|
|
if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) {
|
|
ErrInfo = "VOP3 instruction uses literal";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Special case for writelane - this can break the multiple constant bus rule,
|
|
// but still can't use more than one SGPR register
|
|
if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) {
|
|
unsigned SGPRCount = 0;
|
|
Register SGPRUsed = AMDGPU::NoRegister;
|
|
|
|
for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx}) {
|
|
if (OpIdx == -1)
|
|
break;
|
|
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
|
|
if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) {
|
|
if (MO.isReg() && MO.getReg() != AMDGPU::M0) {
|
|
if (MO.getReg() != SGPRUsed)
|
|
++SGPRCount;
|
|
SGPRUsed = MO.getReg();
|
|
}
|
|
}
|
|
if (SGPRCount > ST.getConstantBusLimit(Opcode)) {
|
|
ErrInfo = "WRITELANE instruction violates constant bus restriction";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify misc. restrictions on specific instructions.
|
|
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 ||
|
|
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) {
|
|
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
const MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
const MachineOperand &Src2 = MI.getOperand(Src2Idx);
|
|
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
|
|
if (!compareMachineOp(Src0, Src1) &&
|
|
!compareMachineOp(Src0, Src2)) {
|
|
ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
|
|
return false;
|
|
}
|
|
}
|
|
if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() &
|
|
SISrcMods::ABS) ||
|
|
(getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() &
|
|
SISrcMods::ABS) ||
|
|
(getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() &
|
|
SISrcMods::ABS)) {
|
|
ErrInfo = "ABS not allowed in VOP3B instructions";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isSOP2(MI) || isSOPC(MI)) {
|
|
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
const MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
unsigned Immediates = 0;
|
|
|
|
if (!Src0.isReg() &&
|
|
!isInlineConstant(Src0, Desc.OpInfo[Src0Idx].OperandType))
|
|
Immediates++;
|
|
if (!Src1.isReg() &&
|
|
!isInlineConstant(Src1, Desc.OpInfo[Src1Idx].OperandType))
|
|
Immediates++;
|
|
|
|
if (Immediates > 1) {
|
|
ErrInfo = "SOP2/SOPC instruction requires too many immediate constants";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isSOPK(MI)) {
|
|
auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16);
|
|
if (Desc.isBranch()) {
|
|
if (!Op->isMBB()) {
|
|
ErrInfo = "invalid branch target for SOPK instruction";
|
|
return false;
|
|
}
|
|
} else {
|
|
uint64_t Imm = Op->getImm();
|
|
if (sopkIsZext(MI)) {
|
|
if (!isUInt<16>(Imm)) {
|
|
ErrInfo = "invalid immediate for SOPK instruction";
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!isInt<16>(Imm)) {
|
|
ErrInfo = "invalid immediate for SOPK instruction";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 ||
|
|
Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 ||
|
|
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
|
|
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) {
|
|
const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
|
|
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64;
|
|
|
|
const unsigned StaticNumOps = Desc.getNumOperands() +
|
|
Desc.getNumImplicitUses();
|
|
const unsigned NumImplicitOps = IsDst ? 2 : 1;
|
|
|
|
// Allow additional implicit operands. This allows a fixup done by the post
|
|
// RA scheduler where the main implicit operand is killed and implicit-defs
|
|
// are added for sub-registers that remain live after this instruction.
|
|
if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) {
|
|
ErrInfo = "missing implicit register operands";
|
|
return false;
|
|
}
|
|
|
|
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
|
|
if (IsDst) {
|
|
if (!Dst->isUse()) {
|
|
ErrInfo = "v_movreld_b32 vdst should be a use operand";
|
|
return false;
|
|
}
|
|
|
|
unsigned UseOpIdx;
|
|
if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) ||
|
|
UseOpIdx != StaticNumOps + 1) {
|
|
ErrInfo = "movrel implicit operands should be tied";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
const MachineOperand &ImpUse
|
|
= MI.getOperand(StaticNumOps + NumImplicitOps - 1);
|
|
if (!ImpUse.isReg() || !ImpUse.isUse() ||
|
|
!isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) {
|
|
ErrInfo = "src0 should be subreg of implicit vector use";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure we aren't losing exec uses in the td files. This mostly requires
|
|
// being careful when using let Uses to try to add other use registers.
|
|
if (shouldReadExec(MI)) {
|
|
if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
|
|
ErrInfo = "VALU instruction does not implicitly read exec mask";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isSMRD(MI)) {
|
|
if (MI.mayStore()) {
|
|
// The register offset form of scalar stores may only use m0 as the
|
|
// soffset register.
|
|
const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soff);
|
|
if (Soff && Soff->getReg() != AMDGPU::M0) {
|
|
ErrInfo = "scalar stores must use m0 as offset register";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isFLAT(MI) && !ST.hasFlatInstOffsets()) {
|
|
const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
|
|
if (Offset->getImm() != 0) {
|
|
ErrInfo = "subtarget does not support offsets in flat instructions";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isMIMG(MI)) {
|
|
const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim);
|
|
if (DimOp) {
|
|
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode,
|
|
AMDGPU::OpName::vaddr0);
|
|
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
|
|
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode);
|
|
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
|
|
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
|
|
const AMDGPU::MIMGDimInfo *Dim =
|
|
AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm());
|
|
|
|
if (!Dim) {
|
|
ErrInfo = "dim is out of range";
|
|
return false;
|
|
}
|
|
|
|
bool IsA16 = false;
|
|
if (ST.hasR128A16()) {
|
|
const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128);
|
|
IsA16 = R128A16->getImm() != 0;
|
|
} else if (ST.hasGFX10A16()) {
|
|
const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16);
|
|
IsA16 = A16->getImm() != 0;
|
|
}
|
|
|
|
bool IsNSA = SRsrcIdx - VAddr0Idx > 1;
|
|
|
|
unsigned AddrWords =
|
|
AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16());
|
|
|
|
unsigned VAddrWords;
|
|
if (IsNSA) {
|
|
VAddrWords = SRsrcIdx - VAddr0Idx;
|
|
} else {
|
|
const TargetRegisterClass *RC = getOpRegClass(MI, VAddr0Idx);
|
|
VAddrWords = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 32;
|
|
if (AddrWords > 8)
|
|
AddrWords = 16;
|
|
}
|
|
|
|
if (VAddrWords != AddrWords) {
|
|
LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords
|
|
<< " but got " << VAddrWords << "\n");
|
|
ErrInfo = "bad vaddr size";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl);
|
|
if (DppCt) {
|
|
using namespace AMDGPU::DPP;
|
|
|
|
unsigned DC = DppCt->getImm();
|
|
if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 ||
|
|
DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST ||
|
|
(DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) ||
|
|
(DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) ||
|
|
(DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) ||
|
|
(DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) ||
|
|
(DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) {
|
|
ErrInfo = "Invalid dpp_ctrl value";
|
|
return false;
|
|
}
|
|
if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 &&
|
|
ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
|
|
ErrInfo = "Invalid dpp_ctrl value: "
|
|
"wavefront shifts are not supported on GFX10+";
|
|
return false;
|
|
}
|
|
if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 &&
|
|
ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
|
|
ErrInfo = "Invalid dpp_ctrl value: "
|
|
"broadcasts are not supported on GFX10+";
|
|
return false;
|
|
}
|
|
if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST &&
|
|
ST.getGeneration() < AMDGPUSubtarget::GFX10) {
|
|
if (DC >= DppCtrl::ROW_NEWBCAST_FIRST &&
|
|
DC <= DppCtrl::ROW_NEWBCAST_LAST &&
|
|
!ST.hasGFX90AInsts()) {
|
|
ErrInfo = "Invalid dpp_ctrl value: "
|
|
"row_newbroadcast/row_share is not supported before "
|
|
"GFX90A/GFX10";
|
|
return false;
|
|
} else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) {
|
|
ErrInfo = "Invalid dpp_ctrl value: "
|
|
"row_share and row_xmask are not supported before GFX10";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
|
|
|
|
if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO &&
|
|
((DstIdx >= 0 &&
|
|
(Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64RegClassID ||
|
|
Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64_Align2RegClassID)) ||
|
|
((Src0Idx >= 0 &&
|
|
(Desc.OpInfo[Src0Idx].RegClass == AMDGPU::VReg_64RegClassID ||
|
|
Desc.OpInfo[Src0Idx].RegClass ==
|
|
AMDGPU::VReg_64_Align2RegClassID)))) &&
|
|
!AMDGPU::isLegal64BitDPPControl(DC)) {
|
|
ErrInfo = "Invalid dpp_ctrl value: "
|
|
"64 bit dpp only support row_newbcast";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) {
|
|
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
|
|
uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0
|
|
: AMDGPU::OpName::vdata;
|
|
const MachineOperand *Data = getNamedOperand(MI, DataNameIdx);
|
|
const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1);
|
|
if (Data && !Data->isReg())
|
|
Data = nullptr;
|
|
|
|
if (ST.hasGFX90AInsts()) {
|
|
if (Dst && Data &&
|
|
(RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) {
|
|
ErrInfo = "Invalid register class: "
|
|
"vdata and vdst should be both VGPR or AGPR";
|
|
return false;
|
|
}
|
|
if (Data && Data2 &&
|
|
(RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) {
|
|
ErrInfo = "Invalid register class: "
|
|
"both data operands should be VGPR or AGPR";
|
|
return false;
|
|
}
|
|
} else {
|
|
if ((Dst && RI.isAGPR(MRI, Dst->getReg())) ||
|
|
(Data && RI.isAGPR(MRI, Data->getReg())) ||
|
|
(Data2 && RI.isAGPR(MRI, Data2->getReg()))) {
|
|
ErrInfo = "Invalid register class: "
|
|
"agpr loads and stores not supported on this GPU";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ST.needsAlignedVGPRs() &&
|
|
(MI.getOpcode() == AMDGPU::DS_GWS_INIT ||
|
|
MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
|
|
MI.getOpcode() == AMDGPU::DS_GWS_BARRIER)) {
|
|
const MachineOperand *Op = getNamedOperand(MI, AMDGPU::OpName::data0);
|
|
Register Reg = Op->getReg();
|
|
bool Aligned = true;
|
|
if (Reg.isPhysical()) {
|
|
Aligned = !(RI.getHWRegIndex(Reg) & 1);
|
|
} else {
|
|
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
|
|
Aligned = RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) &&
|
|
!(RI.getChannelFromSubReg(Op->getSubReg()) & 1);
|
|
}
|
|
|
|
if (!Aligned) {
|
|
ErrInfo = "Subtarget requires even aligned vector registers "
|
|
"for DS_GWS instructions";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default: return AMDGPU::INSTRUCTION_LIST_END;
|
|
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
|
|
case AMDGPU::COPY: return AMDGPU::COPY;
|
|
case AMDGPU::PHI: return AMDGPU::PHI;
|
|
case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
|
|
case AMDGPU::WQM: return AMDGPU::WQM;
|
|
case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM;
|
|
case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM;
|
|
case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM;
|
|
case AMDGPU::S_MOV_B32: {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
return MI.getOperand(1).isReg() ||
|
|
RI.isAGPR(MRI, MI.getOperand(0).getReg()) ?
|
|
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
|
|
}
|
|
case AMDGPU::S_ADD_I32:
|
|
return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
|
|
case AMDGPU::S_ADDC_U32:
|
|
return AMDGPU::V_ADDC_U32_e32;
|
|
case AMDGPU::S_SUB_I32:
|
|
return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32;
|
|
// FIXME: These are not consistently handled, and selected when the carry is
|
|
// used.
|
|
case AMDGPU::S_ADD_U32:
|
|
return AMDGPU::V_ADD_CO_U32_e32;
|
|
case AMDGPU::S_SUB_U32:
|
|
return AMDGPU::V_SUB_CO_U32_e32;
|
|
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
|
|
case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64;
|
|
case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64;
|
|
case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64;
|
|
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64;
|
|
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64;
|
|
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64;
|
|
case AMDGPU::S_XNOR_B32:
|
|
return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END;
|
|
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64;
|
|
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64;
|
|
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64;
|
|
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64;
|
|
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
|
|
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64;
|
|
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
|
|
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64;
|
|
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
|
|
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64;
|
|
case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64;
|
|
case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64;
|
|
case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64;
|
|
case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64;
|
|
case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
|
|
case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
|
|
case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
|
|
case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
|
|
case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64;
|
|
case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64;
|
|
case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64;
|
|
case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64;
|
|
case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64;
|
|
case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64;
|
|
case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64;
|
|
case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64;
|
|
case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64;
|
|
case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64;
|
|
case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64;
|
|
case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64;
|
|
case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64;
|
|
case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64;
|
|
case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
|
|
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
|
|
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
|
|
case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
|
|
case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
|
|
case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
|
|
}
|
|
llvm_unreachable(
|
|
"Unexpected scalar opcode without corresponding vector one!");
|
|
}
|
|
|
|
static unsigned adjustAllocatableRegClass(const GCNSubtarget &ST,
|
|
const MachineRegisterInfo &MRI,
|
|
const MCInstrDesc &TID,
|
|
unsigned RCID,
|
|
bool IsAllocatable) {
|
|
if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
|
|
(((TID.mayLoad() || TID.mayStore()) &&
|
|
!(TID.TSFlags & SIInstrFlags::VGPRSpill)) ||
|
|
(TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) {
|
|
switch (RCID) {
|
|
case AMDGPU::AV_32RegClassID: return AMDGPU::VGPR_32RegClassID;
|
|
case AMDGPU::AV_64RegClassID: return AMDGPU::VReg_64RegClassID;
|
|
case AMDGPU::AV_96RegClassID: return AMDGPU::VReg_96RegClassID;
|
|
case AMDGPU::AV_128RegClassID: return AMDGPU::VReg_128RegClassID;
|
|
case AMDGPU::AV_160RegClassID: return AMDGPU::VReg_160RegClassID;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return RCID;
|
|
}
|
|
|
|
const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID,
|
|
unsigned OpNum, const TargetRegisterInfo *TRI,
|
|
const MachineFunction &MF)
|
|
const {
|
|
if (OpNum >= TID.getNumOperands())
|
|
return nullptr;
|
|
auto RegClass = TID.OpInfo[OpNum].RegClass;
|
|
bool IsAllocatable = false;
|
|
if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) {
|
|
// vdst and vdata should be both VGPR or AGPR, same for the DS instructions
|
|
// with two data operands. Request register class constainted to VGPR only
|
|
// of both operands present as Machine Copy Propagation can not check this
|
|
// constraint and possibly other passes too.
|
|
//
|
|
// The check is limited to FLAT and DS because atomics in non-flat encoding
|
|
// have their vdst and vdata tied to be the same register.
