llvm-project/clang/lib/CodeGen/CGBuiltin.cpp

19301 lines
793 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "PatternInit.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/OSLog.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/IR/IntrinsicsVE.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/MatrixBuilder.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/X86TargetParser.h"
#include <sstream>
using namespace clang;
using namespace CodeGen;
using namespace llvm;
static
int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
return std::min(High, std::max(Low, Value));
}
static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
Align AlignmentInBytes) {
ConstantInt *Byte;
switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
// Nothing to initialize.
return;
case LangOptions::TrivialAutoVarInitKind::Zero:
Byte = CGF.Builder.getInt8(0x00);
break;
case LangOptions::TrivialAutoVarInitKind::Pattern: {
llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
Byte = llvm::dyn_cast<llvm::ConstantInt>(
initializationPatternFor(CGF.CGM, Int8));
break;
}
}
if (CGF.CGM.stopAutoInit())
return;
auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
I->addAnnotationMetadata("auto-init");
}
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
unsigned BuiltinID) {
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
// Get the name, skip over the __builtin_ prefix (if necessary).
StringRef Name;
GlobalDecl D(FD);
// TODO: This list should be expanded or refactored after all GCC-compatible
// std libcall builtins are implemented.
static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
{Builtin::BI__builtin_printf, "__printfieee128"},
{Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
{Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
{Builtin::BI__builtin_sprintf, "__sprintfieee128"},
{Builtin::BI__builtin_snprintf, "__snprintfieee128"},
{Builtin::BI__builtin_fprintf, "__fprintfieee128"},
{Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
};
// If the builtin has been declared explicitly with an assembler label,
// use the mangled name. This differs from the plain label on platforms
// that prefix labels.
if (FD->hasAttr<AsmLabelAttr>())
Name = getMangledName(D);
else {
// TODO: This mutation should also be applied to other targets other than
// PPC, after backend supports IEEE 128-bit style libcalls.
if (getTriple().isPPC64() &&
&getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
F128Builtins.find(BuiltinID) != F128Builtins.end())
Name = F128Builtins[BuiltinID];
else
Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
}
llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
}
/// Emit the conversions required to turn the given value into an
/// integer of the given size.
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::IntegerType *IntType) {
V = CGF.EmitToMemory(V, T);
if (V->getType()->isPointerTy())
return CGF.Builder.CreatePtrToInt(V, IntType);
assert(V->getType() == IntType);
return V;
}
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::Type *ResultType) {
V = CGF.EmitFromMemory(V, T);
if (ResultType->isPointerTy())
return CGF.Builder.CreateIntToPtr(V, ResultType);
assert(V->getType() == ResultType);
return V;
}
/// Utility to insert an atomic instruction based on Intrinsic::ID
/// and the expression node.
static Value *MakeBinaryAtomicValue(
CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], Ordering);
return EmitFromInt(CGF, Result, T, ValueType);
}
static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
Value *Val = CGF.EmitScalarExpr(E->getArg(0));
Value *Address = CGF.EmitScalarExpr(E->getArg(1));
// Convert the type of the pointer to a pointer to the stored type.
Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
Value *BC = CGF.Builder.CreateBitCast(
Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
LV.setNontemporal(true);
CGF.EmitStoreOfScalar(Val, LV, false);
return nullptr;
}
static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
Value *Address = CGF.EmitScalarExpr(E->getArg(0));
LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
LV.setNontemporal(true);
return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
}
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
}
/// Utility to insert an atomic instruction based Intrinsic::ID and
/// the expression node, where the return value is the result of the
/// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E,
Instruction::BinaryOps Op,
bool Invert = false) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
if (Invert)
Result =
CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
llvm::ConstantInt::getAllOnesValue(IntType));
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// Utility to insert an atomic cmpxchg instruction.
///
/// @param CGF The current codegen function.
/// @param E Builtin call expression to convert to cmpxchg.
/// arg0 - address to operate on
/// arg1 - value to compare with
/// arg2 - new value
/// @param ReturnBool Specifies whether to return success flag of
/// cmpxchg result or the old value.
///
/// @returns result of cmpxchg, according to ReturnBool
///
/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
/// invoke the function EmitAtomicCmpXchgForMSIntrin.
static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
bool ReturnBool) {
QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType = llvm::IntegerType::get(
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
llvm::AtomicOrdering::SequentiallyConsistent);
if (ReturnBool)
// Extract boolean success flag and zext it to int.
return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
CGF.ConvertType(E->getType()));
else
// Extract old value and emit it using the same type as compare value.
return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
ValueType);
}
/// This function should be invoked to emit atomic cmpxchg for Microsoft's
/// _InterlockedCompareExchange* intrinsics which have the following signature:
/// T _InterlockedCompareExchange(T volatile *Destination,
/// T Exchange,
/// T Comparand);
///
/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
/// cmpxchg *Destination, Comparand, Exchange.
/// So we need to swap Comparand and Exchange when invoking
/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
/// function MakeAtomicCmpXchgValue since it expects the arguments to be
/// already swapped.
static
Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(
E->getType(), E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
E->getArg(1)->getType()));
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
E->getArg(2)->getType()));
auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
// For Release ordering, the failure ordering should be Monotonic.
auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
AtomicOrdering::Monotonic :
SuccessOrdering;
// The atomic instruction is marked volatile for consistency with MSVC. This
// blocks the few atomics optimizations that LLVM has. If we want to optimize
// _Interlocked* operations in the future, we will have to remove the volatile
// marker.
auto *Result = CGF.Builder.CreateAtomicCmpXchg(
Destination, Comparand, Exchange,
SuccessOrdering, FailureOrdering);
Result->setVolatile(true);
return CGF.Builder.CreateExtractValue(Result, 0);
}
// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
// prototyped like this:
//
// unsigned char _InterlockedCompareExchange128...(
// __int64 volatile * _Destination,
// __int64 _ExchangeHigh,
// __int64 _ExchangeLow,
// __int64 * _ComparandResult);
static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
const CallExpr *E,
AtomicOrdering SuccessOrdering) {
assert(E->getNumArgs() == 4);
llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
assert(Destination->getType()->isPointerTy());
assert(!ExchangeHigh->getType()->isPointerTy());
assert(!ExchangeLow->getType()->isPointerTy());
assert(ComparandPtr->getType()->isPointerTy());
// For Release ordering, the failure ordering should be Monotonic.
auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
? AtomicOrdering::Monotonic
: SuccessOrdering;
// Convert to i128 pointers and values.
llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
// (((i128)hi) << 64) | ((i128)lo)
ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
ExchangeHigh =
CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
// Load the comparand for the instruction.
llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
SuccessOrdering, FailureOrdering);
// The atomic instruction is marked volatile for consistency with MSVC. This
// blocks the few atomics optimizations that LLVM has. If we want to optimize
// _Interlocked* operations in the future, we will have to remove the volatile
// marker.
CXI->setVolatile(true);
// Store the result as an outparameter.
CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
ComparandResult);
// Get the success boolean and zero extend it to i8.
Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
}
static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
assert(E->getArg(0)->getType()->isPointerType());
auto *IntTy = CGF.ConvertType(E->getType());
auto *Result = CGF.Builder.CreateAtomicRMW(
AtomicRMWInst::Add,
CGF.EmitScalarExpr(E->getArg(0)),
ConstantInt::get(IntTy, 1),
Ordering);
return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
}
static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
assert(E->getArg(0)->getType()->isPointerType());
auto *IntTy = CGF.ConvertType(E->getType());
auto *Result = CGF.Builder.CreateAtomicRMW(
AtomicRMWInst::Sub,
CGF.EmitScalarExpr(E->getArg(0)),
ConstantInt::get(IntTy, 1),
Ordering);
return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
}
// Build a plain volatile load.
static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy =
llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
Load->setVolatile(true);
return Load;
}
// Build a plain volatile store.
static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
Value *Value = CGF.EmitScalarExpr(E->getArg(1));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy =
llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
Store->setVolatile(true);
return Store;
}
// Emit a simple mangled intrinsic that has 1 argument and a return type
// matching the argument type. Depending on mode, this may be a constrained
// floating-point intrinsic.
static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
const CallExpr *E, unsigned IntrinsicID,
unsigned ConstrainedIntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
} else {
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, Src0);
}
}
// Emit an intrinsic that has 2 operands of the same type as its result.
// Depending on mode, this may be a constrained floating-point intrinsic.
static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
const CallExpr *E, unsigned IntrinsicID,
unsigned ConstrainedIntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
} else {
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1 });
}
}
// Emit an intrinsic that has 3 operands of the same type as its result.
// Depending on mode, this may be a constrained floating-point intrinsic.
static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
const CallExpr *E, unsigned IntrinsicID,
unsigned ConstrainedIntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
} else {
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
}
}
// Emit an intrinsic where all operands are of the same type as the result.
// Depending on mode, this may be a constrained floating-point intrinsic.
static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
unsigned IntrinsicID,
unsigned ConstrainedIntrinsicID,
llvm::Type *Ty,
ArrayRef<Value *> Args) {
Function *F;
if (CGF.Builder.getIsFPConstrained())
F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
else
F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
if (CGF.Builder.getIsFPConstrained())
return CGF.Builder.CreateConstrainedFPCall(F, Args);
else
return CGF.Builder.CreateCall(F, Args);
}
// Emit a simple mangled intrinsic that has 1 argument and a return type
// matching the argument type.
static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
unsigned IntrinsicID,
llvm::StringRef Name = "") {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, Src0, Name);
}
// Emit an intrinsic that has 2 operands of the same type as its result.
static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1 });
}
// Emit an intrinsic that has 3 operands of the same type as its result.
static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
}
// Emit an intrinsic that has 1 float or double operand, and 1 integer.
static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, {Src0, Src1});
}
// Emit an intrinsic that has overloaded integer result and fp operand.
static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
unsigned IntrinsicID,
unsigned ConstrainedIntrinsicID) {
llvm::Type *ResultType = CGF.ConvertType(E->getType());
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
{ResultType, Src0->getType()});
return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
} else {
Function *F =
CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
return CGF.Builder.CreateCall(F, Src0);
}
}
/// EmitFAbs - Emit a call to @llvm.fabs().
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
Call->setDoesNotAccessMemory();
return Call;
}
/// Emit the computation of the sign bit for a floating point value. Returns
/// the i1 sign bit value.
static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
LLVMContext &C = CGF.CGM.getLLVMContext();
llvm::Type *Ty = V->getType();
int Width = Ty->getPrimitiveSizeInBits();
llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateBitCast(V, IntTy);
if (Ty->isPPC_FP128Ty()) {
// We want the sign bit of the higher-order double. The bitcast we just
// did works as if the double-double was stored to memory and then
// read as an i128. The "store" will put the higher-order double in the
// lower address in both little- and big-Endian modes, but the "load"
// will treat those bits as a different part of the i128: the low bits in
// little-Endian, the high bits in big-Endian. Therefore, on big-Endian
// we need to shift the high bits down to the low before truncating.
Width >>= 1;
if (CGF.getTarget().isBigEndian()) {
Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
V = CGF.Builder.CreateLShr(V, ShiftCst);
}
// We are truncating value in order to extract the higher-order
// double, which we will be using to extract the sign from.
IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateTrunc(V, IntTy);
}
Value *Zero = llvm::Constant::getNullValue(IntTy);
return CGF.Builder.CreateICmpSLT(V, Zero);
}
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
const CallExpr *E, llvm::Constant *calleeValue) {
CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
}
/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
/// depending on IntrinsicID.
///
/// \arg CGF The current codegen function.
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
/// \arg X The first argument to the llvm.*.with.overflow.*.
/// \arg Y The second argument to the llvm.*.with.overflow.*.
/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
/// \returns The result (i.e. sum/product) returned by the intrinsic.
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
const llvm::Intrinsic::ID IntrinsicID,
llvm::Value *X, llvm::Value *Y,
llvm::Value *&Carry) {
// Make sure we have integers of the same width.
assert(X->getType() == Y->getType() &&
"Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)");
Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
return CGF.Builder.CreateExtractValue(Tmp, 0);
}
static Value *emitRangedBuiltin(CodeGenFunction &CGF,
unsigned IntrinsicID,
int low, int high) {
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
llvm::Instruction *Call = CGF.Builder.CreateCall(F);
Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
return Call;
}
namespace {
struct WidthAndSignedness {
unsigned Width;
bool Signed;
};
}
static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext &context,
const clang::QualType Type) {
assert(Type->isIntegerType() && "Given type is not an integer.");
unsigned Width = Type->isBooleanType() ? 1
: Type->isBitIntType() ? context.getIntWidth(Type)
: context.getTypeInfo(Type).Width;
bool Signed = Type->isSignedIntegerType();
return {Width, Signed};
}
// Given one or more integer types, this function produces an integer type that
// encompasses them: any value in one of the given types could be expressed in
// the encompassing type.
static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
assert(Types.size() > 0 && "Empty list of types.");
// If any of the given types is signed, we must return a signed type.
bool Signed = false;
for (const auto &Type : Types) {
Signed |= Type.Signed;
}
// The encompassing type must have a width greater than or equal to the width
// of the specified types. Additionally, if the encompassing type is signed,
// its width must be strictly greater than the width of any unsigned types
// given.
unsigned Width = 0;
for (const auto &Type : Types) {
unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
if (Width < MinWidth) {
Width = MinWidth;
}
}
return {Width, Signed};
}
Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
llvm::Type *DestType = Int8PtrTy;
if (ArgValue->getType() != DestType)
ArgValue =
Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
}
/// Checks if using the result of __builtin_object_size(p, @p From) in place of
/// __builtin_object_size(p, @p To) is correct
static bool areBOSTypesCompatible(int From, int To) {
// Note: Our __builtin_object_size implementation currently treats Type=0 and
// Type=2 identically. Encoding this implementation detail here may make
// improving __builtin_object_size difficult in the future, so it's omitted.
return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
}
static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
}
llvm::Value *
CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType,
llvm::Value *EmittedE,
bool IsDynamic) {
uint64_t ObjectSize;
if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
}
/// Returns a Value corresponding to the size of the given expression.
