llvm-project/lld/ELF/Target.h

262 lines
9.8 KiB
C++

//===- Target.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_TARGET_H
#define LLD_ELF_TARGET_H
#include "InputSection.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/MathExtras.h"
#include <array>
namespace lld {
std::string toString(elf::RelType Type);
namespace elf {
class Defined;
class InputFile;
class Symbol;
class TargetInfo {
public:
virtual uint32_t calcEFlags() const { return 0; }
virtual RelType getDynRel(RelType Type) const { return Type; }
virtual void writeGotPltHeader(uint8_t *Buf) const {}
virtual void writeGotHeader(uint8_t *Buf) const {}
virtual void writeGotPlt(uint8_t *Buf, const Symbol &S) const {};
virtual void writeIgotPlt(uint8_t *Buf, const Symbol &S) const;
virtual int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const;
virtual int getTlsGdRelaxSkip(RelType Type) const { return 1; }
// If lazy binding is supported, the first entry of the PLT has code
// to call the dynamic linker to resolve PLT entries the first time
// they are called. This function writes that code.
virtual void writePltHeader(uint8_t *Buf) const {}
virtual void writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {}
virtual void addPltHeaderSymbols(InputSection &IS) const {}
virtual void addPltSymbols(InputSection &IS, uint64_t Off) const {}
// Returns true if a relocation only uses the low bits of a value such that
// all those bits are in the same page. For example, if the relocation
// only uses the low 12 bits in a system with 4k pages. If this is true, the
// bits will always have the same value at runtime and we don't have to emit
// a dynamic relocation.
virtual bool usesOnlyLowPageBits(RelType Type) const;
// Decide whether a Thunk is needed for the relocation from File
// targeting S.
virtual bool needsThunk(RelExpr Expr, RelType RelocType,
const InputFile *File, uint64_t BranchAddr,
const Symbol &S) const;
// On systems with range extensions we place collections of Thunks at
// regular spacings that enable the majority of branches reach the Thunks.
// a value of 0 means range extension thunks are not supported.
virtual uint32_t getThunkSectionSpacing() const { return 0; }
// The function with a prologue starting at Loc was compiled with
// -fsplit-stack and it calls a function compiled without. Adjust the prologue
// to do the right thing. See https://gcc.gnu.org/wiki/SplitStacks.
// The symbols st_other flags are needed on PowerPC64 for determining the
// offset to the split-stack prologue.
virtual bool adjustPrologueForCrossSplitStack(uint8_t *Loc, uint8_t *End,
uint8_t StOther) const;
// Return true if we can reach Dst from Src with Relocation RelocType
virtual bool inBranchRange(RelType Type, uint64_t Src,
uint64_t Dst) const;
virtual RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const = 0;
virtual void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const = 0;
virtual ~TargetInfo();
unsigned DefaultCommonPageSize = 4096;
unsigned DefaultMaxPageSize = 4096;
uint64_t getImageBase() const;
// True if _GLOBAL_OFFSET_TABLE_ is relative to .got.plt, false if .got.
bool GotBaseSymInGotPlt = true;
RelType CopyRel;
RelType GotRel;
RelType NoneRel;
RelType PltRel;
RelType RelativeRel;
RelType IRelativeRel;
RelType SymbolicRel;
RelType TlsDescRel;
RelType TlsGotRel;
RelType TlsModuleIndexRel;
RelType TlsOffsetRel;
unsigned PltEntrySize;
unsigned PltHeaderSize;
// At least on x86_64 positions 1 and 2 are used by the first plt entry
// to support lazy loading.
unsigned GotPltHeaderEntriesNum = 3;
// On PPC ELF V2 abi, the first entry in the .got is the .TOC.
unsigned GotHeaderEntriesNum = 0;
bool NeedsThunks = false;
// A 4-byte field corresponding to one or more trap instructions, used to pad
// executable OutputSections.
std::array<uint8_t, 4> TrapInstr;
// If a target needs to rewrite calls to __morestack to instead call
// __morestack_non_split when a split-stack enabled caller calls a
// non-split-stack callee this will return true. Otherwise returns false.
bool NeedsMoreStackNonSplit = true;
virtual RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data,
RelExpr Expr) const;
virtual void relaxGot(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
virtual void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const;
protected:
// On FreeBSD x86_64 the first page cannot be mmaped.
// On Linux that is controled by vm.mmap_min_addr. At least on some x86_64
// installs that is 65536, so the first 15 pages cannot be used.