|
|
const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
|
|
AMDGPU::OpName::vdst);
|
|
const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
|
|
(TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
|
|
: AMDGPU::OpName::vdata);
|
|
if (DataIdx != -1) {
|
|
IsAllocatable = VDstIdx != -1 ||
|
|
AMDGPU::getNamedOperandIdx(TID.Opcode,
|
|
AMDGPU::OpName::data1) != -1;
|
|
}
|
|
}
|
|
RegClass = adjustAllocatableRegClass(ST, MF.getRegInfo(), TID, RegClass,
|
|
IsAllocatable);
|
|
return RI.getRegClass(RegClass);
|
|
}
|
|
|
|
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
|
|
unsigned OpNo) const {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
const MCInstrDesc &Desc = get(MI.getOpcode());
|
|
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
|
|
Desc.OpInfo[OpNo].RegClass == -1) {
|
|
Register Reg = MI.getOperand(OpNo).getReg();
|
|
|
|
if (Reg.isVirtual())
|
|
return MRI.getRegClass(Reg);
|
|
return RI.getPhysRegClass(Reg);
|
|
}
|
|
|
|
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
|
|
RCID = adjustAllocatableRegClass(ST, MRI, Desc, RCID, true);
|
|
return RI.getRegClass(RCID);
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
|
|
MachineBasicBlock::iterator I = MI;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass;
|
|
const TargetRegisterClass *RC = RI.getRegClass(RCID);
|
|
unsigned Size = RI.getRegSizeInBits(*RC);
|
|
unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32;
|
|
if (MO.isReg())
|
|
Opcode = AMDGPU::COPY;
|
|
else if (RI.isSGPRClass(RC))
|
|
Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32;
|
|
|
|
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
|
|
const TargetRegisterClass *VRC64 = RI.getVGPR64Class();
|
|
if (RI.getCommonSubClass(VRC64, VRC))
|
|
VRC = VRC64;
|
|
else
|
|
VRC = &AMDGPU::VGPR_32RegClass;
|
|
|
|
Register Reg = MRI.createVirtualRegister(VRC);
|
|
DebugLoc DL = MBB->findDebugLoc(I);
|
|
BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO);
|
|
MO.ChangeToRegister(Reg, false);
|
|
}
|
|
|
|
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineOperand &SuperReg,
|
|
const TargetRegisterClass *SuperRC,
|
|
unsigned SubIdx,
|
|
const TargetRegisterClass *SubRC)
|
|
const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
Register SubReg = MRI.createVirtualRegister(SubRC);
|
|
|
|
if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
|
|
.addReg(SuperReg.getReg(), 0, SubIdx);
|
|
return SubReg;
|
|
}
|
|
|
|
// Just in case the super register is itself a sub-register, copy it to a new
|
|
// value so we don't need to worry about merging its subreg index with the
|
|
// SubIdx passed to this function. The register coalescer should be able to
|
|
// eliminate this extra copy.
|
|
Register NewSuperReg = MRI.createVirtualRegister(SuperRC);
|
|
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
|
|
.addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
|
|
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
|
|
.addReg(NewSuperReg, 0, SubIdx);
|
|
|
|
return SubReg;
|
|
}
|
|
|
|
MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
|
|
MachineBasicBlock::iterator MII,
|
|
MachineRegisterInfo &MRI,
|
|
MachineOperand &Op,
|
|
const TargetRegisterClass *SuperRC,
|
|
unsigned SubIdx,
|
|
const TargetRegisterClass *SubRC) const {
|
|
if (Op.isImm()) {
|
|
if (SubIdx == AMDGPU::sub0)
|
|
return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm()));
|
|
if (SubIdx == AMDGPU::sub1)
|
|
return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32));
|
|
|
|
llvm_unreachable("Unhandled register index for immediate");
|
|
}
|
|
|
|
unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
|
|
SubIdx, SubRC);
|
|
return MachineOperand::CreateReg(SubReg, false);
|
|
}
|
|
|
|
// Change the order of operands from (0, 1, 2) to (0, 2, 1)
|
|
void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
|
|
assert(Inst.getNumExplicitOperands() == 3);
|
|
MachineOperand Op1 = Inst.getOperand(1);
|
|
Inst.RemoveOperand(1);
|
|
Inst.addOperand(Op1);
|
|
}
|
|
|
|
bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
|
|
const MCOperandInfo &OpInfo,
|
|
const MachineOperand &MO) const {
|
|
if (!MO.isReg())
|
|
return false;
|
|
|
|
Register Reg = MO.getReg();
|
|
|
|
const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass);
|
|
if (Reg.isPhysical())
|
|
return DRC->contains(Reg);
|
|
|
|
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
|
|
|
|
if (MO.getSubReg()) {
|
|
const MachineFunction *MF = MO.getParent()->getParent()->getParent();
|
|
const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF);
|
|
if (!SuperRC)
|
|
return false;
|
|
|
|
DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg());
|
|
if (!DRC)
|
|
return false;
|
|
}
|
|
return RC->hasSuperClassEq(DRC);
|
|
}
|
|
|
|
bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
|
|
const MCOperandInfo &OpInfo,
|
|
const MachineOperand &MO) const {
|
|
if (MO.isReg())
|
|
return isLegalRegOperand(MRI, OpInfo, MO);
|
|
|
|
// Handle non-register types that are treated like immediates.
|
|
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
|
|
return true;
|
|
}
|
|
|
|
bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
|
|
const MachineOperand *MO) const {
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const MCInstrDesc &InstDesc = MI.getDesc();
|
|
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
|
|
const TargetRegisterClass *DefinedRC =
|
|
OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
|
|
if (!MO)
|
|
MO = &MI.getOperand(OpIdx);
|
|
|
|
int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode());
|
|
int VOP3LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
|
|
if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) {
|
|
if (isVOP3(MI) && isLiteralConstantLike(*MO, OpInfo) && !VOP3LiteralLimit--)
|
|
return false;
|
|
|
|
SmallDenseSet<RegSubRegPair> SGPRsUsed;
|
|
if (MO->isReg())
|
|
SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg()));
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
if (i == OpIdx)
|
|
continue;
|
|
const MachineOperand &Op = MI.getOperand(i);
|
|
if (Op.isReg()) {
|
|
RegSubRegPair SGPR(Op.getReg(), Op.getSubReg());
|
|
if (!SGPRsUsed.count(SGPR) &&
|
|
usesConstantBus(MRI, Op, InstDesc.OpInfo[i])) {
|
|
if (--ConstantBusLimit <= 0)
|
|
return false;
|
|
SGPRsUsed.insert(SGPR);
|
|
}
|
|
} else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
|
|
if (--ConstantBusLimit <= 0)
|
|
return false;
|
|
} else if (isVOP3(MI) && AMDGPU::isSISrcOperand(InstDesc, i) &&
|
|
isLiteralConstantLike(Op, InstDesc.OpInfo[i])) {
|
|
if (!VOP3LiteralLimit--)
|
|
return false;
|
|
if (--ConstantBusLimit <= 0)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MO->isReg()) {
|
|
assert(DefinedRC);
|
|
if (!isLegalRegOperand(MRI, OpInfo, *MO))
|
|
return false;
|
|
bool IsAGPR = RI.isAGPR(MRI, MO->getReg());
|
|
if (IsAGPR && !ST.hasMAIInsts())
|
|
return false;
|
|
unsigned Opc = MI.getOpcode();
|
|
if (IsAGPR &&
|
|
(!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
|
|
(MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc)))
|
|
return false;
|
|
// Atomics should have both vdst and vdata either vgpr or agpr.
|
|
const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
const int DataIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata);
|
|
if ((int)OpIdx == VDstIdx && DataIdx != -1 &&
|
|
MI.getOperand(DataIdx).isReg() &&
|
|
RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR)
|
|
return false;
|
|
if ((int)OpIdx == DataIdx) {
|
|
if (VDstIdx != -1 &&
|
|
RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR)
|
|
return false;
|
|
// DS instructions with 2 src operands also must have tied RC.
|
|
const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::data1);
|
|
if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() &&
|
|
RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR)
|
|
return false;
|
|
}
|
|
if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
|
|
(int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) &&
|
|
RI.isSGPRReg(MRI, MO->getReg()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Handle non-register types that are treated like immediates.
|
|
assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal());
|
|
|
|
if (!DefinedRC) {
|
|
// This operand expects an immediate.
|
|
return true;
|
|
}
|
|
|
|
return isImmOperandLegal(MI, OpIdx, *MO);
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
const MCInstrDesc &InstrDesc = get(Opc);
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
|
|
// If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
|
|
// we need to only have one constant bus use before GFX10.
|
|
bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister;
|
|
if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 &&
|
|
Src0.isReg() && (RI.isSGPRReg(MRI, Src0.getReg()) ||
|
|
isLiteralConstantLike(Src0, InstrDesc.OpInfo[Src0Idx])))
|
|
legalizeOpWithMove(MI, Src0Idx);
|
|
|
|
// Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for
|
|
// both the value to write (src0) and lane select (src1). Fix up non-SGPR
|
|
// src0/src1 with V_READFIRSTLANE.
|
|
if (Opc == AMDGPU::V_WRITELANE_B32) {
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) {
|
|
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
|
|
.add(Src0);
|
|
Src0.ChangeToRegister(Reg, false);
|
|
}
|
|
if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) {
|
|
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
|
|
.add(Src1);
|
|
Src1.ChangeToRegister(Reg, false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No VOP2 instructions support AGPRs.
|
|
if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg()))
|
|
legalizeOpWithMove(MI, Src0Idx);
|
|
|
|
if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg()))
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
|
|
// VOP2 src0 instructions support all operand types, so we don't need to check
|
|
// their legality. If src1 is already legal, we don't need to do anything.
|
|
if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
|
|
return;
|
|
|
|
// Special case: V_READLANE_B32 accepts only immediate or SGPR operands for
|
|
// lane select. Fix up using V_READFIRSTLANE, since we assume that the lane
|
|
// select is uniform.
|
|
if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() &&
|
|
RI.isVGPR(MRI, Src1.getReg())) {
|
|
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
|
|
.add(Src1);
|
|
Src1.ChangeToRegister(Reg, false);
|
|
return;
|
|
}
|
|
|
|
// We do not use commuteInstruction here because it is too aggressive and will
|
|
// commute if it is possible. We only want to commute here if it improves
|
|
// legality. This can be called a fairly large number of times so don't waste
|
|
// compile time pointlessly swapping and checking legality again.
|
|
if (HasImplicitSGPR || !MI.isCommutable()) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
// If src0 can be used as src1, commuting will make the operands legal.
|
|
// Otherwise we have to give up and insert a move.
|
|
//
|
|
// TODO: Other immediate-like operand kinds could be commuted if there was a
|
|
// MachineOperand::ChangeTo* for them.
|
|
if ((!Src1.isImm() && !Src1.isReg()) ||
|
|
!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
int CommutedOpc = commuteOpcode(MI);
|
|
if (CommutedOpc == -1) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
MI.setDesc(get(CommutedOpc));
|
|
|
|
Register Src0Reg = Src0.getReg();
|
|
unsigned Src0SubReg = Src0.getSubReg();
|
|
bool Src0Kill = Src0.isKill();
|
|
|
|
if (Src1.isImm())
|
|
Src0.ChangeToImmediate(Src1.getImm());
|
|
else if (Src1.isReg()) {
|
|
Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
|
|
Src0.setSubReg(Src1.getSubReg());
|
|
} else
|
|
llvm_unreachable("Should only have register or immediate operands");
|
|
|
|
Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
|
|
Src1.setSubReg(Src0SubReg);
|
|
fixImplicitOperands(MI);
|
|
}
|
|
|
|
// Legalize VOP3 operands. All operand types are supported for any operand
|
|
// but only one literal constant and only starting from GFX10.
|
|
void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
int VOP3Idx[3] = {
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
|
|
};
|
|
|
|
if (Opc == AMDGPU::V_PERMLANE16_B32_e64 ||
|
|
Opc == AMDGPU::V_PERMLANEX16_B32_e64) {
|
|
// src1 and src2 must be scalar
|
|
MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]);
|
|
MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) {
|
|
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
|
|
.add(Src1);
|
|
Src1.ChangeToRegister(Reg, false);
|
|
}
|
|
if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) {
|
|
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
|
|
.add(Src2);
|
|
Src2.ChangeToRegister(Reg, false);
|
|
}
|
|
}
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
int ConstantBusLimit = ST.getConstantBusLimit(Opc);
|
|
int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
|
|
SmallDenseSet<unsigned> SGPRsUsed;
|
|
Register SGPRReg = findUsedSGPR(MI, VOP3Idx);
|
|
if (SGPRReg != AMDGPU::NoRegister) {
|
|
SGPRsUsed.insert(SGPRReg);
|
|
--ConstantBusLimit;
|
|
}
|
|
|
|
for (int Idx : VOP3Idx) {
|
|
if (Idx == -1)
|
|
break;
|
|
MachineOperand &MO = MI.getOperand(Idx);
|
|
|
|
if (!MO.isReg()) {
|
|
if (!isLiteralConstantLike(MO, get(Opc).OpInfo[Idx]))
|
|
continue;
|
|
|
|
if (LiteralLimit > 0 && ConstantBusLimit > 0) {
|
|
--LiteralLimit;
|
|
--ConstantBusLimit;
|
|
continue;
|
|
}
|
|
|
|
--LiteralLimit;
|
|
--ConstantBusLimit;
|
|
legalizeOpWithMove(MI, Idx);
|
|
continue;
|
|
}
|
|
|
|
if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) &&
|
|
!isOperandLegal(MI, Idx, &MO)) {
|
|
legalizeOpWithMove(MI, Idx);
|
|
continue;
|
|
}
|
|
|
|
if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg())))
|
|
continue; // VGPRs are legal
|
|
|
|
// We can use one SGPR in each VOP3 instruction prior to GFX10
|
|
// and two starting from GFX10.
|
|
if (SGPRsUsed.count(MO.getReg()))
|
|
continue;
|
|
if (ConstantBusLimit > 0) {
|
|
SGPRsUsed.insert(MO.getReg());
|
|
--ConstantBusLimit;
|
|
continue;
|
|
}
|
|
|
|
// If we make it this far, then the operand is not legal and we must
|
|
// legalize it.
|
|
legalizeOpWithMove(MI, Idx);
|
|
}
|
|
}
|
|
|
|
Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
|
|
MachineRegisterInfo &MRI) const {
|
|
const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
|
|
const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
|
|
Register DstReg = MRI.createVirtualRegister(SRC);
|
|
unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32;
|
|
|
|
if (RI.hasAGPRs(VRC)) {
|
|
VRC = RI.getEquivalentVGPRClass(VRC);
|
|
Register NewSrcReg = MRI.createVirtualRegister(VRC);
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(TargetOpcode::COPY), NewSrcReg)
|
|
.addReg(SrcReg);
|
|
SrcReg = NewSrcReg;
|
|
}
|
|
|
|
if (SubRegs == 1) {
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(AMDGPU::V_READFIRSTLANE_B32), DstReg)
|
|
.addReg(SrcReg);
|
|
return DstReg;
|
|
}
|
|
|
|
SmallVector<unsigned, 8> SRegs;
|
|
for (unsigned i = 0; i < SubRegs; ++i) {
|
|
Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
|
|
.addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
|
|
SRegs.push_back(SGPR);
|
|
}
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(AMDGPU::REG_SEQUENCE), DstReg);
|
|
for (unsigned i = 0; i < SubRegs; ++i) {
|
|
MIB.addReg(SRegs[i]);
|
|
MIB.addImm(RI.getSubRegFromChannel(i));
|
|
}
|
|
return DstReg;
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
|
|
// If the pointer is store in VGPRs, then we need to move them to
|
|
// SGPRs using v_readfirstlane. This is safe because we only select
|
|
// loads with uniform pointers to SMRD instruction so we know the
|
|
// pointer value is uniform.
|
|
MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
|
|
if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
|
|
Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
|
|
SBase->setReg(SGPR);
|
|
}
|
|
MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soff);
|
|
if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) {
|
|
Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI);
|
|
SOff->setReg(SGPR);
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const {
|
|
unsigned Opc = Inst.getOpcode();
|
|
int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
|
|
if (OldSAddrIdx < 0)
|
|
return false;
|
|
|
|
assert(isSegmentSpecificFLAT(Inst));
|
|
|
|
int NewOpc = AMDGPU::getGlobalVaddrOp(Opc);
|
|
if (NewOpc < 0)
|
|
NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc);
|
|
if (NewOpc < 0)
|
|
return false;
|
|
|
|
MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
|
|
MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx);
|
|
if (RI.isSGPRReg(MRI, SAddr.getReg()))
|
|
return false;
|
|
|
|
int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr);
|
|
if (NewVAddrIdx < 0)
|
|
return false;
|
|
|
|
int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
|
|
|
|
// Check vaddr, it shall be zero or absent.
