forked from OSchip/llvm-project
486 lines
14 KiB
C++
486 lines
14 KiB
C++
//===--- HexagonBlockRanges.cpp -------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hbr"
|
|
|
|
#include "HexagonBlockRanges.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
|
|
// If A contains start(), or "this" contains A.start(), then overlap.
|
|
IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
|
|
if (AS == S)
|
|
return true;
|
|
bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE.
|
|
bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E.
|
|
if ((AS < S && SbAE) || (S < AS && ASbE))
|
|
return true;
|
|
// Otherwise no overlap.
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
|
|
if (start() <= A.start()) {
|
|
// Treat "None" in the range end as equal to the range start.
|
|
IndexType E = (end() != IndexType::None) ? end() : start();
|
|
IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
|
|
if (AE <= E)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
|
|
// Allow merging adjacent ranges.
|
|
assert(end() == A.start() || overlaps(A));
|
|
IndexType AS = A.start(), AE = A.end();
|
|
if (AS < start() || start() == IndexType::None)
|
|
setStart(AS);
|
|
if (end() < AE || end() == IndexType::None) {
|
|
setEnd(AE);
|
|
TiedEnd = A.TiedEnd;
|
|
} else {
|
|
if (end() == AE)
|
|
TiedEnd |= A.TiedEnd;
|
|
}
|
|
if (A.Fixed)
|
|
Fixed = true;
|
|
}
|
|
|
|
|
|
void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
|
|
for (auto &R : RL)
|
|
if (std::find(begin(), end(), R) == end())
|
|
push_back(R);
|
|
}
|
|
|
|
|
|
// Merge all overlapping ranges in the list, so that all that remains
|
|
// is a list of disjoint ranges.
|
|
void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
|
|
if (empty())
|
|
return;
|
|
|
|
std::sort(begin(), end());
|
|
iterator Iter = begin();
|
|
|
|
while (Iter != end()-1) {
|
|
iterator Next = std::next(Iter);
|
|
// If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
|
|
// This allows merging dead ranges, but is not valid for live ranges.
|
|
bool Merge = MergeAdjacent && (Iter->end() == Next->start());
|
|
if (Merge || Iter->overlaps(*Next)) {
|
|
Iter->merge(*Next);
|
|
erase(Next);
|
|
continue;
|
|
}
|
|
++Iter;
|
|
}
|
|
}
|
|
|
|
|
|
// Compute a range A-B and add it to the list.
|
|
void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
|
|
const IndexRange &B) {
|
|
// Exclusion of non-overlapping ranges makes some checks simpler
|
|
// later in this function.
|
|
if (!A.overlaps(B)) {
|
|
// A - B = A.
|
|
add(A);
|
|
return;
|
|
}
|
|
|
|
IndexType AS = A.start(), AE = A.end();
|
|
IndexType BS = B.start(), BE = B.end();
|
|
|
|
// If AE is None, then A is included in B, since A and B overlap.
|
|
// The result of subtraction if empty, so just return.
|
|
if (AE == IndexType::None)
|
|
return;
|
|
|
|
if (AS < BS) {
|
|
// A starts before B.
|
|
// AE cannot be None since A and B overlap.
|
|
assert(AE != IndexType::None);
|
|
// Add the part of A that extends on the "less" side of B.
|
|
add(AS, BS, A.Fixed, false);
|
|
}
|
|
|
|
if (BE < AE) {
|
|
// BE cannot be Exit here.
|
|
if (BE == IndexType::None)
|
|
add(BS, AE, A.Fixed, false);
|
|
else
|
|
add(BE, AE, A.Fixed, false);
|
|
}
|
|
}
|
|
|
|
|
|
// Subtract a given range from each element in the list.
|
|
void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
|
|
// Cannot assume that the list is unionized (i.e. contains only non-
|
|
// overlapping ranges.
|
|
RangeList T;
|
|
for (iterator Next, I = begin(); I != end(); I = Next) {
|
|
IndexRange &Rg = *I;
|
|
if (Rg.overlaps(Range)) {
|
|
T.addsub(Rg, Range);
|
|
Next = this->erase(I);
|
|
} else {
|
|
Next = std::next(I);
|
|
}
|
|
}
|
|
include(T);
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
|
|
: Block(B) {
|
|
IndexType Idx = IndexType::First;
|
|
First = Idx;
|
|
for (auto &In : B) {
|
|
if (In.isDebugValue())
|
|
continue;
|
|
assert(getIndex(&In) == IndexType::None && "Instruction already in map");
|
|
Map.insert(std::make_pair(Idx, &In));
|
|
++Idx;
|
|
}
|
|
Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
|
|
}
|
|
|
|
|
|
MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
|
|
auto F = Map.find(Idx);
|
|
return (F != Map.end()) ? F->second : 0;
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
|
|
MachineInstr *MI) const {
|
|
for (auto &I : Map)
|
|
if (I.second == MI)
|
|
return I.first;
|
|
return IndexType::None;
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
|
|
IndexType Idx) const {
|
|
assert (Idx != IndexType::None);
|
|
if (Idx == IndexType::Entry)
|
|
return IndexType::None;
|
|
if (Idx == IndexType::Exit)
|
|
return Last;
|
|
if (Idx == First)
|
|
return IndexType::Entry;
|
|
return unsigned(Idx)-1;
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
|
|
IndexType Idx) const {
|
|
assert (Idx != IndexType::None);
|
|
if (Idx == IndexType::Entry)
|
|
return IndexType::First;
|
|
if (Idx == IndexType::Exit || Idx == Last)
|
|
return IndexType::None;
|
|
return unsigned(Idx)+1;
|
|
}
|
|
|
|
|
|
void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
|
|
MachineInstr *NewMI) {
|
|
for (auto &I : Map) {
|
|
if (I.second != OldMI)
|
|
continue;
|
|
if (NewMI != nullptr)
|
|
I.second = NewMI;
|
|
else
|
|
Map.erase(I.first);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
|
|
: MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
|
|
TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
|
|
Reserved(TRI.getReservedRegs(mf)) {
|
|
// Consider all non-allocatable registers as reserved.