/// This Value may be either of the following:
/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
/// it)
/// - A call to the @llvm.objectsize intrinsic
///
/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
/// and we wouldn't otherwise try to reference a pass_object_size parameter,
/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
llvm::Value *
CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType,
llvm::Value *EmittedE, bool IsDynamic) {
// We need to reference an argument if the pointer is a parameter with the
// pass_object_size attribute.
if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
if (Param != nullptr && PS != nullptr &&
areBOSTypesCompatible(PS->getType(), Type)) {
auto Iter = SizeArguments.find(Param);
assert(Iter != SizeArguments.end());
const ImplicitParamDecl *D = Iter->second;
auto DIter = LocalDeclMap.find(D);
assert(DIter != LocalDeclMap.end());
return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
getContext().getSizeType(), E->getBeginLoc());
}
}
// LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
// evaluate E for side-effects. In either case, we shouldn't lower to
// @llvm.objectsize.
if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
return getDefaultBuiltinObjectSizeResult(Type, ResType);
Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
assert(Ptr->getType()->isPointerTy() &&
"Non-pointer passed to __builtin_object_size?");
Function *F =
CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
// LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
Value *Min = Builder.getInt1((Type & 2) != 0);
// For GCC compatibility, __builtin_object_size treat NULL as unknown size.
Value *NullIsUnknown = Builder.getTrue();
Value *Dynamic = Builder.getInt1(IsDynamic);
return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
}
namespace {
/// A struct to generically describe a bit test intrinsic.
struct BitTest {
enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
enum InterlockingKind : uint8_t {
Unlocked,
Sequential,
Acquire,
Release,
NoFence
};
ActionKind Action;
InterlockingKind Interlocking;
bool Is64Bit;
static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
};
} // namespace
BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
switch (BuiltinID) {
// Main portable variants.
case Builtin::BI_bittest:
return {TestOnly, Unlocked, false};
case Builtin::BI_bittestandcomplement:
return {Complement, Unlocked, false};
case Builtin::BI_bittestandreset:
return {Reset, Unlocked, false};
case Builtin::BI_bittestandset:
return {Set, Unlocked, false};
case Builtin::BI_interlockedbittestandreset:
return {Reset, Sequential, false};
case Builtin::BI_interlockedbittestandset:
return {Set, Sequential, false};
// X86-specific 64-bit variants.
case Builtin::BI_bittest64:
return {TestOnly, Unlocked, true};
case Builtin::BI_bittestandcomplement64:
return {Complement, Unlocked, true};
case Builtin::BI_bittestandreset64:
return {Reset, Unlocked, true};
case Builtin::BI_bittestandset64:
return {Set, Unlocked, true};
case Builtin::BI_interlockedbittestandreset64:
return {Reset, Sequential, true};
case Builtin::BI_interlockedbittestandset64:
return {Set, Sequential, true};
// ARM/AArch64-specific ordering variants.
case Builtin::BI_interlockedbittestandset_acq:
return {Set, Acquire, false};
case Builtin::BI_interlockedbittestandset_rel:
return {Set, Release, false};
case Builtin::BI_interlockedbittestandset_nf:
return {Set, NoFence, false};
case Builtin::BI_interlockedbittestandreset_acq:
return {Reset, Acquire, false};
case Builtin::BI_interlockedbittestandreset_rel:
return {Reset, Release, false};
case Builtin::BI_interlockedbittestandreset_nf:
return {Reset, NoFence, false};
}
llvm_unreachable("expected only bittest intrinsics");
}
static char bitActionToX86BTCode(BitTest::ActionKind A) {
switch (A) {
case BitTest::TestOnly: return '\0';
case BitTest::Complement: return 'c';
case BitTest::Reset: return 'r';
case BitTest::Set: return 's';
}
llvm_unreachable("invalid action");
}
static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
BitTest BT,
const CallExpr *E, Value *BitBase,
Value *BitPos) {
char Action = bitActionToX86BTCode(BT.Action);
char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
// Build the assembly.
SmallString<64> Asm;
raw_svector_ostream AsmOS(Asm);
if (BT.Interlocking != BitTest::Unlocked)
AsmOS << "lock ";
AsmOS << "bt";
if (Action)
AsmOS << Action;
AsmOS << SizeSuffix << " $2, ($1)";
// Build the constraints. FIXME: We should support immediates when possible.
std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
std::string MachineClobbers = CGF.getTarget().getClobbers();
if (!MachineClobbers.empty()) {
Constraints += ',';
Constraints += MachineClobbers;
}
llvm::IntegerType *IntType = llvm::IntegerType::get(
CGF.getLLVMContext(),
CGF.getContext().getTypeSize(E->getArg(1)->getType()));
llvm::Type *IntPtrType = IntType->getPointerTo();
llvm::FunctionType *FTy =
llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
}
static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
switch (I) {
case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
case BitTest::Release: return llvm::AtomicOrdering::Release;
case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
}
llvm_unreachable("invalid interlocking");
}
/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
/// bits and a bit position and read and optionally modify the bit at that
/// position. The position index can be arbitrarily large, i.e. it can be larger
/// than 31 or 63, so we need an indexed load in the general case.
static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
unsigned BuiltinID,
const CallExpr *E) {
Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
// X86 has special BT, BTC, BTR, and BTS instructions that handle the array
// indexing operation internally. Use them if possible.
if (CGF.getTarget().getTriple().isX86())
return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
// Otherwise, use generic code to load one byte and test the bit. Use all but
// the bottom three bits as the array index, and the bottom three bits to form
// a mask.
// Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
Value *ByteIndex = CGF.Builder.CreateAShr(
BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
ByteIndex, "bittest.byteaddr"),
CGF.Int8Ty, CharUnits::One());
Value *PosLow =
CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
// The updating instructions will need a mask.
Value *Mask = nullptr;
if (BT.Action != BitTest::TestOnly) {
Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
"bittest.mask");
}
// Check the action and ordering of the interlocked intrinsics.
llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
Value *OldByte = nullptr;
if (Ordering != llvm::AtomicOrdering::NotAtomic) {
// Emit a combined atomicrmw load/store operation for the interlocked
// intrinsics.
llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
if (BT.Action == BitTest::Reset) {
Mask = CGF.Builder.CreateNot(Mask);
RMWOp = llvm::AtomicRMWInst::And;
}
OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
Ordering);
} else {
// Emit a plain load for the non-interlocked intrinsics.
OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
Value *NewByte = nullptr;
switch (BT.Action) {
case BitTest::TestOnly:
// Don't store anything.
break;
case BitTest::Complement:
NewByte = CGF.Builder.CreateXor(OldByte, Mask);
break;
case BitTest::Reset:
NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
break;
case BitTest::Set:
NewByte = CGF.Builder.CreateOr(OldByte, Mask);
break;
}
if (NewByte)
CGF.Builder.CreateStore(NewByte, ByteAddr);
}
// However we loaded the old byte, either by plain load or atomicrmw, shift
// the bit into the low position and mask it to 0 or 1.
Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
return CGF.Builder.CreateAnd(
ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
}
static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
unsigned BuiltinID,
const CallExpr *E) {
Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
SmallString<64> Asm;
raw_svector_ostream AsmOS(Asm);
llvm::IntegerType *RetType = CGF.Int32Ty;
switch (BuiltinID) {
case clang::PPC::BI__builtin_ppc_ldarx:
AsmOS << "ldarx ";
RetType = CGF.Int64Ty;
break;
case clang::PPC::BI__builtin_ppc_lwarx:
AsmOS << "lwarx ";
RetType = CGF.Int32Ty;
break;
case clang::PPC::BI__builtin_ppc_lharx:
AsmOS << "lharx ";
RetType = CGF.Int16Ty;
break;
case clang::PPC::BI__builtin_ppc_lbarx:
AsmOS << "lbarx ";
RetType = CGF.Int8Ty;
break;
default:
llvm_unreachable("Expected only PowerPC load reserve intrinsics");
}
AsmOS << "$0, ${1:y}";
std::string Constraints = "=r,*Z,~{memory}";
std::string MachineClobbers = CGF.getTarget().getClobbers();
if (!MachineClobbers.empty()) {
Constraints += ',';
Constraints += MachineClobbers;
}
llvm::Type *IntPtrType = RetType->getPointerTo();
llvm::FunctionType *FTy =
llvm::FunctionType::get(RetType, {IntPtrType}, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
CI->addParamAttr(
0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
return CI;
}
namespace {
enum class MSVCSetJmpKind {
_setjmpex,
_setjmp3,
_setjmp
};
}
/// MSVC handles setjmp a bit differently on different platforms. On every
/// architecture except 32-bit x86, the frame address is passed. On x86, extra
/// parameters can be passed as variadic arguments, but we always pass none.
static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
const CallExpr *E) {
llvm::Value *Arg1 = nullptr;
llvm::Type *Arg1Ty = nullptr;
StringRef Name;
bool IsVarArg = false;
if (SJKind == MSVCSetJmpKind::_setjmp3) {
Name = "_setjmp3";
Arg1Ty = CGF.Int32Ty;
Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
IsVarArg = true;
} else {
Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
Arg1Ty = CGF.Int8PtrTy;
if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
Arg1 = CGF.Builder.CreateCall(
CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
} else
Arg1 = CGF.Builder.CreateCall(
CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
llvm::ConstantInt::get(CGF.Int32Ty, 0));
}
// Mark the call site and declaration with ReturnsTwice.
llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
llvm::Attribute::ReturnsTwice);
llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
ReturnsTwiceAttr, /*Local=*/true);
llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
llvm::Value *Args[] = {Buf, Arg1};
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
CB->setAttributes(ReturnsTwiceAttr);
return RValue::get(CB);
}
// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
// we handle them here.
enum class CodeGenFunction::MSVCIntrin {
_BitScanForward,
_BitScanReverse,
_InterlockedAnd,
_InterlockedDecrement,
_InterlockedExchange,
_InterlockedExchangeAdd,
_InterlockedExchangeSub,
_InterlockedIncrement,
_InterlockedOr,
_InterlockedXor,
_InterlockedExchangeAdd_acq,
_InterlockedExchangeAdd_rel,
_InterlockedExchangeAdd_nf,
_InterlockedExchange_acq,
_InterlockedExchange_rel,
_InterlockedExchange_nf,
_InterlockedCompareExchange_acq,
_InterlockedCompareExchange_rel,
_InterlockedCompareExchange_nf,
_InterlockedCompareExchange128,
_InterlockedCompareExchange128_acq,
_InterlockedCompareExchange128_rel,
_InterlockedCompareExchange128_nf,
_InterlockedOr_acq,
_InterlockedOr_rel,
_InterlockedOr_nf,
_InterlockedXor_acq,
_InterlockedXor_rel,
_InterlockedXor_nf,
_InterlockedAnd_acq,
_InterlockedAnd_rel,
_InterlockedAnd_nf,
_InterlockedIncrement_acq,
_InterlockedIncrement_rel,
_InterlockedIncrement_nf,
_InterlockedDecrement_acq,
_InterlockedDecrement_rel,
_InterlockedDecrement_nf,
__fastfail,
};
static Optional<CodeGenFunction::MSVCIntrin>
translateArmToMsvcIntrin(unsigned BuiltinID) {
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
switch (BuiltinID) {
default:
return None;
case ARM::BI_BitScanForward:
case ARM::BI_BitScanForward64:
return MSVCIntrin::_BitScanForward;
case ARM::BI_BitScanReverse:
case ARM::BI_BitScanReverse64:
return MSVCIntrin::_BitScanReverse;
case ARM::BI_InterlockedAnd64:
return MSVCIntrin::_InterlockedAnd;
case ARM::BI_InterlockedExchange64:
return MSVCIntrin::_InterlockedExchange;
case ARM::BI_InterlockedExchangeAdd64:
return MSVCIntrin::_InterlockedExchangeAdd;
case ARM::BI_InterlockedExchangeSub64:
return MSVCIntrin::_InterlockedExchangeSub;
case ARM::BI_InterlockedOr64:
return MSVCIntrin::_InterlockedOr;
case ARM::BI_InterlockedXor64:
return MSVCIntrin::_InterlockedXor;
case ARM::BI_InterlockedDecrement64:
return MSVCIntrin::_InterlockedDecrement;
case ARM::BI_InterlockedIncrement64:
return MSVCIntrin::_InterlockedIncrement;
case ARM::BI_InterlockedExchangeAdd8_acq:
case ARM::BI_InterlockedExchangeAdd16_acq:
case ARM::BI_InterlockedExchangeAdd_acq:
case ARM::BI_InterlockedExchangeAdd64_acq:
return MSVCIntrin::_InterlockedExchangeAdd_acq;
case ARM::BI_InterlockedExchangeAdd8_rel:
case ARM::BI_InterlockedExchangeAdd16_rel:
case ARM::BI_InterlockedExchangeAdd_rel:
case ARM::BI_InterlockedExchangeAdd64_rel:
return MSVCIntrin::_InterlockedExchangeAdd_rel;
case ARM::BI_InterlockedExchangeAdd8_nf:
case ARM::BI_InterlockedExchangeAdd16_nf:
case ARM::BI_InterlockedExchangeAdd_nf:
case ARM::BI_InterlockedExchangeAdd64_nf:
return MSVCIntrin::_InterlockedExchangeAdd_nf;
case ARM::BI_InterlockedExchange8_acq:
case ARM::BI_InterlockedExchange16_acq:
case ARM::BI_InterlockedExchange_acq:
case ARM::BI_InterlockedExchange64_acq:
return MSVCIntrin::_InterlockedExchange_acq;
case ARM::BI_InterlockedExchange8_rel:
case ARM::BI_InterlockedExchange16_rel:
case ARM::BI_InterlockedExchange_rel:
case ARM::BI_InterlockedExchange64_rel:
return MSVCIntrin::_InterlockedExchange_rel;
case ARM::BI_InterlockedExchange8_nf:
case ARM::BI_InterlockedExchange16_nf:
case ARM::BI_InterlockedExchange_nf:
case ARM::BI_InterlockedExchange64_nf:
return MSVCIntrin::_InterlockedExchange_nf;
case ARM::BI_InterlockedCompareExchange8_acq:
case ARM::BI_InterlockedCompareExchange16_acq:
case ARM::BI_InterlockedCompareExchange_acq:
case ARM::BI_InterlockedCompareExchange64_acq:
return MSVCIntrin::_InterlockedCompareExchange_acq;
case ARM::BI_InterlockedCompareExchange8_rel:
case ARM::BI_InterlockedCompareExchange16_rel:
case ARM::BI_InterlockedCompareExchange_rel:
case ARM::BI_InterlockedCompareExchange64_rel:
return MSVCIntrin::_InterlockedCompareExchange_rel;
case ARM::BI_InterlockedCompareExchange8_nf:
case ARM::BI_InterlockedCompareExchange16_nf:
case ARM::BI_InterlockedCompareExchange_nf:
case ARM::BI_InterlockedCompareExchange64_nf:
return MSVCIntrin::_InterlockedCompareExchange_nf;
case ARM::BI_InterlockedOr8_acq:
case ARM::BI_InterlockedOr16_acq:
case ARM::BI_InterlockedOr_acq:
case ARM::BI_InterlockedOr64_acq:
return MSVCIntrin::_InterlockedOr_acq;
case ARM::BI_InterlockedOr8_rel:
case ARM::BI_InterlockedOr16_rel:
case ARM::BI_InterlockedOr_rel:
case ARM::BI_InterlockedOr64_rel:
return MSVCIntrin::_InterlockedOr_rel;
case ARM::BI_InterlockedOr8_nf:
case ARM::BI_InterlockedOr16_nf:
case ARM::BI_InterlockedOr_nf:
case ARM::BI_InterlockedOr64_nf:
return MSVCIntrin::_InterlockedOr_nf;
case ARM::BI_InterlockedXor8_acq:
case ARM::BI_InterlockedXor16_acq:
case ARM::BI_InterlockedXor_acq:
case ARM::BI_InterlockedXor64_acq:
return MSVCIntrin::_InterlockedXor_acq;
case ARM::BI_InterlockedXor8_rel:
case ARM::BI_InterlockedXor16_rel:
case ARM::BI_InterlockedXor_rel:
case ARM::BI_InterlockedXor64_rel:
return MSVCIntrin::_InterlockedXor_rel;
case ARM::BI_InterlockedXor8_nf:
case ARM::BI_InterlockedXor16_nf:
case ARM::BI_InterlockedXor_nf:
case ARM::BI_InterlockedXor64_nf:
return MSVCIntrin::_InterlockedXor_nf;
case ARM::BI_InterlockedAnd8_acq:
case ARM::BI_InterlockedAnd16_acq:
case ARM::BI_InterlockedAnd_acq:
case ARM::BI_InterlockedAnd64_acq:
return MSVCIntrin::_InterlockedAnd_acq;
case ARM::BI_InterlockedAnd8_rel:
case ARM::BI_InterlockedAnd16_rel:
case ARM::BI_InterlockedAnd_rel:
case ARM::BI_InterlockedAnd64_rel:
return MSVCIntrin::_InterlockedAnd_rel;
case ARM::BI_InterlockedAnd8_nf:
case ARM::BI_InterlockedAnd16_nf:
case ARM::BI_InterlockedAnd_nf:
case ARM::BI_InterlockedAnd64_nf:
return MSVCIntrin::_InterlockedAnd_nf;
case ARM::BI_InterlockedIncrement16_acq:
case ARM::BI_InterlockedIncrement_acq:
case ARM::BI_InterlockedIncrement64_acq:
return MSVCIntrin::_InterlockedIncrement_acq;
case ARM::BI_InterlockedIncrement16_rel:
case ARM::BI_InterlockedIncrement_rel:
case ARM::BI_InterlockedIncrement64_rel:
return MSVCIntrin::_InterlockedIncrement_rel;
case ARM::BI_InterlockedIncrement16_nf:
case ARM::BI_InterlockedIncrement_nf:
case ARM::BI_InterlockedIncrement64_nf:
return MSVCIntrin::_InterlockedIncrement_nf;
case ARM::BI_InterlockedDecrement16_acq:
case ARM::BI_InterlockedDecrement_acq:
case ARM::BI_InterlockedDecrement64_acq:
return MSVCIntrin::_InterlockedDecrement_acq;
case ARM::BI_InterlockedDecrement16_rel:
case ARM::BI_InterlockedDecrement_rel:
case ARM::BI_InterlockedDecrement64_rel:
return MSVCIntrin::_InterlockedDecrement_rel;
case ARM::BI_InterlockedDecrement16_nf:
case ARM::BI_InterlockedDecrement_nf:
case ARM::BI_InterlockedDecrement64_nf:
return MSVCIntrin::_InterlockedDecrement_nf;
}
llvm_unreachable("must return from switch");
}
static Optional<CodeGenFunction::MSVCIntrin>
translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
switch (BuiltinID) {
default:
return None;
case AArch64::BI_BitScanForward:
case AArch64::BI_BitScanForward64:
return MSVCIntrin::_BitScanForward;
case AArch64::BI_BitScanReverse:
case AArch64::BI_BitScanReverse64:
return MSVCIntrin::_BitScanReverse;
case AArch64::BI_InterlockedAnd64:
return MSVCIntrin::_InterlockedAnd;
case AArch64::BI_InterlockedExchange64:
return MSVCIntrin::_InterlockedExchange;
case AArch64::BI_InterlockedExchangeAdd64:
return MSVCIntrin::_InterlockedExchangeAdd;
case AArch64::BI_InterlockedExchangeSub64:
return MSVCIntrin::_InterlockedExchangeSub;
case AArch64::BI_InterlockedOr64:
return MSVCIntrin::_InterlockedOr;
case AArch64::BI_InterlockedXor64:
return MSVCIntrin::_InterlockedXor;
case AArch64::BI_InterlockedDecrement64:
return MSVCIntrin::_InterlockedDecrement;
case AArch64::BI_InterlockedIncrement64:
return MSVCIntrin::_InterlockedIncrement;
case AArch64::BI_InterlockedExchangeAdd8_acq:
case AArch64::BI_InterlockedExchangeAdd16_acq:
case AArch64::BI_InterlockedExchangeAdd_acq:
case AArch64::BI_InterlockedExchangeAdd64_acq:
return MSVCIntrin::_InterlockedExchangeAdd_acq;
case AArch64::BI_InterlockedExchangeAdd8_rel:
case AArch64::BI_InterlockedExchangeAdd16_rel:
case AArch64::BI_InterlockedExchangeAdd_rel:
case AArch64::BI_InterlockedExchangeAdd64_rel:
return MSVCIntrin::_InterlockedExchangeAdd_rel;
case AArch64::BI_InterlockedExchangeAdd8_nf:
case AArch64::BI_InterlockedExchangeAdd16_nf:
case AArch64::BI_InterlockedExchangeAdd_nf:
case AArch64::BI_InterlockedExchangeAdd64_nf:
return MSVCIntrin::_InterlockedExchangeAdd_nf;
case AArch64::BI_InterlockedExchange8_acq:
case AArch64::BI_InterlockedExchange16_acq:
case AArch64::BI_InterlockedExchange_acq:
case AArch64::BI_InterlockedExchange64_acq:
return MSVCIntrin::_InterlockedExchange_acq;
case AArch64::BI_InterlockedExchange8_rel:
case AArch64::BI_InterlockedExchange16_rel:
case AArch64::BI_InterlockedExchange_rel:
case AArch64::BI_InterlockedExchange64_rel:
return MSVCIntrin::_InterlockedExchange_rel;
case AArch64::BI_InterlockedExchange8_nf:
case AArch64::BI_InterlockedExchange16_nf:
case AArch64::BI_InterlockedExchange_nf:
case AArch64::BI_InterlockedExchange64_nf:
return MSVCIntrin::_InterlockedExchange_nf;
case AArch64::BI_InterlockedCompareExchange8_acq:
case AArch64::BI_InterlockedCompareExchange16_acq:
case AArch64::BI_InterlockedCompareExchange_acq:
case AArch64::BI_InterlockedCompareExchange64_acq:
return MSVCIntrin::_InterlockedCompareExchange_acq;
case AArch64::BI_InterlockedCompareExchange8_rel:
case AArch64::BI_InterlockedCompareExchange16_rel:
case AArch64::BI_InterlockedCompareExchange_rel:
case AArch64::BI_InterlockedCompareExchange64_rel:
return MSVCIntrin::_InterlockedCompareExchange_rel;
case AArch64::BI_InterlockedCompareExchange8_nf:
case AArch64::BI_InterlockedCompareExchange16_nf:
case AArch64::BI_InterlockedCompareExchange_nf:
case AArch64::BI_InterlockedCompareExchange64_nf:
return MSVCIntrin::_InterlockedCompareExchange_nf;
case AArch64::BI_InterlockedCompareExchange128:
return MSVCIntrin::_InterlockedCompareExchange128;
case AArch64::BI_InterlockedCompareExchange128_acq:
return MSVCIntrin::_InterlockedCompareExchange128_acq;
case AArch64::BI_InterlockedCompareExchange128_nf:
return MSVCIntrin::_InterlockedCompareExchange128_nf;
case AArch64::BI_InterlockedCompareExchange128_rel:
return MSVCIntrin::_InterlockedCompareExchange128_rel;
case AArch64::BI_InterlockedOr8_acq:
case AArch64::BI_InterlockedOr16_acq:
case AArch64::BI_InterlockedOr_acq:
case AArch64::BI_InterlockedOr64_acq:
return MSVCIntrin::_InterlockedOr_acq;
case AArch64::BI_InterlockedOr8_rel:
case AArch64::BI_InterlockedOr16_rel:
case AArch64::BI_InterlockedOr_rel:
case AArch64::BI_InterlockedOr64_rel:
return MSVCIntrin::_InterlockedOr_rel;
case AArch64::BI_InterlockedOr8_nf:
case AArch64::BI_InterlockedOr16_nf:
case AArch64::BI_InterlockedOr_nf:
case AArch64::BI_InterlockedOr64_nf:
return MSVCIntrin::_InterlockedOr_nf;
case AArch64::BI_InterlockedXor8_acq:
case AArch64::BI_InterlockedXor16_acq:
case AArch64::BI_InterlockedXor_acq:
case AArch64::BI_InterlockedXor64_acq:
return MSVCIntrin::_InterlockedXor_acq;
case AArch64::BI_InterlockedXor8_rel:
case AArch64::BI_InterlockedXor16_rel:
case AArch64::BI_InterlockedXor_rel:
case AArch64::BI_InterlockedXor64_rel:
return MSVCIntrin::_InterlockedXor_rel;
case AArch64::BI_InterlockedXor8_nf:
case AArch64::BI_InterlockedXor16_nf:
case AArch64::BI_InterlockedXor_nf:
case AArch64::BI_InterlockedXor64_nf:
return MSVCIntrin::_InterlockedXor_nf;
case AArch64::BI_InterlockedAnd8_acq:
case AArch64::BI_InterlockedAnd16_acq:
case AArch64::BI_InterlockedAnd_acq:
case AArch64::BI_InterlockedAnd64_acq:
return MSVCIntrin::_InterlockedAnd_acq;
case AArch64::BI_InterlockedAnd8_rel:
case AArch64::BI_InterlockedAnd16_rel:
case AArch64::BI_InterlockedAnd_rel:
case AArch64::BI_InterlockedAnd64_rel:
return MSVCIntrin::_InterlockedAnd_rel;
case AArch64::BI_InterlockedAnd8_nf:
case AArch64::BI_InterlockedAnd16_nf:
case AArch64::BI_InterlockedAnd_nf:
case AArch64::BI_InterlockedAnd64_nf:
return MSVCIntrin::_InterlockedAnd_nf;
case AArch64::BI_InterlockedIncrement16_acq:
case AArch64::BI_InterlockedIncrement_acq:
case AArch64::BI_InterlockedIncrement64_acq:
return MSVCIntrin::_InterlockedIncrement_acq;
case AArch64::BI_InterlockedIncrement16_rel:
case AArch64::BI_InterlockedIncrement_rel:
case AArch64::BI_InterlockedIncrement64_rel:
return MSVCIntrin::_InterlockedIncrement_rel;
case AArch64::BI_InterlockedIncrement16_nf:
case AArch64::BI_InterlockedIncrement_nf:
case AArch64::BI_InterlockedIncrement64_nf:
return MSVCIntrin::_InterlockedIncrement_nf;
case AArch64::BI_InterlockedDecrement16_acq:
case AArch64::BI_InterlockedDecrement_acq:
case AArch64::BI_InterlockedDecrement64_acq:
return MSVCIntrin::_InterlockedDecrement_acq;
case AArch64::BI_InterlockedDecrement16_rel:
case AArch64::BI_InterlockedDecrement_rel:
case AArch64::BI_InterlockedDecrement64_rel:
return MSVCIntrin::_InterlockedDecrement_rel;
case AArch64::BI_InterlockedDecrement16_nf:
case AArch64::BI_InterlockedDecrement_nf:
case AArch64::BI_InterlockedDecrement64_nf:
return MSVCIntrin::_InterlockedDecrement_nf;
}
llvm_unreachable("must return from switch");
}
static Optional<CodeGenFunction::MSVCIntrin>
translateX86ToMsvcIntrin(unsigned BuiltinID) {
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
switch (BuiltinID) {
default:
return None;
case clang::X86::BI_BitScanForward:
case clang::X86::BI_BitScanForward64:
return MSVCIntrin::_BitScanForward;
case clang::X86::BI_BitScanReverse:
case clang::X86::BI_BitScanReverse64:
return MSVCIntrin::_BitScanReverse;
case clang::X86::BI_InterlockedAnd64:
return MSVCIntrin::_InterlockedAnd;
case clang::X86::BI_InterlockedCompareExchange128:
return MSVCIntrin::_InterlockedCompareExchange128;
case clang::X86::BI_InterlockedExchange64:
return MSVCIntrin::_InterlockedExchange;
case clang::X86::BI_InterlockedExchangeAdd64:
return MSVCIntrin::_InterlockedExchangeAdd;
case clang::X86::BI_InterlockedExchangeSub64:
return MSVCIntrin::_InterlockedExchangeSub;
case clang::X86::BI_InterlockedOr64:
return MSVCIntrin::_InterlockedOr;
case clang::X86::BI_InterlockedXor64:
return MSVCIntrin::_InterlockedXor;
case clang::X86::BI_InterlockedDecrement64:
return MSVCIntrin::_InterlockedDecrement;
case clang::X86::BI_InterlockedIncrement64:
return MSVCIntrin::_InterlockedIncrement;
}
llvm_unreachable("must return from switch");
}
// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case MSVCIntrin::_BitScanForward:
case MSVCIntrin::_BitScanReverse: {
Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
Value *ArgValue = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = ArgValue->getType();
llvm::Type *IndexType = IndexAddress.getElementType();
llvm::Type *ResultType = ConvertType(E->getType());
Value *ArgZero = llvm::Constant::getNullValue(ArgType);
Value *ResZero = llvm::Constant::getNullValue(ResultType);
Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ResZero, Begin);
Builder.SetInsertPoint(NotZero);
if (BuiltinID == MSVCIntrin::_BitScanForward) {
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
Builder.CreateStore(ZeroCount, IndexAddress, false);
} else {
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
Builder.CreateStore(Index, IndexAddress, false);
}
Builder.CreateBr(End);
Result->addIncoming(ResOne, NotZero);
Builder.SetInsertPoint(End);
return Result;
}
case MSVCIntrin::_InterlockedAnd:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
case MSVCIntrin::_InterlockedExchange:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
case MSVCIntrin::_InterlockedExchangeAdd:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
case MSVCIntrin::_InterlockedExchangeSub:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
case MSVCIntrin::_InterlockedOr:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
case MSVCIntrin::_InterlockedXor:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
case MSVCIntrin::_InterlockedExchangeAdd_acq:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedExchangeAdd_rel:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
AtomicOrdering::Release);
case MSVCIntrin::_InterlockedExchangeAdd_nf:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedExchange_acq:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedExchange_rel:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
AtomicOrdering::Release);
case MSVCIntrin::_InterlockedExchange_nf:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedCompareExchange_acq:
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedCompareExchange_rel:
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
case MSVCIntrin::_InterlockedCompareExchange_nf:
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedCompareExchange128:
return EmitAtomicCmpXchg128ForMSIntrin(
*this, E, AtomicOrdering::SequentiallyConsistent);
case MSVCIntrin::_InterlockedCompareExchange128_acq:
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedCompareExchange128_rel:
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
case MSVCIntrin::_InterlockedCompareExchange128_nf:
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedOr_acq:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedOr_rel:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
AtomicOrdering::Release);
case MSVCIntrin::_InterlockedOr_nf:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedXor_acq:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedXor_rel:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
AtomicOrdering::Release);
case MSVCIntrin::_InterlockedXor_nf:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedAnd_acq:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedAnd_rel:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
AtomicOrdering::Release);
case MSVCIntrin::_InterlockedAnd_nf:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedIncrement_acq:
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedIncrement_rel:
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
case MSVCIntrin::_InterlockedIncrement_nf:
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedDecrement_acq:
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
case MSVCIntrin::_InterlockedDecrement_rel:
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
case MSVCIntrin::_InterlockedDecrement_nf:
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
case MSVCIntrin::_InterlockedDecrement:
return EmitAtomicDecrementValue(*this, E);
case MSVCIntrin::_InterlockedIncrement:
return EmitAtomicIncrementValue(*this, E);
case MSVCIntrin::__fastfail: {
// Request immediate process termination from the kernel. The instruction
// sequences to do this are documented on MSDN:
// https://msdn.microsoft.com/en-us/library/dn774154.aspx
llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
StringRef Asm, Constraints;
switch (ISA) {
default:
ErrorUnsupported(E, "__fastfail call for this architecture");
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
Asm = "int $$0x29";
Constraints = "{cx}";
break;
case llvm::Triple::thumb:
Asm = "udf #251";
Constraints = "{r0}";
break;
case llvm::Triple::aarch64:
Asm = "brk #0xF003";
Constraints = "{w0}";
}
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
getLLVMContext(), llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoReturn);
llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
CI->setAttributes(NoReturnAttr);
return CI;
}
}
llvm_unreachable("Incorrect MSVC intrinsic!");
}
namespace {
// ARC cleanup for __builtin_os_log_format
struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse(llvm::Value *object) : object(object) {}
llvm::Value *object;
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitARCIntrinsicUse(object);
}
};
}
Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
BuiltinCheckKind Kind) {
assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
&& "Unsupported builtin check kind");
Value *ArgValue = EmitScalarExpr(E);
if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
return ArgValue;
SanitizerScope SanScope(this);
Value *Cond = Builder.CreateICmpNE(
ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
SanitizerHandler::InvalidBuiltin,
{EmitCheckSourceLocation(E->getExprLoc()),
llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
None);
return ArgValue;
}
/// Get the argument type for arguments to os_log_helper.
static CanQualType getOSLogArgType(ASTContext &C, int Size) {
QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
return C.getCanonicalType(UnsignedTy);
}
llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
const analyze_os_log::OSLogBufferLayout &Layout,
CharUnits BufferAlignment) {
ASTContext &Ctx = getContext();
llvm::SmallString<64> Name;
{
raw_svector_ostream OS(Name);
OS << "__os_log_helper";
OS << "_" << BufferAlignment.getQuantity();
OS << "_" << int(Layout.getSummaryByte());
OS << "_" << int(Layout.getNumArgsByte());
for (const auto &Item : Layout.Items)
OS << "_" << int(Item.getSizeByte()) << "_"
<< int(Item.getDescriptorByte());
}
if (llvm::Function *F = CGM.getModule().getFunction(Name))
return F;
llvm::SmallVector<QualType, 4> ArgTys;
FunctionArgList Args;
Args.push_back(ImplicitParamDecl::Create(
Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
ImplicitParamDecl::Other));
ArgTys.emplace_back(Ctx.VoidPtrTy);
for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
char Size = Layout.Items[I].getSizeByte();
if (!Size)
continue;
QualType ArgTy = getOSLogArgType(Ctx, Size);
Args.push_back(ImplicitParamDecl::Create(
Ctx, nullptr, SourceLocation(),
&Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
ImplicitParamDecl::Other));
ArgTys.emplace_back(ArgTy);
}
QualType ReturnTy = Ctx.VoidTy;
// The helper function has linkonce_odr linkage to enable the linker to merge
// identical functions. To ensure the merging always happens, 'noinline' is
// attached to the function when compiling with -Oz.
const CGFunctionInfo &FI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
llvm::Function *Fn = llvm::Function::Create(
FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
Fn->setDoesNotThrow();
// Attach 'noinline' at -Oz.
if (CGM.getCodeGenOpts().OptimizeSize == 2)
Fn->addFnAttr(llvm::Attribute::NoInline);
auto NL = ApplyDebugLocation::CreateEmpty(*this);
StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
// Create a scope with an artificial location for the body of this function.
auto AL = ApplyDebugLocation::CreateArtificial(*this);
CharUnits Offset;
Address BufAddr =
Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
BufferAlignment);
Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
unsigned I = 1;
for (const auto &Item : Layout.Items) {
Builder.CreateStore(
Builder.getInt8(Item.getDescriptorByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
Builder.CreateStore(
Builder.getInt8(Item.getSizeByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
CharUnits Size = Item.size();
if (!Size.getQuantity())
continue;
Address Arg = GetAddrOfLocalVar(Args[I]);
Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
Addr =
Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
Offset += Size;
++I;
}
FinishFunction();
return Fn;
}
RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
assert(E.getNumArgs() >= 2 &&
"__builtin_os_log_format takes at least 2 arguments");
ASTContext &Ctx = getContext();
analyze_os_log::OSLogBufferLayout Layout;
analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
// Ignore argument 1, the format string. It is not currently used.