|
|
MachineInstr *VAddrDef = nullptr;
|
|
if (OldVAddrIdx >= 0) {
|
|
MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx);
|
|
VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg());
|
|
if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 ||
|
|
!VAddrDef->getOperand(1).isImm() ||
|
|
VAddrDef->getOperand(1).getImm() != 0)
|
|
return false;
|
|
}
|
|
|
|
const MCInstrDesc &NewDesc = get(NewOpc);
|
|
Inst.setDesc(NewDesc);
|
|
|
|
// Callers expect interator to be valid after this call, so modify the
|
|
// instruction in place.
|
|
if (OldVAddrIdx == NewVAddrIdx) {
|
|
MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx);
|
|
// Clear use list from the old vaddr holding a zero register.
|
|
MRI.removeRegOperandFromUseList(&NewVAddr);
|
|
MRI.moveOperands(&NewVAddr, &SAddr, 1);
|
|
Inst.RemoveOperand(OldSAddrIdx);
|
|
// Update the use list with the pointer we have just moved from vaddr to
|
|
// saddr poisition. Otherwise new vaddr will be missing from the use list.
|
|
MRI.removeRegOperandFromUseList(&NewVAddr);
|
|
MRI.addRegOperandToUseList(&NewVAddr);
|
|
} else {
|
|
assert(OldSAddrIdx == NewVAddrIdx);
|
|
|
|
if (OldVAddrIdx >= 0) {
|
|
int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc,
|
|
AMDGPU::OpName::vdst_in);
|
|
|
|
// RemoveOperand doesn't try to fixup tied operand indexes at it goes, so
|
|
// it asserts. Untie the operands for now and retie them afterwards.
|
|
if (NewVDstIn != -1) {
|
|
int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in);
|
|
Inst.untieRegOperand(OldVDstIn);
|
|
}
|
|
|
|
Inst.RemoveOperand(OldVAddrIdx);
|
|
|
|
if (NewVDstIn != -1) {
|
|
int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
|
|
Inst.tieOperands(NewVDst, NewVDstIn);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg()))
|
|
VAddrDef->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Remove this when SelectionDAG is obsoleted.
|
|
void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
if (!isSegmentSpecificFLAT(MI))
|
|
return;
|
|
|
|
// Fixup SGPR operands in VGPRs. We only select these when the DAG divergence
|
|
// thinks they are uniform, so a readfirstlane should be valid.
|
|
MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr);
|
|
if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg())))
|
|
return;
|
|
|
|
if (moveFlatAddrToVGPR(MI))
|
|
return;
|
|
|
|
Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI);
|
|
SAddr->setReg(ToSGPR);
|
|
}
|
|
|
|
void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB,
|
|
MachineBasicBlock::iterator I,
|
|
const TargetRegisterClass *DstRC,
|
|
MachineOperand &Op,
|
|
MachineRegisterInfo &MRI,
|
|
const DebugLoc &DL) const {
|
|
Register OpReg = Op.getReg();
|
|
unsigned OpSubReg = Op.getSubReg();
|
|
|
|
const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg(
|
|
RI.getRegClassForReg(MRI, OpReg), OpSubReg);
|
|
|
|
// Check if operand is already the correct register class.
|
|
if (DstRC == OpRC)
|
|
return;
|
|
|
|
Register DstReg = MRI.createVirtualRegister(DstRC);
|
|
auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op);
|
|
|
|
Op.setReg(DstReg);
|
|
Op.setSubReg(0);
|
|
|
|
MachineInstr *Def = MRI.getVRegDef(OpReg);
|
|
if (!Def)
|
|
return;
|
|
|
|
// Try to eliminate the copy if it is copying an immediate value.
|
|
if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass)
|
|
FoldImmediate(*Copy, *Def, OpReg, &MRI);
|
|
|
|
bool ImpDef = Def->isImplicitDef();
|
|
while (!ImpDef && Def && Def->isCopy()) {
|
|
if (Def->getOperand(1).getReg().isPhysical())
|
|
break;
|
|
Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg());
|
|
ImpDef = Def && Def->isImplicitDef();
|
|
}
|
|
if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) &&
|
|
!ImpDef)
|
|
Copy.addReg(AMDGPU::EXEC, RegState::Implicit);
|
|
}
|
|
|
|
// Emit the actual waterfall loop, executing the wrapped instruction for each
|
|
// unique value of \p Rsrc across all lanes. In the best case we execute 1
|
|
// iteration, in the worst case we execute 64 (once per lane).
|
|
static void
|
|
emitLoadSRsrcFromVGPRLoop(const SIInstrInfo &TII, MachineRegisterInfo &MRI,
|
|
MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
|
|
const DebugLoc &DL, MachineOperand &Rsrc) {
|
|
MachineFunction &MF = *OrigBB.getParent();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
unsigned SaveExecOpc =
|
|
ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
|
|
unsigned XorTermOpc =
|
|
ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
|
|
unsigned AndOpc =
|
|
ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
|
|
const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
|
|
MachineBasicBlock::iterator I = LoopBB.begin();
|
|
|
|
SmallVector<Register, 8> ReadlanePieces;
|
|
Register CondReg = AMDGPU::NoRegister;
|
|
|
|
Register VRsrc = Rsrc.getReg();
|
|
unsigned VRsrcUndef = getUndefRegState(Rsrc.isUndef());
|
|
|
|
unsigned RegSize = TRI->getRegSizeInBits(Rsrc.getReg(), MRI);
|
|
unsigned NumSubRegs = RegSize / 32;
|
|
assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && "Unhandled register size");
|
|
|
|
for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) {
|
|
|
|
Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
|
|
// Read the next variant <- also loop target.
|
|
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo)
|
|
.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx));
|
|
|
|
// Read the next variant <- also loop target.
|
|
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi)
|
|
.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx + 1));
|
|
|
|
ReadlanePieces.push_back(CurRegLo);
|
|
ReadlanePieces.push_back(CurRegHi);
|
|
|
|
// Comparison is to be done as 64-bit.
|
|
Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
|
|
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg)
|
|
.addReg(CurRegLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(CurRegHi)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
auto Cmp =
|
|
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), NewCondReg)
|
|
.addReg(CurReg);
|
|
if (NumSubRegs <= 2)
|
|
Cmp.addReg(VRsrc);
|
|
else
|
|
Cmp.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx, 2));
|
|
|
|
// Combine the comparision results with AND.
|
|
if (CondReg == AMDGPU::NoRegister) // First.
|
|
CondReg = NewCondReg;
|
|
else { // If not the first, we create an AND.
|
|
Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
|
|
BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
|
|
.addReg(CondReg)
|
|
.addReg(NewCondReg);
|
|
CondReg = AndReg;
|
|
}
|
|
} // End for loop.
|
|
|
|
auto SRsrcRC = TRI->getEquivalentSGPRClass(MRI.getRegClass(VRsrc));
|
|
Register SRsrc = MRI.createVirtualRegister(SRsrcRC);
|
|
|
|
// Build scalar Rsrc.
|
|
auto Merge = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SRsrc);
|
|
unsigned Channel = 0;
|
|
for (Register Piece : ReadlanePieces) {
|
|
Merge.addReg(Piece)
|
|
.addImm(TRI->getSubRegFromChannel(Channel++));
|
|
}
|
|
|
|
// Update Rsrc operand to use the SGPR Rsrc.
|
|
Rsrc.setReg(SRsrc);
|
|
Rsrc.setIsKill(true);
|
|
|
|
Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
|
|
MRI.setSimpleHint(SaveExec, CondReg);
|
|
|
|
// Update EXEC to matching lanes, saving original to SaveExec.
|
|
BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec)
|
|
.addReg(CondReg, RegState::Kill);
|
|
|
|
// The original instruction is here; we insert the terminators after it.
|
|
I = LoopBB.end();
|
|
|
|
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
|
|
BuildMI(LoopBB, I, DL, TII.get(XorTermOpc), Exec)
|
|
.addReg(Exec)
|
|
.addReg(SaveExec);
|
|
|
|
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB);
|
|
}
|
|
|
|
// Build a waterfall loop around \p MI, replacing the VGPR \p Rsrc register
|
|
// with SGPRs by iterating over all unique values across all lanes.
|
|
// Returns the loop basic block that now contains \p MI.
|
|
static MachineBasicBlock *
|
|
loadSRsrcFromVGPR(const SIInstrInfo &TII, MachineInstr &MI,
|
|
MachineOperand &Rsrc, MachineDominatorTree *MDT,
|
|
MachineBasicBlock::iterator Begin = nullptr,
|
|
MachineBasicBlock::iterator End = nullptr) {
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
if (!Begin.isValid())
|
|
Begin = &MI;
|
|
if (!End.isValid()) {
|
|
End = &MI;
|
|
++End;
|
|
}
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
|
|
const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
|
|
Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
|
|
|
|
// Save the EXEC mask
|
|
BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec);
|
|
|
|
// Killed uses in the instruction we are waterfalling around will be
|
|
// incorrect due to the added control-flow.
|
|
MachineBasicBlock::iterator AfterMI = MI;
|
|
++AfterMI;
|
|
for (auto I = Begin; I != AfterMI; I++) {
|
|
for (auto &MO : I->uses()) {
|
|
if (MO.isReg() && MO.isUse()) {
|
|
MRI.clearKillFlags(MO.getReg());
|
|
}
|
|
}
|
|
}
|
|
|
|
// To insert the loop we need to split the block. Move everything after this
|
|
// point to a new block, and insert a new empty block between the two.
|
|
MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
|
|
MachineFunction::iterator MBBI(MBB);
|
|
++MBBI;
|
|
|
|
MF.insert(MBBI, LoopBB);
|
|
MF.insert(MBBI, RemainderBB);
|
|
|
|
LoopBB->addSuccessor(LoopBB);
|
|
LoopBB->addSuccessor(RemainderBB);
|
|
|
|
// Move Begin to MI to the LoopBB, and the remainder of the block to
|
|
// RemainderBB.
|
|
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
|
|
RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end());
|
|
LoopBB->splice(LoopBB->begin(), &MBB, Begin, MBB.end());
|
|
|
|
MBB.addSuccessor(LoopBB);
|
|
|
|
// Update dominators. We know that MBB immediately dominates LoopBB, that
|
|
// LoopBB immediately dominates RemainderBB, and that RemainderBB immediately
|
|
// dominates all of the successors transferred to it from MBB that MBB used
|
|
// to properly dominate.
|
|
if (MDT) {
|
|
MDT->addNewBlock(LoopBB, &MBB);
|
|
MDT->addNewBlock(RemainderBB, LoopBB);
|
|
for (auto &Succ : RemainderBB->successors()) {
|
|
if (MDT->properlyDominates(&MBB, Succ)) {
|
|
MDT->changeImmediateDominator(Succ, RemainderBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
emitLoadSRsrcFromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, Rsrc);
|
|
|
|
// Restore the EXEC mask
|
|
MachineBasicBlock::iterator First = RemainderBB->begin();
|
|
BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec);
|
|
return LoopBB;
|
|
}
|
|
|
|
// Extract pointer from Rsrc and return a zero-value Rsrc replacement.
|
|
static std::tuple<unsigned, unsigned>
|
|
extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) {
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
// Extract the ptr from the resource descriptor.
|
|
unsigned RsrcPtr =
|
|
TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass,
|
|
AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
|
|
|
|
// Create an empty resource descriptor
|
|
Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
|
|
uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat();
|
|
|
|
// Zero64 = 0
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64)
|
|
.addImm(0);
|
|
|
|
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
|
|
.addImm(RsrcDataFormat & 0xFFFFFFFF);
|
|
|
|
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
|
|
.addImm(RsrcDataFormat >> 32);
|
|
|
|
// NewSRsrc = {Zero64, SRsrcFormat}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc)
|
|
.addReg(Zero64)
|
|
.addImm(AMDGPU::sub0_sub1)
|
|
.addReg(SRsrcFormatLo)
|
|
.addImm(AMDGPU::sub2)
|
|
.addReg(SRsrcFormatHi)
|
|
.addImm(AMDGPU::sub3);
|
|
|
|
return std::make_tuple(RsrcPtr, NewSRsrc);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
SIInstrInfo::legalizeOperands(MachineInstr &MI,
|
|
MachineDominatorTree *MDT) const {
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineBasicBlock *CreatedBB = nullptr;
|
|
|
|
// Legalize VOP2
|
|
if (isVOP2(MI) || isVOPC(MI)) {
|
|
legalizeOperandsVOP2(MRI, MI);
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize VOP3
|
|
if (isVOP3(MI)) {
|
|
legalizeOperandsVOP3(MRI, MI);
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize SMRD
|
|
if (isSMRD(MI)) {
|
|
legalizeOperandsSMRD(MRI, MI);
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize FLAT
|
|
if (isFLAT(MI)) {
|
|
legalizeOperandsFLAT(MRI, MI);
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize REG_SEQUENCE and PHI
|
|
// The register class of the operands much be the same type as the register
|
|
// class of the output.
|
|
if (MI.getOpcode() == AMDGPU::PHI) {
|
|
const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
|
|
for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
|
|
if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual())
|
|
continue;
|
|
const TargetRegisterClass *OpRC =
|
|
MRI.getRegClass(MI.getOperand(i).getReg());
|
|
if (RI.hasVectorRegisters(OpRC)) {
|
|
VRC = OpRC;
|
|
} else {
|
|
SRC = OpRC;
|
|
}
|
|
}
|
|
|
|
// If any of the operands are VGPR registers, then they all most be
|
|
// otherwise we will create illegal VGPR->SGPR copies when legalizing
|
|
// them.
|
|
if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) {
|
|
if (!VRC) {
|
|
assert(SRC);
|
|
if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) {
|
|
VRC = &AMDGPU::VReg_1RegClass;
|
|
} else
|
|
VRC = RI.isAGPRClass(getOpRegClass(MI, 0))
|
|
? RI.getEquivalentAGPRClass(SRC)
|
|
: RI.getEquivalentVGPRClass(SRC);
|
|
} else {
|
|
VRC = RI.isAGPRClass(getOpRegClass(MI, 0))
|
|
? RI.getEquivalentAGPRClass(VRC)
|
|
: RI.getEquivalentVGPRClass(VRC);
|
|
}
|
|
RC = VRC;
|
|
} else {
|
|
RC = SRC;
|
|
}
|
|
|
|
// Update all the operands so they have the same type.