|
|
for (auto I = TRI.regclass_begin(), E = TRI.regclass_end(); I != E; ++I) {
|
|
auto *RC = *I;
|
|
if (RC->isAllocatable())
|
|
continue;
|
|
for (unsigned R : *RC)
|
|
Reserved[R] = true;
|
|
}
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
|
|
const MachineBasicBlock &B) {
|
|
RegisterSet LiveIns;
|
|
for (auto I : B.liveins())
|
|
if (!Reserved[I.PhysReg])
|
|
LiveIns.insert({I.PhysReg, 0});
|
|
return LiveIns;
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
|
|
RegisterRef R, const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI) {
|
|
RegisterSet SRs;
|
|
|
|
if (R.Sub != 0) {
|
|
SRs.insert(R);
|
|
return SRs;
|
|
}
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) {
|
|
MCSubRegIterator I(R.Reg, &TRI);
|
|
if (!I.isValid())
|
|
SRs.insert({R.Reg, 0});
|
|
for (; I.isValid(); ++I)
|
|
SRs.insert({*I, 0});
|
|
} else {
|
|
assert(TargetRegisterInfo::isVirtualRegister(R.Reg));
|
|
auto &RC = *MRI.getRegClass(R.Reg);
|
|
unsigned PReg = *RC.begin();
|
|
MCSubRegIndexIterator I(PReg, &TRI);
|
|
if (!I.isValid())
|
|
SRs.insert({R.Reg, 0});
|
|
for (; I.isValid(); ++I)
|
|
SRs.insert({R.Reg, I.getSubRegIndex()});
|
|
}
|
|
return SRs;
|
|
}
|
|
|
|
|
|
void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
|
|
RegToRangeMap &LiveMap) {
|
|
std::map<RegisterRef,IndexType> LastDef, LastUse;
|
|
RegisterSet LiveOnEntry;
|
|
MachineBasicBlock &B = IndexMap.getBlock();
|
|
MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
|
|
|
|
for (auto R : getLiveIns(B))
|
|
for (auto S : expandToSubRegs(R, MRI, TRI))
|
|
LiveOnEntry.insert(S);
|
|
|
|
for (auto R : LiveOnEntry)
|
|
LastDef[R] = IndexType::Entry;
|
|
|
|
auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
|
|
auto LD = LastDef[R], LU = LastUse[R];
|
|
if (LD == IndexType::None)
|
|
LD = IndexType::Entry;
|
|
if (LU == IndexType::None)
|
|
LU = IndexType::Exit;
|
|
LiveMap[R].add(LD, LU, false, false);
|
|
LastUse[R] = LastDef[R] = IndexType::None;
|
|
};
|
|
|
|
for (auto &In : B) {
|
|
if (In.isDebugValue())
|
|
continue;
|
|
IndexType Index = IndexMap.getIndex(&In);
|
|
// Process uses first.
|
|
for (auto &Op : In.operands()) {
|
|
if (!Op.isReg() || !Op.isUse() || Op.isUndef())
|
|
continue;
|
|
RegisterRef R = { Op.getReg(), Op.getSubReg() };
|
|
if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
|
|
continue;
|
|
bool IsKill = Op.isKill();
|
|
for (auto S : expandToSubRegs(R, MRI, TRI)) {
|
|
LastUse[S] = Index;
|
|
if (IsKill)
|
|
closeRange(S);
|
|
}
|
|
}
|
|
// Process defs.
|
|
for (auto &Op : In.operands()) {
|
|
if (!Op.isReg() || !Op.isDef() || Op.isUndef())
|
|
continue;
|
|
RegisterRef R = { Op.getReg(), Op.getSubReg() };
|
|
if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
|
|
continue;
|
|
for (auto S : expandToSubRegs(R, MRI, TRI)) {
|
|
if (LastDef[S] != IndexType::None)
|
|
closeRange(S);
|
|
LastDef[S] = Index;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect live-on-exit.