// Given that, the smallest value that can be used in here is 0x10000.
uint64_t DefaultImageBase = 0x10000;
};
TargetInfo *getAArch64TargetInfo();
TargetInfo *getAMDGPUTargetInfo();
TargetInfo *getARMTargetInfo();
TargetInfo *getAVRTargetInfo();
TargetInfo *getHexagonTargetInfo();
TargetInfo *getMSP430TargetInfo();
TargetInfo *getPPC64TargetInfo();
TargetInfo *getPPCTargetInfo();
TargetInfo *getRISCVTargetInfo();
TargetInfo *getSPARCV9TargetInfo();
TargetInfo *getX86TargetInfo();
TargetInfo *getX86_64TargetInfo();
template <class ELFT> TargetInfo *getMipsTargetInfo();
struct ErrorPlace {
InputSectionBase *IS;
std::string Loc;
};
// Returns input section and corresponding source string for the given location.
ErrorPlace getErrorPlace(const uint8_t *Loc);
static inline std::string getErrorLocation(const uint8_t *Loc) {
return getErrorPlace(Loc).Loc;
}
void writePPC32GlinkSection(uint8_t *Buf, size_t NumEntries);
bool tryRelaxPPC64TocIndirection(RelType Type, const Relocation &Rel,
uint8_t *BufLoc);
unsigned getPPCDFormOp(unsigned SecondaryOp);
// In the PowerPC64 Elf V2 abi a function can have 2 entry points. The first
// is a global entry point (GEP) which typically is used to initialize the TOC
// pointer in general purpose register 2. The second is a local entry
// point (LEP) which bypasses the TOC pointer initialization code. The
// offset between GEP and LEP is encoded in a function's st_other flags.
// This function will return the offset (in bytes) from the global entry-point
// to the local entry-point.
unsigned getPPC64GlobalEntryToLocalEntryOffset(uint8_t StOther);
// Returns true if a relocation is a small code model relocation that accesses
// the .toc section.
bool isPPC64SmallCodeModelTocReloc(RelType Type);
uint64_t getPPC64TocBase();
uint64_t getAArch64Page(uint64_t Expr);
extern const TargetInfo *Target;
TargetInfo *getTarget();
template <class ELFT> bool isMipsPIC(const Defined *Sym);
static inline void reportRangeError(uint8_t *Loc, RelType Type, const Twine &V,
int64_t Min, uint64_t Max) {
ErrorPlace ErrPlace = getErrorPlace(Loc);
StringRef Hint;
if (ErrPlace.IS && ErrPlace.IS->Name.startswith(".debug"))
Hint = "; consider recompiling with -fdebug-types-section to reduce size "
"of debug sections";
errorOrWarn(ErrPlace.Loc + "relocation " + lld::toString(Type) +
" out of range: " + V.str() + " is not in [" + Twine(Min).str() +
", " + Twine(Max).str() + "]" + Hint);
}
// Make sure that V can be represented as an N bit signed integer.
inline void checkInt(uint8_t *Loc, int64_t V, int N, RelType Type) {
if (V != llvm::SignExtend64(V, N))
reportRangeError(Loc, Type, Twine(V), llvm::minIntN(N), llvm::maxIntN(N));
}
// Make sure that V can be represented as an N bit unsigned integer.
inline void checkUInt(uint8_t *Loc, uint64_t V, int N, RelType Type) {
if ((V >> N) != 0)
reportRangeError(Loc, Type, Twine(V), 0, llvm::maxUIntN(N));
}
// Make sure that V can be represented as an N bit signed or unsigned integer.
inline void checkIntUInt(uint8_t *Loc, uint64_t V, int N, RelType Type) {
// For the error message we should cast V to a signed integer so that error
// messages show a small negative value rather than an extremely large one
if (V != (uint64_t)llvm::SignExtend64(V, N) && (V >> N) != 0)
reportRangeError(Loc, Type, Twine((int64_t)V), llvm::minIntN(N),
llvm::maxIntN(N));
}
inline void checkAlignment(uint8_t *Loc, uint64_t V, int N, RelType Type) {
if ((V & (N - 1)) != 0)
error(getErrorLocation(Loc) + "improper alignment for relocation " +
lld::toString(Type) + ": 0x" + llvm::utohexstr(V) +
" is not aligned to " + Twine(N) + " bytes");
}
// Endianness-aware read/write.
inline uint16_t read16(const void *P) {
return llvm::support::endian::read16(P, Config->Endianness);
}
inline uint32_t read32(const void *P) {
return llvm::support::endian::read32(P, Config->Endianness);
}
inline uint64_t read64(const void *P) {
return llvm::support::endian::read64(P, Config->Endianness);
}
inline void write16(void *P, uint16_t V) {
llvm::support::endian::write16(P, V, Config->Endianness);
}
inline void write32(void *P, uint32_t V) {
llvm::support::endian::write32(P, V, Config->Endianness);
}
inline void write64(void *P, uint64_t V) {
llvm::support::endian::write64(P, V, Config->Endianness);
}
} // namespace elf
} // namespace lld
#endif