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (!Op.isReg() || !Op.getReg().isVirtual())
|
|
continue;
|
|
|
|
// MI is a PHI instruction.
|
|
MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB();
|
|
MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
|
|
|
|
// Avoid creating no-op copies with the same src and dst reg class. These
|
|
// confuse some of the machine passes.
|
|
legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc());
|
|
}
|
|
}
|
|
|
|
// REG_SEQUENCE doesn't really require operand legalization, but if one has a
|
|
// VGPR dest type and SGPR sources, insert copies so all operands are
|
|
// VGPRs. This seems to help operand folding / the register coalescer.
|
|
if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const TargetRegisterClass *DstRC = getOpRegClass(MI, 0);
|
|
if (RI.hasVGPRs(DstRC)) {
|
|
// Update all the operands so they are VGPR register classes. These may
|
|
// not be the same register class because REG_SEQUENCE supports mixing
|
|
// subregister index types e.g. sub0_sub1 + sub2 + sub3
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (!Op.isReg() || !Op.getReg().isVirtual())
|
|
continue;
|
|
|
|
const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
|
|
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
|
|
if (VRC == OpRC)
|
|
continue;
|
|
|
|
legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc());
|
|
Op.setIsKill();
|
|
}
|
|
}
|
|
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize INSERT_SUBREG
|
|
// src0 must have the same register class as dst
|
|
if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Src0 = MI.getOperand(1).getReg();
|
|
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
|
|
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
|
|
if (DstRC != Src0RC) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineOperand &Op = MI.getOperand(1);
|
|
legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc());
|
|
}
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize SI_INIT_M0
|
|
if (MI.getOpcode() == AMDGPU::SI_INIT_M0) {
|
|
MachineOperand &Src = MI.getOperand(0);
|
|
if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg())))
|
|
Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI));
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize MIMG and MUBUF/MTBUF for shaders.
|
|
//
|
|
// Shaders only generate MUBUF/MTBUF instructions via intrinsics or via
|
|
// scratch memory access. In both cases, the legalization never involves
|
|
// conversion to the addr64 form.
|
|
if (isMIMG(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) &&
|
|
(isMUBUF(MI) || isMTBUF(MI)))) {
|
|
MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc);
|
|
if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg())))
|
|
CreatedBB = loadSRsrcFromVGPR(*this, MI, *SRsrc, MDT);
|
|
|
|
MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp);
|
|
if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg())))
|
|
CreatedBB = loadSRsrcFromVGPR(*this, MI, *SSamp, MDT);
|
|
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize SI_CALL
|
|
if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
|
|
MachineOperand *Dest = &MI.getOperand(0);
|
|
if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) {
|
|
// Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and
|
|
// following copies, we also need to move copies from and to physical
|
|
// registers into the loop block.
|
|
unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
|
|
unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
|
|
|
|
// Also move the copies to physical registers into the loop block
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineBasicBlock::iterator Start(&MI);
|
|
while (Start->getOpcode() != FrameSetupOpcode)
|
|
--Start;
|
|
MachineBasicBlock::iterator End(&MI);
|
|
while (End->getOpcode() != FrameDestroyOpcode)
|
|
++End;
|
|
// Also include following copies of the return value
|
|
++End;
|
|
while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() &&
|
|
MI.definesRegister(End->getOperand(1).getReg()))
|
|
++End;
|
|
CreatedBB = loadSRsrcFromVGPR(*this, MI, *Dest, MDT, Start, End);
|
|
}
|
|
}
|
|
|
|
// Legalize MUBUF* instructions.
|
|
int RsrcIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
|
|
if (RsrcIdx != -1) {
|
|
// We have an MUBUF instruction
|
|
MachineOperand *Rsrc = &MI.getOperand(RsrcIdx);
|
|
unsigned RsrcRC = get(MI.getOpcode()).OpInfo[RsrcIdx].RegClass;
|
|
if (RI.getCommonSubClass(MRI.getRegClass(Rsrc->getReg()),
|
|
RI.getRegClass(RsrcRC))) {
|
|
// The operands are legal.
|
|
// FIXME: We may need to legalize operands besided srsrc.
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Legalize a VGPR Rsrc.
|
|
//
|
|
// If the instruction is _ADDR64, we can avoid a waterfall by extracting
|
|
// the base pointer from the VGPR Rsrc, adding it to the VAddr, then using
|
|
// a zero-value SRsrc.
|
|
//
|
|
// If the instruction is _OFFSET (both idxen and offen disabled), and we
|
|
// support ADDR64 instructions, we can convert to ADDR64 and do the same as
|
|
// above.
|
|
//
|
|
// Otherwise we are on non-ADDR64 hardware, and/or we have
|
|
// idxen/offen/bothen and we fall back to a waterfall loop.
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
|
|
MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
|
|
if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) {
|
|
// This is already an ADDR64 instruction so we need to add the pointer
|
|
// extracted from the resource descriptor to the current value of VAddr.
|
|
Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
|
|
const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC);
|
|
Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC);
|
|
|
|
unsigned RsrcPtr, NewSRsrc;
|
|
std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc);
|
|
|
|
// NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo)
|
|
.addDef(CondReg0)
|
|
.addReg(RsrcPtr, 0, AMDGPU::sub0)
|
|
.addReg(VAddr->getReg(), 0, AMDGPU::sub0)
|
|
.addImm(0);
|
|
|
|
// NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi)
|
|
.addDef(CondReg1, RegState::Dead)
|
|
.addReg(RsrcPtr, 0, AMDGPU::sub1)
|
|
.addReg(VAddr->getReg(), 0, AMDGPU::sub1)
|
|
.addReg(CondReg0, RegState::Kill)
|
|
.addImm(0);
|
|
|
|
// NewVaddr = {NewVaddrHi, NewVaddrLo}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
|
|
.addReg(NewVAddrLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(NewVAddrHi)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
VAddr->setReg(NewVAddr);
|
|
Rsrc->setReg(NewSRsrc);
|
|
} else if (!VAddr && ST.hasAddr64()) {
|
|
// This instructions is the _OFFSET variant, so we need to convert it to
|
|
// ADDR64.
|
|
assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS &&
|
|
"FIXME: Need to emit flat atomics here");
|
|
|
|
unsigned RsrcPtr, NewSRsrc;
|
|
std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc);
|
|
|
|
Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
|
|
MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
|
|
MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
|
|
unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode());
|
|
|
|
// Atomics rith return have have an additional tied operand and are
|
|
// missing some of the special bits.
|
|
MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
|
|
MachineInstr *Addr64;
|
|
|
|
if (!VDataIn) {
|
|
// Regular buffer load / store.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
|
|
.add(*VData)
|
|
.addReg(NewVAddr)
|
|
.addReg(NewSRsrc)
|
|
.add(*SOffset)
|
|
.add(*Offset);
|
|
|
|
if (const MachineOperand *CPol =
|
|
getNamedOperand(MI, AMDGPU::OpName::cpol)) {
|
|
MIB.addImm(CPol->getImm());
|
|
}
|
|
|
|
if (const MachineOperand *TFE =
|
|
getNamedOperand(MI, AMDGPU::OpName::tfe)) {
|
|
MIB.addImm(TFE->getImm());
|
|
}
|
|
|
|
MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz));
|
|
|
|
MIB.cloneMemRefs(MI);
|
|
Addr64 = MIB;
|
|
} else {
|
|
// Atomics with return.
|
|
Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
|
|
.add(*VData)
|
|
.add(*VDataIn)
|
|
.addReg(NewVAddr)
|
|
.addReg(NewSRsrc)
|
|
.add(*SOffset)
|
|
.add(*Offset)
|
|
.addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol))
|
|
.cloneMemRefs(MI);
|
|
}
|
|
|
|
MI.removeFromParent();
|
|
|
|
// NewVaddr = {NewVaddrHi, NewVaddrLo}
|
|
BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
|
|
NewVAddr)
|
|
.addReg(RsrcPtr, 0, AMDGPU::sub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(RsrcPtr, 0, AMDGPU::sub1)
|
|
.addImm(AMDGPU::sub1);
|
|
} else {
|
|
// This is another variant; legalize Rsrc with waterfall loop from VGPRs
|
|
// to SGPRs.
|
|
CreatedBB = loadSRsrcFromVGPR(*this, MI, *Rsrc, MDT);
|
|
return CreatedBB;
|
|
}
|
|
}
|
|
return CreatedBB;
|
|
}
|
|
|
|
MachineBasicBlock *SIInstrInfo::moveToVALU(MachineInstr &TopInst,
|
|
MachineDominatorTree *MDT) const {
|
|
SetVectorType Worklist;
|
|
Worklist.insert(&TopInst);
|
|
MachineBasicBlock *CreatedBB = nullptr;
|
|
MachineBasicBlock *CreatedBBTmp = nullptr;
|
|
|
|
while (!Worklist.empty()) {
|
|
MachineInstr &Inst = *Worklist.pop_back_val();
|
|
MachineBasicBlock *MBB = Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
unsigned Opcode = Inst.getOpcode();
|
|
unsigned NewOpcode = getVALUOp(Inst);
|
|
|
|
// Handle some special cases
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case AMDGPU::S_ADD_U64_PSEUDO:
|
|
case AMDGPU::S_SUB_U64_PSEUDO:
|
|
splitScalar64BitAddSub(Worklist, Inst, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
case AMDGPU::S_ADD_I32:
|
|
case AMDGPU::S_SUB_I32: {
|
|
// FIXME: The u32 versions currently selected use the carry.
|
|
bool Changed;
|
|
std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT);
|
|
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
|
|
CreatedBB = CreatedBBTmp;
|
|
if (Changed)
|
|
continue;
|
|
|
|
// Default handling
|
|
break;
|
|
}
|
|
case AMDGPU::S_AND_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_OR_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_XOR_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NAND_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NOR_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_XNOR_B64:
|
|
if (ST.hasDLInsts())
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT);
|
|
else
|
|
splitScalar64BitXnor(Worklist, Inst, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_ANDN2_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_ORN2_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_BREV_B64:
|
|
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NOT_B64:
|
|
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_BCNT1_I32_B64:
|
|
splitScalar64BitBCNT(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_BFE_I64:
|
|
splitScalar64BitBFE(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_LSHL_B32:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_ASHR_I32:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHR_B32:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHL_B64:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_LSHLREV_B64_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_ASHR_I64:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_ASHRREV_I64_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHR_B64:
|
|
if (ST.hasOnlyRevVALUShifts()) {
|
|
NewOpcode = AMDGPU::V_LSHRREV_B64_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
|
|
case AMDGPU::S_ABS_I32:
|
|
lowerScalarAbs(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_CBRANCH_SCC0:
|
|
case AMDGPU::S_CBRANCH_SCC1: {
|
|
// Clear unused bits of vcc
|
|
Register CondReg = Inst.getOperand(1).getReg();
|
|
bool IsSCC = CondReg == AMDGPU::SCC;
|
|
Register VCC = RI.getVCC();
|
|
Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
|
|
unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
|
|
BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC)
|
|
.addReg(EXEC)
|
|
.addReg(IsSCC ? VCC : CondReg);
|
|
Inst.RemoveOperand(1);
|
|
}
|
|
break;
|
|
|
|
case AMDGPU::S_BFE_U64:
|
|
case AMDGPU::S_BFM_B64:
|
|
llvm_unreachable("Moving this op to VALU not implemented");
|
|
|
|
case AMDGPU::S_PACK_LL_B32_B16:
|
|
case AMDGPU::S_PACK_LH_B32_B16:
|
|
case AMDGPU::S_PACK_HH_B32_B16:
|
|
movePackToVALU(Worklist, MRI, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_XNOR_B32:
|
|
lowerScalarXnor(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NAND_B32:
|
|
splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NOR_B32:
|
|
splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_ANDN2_B32:
|
|
splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_ORN2_B32:
|
|
splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
// TODO: remove as soon as everything is ready
|
|
// to replace VGPR to SGPR copy with V_READFIRSTLANEs.
|
|
// S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO
|
|
// can only be selected from the uniform SDNode.
|
|
case AMDGPU::S_ADD_CO_PSEUDO:
|
|
case AMDGPU::S_SUB_CO_PSEUDO: {
|
|
unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
|
|
? AMDGPU::V_ADDC_U32_e64
|
|
: AMDGPU::V_SUBB_U32_e64;
|
|
const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
|
|
Register CarryInReg = Inst.getOperand(4).getReg();
|
|
if (!MRI.constrainRegClass(CarryInReg, CarryRC)) {
|
|
Register NewCarryReg = MRI.createVirtualRegister(CarryRC);
|
|
BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg)
|
|
.addReg(CarryInReg);
|
|
}
|
|
|
|
Register CarryOutReg = Inst.getOperand(1).getReg();
|
|
|
|
Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass(
|
|
MRI.getRegClass(Inst.getOperand(0).getReg())));
|
|
MachineInstr *CarryOp =
|
|
BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg)
|
|
.addReg(CarryOutReg, RegState::Define)
|
|
.add(Inst.getOperand(2))
|
|
.add(Inst.getOperand(3))
|
|
.addReg(CarryInReg)
|
|
.addImm(0);
|
|
CreatedBBTmp = legalizeOperands(*CarryOp);
|
|
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
|
|
CreatedBB = CreatedBBTmp;
|
|
MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg);
|
|
addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist);
|
|
Inst.eraseFromParent();
|
|
}
|
|
continue;
|
|
case AMDGPU::S_UADDO_PSEUDO:
|
|
case AMDGPU::S_USUBO_PSEUDO: {
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
MachineOperand &Dest0 = Inst.getOperand(0);
|
|
MachineOperand &Dest1 = Inst.getOperand(1);
|
|
MachineOperand &Src0 = Inst.getOperand(2);
|
|
MachineOperand &Src1 = Inst.getOperand(3);
|
|
|
|
unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
|
|
? AMDGPU::V_ADD_CO_U32_e64
|
|
: AMDGPU::V_SUB_CO_U32_e64;
|
|
const TargetRegisterClass *NewRC =
|
|
RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg()));
|
|
Register DestReg = MRI.createVirtualRegister(NewRC);
|
|
MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg)
|
|
.addReg(Dest1.getReg(), RegState::Define)
|
|
.add(Src0)
|
|
.add(Src1)
|
|
.addImm(0); // clamp bit
|
|
|
|
CreatedBBTmp = legalizeOperands(*NewInstr, MDT);
|
|
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
|
|
CreatedBB = CreatedBBTmp;
|
|
|
|
MRI.replaceRegWith(Dest0.getReg(), DestReg);
|
|
addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI,
|
|
Worklist);
|
|
Inst.eraseFromParent();
|
|
}
|
|
continue;
|
|
|
|
case AMDGPU::S_CSELECT_B32:
|
|
case AMDGPU::S_CSELECT_B64:
|
|
lowerSelect(Worklist, Inst, MDT);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
case AMDGPU::S_CMP_EQ_I32:
|
|
case AMDGPU::S_CMP_LG_I32:
|
|
case AMDGPU::S_CMP_GT_I32:
|
|
case AMDGPU::S_CMP_GE_I32:
|
|
case AMDGPU::S_CMP_LT_I32:
|
|
case AMDGPU::S_CMP_LE_I32:
|
|
case AMDGPU::S_CMP_EQ_U32:
|
|
case AMDGPU::S_CMP_LG_U32:
|
|
case AMDGPU::S_CMP_GT_U32:
|
|
case AMDGPU::S_CMP_GE_U32:
|
|
case AMDGPU::S_CMP_LT_U32:
|
|
case AMDGPU::S_CMP_LE_U32:
|
|
case AMDGPU::S_CMP_EQ_U64:
|
|
case AMDGPU::S_CMP_LG_U64: {
|
|
const MCInstrDesc &NewDesc = get(NewOpcode);
|
|
Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass());
|
|
MachineInstr *NewInstr =
|
|
BuildMI(*MBB, Inst, Inst.getDebugLoc(), NewDesc, CondReg)
|
|
.add(Inst.getOperand(0))
|
|
.add(Inst.getOperand(1));
|
|
legalizeOperands(*NewInstr, MDT);
|
|
int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC);
|
|
MachineOperand SCCOp = Inst.getOperand(SCCIdx);
|
|
addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg);
|
|
Inst.eraseFromParent();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
|
|
// We cannot move this instruction to the VALU, so we should try to
|
|
// legalize its operands instead.