|
|
RegisterSet LiveOnExit;
|
|
for (auto *SB : B.successors())
|
|
for (auto R : getLiveIns(*SB))
|
|
for (auto S : expandToSubRegs(R, MRI, TRI))
|
|
LiveOnExit.insert(S);
|
|
|
|
for (auto R : LiveOnExit)
|
|
LastUse[R] = IndexType::Exit;
|
|
|
|
// Process remaining registers.
|
|
RegisterSet Left;
|
|
for (auto &I : LastUse)
|
|
if (I.second != IndexType::None)
|
|
Left.insert(I.first);
|
|
for (auto &I : LastDef)
|
|
if (I.second != IndexType::None)
|
|
Left.insert(I.first);
|
|
for (auto R : Left)
|
|
closeRange(R);
|
|
|
|
// Finalize the live ranges.
|
|
for (auto &P : LiveMap)
|
|
P.second.unionize();
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
|
|
InstrIndexMap &IndexMap) {
|
|
RegToRangeMap LiveMap;
|
|
DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": index map\n" << IndexMap << '\n');
|
|
computeInitialLiveRanges(IndexMap, LiveMap);
|
|
DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": live map\n"
|
|
<< PrintRangeMap(LiveMap, TRI) << '\n');
|
|
return LiveMap;
|
|
}
|
|
|
|
|
|
HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
|
|
InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
|
|
RegToRangeMap DeadMap;
|
|
|
|
auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
|
|
auto F = LiveMap.find(R);
|
|
if (F == LiveMap.end() || F->second.empty()) {
|
|
DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
|
|
return;
|
|
}
|
|
|
|
RangeList &RL = F->second;
|
|
RangeList::iterator A = RL.begin(), Z = RL.end()-1;
|
|
|
|
// Try to create the initial range.
|
|
if (A->start() != IndexType::Entry) {
|
|
IndexType DE = IndexMap.getPrevIndex(A->start());
|
|
if (DE != IndexType::Entry)
|
|
DeadMap[R].add(IndexType::Entry, DE, false, false);
|
|
}
|
|
|
|
while (A != Z) {
|
|
// Creating a dead range that follows A. Pay attention to empty
|
|
// ranges (i.e. those ending with "None").
|
|
IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
|
|
IndexType DS = IndexMap.getNextIndex(AE);
|
|
++A;
|
|
IndexType DE = IndexMap.getPrevIndex(A->start());
|
|
if (DS < DE)
|
|
DeadMap[R].add(DS, DE, false, false);
|
|
}
|
|
|
|
// Try to create the final range.
|
|
if (Z->end() != IndexType::Exit) {
|
|
IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
|
|
IndexType DS = IndexMap.getNextIndex(ZE);
|
|
if (DS < IndexType::Exit)
|
|
DeadMap[R].add(DS, IndexType::Exit, false, false);
|
|
}
|
|
};
|
|
|
|
MachineFunction &MF = *IndexMap.getBlock().getParent();
|
|
auto &MRI = MF.getRegInfo();
|
|
unsigned NumRegs = TRI.getNumRegs();
|
|
BitVector Visited(NumRegs);
|
|
for (unsigned R = 1; R < NumRegs; ++R) {
|
|
for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
|
|
if (Reserved[S.Reg] || Visited[S.Reg])
|
|
continue;
|
|
addDeadRanges(S);
|
|
Visited[S.Reg] = true;
|
|
}
|
|
}
|
|
for (auto &P : LiveMap)
|
|
if (TargetRegisterInfo::isVirtualRegister(P.first.Reg))
|
|
addDeadRanges(P.first);
|
|
|
|
DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": dead map\n"
|
|
<< PrintRangeMap(DeadMap, TRI) << '\n');
|
|
return DeadMap;
|
|
}
|
|
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS, HexagonBlockRanges::IndexType Idx) {
|
|
if (Idx == HexagonBlockRanges::IndexType::None)
|
|
return OS << '-';
|
|
if (Idx == HexagonBlockRanges::IndexType::Entry)
|
|
return OS << 'n';
|
|
if (Idx == HexagonBlockRanges::IndexType::Exit)
|
|
return OS << 'x';
|
|
return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
|
|
}
|
|
|
|
// A mapping to translate between instructions and their indices.
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const HexagonBlockRanges::IndexRange &IR) {
|
|
OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
|
|
if (IR.Fixed)
|
|
OS << '!';
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const HexagonBlockRanges::RangeList &RL) {
|
|
for (auto &R : RL)
|
|
OS << R << " ";
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const HexagonBlockRanges::InstrIndexMap &M) {
|
|
for (auto &In : M.Block) {
|
|
HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
|
|
OS << Idx << (Idx == M.Last ? ". " : " ") << In;
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<< (raw_ostream &OS,
|
|
const HexagonBlockRanges::PrintRangeMap &P) {
|
|
for (auto &I : P.Map) {
|
|
const HexagonBlockRanges::RangeList &RL = I.second;
|
|
OS << PrintReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
|
|
}
|
|
return OS;
|
|
}
|