forked from OSchip/llvm-project
365 lines
12 KiB
C++
365 lines
12 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DominanceFrontier.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/DominatorInternals.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Always verify dominfo if expensive checking is enabled.
|
|
#ifdef XDEBUG
|
|
static bool VerifyDomInfo = true;
|
|
#else
|
|
static bool VerifyDomInfo = false;
|
|
#endif
|
|
static cl::opt<bool,true>
|
|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
|
|
cl::desc("Verify dominator info (time consuming)"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Provide public access to DominatorTree information. Implementation details
|
|
// can be found in DominatorCalculation.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
|
|
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
|
|
|
|
char DominatorTree::ID = 0;
|
|
INITIALIZE_PASS(DominatorTree, "domtree",
|
|
"Dominator Tree Construction", true, true)
|
|
|
|
bool DominatorTree::runOnFunction(Function &F) {
|
|
DT->recalculate(F);
|
|
return false;
|
|
}
|
|
|
|
void DominatorTree::verifyAnalysis() const {
|
|
if (!VerifyDomInfo) return;
|
|
|
|
Function &F = *getRoot()->getParent();
|
|
|
|
DominatorTree OtherDT;
|
|
OtherDT.getBase().recalculate(F);
|
|
assert(!compare(OtherDT) && "Invalid DominatorTree info!");
|
|
}
|
|
|
|
void DominatorTree::print(raw_ostream &OS, const Module *) const {
|
|
DT->print(OS);
|
|
}
|
|
|
|
// dominates - Return true if A dominates a use in B. This performs the
|
|
// special checks necessary if A and B are in the same basic block.
|
|
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
|
|
const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
|
|
|
// If A is an invoke instruction, its value is only available in this normal
|
|
// successor block.
|
|
if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
|
|
BBA = II->getNormalDest();
|
|
|
|
if (BBA != BBB) return dominates(BBA, BBB);
|
|
|
|
// It is not possible to determine dominance between two PHI nodes
|
|
// based on their ordering.
|
|
if (isa<PHINode>(A) && isa<PHINode>(B))
|
|
return false;
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
BasicBlock::const_iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I == A;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char DominanceFrontier::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
|
|
"Dominance Frontier Construction", true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
|
|
"Dominance Frontier Construction", true, true)
|
|
|
|
void DominanceFrontier::verifyAnalysis() const {
|
|
if (!VerifyDomInfo) return;
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
|
|
DominanceFrontier OtherDF;
|
|
const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
|
|
OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
|
|
assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
|
|
}
|
|
|
|
// NewBB is split and now it has one successor. Update dominance frontier to
|
|
// reflect this change.
|
|
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
|
|
assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
|
|
"NewBB should have a single successor!");
|
|
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
|
|
|
|
// NewBBSucc inherits original NewBB frontier.
|
|
DominanceFrontier::iterator NewBBI = find(NewBB);
|
|
if (NewBBI != end())
|
|
addBasicBlock(NewBBSucc, NewBBI->second);
|
|
|
|
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
|
|
// DF(NewBBSucc) without the stuff that the new block does not dominate
|
|
// a predecessor of.
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
DomTreeNode *NewBBNode = DT.getNode(NewBB);
|
|
DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
|
|
if (DT.dominates(NewBBNode, NewBBSuccNode)) {
|
|
DominanceFrontier::iterator DFI = find(NewBBSucc);
|
|
if (DFI != end()) {
|
|
DominanceFrontier::DomSetType Set = DFI->second;
|
|
// Filter out stuff in Set that we do not dominate a predecessor of.
|
|
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
|
|
E = Set.end(); SetI != E;) {
|
|
bool DominatesPred = false;
|
|
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
|
|
PI != E; ++PI)
|
|
if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
|
|
DominatesPred = true;
|
|
break;
|
|
}
|
|
if (!DominatesPred)
|
|
Set.erase(SetI++);
|
|
else
|
|
++SetI;
|
|
}
|
|
|
|
if (NewBBI != end()) {
|
|
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
|
|
E = Set.end(); SetI != E; ++SetI) {
|
|
BasicBlock *SB = *SetI;
|
|
addToFrontier(NewBBI, SB);
|
|
}
|
|
} else
|
|
addBasicBlock(NewBB, Set);
|
|
}
|
|
|
|
} else {
|
|
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
|
|
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
|
|
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
|
|
DominanceFrontier::DomSetType NewDFSet;
|
|
NewDFSet.insert(NewBBSucc);
|
|
addBasicBlock(NewBB, NewDFSet);
|
|
}
|
|
|
|
// Now update dominance frontiers which either used to contain NewBBSucc
|
|
// or which now need to include NewBB.
|
|
|
|
// Collect the set of blocks which dominate a predecessor of NewBB or
|
|
// NewSuccBB and which don't dominate both. This is an initial
|
|
// approximation of the blocks whose dominance frontiers will need updates.
|
|
SmallVector<DomTreeNode *, 16> AllPredDoms;
|
|
|
|
// Compute the block which dominates both NewBBSucc and NewBB. This is
|
|
// the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
|
|
// The code below which climbs dominator trees will stop at this point,
|
|
// because from this point up, dominance frontiers are unaffected.
|
|
DomTreeNode *DominatesBoth = 0;
|
|
if (NewBBSuccNode) {
|
|
DominatesBoth = NewBBSuccNode->getIDom();
|
|
if (DominatesBoth == NewBBNode)
|
|
DominatesBoth = NewBBNode->getIDom();
|
|
}
|
|
|
|
// Collect the set of all blocks which dominate a predecessor of NewBB.