|
|
CreatedBBTmp = legalizeOperands(Inst, MDT);
|
|
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
|
|
CreatedBB = CreatedBBTmp;
|
|
continue;
|
|
}
|
|
|
|
// Use the new VALU Opcode.
|
|
const MCInstrDesc &NewDesc = get(NewOpcode);
|
|
Inst.setDesc(NewDesc);
|
|
|
|
// Remove any references to SCC. Vector instructions can't read from it, and
|
|
// We're just about to add the implicit use / defs of VCC, and we don't want
|
|
// both.
|
|
for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) {
|
|
MachineOperand &Op = Inst.getOperand(i);
|
|
if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
|
|
// Only propagate through live-def of SCC.
|
|
if (Op.isDef() && !Op.isDead())
|
|
addSCCDefUsersToVALUWorklist(Op, Inst, Worklist);
|
|
if (Op.isUse())
|
|
addSCCDefsToVALUWorklist(Op, Worklist);
|
|
Inst.RemoveOperand(i);
|
|
}
|
|
}
|
|
|
|
if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
|
|
// We are converting these to a BFE, so we need to add the missing
|
|
// operands for the size and offset.
|
|
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
|
|
Inst.addOperand(MachineOperand::CreateImm(0));
|
|
Inst.addOperand(MachineOperand::CreateImm(Size));
|
|
|
|
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
|
|
// The VALU version adds the second operand to the result, so insert an
|
|
// extra 0 operand.
|
|
Inst.addOperand(MachineOperand::CreateImm(0));
|
|
}
|
|
|
|
Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent());
|
|
fixImplicitOperands(Inst);
|
|
|
|
if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
|
|
const MachineOperand &OffsetWidthOp = Inst.getOperand(2);
|
|
// If we need to move this to VGPRs, we need to unpack the second operand
|
|
// back into the 2 separate ones for bit offset and width.
|
|
assert(OffsetWidthOp.isImm() &&
|
|
"Scalar BFE is only implemented for constant width and offset");
|
|
uint32_t Imm = OffsetWidthOp.getImm();
|
|
|
|
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
|
|
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
|
|
Inst.RemoveOperand(2); // Remove old immediate.
|
|
Inst.addOperand(MachineOperand::CreateImm(Offset));
|
|
Inst.addOperand(MachineOperand::CreateImm(BitWidth));
|
|
}
|
|
|
|
bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef();
|
|
unsigned NewDstReg = AMDGPU::NoRegister;
|
|
if (HasDst) {
|
|
Register DstReg = Inst.getOperand(0).getReg();
|
|
if (DstReg.isPhysical())
|
|
continue;
|
|
|
|
// Update the destination register class.
|
|
const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
|
|
if (!NewDstRC)
|
|
continue;
|
|
|
|
if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() &&
|
|
NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) {
|
|
// Instead of creating a copy where src and dst are the same register
|
|
// class, we just replace all uses of dst with src. These kinds of
|
|
// copies interfere with the heuristics MachineSink uses to decide
|
|
// whether or not to split a critical edge. Since the pass assumes
|
|
// that copies will end up as machine instructions and not be
|
|
// eliminated.
|
|
addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist);
|
|
MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg());
|
|
MRI.clearKillFlags(Inst.getOperand(1).getReg());
|
|
Inst.getOperand(0).setReg(DstReg);
|
|
|
|
// Make sure we don't leave around a dead VGPR->SGPR copy. Normally
|
|
// these are deleted later, but at -O0 it would leave a suspicious
|
|
// looking illegal copy of an undef register.
|
|
for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I)
|
|
Inst.RemoveOperand(I);
|
|
Inst.setDesc(get(AMDGPU::IMPLICIT_DEF));
|
|
continue;
|
|
}
|
|
|
|
NewDstReg = MRI.createVirtualRegister(NewDstRC);
|
|
MRI.replaceRegWith(DstReg, NewDstReg);
|
|
}
|
|
|
|
// Legalize the operands
|
|
CreatedBBTmp = legalizeOperands(Inst, MDT);
|
|
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
|
|
CreatedBB = CreatedBBTmp;
|
|
|
|
if (HasDst)
|
|
addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
|
|
}
|
|
return CreatedBB;
|
|
}
|
|
|
|
// Add/sub require special handling to deal with carry outs.
|
|
std::pair<bool, MachineBasicBlock *>
|
|
SIInstrInfo::moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst,
|
|
MachineDominatorTree *MDT) const {
|
|
if (ST.hasAddNoCarry()) {
|
|
// Assume there is no user of scc since we don't select this in that case.
|
|
// Since scc isn't used, it doesn't really matter if the i32 or u32 variant
|
|
// is used.
|
|
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
Register OldDstReg = Inst.getOperand(0).getReg();
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
unsigned Opc = Inst.getOpcode();
|
|
assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32);
|
|
|
|
unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ?
|
|
AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64;
|
|
|
|
assert(Inst.getOperand(3).getReg() == AMDGPU::SCC);
|
|
Inst.RemoveOperand(3);
|
|
|
|
Inst.setDesc(get(NewOpc));
|
|
Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit
|
|
Inst.addImplicitDefUseOperands(*MBB.getParent());
|
|
MRI.replaceRegWith(OldDstReg, ResultReg);
|
|
MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT);
|
|
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
return std::make_pair(true, NewBB);
|
|
}
|
|
|
|
return std::make_pair(false, nullptr);
|
|
}
|
|
|
|
void SIInstrInfo::lowerSelect(SetVectorType &Worklist, MachineInstr &Inst,
|
|
MachineDominatorTree *MDT) const {
|
|
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
MachineOperand &Cond = Inst.getOperand(3);
|
|
|
|
Register SCCSource = Cond.getReg();
|
|
bool IsSCC = (SCCSource == AMDGPU::SCC);
|
|
|
|
// If this is a trivial select where the condition is effectively not SCC
|
|
// (SCCSource is a source of copy to SCC), then the select is semantically
|
|
// equivalent to copying SCCSource. Hence, there is no need to create
|
|
// V_CNDMASK, we can just use that and bail out.
|
|
if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() &&
|
|
(Src1.getImm() == 0)) {
|
|
MRI.replaceRegWith(Dest.getReg(), SCCSource);
|
|
return;
|
|
}
|
|
|
|
const TargetRegisterClass *TC =
|
|
RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
|
|
Register CopySCC = MRI.createVirtualRegister(TC);
|
|
|
|
if (IsSCC) {
|
|
// Now look for the closest SCC def if it is a copy
|
|
// replacing the SCCSource with the COPY source register
|
|
bool CopyFound = false;
|
|
for (MachineInstr &CandI :
|
|
make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)),
|
|
Inst.getParent()->rend())) {
|
|
if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) !=
|
|
-1) {
|
|
if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) {
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::COPY), CopySCC)
|
|
.addReg(CandI.getOperand(1).getReg());
|
|
CopyFound = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (!CopyFound) {
|
|
// SCC def is not a copy
|
|
// Insert a trivial select instead of creating a copy, because a copy from
|
|
// SCC would semantically mean just copying a single bit, but we may need
|
|
// the result to be a vector condition mask that needs preserving.
|
|
unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64
|
|
: AMDGPU::S_CSELECT_B32;
|
|
auto NewSelect =
|
|
BuildMI(MBB, MII, DL, get(Opcode), CopySCC).addImm(-1).addImm(0);
|
|
NewSelect->getOperand(3).setIsUndef(Cond.isUndef());
|
|
}
|
|
}
|
|
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
auto UpdatedInst =
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), ResultReg)
|
|
.addImm(0)
|
|
.add(Src1) // False
|
|
.addImm(0)
|
|
.add(Src0) // True
|
|
.addReg(IsSCC ? CopySCC : SCCSource);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
legalizeOperands(*UpdatedInst, MDT);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::lowerScalarAbs(SetVectorType &Worklist,
|
|
MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
unsigned SubOp = ST.hasAddNoCarry() ?
|
|
AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32;
|
|
|
|
BuildMI(MBB, MII, DL, get(SubOp), TmpReg)
|
|
.addImm(0)
|
|
.addReg(Src.getReg());
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
|
|
.addReg(Src.getReg())
|
|
.addReg(TmpReg);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::lowerScalarXnor(SetVectorType &Worklist,
|
|
MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
|
|
if (ST.hasDLInsts()) {
|
|
Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL);
|
|
legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest)
|
|
.add(Src0)
|
|
.add(Src1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), NewDest);
|
|
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
|
|
} else {
|
|
// Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can
|
|
// invert either source and then perform the XOR. If either source is a
|
|
// scalar register, then we can leave the inversion on the scalar unit to
|
|
// acheive a better distrubution of scalar and vector instructions.
|
|
bool Src0IsSGPR = Src0.isReg() &&
|
|
RI.isSGPRClass(MRI.getRegClass(Src0.getReg()));
|
|
bool Src1IsSGPR = Src1.isReg() &&
|
|
RI.isSGPRClass(MRI.getRegClass(Src1.getReg()));
|
|
MachineInstr *Xor;
|
|
Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
|
|
// Build a pair of scalar instructions and add them to the work list.
|
|
// The next iteration over the work list will lower these to the vector
|
|
// unit as necessary.
|
|
if (Src0IsSGPR) {
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0);
|
|
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
|
|
.addReg(Temp)
|
|
.add(Src1);
|
|
} else if (Src1IsSGPR) {
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1);
|
|
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
|
|
.add(Src0)
|
|
.addReg(Temp);
|
|
} else {
|
|
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp)
|
|
.add(Src0)
|
|
.add(Src1);
|
|
MachineInstr *Not =
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp);
|
|
Worklist.insert(Not);
|
|
}
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), NewDest);
|
|
|
|
Worklist.insert(Xor);
|
|
|
|
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::splitScalarNotBinop(SetVectorType &Worklist,
|
|
MachineInstr &Inst,
|
|
unsigned Opcode) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
|
|
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
|
|
MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm)
|
|
.add(Src0)
|
|
.add(Src1);
|
|
|
|
MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest)
|
|
.addReg(Interm);
|
|
|
|
Worklist.insert(&Op);
|
|
Worklist.insert(&Not);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), NewDest);
|
|
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalarBinOpN2(SetVectorType& Worklist,
|
|
MachineInstr &Inst,
|
|
unsigned Opcode) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
|
|
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
|
|
MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm)
|
|
.add(Src1);
|
|
|
|
MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest)
|
|
.add(Src0)
|
|
.addReg(Interm);
|
|
|
|
Worklist.insert(&Not);
|
|
Worklist.insert(&Op);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), NewDest);
|
|
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitUnaryOp(
|
|
SetVectorType &Worklist, MachineInstr &Inst,
|
|
unsigned Opcode, bool Swap) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const MCInstrDesc &InstDesc = get(Opcode);
|
|
const TargetRegisterClass *Src0RC = Src0.isReg() ?
|
|
MRI.getRegClass(Src0.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub0, Src0SubRC);
|
|
|
|
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
|
|
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
|
|
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
|
|
|
|
Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0);
|
|
|
|
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub1, Src0SubRC);
|
|
|
|
Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1);
|
|
|
|
if (Swap)
|
|
std::swap(DestSub0, DestSub1);
|
|
|
|
Register FullDestReg = MRI.createVirtualRegister(NewDestRC);
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
|
|
.addReg(DestSub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DestSub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
|
|
|
|
Worklist.insert(&LoHalf);
|
|
Worklist.insert(&HiHalf);
|
|
|
|
// We don't need to legalizeOperands here because for a single operand, src0
|
|
// will support any kind of input.
|
|
|
|
// Move all users of this moved value.
|
|
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitAddSub(SetVectorType &Worklist,
|
|
MachineInstr &Inst,
|
|
MachineDominatorTree *MDT) const {
|
|
bool IsAdd = (Inst.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
|
|
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
|
|
|
|
Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
Register CarryReg = MRI.createVirtualRegister(CarryRC);
|
|
Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg());
|
|
const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg());
|
|
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
|
|
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub0, Src0SubRC);
|
|
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub0, Src1SubRC);
|
|
|
|
|
|
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub1, Src0SubRC);
|
|
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub1, Src1SubRC);
|
|
|
|
unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
|
|
MachineInstr *LoHalf =
|
|
BuildMI(MBB, MII, DL, get(LoOpc), DestSub0)
|
|
.addReg(CarryReg, RegState::Define)
|
|
.add(SrcReg0Sub0)
|
|
.add(SrcReg1Sub0)
|
|
.addImm(0); // clamp bit
|
|
|
|
unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
|
|
MachineInstr *HiHalf =
|
|
BuildMI(MBB, MII, DL, get(HiOpc), DestSub1)
|
|
.addReg(DeadCarryReg, RegState::Define | RegState::Dead)
|
|
.add(SrcReg0Sub1)
|
|
.add(SrcReg1Sub1)
|
|
.addReg(CarryReg, RegState::Kill)
|
|
.addImm(0); // clamp bit
|
|
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
|
|
.addReg(DestSub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DestSub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
|
|
|
|
// Try to legalize the operands in case we need to swap the order to keep it
|
|
// valid.
|
|
legalizeOperands(*LoHalf, MDT);
|
|
legalizeOperands(*HiHalf, MDT);
|
|
|
|
// Move all users of this moved vlaue.
|
|
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBinaryOp(SetVectorType &Worklist,
|
|
MachineInstr &Inst, unsigned Opcode,
|
|
MachineDominatorTree *MDT) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const MCInstrDesc &InstDesc = get(Opcode);
|
|
const TargetRegisterClass *Src0RC = Src0.isReg() ?
|
|
MRI.getRegClass(Src0.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
|
|
const TargetRegisterClass *Src1RC = Src1.isReg() ?
|
|
MRI.getRegClass(Src1.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub0, Src0SubRC);
|
|
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub0, Src1SubRC);
|
|
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub1, Src0SubRC);
|
|
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub1, Src1SubRC);
|
|
|
|
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
|
|
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
|
|
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
|
|
|
|
Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0)
|
|
.add(SrcReg0Sub0)
|
|
.add(SrcReg1Sub0);
|
|
|
|
Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1)
|
|
.add(SrcReg0Sub1)
|
|
.add(SrcReg1Sub1);
|
|
|
|
Register FullDestReg = MRI.createVirtualRegister(NewDestRC);
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
|
|
.addReg(DestSub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DestSub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
|
|
|
|
Worklist.insert(&LoHalf);
|
|
Worklist.insert(&HiHalf);
|
|
|
|
// Move all users of this moved vlaue.
|
|
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitXnor(SetVectorType &Worklist,
|
|
MachineInstr &Inst,
|
|
MachineDominatorTree *MDT) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
|
|
|
|
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
|
|
MachineOperand* Op0;
|
|
MachineOperand* Op1;
|
|
|
|
if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) {
|
|
Op0 = &Src0;
|
|
Op1 = &Src1;
|
|
} else {
|
|
Op0 = &Src1;
|
|
Op1 = &Src0;
|
|
}
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm)
|
|
.add(*Op0);
|
|
|
|
Register NewDest = MRI.createVirtualRegister(DestRC);
|
|
|
|
MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest)
|
|
.addReg(Interm)
|
|
.add(*Op1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), NewDest);
|
|
|
|
Worklist.insert(&Xor);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBCNT(
|
|
SetVectorType &Worklist, MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
|
|
const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
|
|
const TargetRegisterClass *SrcRC = Src.isReg() ?
|
|
MRI.getRegClass(Src.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
|
|
AMDGPU::sub0, SrcSubRC);
|
|
MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
|
|
AMDGPU::sub1, SrcSubRC);
|
|
|
|
BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0);
|
|
|
|
BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
|
|
// We don't need to legalize operands here. src0 for etiher instruction can be
|
|
// an SGPR, and the second input is unused or determined here.
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBFE(SetVectorType &Worklist,
|
|
MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
uint32_t Imm = Inst.getOperand(2).getImm();
|
|
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
|
|
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
|
|
|
|
(void) Offset;
|
|
|
|
// Only sext_inreg cases handled.
|
|
assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
|
|
Offset == 0 && "Not implemented");
|
|
|
|
if (BitWidth < 32) {
|
|
Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo)
|
|
.addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
|
|
.addImm(0)
|
|
.addImm(BitWidth);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
|
|
.addImm(31)
|
|
.addReg(MidRegLo);
|
|
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
|
|
.addReg(MidRegLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(MidRegHi)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
return;
|
|
}
|
|
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
|
|
.addImm(31)
|
|
.addReg(Src.getReg(), 0, AMDGPU::sub0);
|
|
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
|
|
.addReg(Src.getReg(), 0, AMDGPU::sub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(TmpReg)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::addUsersToMoveToVALUWorklist(
|
|
Register DstReg,
|
|
MachineRegisterInfo &MRI,
|
|
SetVectorType &Worklist) const {
|
|
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
|
|
E = MRI.use_end(); I != E;) {
|
|
MachineInstr &UseMI = *I->getParent();
|
|
|
|
unsigned OpNo = 0;
|
|
|
|
switch (UseMI.getOpcode()) {
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::WQM:
|
|
case AMDGPU::SOFT_WQM:
|
|
case AMDGPU::STRICT_WWM:
|
|
case AMDGPU::STRICT_WQM:
|
|
case AMDGPU::REG_SEQUENCE:
|
|
case AMDGPU::PHI:
|
|
case AMDGPU::INSERT_SUBREG:
|
|
break;
|
|
default:
|
|
OpNo = I.getOperandNo();
|
|
break;
|
|
}
|
|
|
|
if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) {
|
|
Worklist.insert(&UseMI);
|
|
|
|
do {
|
|
++I;
|
|
} while (I != E && I->getParent() == &UseMI);
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::movePackToVALU(SetVectorType &Worklist,
|
|
MachineRegisterInfo &MRI,
|
|
MachineInstr &Inst) const {
|
|
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
MachineBasicBlock *MBB = Inst.getParent();
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
const DebugLoc &DL = Inst.getDebugLoc();
|
|
|
|
switch (Inst.getOpcode()) {
|
|
case AMDGPU::S_PACK_LL_B32_B16: {
|
|
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
// FIXME: Can do a lot better if we know the high bits of src0 or src1 are
|
|
// 0.
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
|
|
.addImm(0xffff);
|
|
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg)
|
|
.addReg(ImmReg, RegState::Kill)
|
|
.add(Src0);
|
|
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
|
|
.add(Src1)
|
|
.addImm(16)
|
|
.addReg(TmpReg, RegState::Kill);
|
|
break;
|
|
}
|
|
case AMDGPU::S_PACK_LH_B32_B16: {
|
|
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
|
|
.addImm(0xffff);
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg)
|
|
.addReg(ImmReg, RegState::Kill)
|
|
.add(Src0)
|
|
.add(Src1);
|
|
break;
|
|
}
|
|
case AMDGPU::S_PACK_HH_B32_B16: {
|
|
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
|
|
.addImm(16)
|
|
.add(Src0);
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
|
|
.addImm(0xffff0000);
|
|
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg)
|
|
.add(Src1)
|
|
.addReg(ImmReg, RegState::Kill)
|
|
.addReg(TmpReg, RegState::Kill);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unhandled s_pack_* instruction");
|
|
}
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op,
|
|
MachineInstr &SCCDefInst,
|
|
SetVectorType &Worklist,
|
|
Register NewCond) const {
|
|
|
|
// Ensure that def inst defines SCC, which is still live.
|
|
assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() &&
|
|
!Op.isDead() && Op.getParent() == &SCCDefInst);
|
|
SmallVector<MachineInstr *, 4> CopyToDelete;
|
|
// This assumes that all the users of SCC are in the same block
|
|
// as the SCC def.
|
|
for (MachineInstr &MI : // Skip the def inst itself.
|
|
make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)),
|
|
SCCDefInst.getParent()->end())) {
|
|
// Check if SCC is used first.
|
|
int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI);
|
|
if (SCCIdx != -1) {
|
|
if (MI.isCopy()) {
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
Register DestReg = MI.getOperand(0).getReg();
|
|
|
|
MRI.replaceRegWith(DestReg, NewCond);
|
|
CopyToDelete.push_back(&MI);
|
|
} else {
|
|
|
|
if (NewCond.isValid())
|
|
MI.getOperand(SCCIdx).setReg(NewCond);
|
|
|
|
Worklist.insert(&MI);
|
|
}
|
|
}
|
|
// Exit if we find another SCC def.
|
|
if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1)
|
|
break;
|
|
}
|
|
for (auto &Copy : CopyToDelete)
|
|
Copy->eraseFromParent();
|
|
}
|
|
|
|
// Instructions that use SCC may be converted to VALU instructions. When that
|
|
// happens, the SCC register is changed to VCC_LO. The instruction that defines
|
|
// SCC must be changed to an instruction that defines VCC. This function makes
|
|
// sure that the instruction that defines SCC is added to the moveToVALU
|
|
// worklist.
|
|
void SIInstrInfo::addSCCDefsToVALUWorklist(MachineOperand &Op,
|
|
SetVectorType &Worklist) const {
|
|
assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isUse());
|
|
|
|
MachineInstr *SCCUseInst = Op.getParent();
|
|
// Look for a preceeding instruction that either defines VCC or SCC. If VCC
|
|
// then there is nothing to do because the defining instruction has been
|
|
// converted to a VALU already. If SCC then that instruction needs to be
|
|
// converted to a VALU.
|
|
for (MachineInstr &MI :
|
|
make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)),
|
|
SCCUseInst->getParent()->rend())) {
|
|
if (MI.modifiesRegister(AMDGPU::VCC, &RI))
|
|
break;
|
|
if (MI.definesRegister(AMDGPU::SCC, &RI)) {
|
|
Worklist.insert(&MI);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
|
|
const MachineInstr &Inst) const {
|
|
const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
|
|
|
|
switch (Inst.getOpcode()) {
|
|
// For target instructions, getOpRegClass just returns the virtual register
|
|
// class associated with the operand, so we need to find an equivalent VGPR
|
|
// register class in order to move the instruction to the VALU.
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::PHI:
|
|
case AMDGPU::REG_SEQUENCE:
|
|
case AMDGPU::INSERT_SUBREG:
|
|
case AMDGPU::WQM:
|
|
case AMDGPU::SOFT_WQM:
|
|
case AMDGPU::STRICT_WWM:
|
|
case AMDGPU::STRICT_WQM: {
|
|
const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1);
|
|
if (RI.isAGPRClass(SrcRC)) {
|
|
if (RI.isAGPRClass(NewDstRC))
|
|
return nullptr;
|
|
|
|
switch (Inst.getOpcode()) {
|
|
case AMDGPU::PHI:
|
|
case AMDGPU::REG_SEQUENCE:
|
|
case AMDGPU::INSERT_SUBREG:
|
|
NewDstRC = RI.getEquivalentAGPRClass(NewDstRC);
|
|
break;
|
|
default:
|
|
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
|
|
}
|
|
|
|
if (!NewDstRC)
|
|
return nullptr;
|
|
} else {
|
|
if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass)
|
|
return nullptr;
|
|
|
|
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
|
|
if (!NewDstRC)
|
|
return nullptr;
|
|
}
|
|
|
|
return NewDstRC;
|
|
}
|
|
default:
|
|
return NewDstRC;
|
|
}
|
|
}
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
|
|
int OpIndices[3]) const {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
//
|
|
// First we need to consider the instruction's operand requirements before
|
|
// legalizing. Some operands are required to be SGPRs, such as implicit uses
|
|
// of VCC, but we are still bound by the constant bus requirement to only use
|
|
// one.
|
|
//
|
|
// If the operand's class is an SGPR, we can never move it.
|
|
|
|
Register SGPRReg = findImplicitSGPRRead(MI);
|
|
if (SGPRReg != AMDGPU::NoRegister)
|
|
return SGPRReg;
|
|
|
|
Register UsedSGPRs[3] = { AMDGPU::NoRegister };
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
int Idx = OpIndices[i];
|
|
if (Idx == -1)
|
|
break;
|
|
|
|
const MachineOperand &MO = MI.getOperand(Idx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
// Is this operand statically required to be an SGPR based on the operand
|
|
// constraints?
|
|
const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
|
|
bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
|
|
if (IsRequiredSGPR)
|
|
return MO.getReg();
|
|
|
|
// If this could be a VGPR or an SGPR, Check the dynamic register class.
|
|
Register Reg = MO.getReg();
|
|
const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
|
|
if (RI.isSGPRClass(RegRC))
|
|
UsedSGPRs[i] = Reg;
|
|
}
|
|
|
|
// We don't have a required SGPR operand, so we have a bit more freedom in
|
|
// selecting operands to move.
|
|
|
|
// Try to select the most used SGPR. If an SGPR is equal to one of the
|
|
// others, we choose that.
|
|
//
|
|
// e.g.
|
|
// V_FMA_F32 v0, s0, s0, s0 -> No moves
|
|
// V_FMA_F32 v0, s0, s1, s0 -> Move s1
|
|
|
|
// TODO: If some of the operands are 64-bit SGPRs and some 32, we should
|
|
// prefer those.
|
|
|
|
if (UsedSGPRs[0] != AMDGPU::NoRegister) {
|
|
if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
|
|
SGPRReg = UsedSGPRs[0];
|
|
}
|
|
|
|
if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
|
|
if (UsedSGPRs[1] == UsedSGPRs[2])
|
|
SGPRReg = UsedSGPRs[1];
|
|
}
|
|
|
|
return SGPRReg;
|
|
}
|
|
|
|
MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
|
|
unsigned OperandName) const {
|
|
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
|
|
if (Idx == -1)
|
|
return nullptr;
|
|
|
|
return &MI.getOperand(Idx);
|
|
}
|
|
|
|
uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
|
|
return (AMDGPU::MTBUFFormat::UFMT_32_FLOAT << 44) |
|
|
(1ULL << 56) | // RESOURCE_LEVEL = 1
|
|
(3ULL << 60); // OOB_SELECT = 3
|
|
}
|
|
|
|
uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
|
|
if (ST.isAmdHsaOS()) {
|
|
// Set ATC = 1. GFX9 doesn't have this bit.
|
|
if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
RsrcDataFormat |= (1ULL << 56);
|
|
|
|
// Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this.
|
|
// BTW, it disables TC L2 and therefore decreases performance.
|
|
if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
RsrcDataFormat |= (2ULL << 59);
|
|
}
|
|
|
|
return RsrcDataFormat;
|
|
}
|
|
|
|
uint64_t SIInstrInfo::getScratchRsrcWords23() const {
|
|
uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
|
|
AMDGPU::RSRC_TID_ENABLE |
|
|
0xffffffff; // Size;
|
|
|
|
// GFX9 doesn't have ELEMENT_SIZE.
|
|
if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
|
|
uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1;
|
|
Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT;
|
|
}
|
|
|
|
// IndexStride = 64 / 32.
|
|
uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2;
|
|
Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT;
|
|
|
|
// If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
|
|
// Clear them unless we want a huge stride.
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
|
|
ST.getGeneration() <= AMDGPUSubtarget::GFX9)
|
|
Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
|
|
|
|
return Rsrc23;
|
|
}
|
|
|
|
bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
return isSMRD(Opc);
|
|
}
|
|
|
|
bool SIInstrInfo::isHighLatencyDef(int Opc) const {
|
|
return get(Opc).mayLoad() &&
|
|
(isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc));
|
|
}
|
|
|
|
unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
|
|
if (!Addr || !Addr->isFI())
|
|
return AMDGPU::NoRegister;
|
|
|
|
assert(!MI.memoperands_empty() &&
|
|
(*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS);
|
|
|
|
FrameIndex = Addr->getIndex();
|
|
return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg();
|
|
}
|
|
|
|
unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr);
|
|
assert(Addr && Addr->isFI());
|
|
FrameIndex = Addr->getIndex();
|
|
return getNamedOperand(MI, AMDGPU::OpName::data)->getReg();
|
|
}
|
|
|
|
unsigned SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
if (!MI.mayLoad())
|
|
return AMDGPU::NoRegister;
|
|
|
|
if (isMUBUF(MI) || isVGPRSpill(MI))
|
|
return isStackAccess(MI, FrameIndex);
|
|
|
|
if (isSGPRSpill(MI))
|
|
return isSGPRStackAccess(MI, FrameIndex);
|
|
|
|
return AMDGPU::NoRegister;
|
|
}
|
|
|
|
unsigned SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
if (!MI.mayStore())
|
|
return AMDGPU::NoRegister;
|
|
|
|
if (isMUBUF(MI) || isVGPRSpill(MI))
|
|
return isStackAccess(MI, FrameIndex);
|
|
|
|
if (isSGPRSpill(MI))
|
|
return isSGPRStackAccess(MI, FrameIndex);
|
|
|
|
return AMDGPU::NoRegister;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const {
|
|
unsigned Size = 0;
|
|
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
|
|
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
|
|
while (++I != E && I->isInsideBundle()) {
|
|
assert(!I->isBundle() && "No nested bundle!");
|
|
Size += getInstSizeInBytes(*I);
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc);
|
|
unsigned DescSize = Desc.getSize();
|
|
|
|
// If we have a definitive size, we can use it. Otherwise we need to inspect
|
|
// the operands to know the size.
|
|
if (isFixedSize(MI)) {
|
|
unsigned Size = DescSize;
|
|
|
|
// If we hit the buggy offset, an extra nop will be inserted in MC so
|
|
// estimate the worst case.
|
|
if (MI.isBranch() && ST.hasOffset3fBug())
|
|
Size += 4;
|
|
|
|
return Size;
|
|
}
|
|
|
|
// Instructions may have a 32-bit literal encoded after them. Check
|
|
// operands that could ever be literals.
|
|
if (isVALU(MI) || isSALU(MI)) {
|
|
if (isDPP(MI))
|
|
return DescSize;
|
|
bool HasLiteral = false;
|
|
for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) {
|
|
if (isLiteralConstant(MI, I)) {
|
|
HasLiteral = true;
|
|
break;
|
|
}
|
|
}
|
|
return HasLiteral ? DescSize + 4 : DescSize;
|
|
}
|
|
|
|
// Check whether we have extra NSA words.