|
|
SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
|
|
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
|
|
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
|
|
if (DTN == DominatesBoth)
|
|
break;
|
|
if (!NewBBPredDoms.insert(DTN))
|
|
break;
|
|
AllPredDoms.push_back(DTN);
|
|
}
|
|
|
|
// Collect the set of all blocks which dominate a predecessor of NewSuccBB.
|
|
SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
|
|
for (pred_iterator PI = pred_begin(NewBBSucc),
|
|
E = pred_end(NewBBSucc); PI != E; ++PI)
|
|
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
|
|
if (DTN == DominatesBoth)
|
|
break;
|
|
if (!NewBBSuccPredDoms.insert(DTN))
|
|
break;
|
|
if (!NewBBPredDoms.count(DTN))
|
|
AllPredDoms.push_back(DTN);
|
|
}
|
|
|
|
// Visit all relevant dominance frontiers and make any needed updates.
|
|
for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
|
|
E = AllPredDoms.end(); I != E; ++I) {
|
|
DomTreeNode *DTN = *I;
|
|
iterator DFI = find((*I)->getBlock());
|
|
|
|
// Only consider nodes that have NewBBSucc in their dominator frontier.
|
|
if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
|
|
|
|
// If the block dominates a predecessor of NewBB but does not properly
|
|
// dominate NewBB itself, add NewBB to its dominance frontier.
|
|
if (NewBBPredDoms.count(DTN) &&
|
|
!DT.properlyDominates(DTN, NewBBNode))
|
|
addToFrontier(DFI, NewBB);
|
|
|
|
// If the block does not dominate a predecessor of NewBBSucc or
|
|
// properly dominates NewBBSucc itself, remove NewBBSucc from its
|
|
// dominance frontier.
|
|
if (!NewBBSuccPredDoms.count(DTN) ||
|
|
DT.properlyDominates(DTN, NewBBSuccNode))
|
|
removeFromFrontier(DFI, NewBBSucc);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class DFCalculateWorkObject {
|
|
public:
|
|
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
|
|
const DomTreeNode *N,
|
|
const DomTreeNode *PN)
|
|
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
|
|
BasicBlock *currentBB;
|
|
BasicBlock *parentBB;
|
|
const DomTreeNode *Node;
|
|
const DomTreeNode *parentNode;
|
|
};
|
|
}
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
DominanceFrontier::calculate(const DominatorTree &DT,
|
|
const DomTreeNode *Node) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType *Result = NULL;
|
|
|
|
std::vector<DFCalculateWorkObject> workList;
|
|
SmallPtrSet<BasicBlock *, 32> visited;
|
|
|
|
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
|
|
do {
|
|
DFCalculateWorkObject *currentW = &workList.back();
|
|
assert (currentW && "Missing work object.");
|
|
|
|
BasicBlock *currentBB = currentW->currentBB;
|
|
BasicBlock *parentBB = currentW->parentBB;
|
|
const DomTreeNode *currentNode = currentW->Node;
|
|
const DomTreeNode *parentNode = currentW->parentNode;
|
|
assert (currentBB && "Invalid work object. Missing current Basic Block");
|
|
assert (currentNode && "Invalid work object. Missing current Node");
|
|
DomSetType &S = Frontiers[currentBB];
|
|
|
|
// Visit each block only once.
|
|
if (visited.count(currentBB) == 0) {
|
|
visited.insert(currentBB);
|
|
|
|
// Loop over CFG successors to calculate DFlocal[currentNode]
|
|
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this successor?
|
|
if (DT[*SI]->getIDom() != currentNode)
|
|
S.insert(*SI);
|
|
}
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
bool visitChild = false;
|
|
for (DomTreeNode::const_iterator NI = currentNode->begin(),
|
|
NE = currentNode->end(); NI != NE; ++NI) {
|
|
DomTreeNode *IDominee = *NI;
|
|
BasicBlock *childBB = IDominee->getBlock();
|
|
if (visited.count(childBB) == 0) {
|
|
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
|
|
IDominee, currentNode));
|
|
visitChild = true;
|
|
}
|
|
}
|
|
|
|
// If all children are visited or there is any child then pop this block
|
|
// from the workList.
|
|
if (!visitChild) {
|
|
|
|
if (!parentBB) {
|
|
Result = &S;
|
|
break;
|
|
}
|
|
|
|
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
|
|
DomSetType &parentSet = Frontiers[parentBB];
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
|
|
parentSet.insert(*CDFI);
|
|
}
|
|
workList.pop_back();
|
|
}
|
|
|
|
} while (!workList.empty());
|
|
|
|
return *Result;
|
|
}
|
|
|
|
void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
OS << " DomFrontier for BB ";
|
|
if (I->first)
|
|
WriteAsOperand(OS, I->first, false);
|
|
else
|
|
OS << " <<exit node>>";
|
|
OS << " is:\t";
|
|
|
|
const std::set<BasicBlock*> &BBs = I->second;
|
|
|
|
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
|
I != E; ++I) {
|
|
OS << ' ';
|
|
if (*I)
|
|
WriteAsOperand(OS, *I, false);
|
|
else
|
|
OS << "<<exit node>>";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
void DominanceFrontierBase::dump() const {
|
|
print(dbgs());
|
|
}
|
|
|