|
|
if (isMIMG(MI)) {
|
|
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
|
|
if (VAddr0Idx < 0)
|
|
return 8;
|
|
|
|
int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
|
|
return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4);
|
|
}
|
|
|
|
switch (Opc) {
|
|
case TargetOpcode::BUNDLE:
|
|
return getInstBundleSize(MI);
|
|
case TargetOpcode::INLINEASM:
|
|
case TargetOpcode::INLINEASM_BR: {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const char *AsmStr = MI.getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST);
|
|
}
|
|
default:
|
|
if (MI.isMetaInstruction())
|
|
return 0;
|
|
return DescSize;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const {
|
|
if (!isFLAT(MI))
|
|
return false;
|
|
|
|
if (MI.memoperands_empty())
|
|
return true;
|
|
|
|
for (const MachineMemOperand *MMO : MI.memoperands()) {
|
|
if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const {
|
|
return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO;
|
|
}
|
|
|
|
void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
|
|
MachineBasicBlock *IfEnd) const {
|
|
MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator();
|
|
assert(TI != IfEntry->end());
|
|
|
|
MachineInstr *Branch = &(*TI);
|
|
MachineFunction *MF = IfEntry->getParent();
|
|
MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo();
|
|
|
|
if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
|
|
Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
MachineInstr *SIIF =
|
|
BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg)
|
|
.add(Branch->getOperand(0))
|
|
.add(Branch->getOperand(1));
|
|
MachineInstr *SIEND =
|
|
BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF))
|
|
.addReg(DstReg);
|
|
|
|
IfEntry->erase(TI);
|
|
IfEntry->insert(IfEntry->end(), SIIF);
|
|
IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::convertNonUniformLoopRegion(
|
|
MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const {
|
|
MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator();
|
|
// We expect 2 terminators, one conditional and one unconditional.
|
|
assert(TI != LoopEnd->end());
|
|
|
|
MachineInstr *Branch = &(*TI);
|
|
MachineFunction *MF = LoopEnd->getParent();
|
|
MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo();
|
|
|
|
if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
|
|
|
|
Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
MachineInstrBuilder HeaderPHIBuilder =
|
|
BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg);
|
|
for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) {
|
|
if (PMBB == LoopEnd) {
|
|
HeaderPHIBuilder.addReg(BackEdgeReg);
|
|
} else {
|
|
Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC());
|
|
materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(),
|
|
ZeroReg, 0);
|
|
HeaderPHIBuilder.addReg(ZeroReg);
|
|
}
|
|
HeaderPHIBuilder.addMBB(PMBB);
|
|
}
|
|
MachineInstr *HeaderPhi = HeaderPHIBuilder;
|
|
MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(),
|
|
get(AMDGPU::SI_IF_BREAK), BackEdgeReg)
|
|
.addReg(DstReg)
|
|
.add(Branch->getOperand(0));
|
|
MachineInstr *SILOOP =
|
|
BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP))
|
|
.addReg(BackEdgeReg)
|
|
.addMBB(LoopEntry);
|
|
|
|
LoopEntry->insert(LoopEntry->begin(), HeaderPhi);
|
|
LoopEnd->erase(TI);
|
|
LoopEnd->insert(LoopEnd->end(), SIIFBREAK);
|
|
LoopEnd->insert(LoopEnd->end(), SILOOP);
|
|
}
|
|
}
|
|
|
|
ArrayRef<std::pair<int, const char *>>
|
|
SIInstrInfo::getSerializableTargetIndices() const {
|
|
static const std::pair<int, const char *> TargetIndices[] = {
|
|
{AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
|
|
return makeArrayRef(TargetIndices);
|
|
}
|
|
|
|
/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
|
|
/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
|
|
ScheduleHazardRecognizer *
|
|
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
return new GCNHazardRecognizer(DAG->MF);
|
|
}
|
|
|
|
/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
|
|
/// pass.
|
|
ScheduleHazardRecognizer *
|
|
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
|
|
return new GCNHazardRecognizer(MF);
|
|
}
|
|
|
|
// Called during:
|
|
// - pre-RA scheduling and post-RA scheduling
|
|
ScheduleHazardRecognizer *
|
|
SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAGMI *DAG) const {
|
|
// Borrowed from Arm Target
|
|
// We would like to restrict this hazard recognizer to only
|
|
// post-RA scheduling; we can tell that we're post-RA because we don't
|
|
// track VRegLiveness.
|
|
if (!DAG->hasVRegLiveness())
|
|
return new GCNHazardRecognizer(DAG->MF);
|
|
return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
return std::make_pair(TF & MO_MASK, TF & ~MO_MASK);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{ MO_GOTPCREL, "amdgpu-gotprel" },
|
|
{ MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" },
|
|
{ MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" },
|
|
{ MO_REL32_LO, "amdgpu-rel32-lo" },
|
|
{ MO_REL32_HI, "amdgpu-rel32-hi" },
|
|
{ MO_ABS32_LO, "amdgpu-abs32-lo" },
|
|
{ MO_ABS32_HI, "amdgpu-abs32-hi" },
|
|
};
|
|
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI) const {
|
|
return !MI.isTerminator() && MI.getOpcode() != AMDGPU::COPY &&
|
|
MI.modifiesRegister(AMDGPU::EXEC, &RI);
|
|
}
|
|
|
|
MachineInstrBuilder
|
|
SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL,
|
|
Register DestReg) const {
|
|
if (ST.hasAddNoCarry())
|
|
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg);
|
|
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC());
|
|
MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC());
|
|
|
|
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
|
|
.addReg(UnusedCarry, RegState::Define | RegState::Dead);
|
|
}
|
|
|
|
MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL,
|
|
Register DestReg,
|
|
RegScavenger &RS) const {
|
|
if (ST.hasAddNoCarry())
|
|
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg);
|
|
|
|
// If available, prefer to use vcc.
|
|
Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC)
|
|
? Register(RI.getVCC())
|
|
: RS.scavengeRegister(RI.getBoolRC(), I, 0, false);
|
|
|
|
// TODO: Users need to deal with this.
|
|
if (!UnusedCarry.isValid())
|
|
return MachineInstrBuilder();
|
|
|
|
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
|
|
.addReg(UnusedCarry, RegState::Define | RegState::Dead);
|
|
}
|
|
|
|
bool SIInstrInfo::isKillTerminator(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
|
|
case AMDGPU::SI_KILL_I1_TERMINATOR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
|
|
return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR);
|
|
case AMDGPU::SI_KILL_I1_PSEUDO:
|
|
return get(AMDGPU::SI_KILL_I1_TERMINATOR);
|
|
default:
|
|
llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO");
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const {
|
|
if (!ST.isWave32())
|
|
return;
|
|
|
|
for (auto &Op : MI.implicit_operands()) {
|
|
if (Op.isReg() && Op.getReg() == AMDGPU::VCC)
|
|
Op.setReg(AMDGPU::VCC_LO);
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const {
|
|
if (!isSMRD(MI))
|
|
return false;
|
|
|
|
// Check that it is using a buffer resource.
|
|
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase);
|
|
if (Idx == -1) // e.g. s_memtime
|
|
return false;
|
|
|
|
const auto RCID = MI.getDesc().OpInfo[Idx].RegClass;
|
|
return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass);
|
|
}
|
|
|
|
// Depending on the used address space and instructions, some immediate offsets
|
|
// are allowed and some are not.
|
|
// In general, flat instruction offsets can only be non-negative, global and
|
|
// scratch instruction offsets can also be negative.
|
|
//
|
|
// There are several bugs related to these offsets:
|
|
// On gfx10.1, flat instructions that go into the global address space cannot
|
|
// use an offset.
|
|
//
|
|
// For scratch instructions, the address can be either an SGPR or a VGPR.
|
|
// The following offsets can be used, depending on the architecture (x means
|
|
// cannot be used):
|
|
// +----------------------------+------+------+
|
|
// | Address-Mode | SGPR | VGPR |
|
|
// +----------------------------+------+------+
|
|
// | gfx9 | | |
|
|
// | negative, 4-aligned offset | x | ok |
|
|
// | negative, unaligned offset | x | ok |
|
|
// +----------------------------+------+------+
|
|
// | gfx10 | | |
|
|
// | negative, 4-aligned offset | ok | ok |
|
|
// | negative, unaligned offset | ok | x |
|
|
// +----------------------------+------+------+
|
|
// | gfx10.3 | | |
|
|
// | negative, 4-aligned offset | ok | ok |
|
|
// | negative, unaligned offset | ok | ok |
|
|
// +----------------------------+------+------+
|
|
//
|
|
// This function ignores the addressing mode, so if an offset cannot be used in
|
|
// one addressing mode, it is considered illegal.
|
|
bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
|
|
uint64_t FlatVariant) const {
|
|
// TODO: Should 0 be special cased?
|
|
if (!ST.hasFlatInstOffsets())
|
|
return false;
|
|
|
|
if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT &&
|
|
(AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::GLOBAL_ADDRESS))
|
|
return false;
|
|
|
|
bool Signed = FlatVariant != SIInstrFlags::FLAT;
|
|
if (ST.hasNegativeScratchOffsetBug() &&
|
|
FlatVariant == SIInstrFlags::FlatScratch)
|
|
Signed = false;
|
|
if (ST.hasNegativeUnalignedScratchOffsetBug() &&
|
|
FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 &&
|
|
(Offset % 4) != 0) {
|
|
return false;
|
|
}
|
|
|
|
unsigned N = AMDGPU::getNumFlatOffsetBits(ST, Signed);
|
|
return Signed ? isIntN(N, Offset) : isUIntN(N, Offset);
|
|
}
|
|
|
|
// See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not.
|
|
std::pair<int64_t, int64_t>
|
|
SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace,
|
|
uint64_t FlatVariant) const {
|
|
int64_t RemainderOffset = COffsetVal;
|
|
int64_t ImmField = 0;
|
|
bool Signed = FlatVariant != SIInstrFlags::FLAT;
|
|
if (ST.hasNegativeScratchOffsetBug() &&
|
|
FlatVariant == SIInstrFlags::FlatScratch)
|
|
Signed = false;
|
|
|
|
const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST, Signed);
|
|
if (Signed) {
|
|
// Use signed division by a power of two to truncate towards 0.
|
|
int64_t D = 1LL << (NumBits - 1);
|
|
RemainderOffset = (COffsetVal / D) * D;
|
|
ImmField = COffsetVal - RemainderOffset;
|
|
|
|
if (ST.hasNegativeUnalignedScratchOffsetBug() &&
|
|
FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 &&
|
|
(ImmField % 4) != 0) {
|
|
// Make ImmField a multiple of 4
|
|
RemainderOffset += ImmField % 4;
|
|
ImmField -= ImmField % 4;
|
|
}
|
|
} else if (COffsetVal >= 0) {
|
|
ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits);
|
|
RemainderOffset = COffsetVal - ImmField;
|
|
}
|
|
|
|
assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant));
|
|
assert(RemainderOffset + ImmField == COffsetVal);
|
|
return {ImmField, RemainderOffset};
|
|
}
|
|
|
|
// This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td
|
|
enum SIEncodingFamily {
|
|
SI = 0,
|
|
VI = 1,
|
|
SDWA = 2,
|
|
SDWA9 = 3,
|
|
GFX80 = 4,
|
|
GFX9 = 5,
|
|
GFX10 = 6,
|
|
SDWA10 = 7,
|
|
GFX90A = 8
|
|
};
|
|
|
|
static SIEncodingFamily subtargetEncodingFamily(const GCNSubtarget &ST) {
|
|
switch (ST.getGeneration()) {
|
|
default:
|
|
break;
|
|
case AMDGPUSubtarget::SOUTHERN_ISLANDS:
|
|
case AMDGPUSubtarget::SEA_ISLANDS:
|
|
return SIEncodingFamily::SI;
|
|
case AMDGPUSubtarget::VOLCANIC_ISLANDS:
|
|
case AMDGPUSubtarget::GFX9:
|
|
return SIEncodingFamily::VI;
|
|
case AMDGPUSubtarget::GFX10:
|
|
return SIEncodingFamily::GFX10;
|
|
}
|
|
llvm_unreachable("Unknown subtarget generation!");
|
|
}
|
|
|
|
bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const {
|
|
switch(MCOp) {
|
|
// These opcodes use indirect register addressing so
|
|
// they need special handling by codegen (currently missing).
|
|
// Therefore it is too risky to allow these opcodes
|
|
// to be selected by dpp combiner or sdwa peepholer.
|
|
case AMDGPU::V_MOVRELS_B32_dpp_gfx10:
|
|
case AMDGPU::V_MOVRELS_B32_sdwa_gfx10:
|
|
case AMDGPU::V_MOVRELD_B32_dpp_gfx10:
|
|
case AMDGPU::V_MOVRELD_B32_sdwa_gfx10:
|
|
case AMDGPU::V_MOVRELSD_B32_dpp_gfx10:
|
|
case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10:
|
|
case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10:
|
|
case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int SIInstrInfo::pseudoToMCOpcode(int Opcode) const {
|
|
SIEncodingFamily Gen = subtargetEncodingFamily(ST);
|
|
|
|
if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 &&
|
|
ST.getGeneration() == AMDGPUSubtarget::GFX9)
|
|
Gen = SIEncodingFamily::GFX9;
|
|
|
|
// Adjust the encoding family to GFX80 for D16 buffer instructions when the
|
|
// subtarget has UnpackedD16VMem feature.
|
|
// TODO: remove this when we discard GFX80 encoding.
|
|
if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf))
|
|
Gen = SIEncodingFamily::GFX80;
|
|
|
|
if (get(Opcode).TSFlags & SIInstrFlags::SDWA) {
|
|
switch (ST.getGeneration()) {
|
|
default:
|
|
Gen = SIEncodingFamily::SDWA;
|
|
break;
|
|
case AMDGPUSubtarget::GFX9:
|
|
Gen = SIEncodingFamily::SDWA9;
|
|
break;
|
|
case AMDGPUSubtarget::GFX10:
|
|
Gen = SIEncodingFamily::SDWA10;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int MCOp = AMDGPU::getMCOpcode(Opcode, Gen);
|
|
|
|
// -1 means that Opcode is already a native instruction.
|
|
if (MCOp == -1)
|
|
return Opcode;
|
|
|
|
if (ST.hasGFX90AInsts()) {
|
|
uint16_t NMCOp = (uint16_t)-1;
|
|
NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A);
|
|
if (NMCOp == (uint16_t)-1)
|
|
NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9);
|
|
if (NMCOp != (uint16_t)-1)
|
|
MCOp = NMCOp;
|
|
}
|
|
|
|
// (uint16_t)-1 means that Opcode is a pseudo instruction that has
|
|
// no encoding in the given subtarget generation.
|
|
if (MCOp == (uint16_t)-1)
|
|
return -1;
|
|
|
|
if (isAsmOnlyOpcode(MCOp))
|
|
return -1;
|
|
|
|
return MCOp;
|
|
}
|
|
|
|
static
|
|
TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) {
|
|
assert(RegOpnd.isReg());
|
|
return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() :
|
|
getRegSubRegPair(RegOpnd);
|
|
}
|
|
|
|
TargetInstrInfo::RegSubRegPair
|
|
llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) {
|
|
assert(MI.isRegSequence());
|
|
for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I)
|
|
if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) {
|
|
auto &RegOp = MI.getOperand(1 + 2 * I);
|
|
return getRegOrUndef(RegOp);
|
|
}
|
|
return TargetInstrInfo::RegSubRegPair();
|
|
}
|
|
|
|
// Try to find the definition of reg:subreg in subreg-manipulation pseudos
|
|
// Following a subreg of reg:subreg isn't supported
|
|
static bool followSubRegDef(MachineInstr &MI,
|
|
TargetInstrInfo::RegSubRegPair &RSR) {
|
|
if (!RSR.SubReg)
|
|
return false;
|
|
switch (MI.getOpcode()) {
|
|
default: break;
|
|
case AMDGPU::REG_SEQUENCE:
|
|
RSR = getRegSequenceSubReg(MI, RSR.SubReg);
|
|
return true;
|
|
// EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg
|
|
case AMDGPU::INSERT_SUBREG:
|
|
if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm())
|
|
// inserted the subreg we're looking for
|
|
RSR = getRegOrUndef(MI.getOperand(2));
|
|
else { // the subreg in the rest of the reg
|
|
auto R1 = getRegOrUndef(MI.getOperand(1));
|
|
if (R1.SubReg) // subreg of subreg isn't supported
|
|
return false;
|
|
RSR.Reg = R1.Reg;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
|
|
MachineRegisterInfo &MRI) {
|
|
assert(MRI.isSSA());
|
|
if (!P.Reg.isVirtual())
|
|
return nullptr;
|
|
|
|
auto RSR = P;
|
|
auto *DefInst = MRI.getVRegDef(RSR.Reg);
|
|
while (auto *MI = DefInst) {
|
|
DefInst = nullptr;
|
|
switch (MI->getOpcode()) {
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::V_MOV_B32_e32: {
|
|
auto &Op1 = MI->getOperand(1);
|
|
if (Op1.isReg() && Op1.getReg().isVirtual()) {
|
|
if (Op1.isUndef())
|
|
return nullptr;
|
|
RSR = getRegSubRegPair(Op1);
|
|
DefInst = MRI.getVRegDef(RSR.Reg);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
if (followSubRegDef(*MI, RSR)) {
|
|
if (!RSR.Reg)
|
|
return nullptr;
|
|
DefInst = MRI.getVRegDef(RSR.Reg);
|
|
}
|
|
}
|
|
if (!DefInst)
|
|
return MI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
|
|
Register VReg,
|
|
const MachineInstr &DefMI,
|
|
const MachineInstr &UseMI) {
|
|
assert(MRI.isSSA() && "Must be run on SSA");
|
|
|
|
auto *TRI = MRI.getTargetRegisterInfo();
|
|
auto *DefBB = DefMI.getParent();
|
|
|
|
// Don't bother searching between blocks, although it is possible this block
|
|
// doesn't modify exec.
|
|
if (UseMI.getParent() != DefBB)
|
|
return true;
|
|
|
|
const int MaxInstScan = 20;
|
|
int NumInst = 0;
|
|
|
|
// Stop scan at the use.
|
|
auto E = UseMI.getIterator();
|
|
for (auto I = std::next(DefMI.getIterator()); I != E; ++I) {
|
|
if (I->isDebugInstr())
|
|
continue;
|
|
|
|
if (++NumInst > MaxInstScan)
|
|
return true;
|
|
|
|
if (I->modifiesRegister(AMDGPU::EXEC, TRI))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
|
|
Register VReg,
|
|
const MachineInstr &DefMI) {
|
|
assert(MRI.isSSA() && "Must be run on SSA");
|
|
|
|
auto *TRI = MRI.getTargetRegisterInfo();
|
|
auto *DefBB = DefMI.getParent();
|
|
|
|
const int MaxUseScan = 10;
|
|
int NumUse = 0;
|
|
|
|
for (auto &Use : MRI.use_nodbg_operands(VReg)) {
|
|
auto &UseInst = *Use.getParent();
|
|
// Don't bother searching between blocks, although it is possible this block
|
|
// doesn't modify exec.
|
|
if (UseInst.getParent() != DefBB)
|
|
return true;
|
|
|
|
if (++NumUse > MaxUseScan)
|
|
return true;
|
|
}
|
|
|
|
if (NumUse == 0)
|
|
return false;
|
|
|
|
const int MaxInstScan = 20;
|
|
int NumInst = 0;
|
|
|
|
// Stop scan when we have seen all the uses.
|
|
for (auto I = std::next(DefMI.getIterator()); ; ++I) {
|
|
assert(I != DefBB->end());
|
|
|
|
if (I->isDebugInstr())
|
|
continue;
|
|
|
|
if (++NumInst > MaxInstScan)
|
|
return true;
|
|
|
|
for (const MachineOperand &Op : I->operands()) {
|
|
// We don't check reg masks here as they're used only on calls:
|
|
// 1. EXEC is only considered const within one BB
|
|
// 2. Call should be a terminator instruction if present in a BB
|
|
|
|
if (!Op.isReg())
|
|
continue;
|
|
|
|
Register Reg = Op.getReg();
|
|
if (Op.isUse()) {
|
|
if (Reg == VReg && --NumUse == 0)
|
|
return false;
|
|
} else if (TRI->regsOverlap(Reg, AMDGPU::EXEC))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::createPHIDestinationCopy(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt,
|
|
const DebugLoc &DL, Register Src, Register Dst) const {
|
|
auto Cur = MBB.begin();
|
|
if (Cur != MBB.end())
|
|
do {
|
|
if (!Cur->isPHI() && Cur->readsRegister(Dst))
|
|
return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src);
|
|
++Cur;
|
|
} while (Cur != MBB.end() && Cur != LastPHIIt);
|
|
|
|
return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src,
|
|
Dst);
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::createPHISourceCopy(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
|
|
const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const {
|
|
if (InsPt != MBB.end() &&
|
|
(InsPt->getOpcode() == AMDGPU::SI_IF ||
|
|
InsPt->getOpcode() == AMDGPU::SI_ELSE ||
|
|
InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) &&
|
|
InsPt->definesRegister(Src)) {
|
|
InsPt++;
|
|
return BuildMI(MBB, InsPt, DL,
|
|
get(ST.isWave32() ? AMDGPU::S_MOV_B32_term
|
|
: AMDGPU::S_MOV_B64_term),
|
|
Dst)
|
|
.addReg(Src, 0, SrcSubReg)
|
|
.addReg(AMDGPU::EXEC, RegState::Implicit);
|
|
}
|
|
return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg,
|
|
Dst);
|
|
}
|
|
|
|
bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); }
|
|
|
|
MachineInstr *SIInstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
|
|
VirtRegMap *VRM) const {
|
|
// This is a bit of a hack (copied from AArch64). Consider this instruction:
|
|
//
|
|
// %0:sreg_32 = COPY $m0
|
|
//
|
|
// We explicitly chose SReg_32 for the virtual register so such a copy might
|
|
// be eliminated by RegisterCoalescer. However, that may not be possible, and
|
|
// %0 may even spill. We can't spill $m0 normally (it would require copying to
|
|
// a numbered SGPR anyway), and since it is in the SReg_32 register class,
|
|
// TargetInstrInfo::foldMemoryOperand() is going to try.
|
|
// A similar issue also exists with spilling and reloading $exec registers.
|
|
//
|
|
// To prevent that, constrain the %0 register class here.
|
|
if (MI.isFullCopy()) {
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if ((DstReg.isVirtual() || SrcReg.isVirtual()) &&
|
|
(DstReg.isVirtual() != SrcReg.isVirtual())) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg;
|
|
const TargetRegisterClass *RC = MRI.getRegClass(VirtReg);
|
|
if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) {
|
|
MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
|
|
return nullptr;
|
|
} else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) {
|
|
MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI,
|
|
unsigned *PredCost) const {
|
|
if (MI.isBundle()) {
|
|
MachineBasicBlock::const_instr_iterator I(MI.getIterator());
|
|
MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end());
|
|
unsigned Lat = 0, Count = 0;
|
|
for (++I; I != E && I->isBundledWithPred(); ++I) {
|
|
++Count;
|
|
Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I));
|
|
}
|
|
return Lat + Count - 1;
|
|
}
|
|
|
|
return SchedModel.computeInstrLatency(&MI);
|
|
}
|
|
|
|
unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) {
|
|
switch (MF.getFunction().getCallingConv()) {
|
|
case CallingConv::AMDGPU_PS:
|
|
return 1;
|
|
case CallingConv::AMDGPU_VS:
|
|
return 2;
|
|
case CallingConv::AMDGPU_GS:
|
|
return 3;
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_ES:
|
|
report_fatal_error("ds_ordered_count unsupported for this calling conv");
|
|
case CallingConv::AMDGPU_CS:
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
default:
|
|
// Assume other calling conventions are various compute callable functions
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int64_t &CmpMask,
|
|
int64_t &CmpValue) const {
|
|
if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AMDGPU::S_CMP_EQ_U32:
|
|
case AMDGPU::S_CMP_EQ_I32:
|
|
case AMDGPU::S_CMP_LG_U32:
|
|
case AMDGPU::S_CMP_LG_I32:
|
|
case AMDGPU::S_CMP_LT_U32:
|
|
case AMDGPU::S_CMP_LT_I32:
|
|
case AMDGPU::S_CMP_GT_U32:
|
|
case AMDGPU::S_CMP_GT_I32:
|
|
case AMDGPU::S_CMP_LE_U32:
|
|
case AMDGPU::S_CMP_LE_I32:
|
|
case AMDGPU::S_CMP_GE_U32:
|
|
case AMDGPU::S_CMP_GE_I32:
|
|
case AMDGPU::S_CMP_EQ_U64:
|
|
case AMDGPU::S_CMP_LG_U64:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
if (MI.getOperand(1).isReg()) {
|
|
if (MI.getOperand(1).getSubReg())
|
|
return false;
|
|
SrcReg2 = MI.getOperand(1).getReg();
|
|
CmpValue = 0;
|
|
} else if (MI.getOperand(1).isImm()) {
|
|
SrcReg2 = Register();
|
|
CmpValue = MI.getOperand(1).getImm();
|
|
} else {
|
|
return false;
|
|
}
|
|
CmpMask = ~0;
|
|
return true;
|
|
case AMDGPU::S_CMPK_EQ_U32:
|
|
case AMDGPU::S_CMPK_EQ_I32:
|
|
case AMDGPU::S_CMPK_LG_U32:
|
|
case AMDGPU::S_CMPK_LG_I32:
|
|
case AMDGPU::S_CMPK_LT_U32:
|
|
case AMDGPU::S_CMPK_LT_I32:
|
|
case AMDGPU::S_CMPK_GT_U32:
|
|
case AMDGPU::S_CMPK_GT_I32:
|
|
case AMDGPU::S_CMPK_LE_U32:
|
|
case AMDGPU::S_CMPK_LE_I32:
|
|
case AMDGPU::S_CMPK_GE_U32:
|
|
case AMDGPU::S_CMPK_GE_I32:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
SrcReg2 = Register();
|
|
CmpValue = MI.getOperand(1).getImm();
|
|
CmpMask = ~0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
|
|
Register SrcReg2, int64_t CmpMask,
|
|
int64_t CmpValue,
|
|
const MachineRegisterInfo *MRI) const {
|
|
if (!SrcReg || SrcReg.isPhysical())
|
|
return false;
|
|
|
|
if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue))
|
|
return false;
|
|
|
|
const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI,
|
|
this](int64_t ExpectedValue, unsigned SrcSize,
|
|
bool IsReversable, bool IsSigned) -> bool {
|
|
// s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
|
|
// s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
|
|
// s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
|
|
// s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
|
|
// s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n
|
|
// s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
|
|
// s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
|
|
// s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
|
|
// s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
|
|
// s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n
|
|
//
|
|
// Signed ge/gt are not used for the sign bit.
|
|
//
|
|
// If result of the AND is unused except in the compare:
|
|
// s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n
|
|
//
|
|
// s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
|
|
// s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
|
|
// s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n
|
|
// s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
|
|
// s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
|
|
// s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n
|
|
|
|
MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!Def || Def->getParent() != CmpInstr.getParent())
|
|
return false;
|
|
|
|
if (Def->getOpcode() != AMDGPU::S_AND_B32 &&
|
|
Def->getOpcode() != AMDGPU::S_AND_B64)
|
|
return false;
|
|
|
|
int64_t Mask;
|
|
const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool {
|
|
if (MO->isImm())
|
|
Mask = MO->getImm();
|
|
else if (!getFoldableImm(MO, Mask))
|
|
return false;
|
|
Mask &= maxUIntN(SrcSize);
|
|
return isPowerOf2_64(Mask);
|
|
};
|
|
|
|
MachineOperand *SrcOp = &Def->getOperand(1);
|
|
if (isMask(SrcOp))
|
|
SrcOp = &Def->getOperand(2);
|
|
else if (isMask(&Def->getOperand(2)))
|
|
SrcOp = &Def->getOperand(1);
|
|
else
|
|
return false;
|
|
|
|
unsigned BitNo = countTrailingZeros((uint64_t)Mask);
|
|
if (IsSigned && BitNo == SrcSize - 1)
|
|
return false;
|
|
|
|
ExpectedValue <<= BitNo;
|
|
|
|
bool IsReversedCC = false;
|
|
if (CmpValue != ExpectedValue) {
|
|
if (!IsReversable)
|
|
return false;
|
|
IsReversedCC = CmpValue == (ExpectedValue ^ Mask);
|
|
if (!IsReversedCC)
|
|
return false;
|
|
}
|
|
|
|
Register DefReg = Def->getOperand(0).getReg();
|
|
if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg))
|
|
return false;
|
|
|
|
for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator();
|
|
I != E; ++I) {
|
|
if (I->modifiesRegister(AMDGPU::SCC, &RI) ||
|
|
I->killsRegister(AMDGPU::SCC, &RI))
|
|
return false;
|
|
}
|
|
|
|
MachineOperand *SccDef = Def->findRegisterDefOperand(AMDGPU::SCC);
|
|
SccDef->setIsDead(false);
|
|
CmpInstr.eraseFromParent();
|
|
|
|
if (!MRI->use_nodbg_empty(DefReg)) {
|
|
assert(!IsReversedCC);
|
|
return true;
|
|
}
|
|
|
|
// Replace AND with unused result with a S_BITCMP.
|
|
MachineBasicBlock *MBB = Def->getParent();
|
|
|
|
unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32
|
|
: AMDGPU::S_BITCMP1_B32
|
|
: IsReversedCC ? AMDGPU::S_BITCMP0_B64
|
|
: AMDGPU::S_BITCMP1_B64;
|
|
|
|
BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc))
|
|
.add(*SrcOp)
|
|
.addImm(BitNo);
|
|
Def->eraseFromParent();
|
|
|
|
return true;
|
|
};
|
|
|
|
switch (CmpInstr.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AMDGPU::S_CMP_EQ_U32:
|
|
case AMDGPU::S_CMP_EQ_I32:
|
|
case AMDGPU::S_CMPK_EQ_U32:
|
|
case AMDGPU::S_CMPK_EQ_I32:
|
|
return optimizeCmpAnd(1, 32, true, false);
|
|
case AMDGPU::S_CMP_GE_U32:
|
|
case AMDGPU::S_CMPK_GE_U32:
|
|
return optimizeCmpAnd(1, 32, false, false);
|
|
case AMDGPU::S_CMP_GE_I32:
|
|
case AMDGPU::S_CMPK_GE_I32:
|
|
return optimizeCmpAnd(1, 32, false, true);
|
|
case AMDGPU::S_CMP_EQ_U64:
|
|
return optimizeCmpAnd(1, 64, true, false);
|
|
case AMDGPU::S_CMP_LG_U32:
|
|
case AMDGPU::S_CMP_LG_I32:
|
|
case AMDGPU::S_CMPK_LG_U32:
|
|
case AMDGPU::S_CMPK_LG_I32:
|
|
return optimizeCmpAnd(0, 32, true, false);
|
|
case AMDGPU::S_CMP_GT_U32:
|
|
case AMDGPU::S_CMPK_GT_U32:
|
|
return optimizeCmpAnd(0, 32, false, false);
|
|
case AMDGPU::S_CMP_GT_I32:
|
|
case AMDGPU::S_CMPK_GT_I32:
|
|
return optimizeCmpAnd(0, 32, false, true);
|
|
case AMDGPU::S_CMP_LG_U64:
|
|
return optimizeCmpAnd(0, 64, true, false);
|
|
}
|
|
|
|
return false;
|
|
}
|