CallArgList Args;
Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
for (const auto &Item : Layout.Items) {
int Size = Item.getSizeByte();
if (!Size)
continue;
llvm::Value *ArgVal;
if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
uint64_t Val = 0;
for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
} else if (const Expr *TheExpr = Item.getExpr()) {
ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
// If a temporary object that requires destruction after the full
// expression is passed, push a lifetime-extended cleanup to extend its
// lifetime to the end of the enclosing block scope.
auto LifetimeExtendObject = [&](const Expr *E) {
E = E->IgnoreParenCasts();
// Extend lifetimes of objects returned by function calls and message
// sends.
// FIXME: We should do this in other cases in which temporaries are
// created including arguments of non-ARC types (e.g., C++
// temporaries).
if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
return true;
return false;
};
if (TheExpr->getType()->isObjCRetainableType() &&
getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type");
if (!isa<Constant>(ArgVal)) {
CleanupKind Cleanup = getARCCleanupKind();
QualType Ty = TheExpr->getType();
Address Alloca = Address::invalid();
Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
ArgVal = EmitARCRetain(Ty, ArgVal);
Builder.CreateStore(ArgVal, Addr);
pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
CodeGenFunction::destroyARCStrongPrecise,
Cleanup & EHCleanup);
// Push a clang.arc.use call to ensure ARC optimizer knows that the
// argument has to be alive.
if (CGM.getCodeGenOpts().OptimizationLevel != 0)
pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
}
}
} else {
ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
}
unsigned ArgValSize =
CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
ArgValSize);
ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
CanQualType ArgTy = getOSLogArgType(Ctx, Size);
// If ArgVal has type x86_fp80, zero-extend ArgVal.
ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
Args.add(RValue::get(ArgVal), ArgTy);
}
const CGFunctionInfo &FI =
CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
Layout, BufAddr.getAlignment());
EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
return RValue::get(BufAddr.getPointer());
}
static bool isSpecialUnsignedMultiplySignedResult(
unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
WidthAndSignedness ResultInfo) {
return BuiltinID == Builtin::BI__builtin_mul_overflow &&
Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
!Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
}
static RValue EmitCheckedUnsignedMultiplySignedResult(
CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
const clang::Expr *Op2, WidthAndSignedness Op2Info,
const clang::Expr *ResultArg, QualType ResultQTy,
WidthAndSignedness ResultInfo) {
assert(isSpecialUnsignedMultiplySignedResult(
Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Cannot specialize this multiply");
llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
llvm::Value *HasOverflow;
llvm::Value *Result = EmitOverflowIntrinsic(
CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
// The intrinsic call will detect overflow when the value is > UINT_MAX,
// however, since the original builtin had a signed result, we need to report
// an overflow when the result is greater than INT_MAX.
auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
bool isVolatile =
ResultArg->getType()->getPointeeType().isVolatileQualified();
Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
isVolatile);
return RValue::get(HasOverflow);
}
/// Determine if a binop is a checked mixed-sign multiply we can specialize.
static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
WidthAndSignedness Op1Info,
WidthAndSignedness Op2Info,
WidthAndSignedness ResultInfo) {
return BuiltinID == Builtin::BI__builtin_mul_overflow &&
std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
Op1Info.Signed != Op2Info.Signed;
}
/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
/// the generic checked-binop irgen.
static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
WidthAndSignedness Op1Info, const clang::Expr *Op2,
WidthAndSignedness Op2Info,
const clang::Expr *ResultArg, QualType ResultQTy,
WidthAndSignedness ResultInfo) {
assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize");
// Emit the signed and unsigned operands.
const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
// One of the operands may be smaller than the other. If so, [s|z]ext it.
if (SignedOpWidth < UnsignedOpWidth)
Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
if (UnsignedOpWidth < SignedOpWidth)
Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
llvm::Type *OpTy = Signed->getType();
llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
llvm::Type *ResTy = ResultPtr.getElementType();
unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
// Take the absolute value of the signed operand.
llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
llvm::Value *AbsSigned =
CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
// Perform a checked unsigned multiplication.
llvm::Value *UnsignedOverflow;
llvm::Value *UnsignedResult =
EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
Unsigned, UnsignedOverflow);
llvm::Value *Overflow, *Result;
if (ResultInfo.Signed) {
// Signed overflow occurs if the result is greater than INT_MAX or lesser
// than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
auto IntMax =
llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
llvm::Value *MaxResult =
CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
CGF.Builder.CreateZExt(IsNegative, OpTy));
llvm::Value *SignedOverflow =
CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
// Prepare the signed result (possibly by negating it).
llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
llvm::Value *SignedResult =
CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
} else {
// Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
llvm::Value *Underflow = CGF.Builder.CreateAnd(
IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
if (ResultInfo.Width < OpWidth) {
auto IntMax =
llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
}
// Negate the product if it would be negative in infinite precision.
Result = CGF.Builder.CreateSelect(
IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
Result = CGF.Builder.CreateTrunc(Result, ResTy);
}
assert(Overflow && Result && "Missing overflow or result");
bool isVolatile =
ResultArg->getType()->getPointeeType().isVolatileQualified();
CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
isVolatile);
return RValue::get(Overflow);
}
static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
LValue RecordLV, CharUnits Align,
llvm::FunctionCallee Func, int Lvl) {
ASTContext &Context = CGF.getContext();
RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
std::string Pad = std::string(Lvl * 4, ' ');
std::string ElementPad = std::string((Lvl + 1) * 4, ' ');
PrintingPolicy Policy(Context.getLangOpts());
Policy.AnonymousTagLocations = false;
Value *GString = CGF.Builder.CreateGlobalStringPtr(
llvm::Twine(Pad).concat(RType.getAsString(Policy)).concat(" {\n").str());
Value *Res = CGF.Builder.CreateCall(Func, {GString});
static llvm::DenseMap<QualType, const char *> Types;
if (Types.empty()) {
Types[Context.CharTy] = "%c";
Types[Context.BoolTy] = "%d";
Types[Context.SignedCharTy] = "%hhd";
Types[Context.UnsignedCharTy] = "%hhu";
Types[Context.IntTy] = "%d";
Types[Context.UnsignedIntTy] = "%u";
Types[Context.LongTy] = "%ld";
Types[Context.UnsignedLongTy] = "%lu";
Types[Context.LongLongTy] = "%lld";
Types[Context.UnsignedLongLongTy] = "%llu";
Types[Context.ShortTy] = "%hd";
Types[Context.UnsignedShortTy] = "%hu";
Types[Context.VoidPtrTy] = "%p";
Types[Context.FloatTy] = "%f";
Types[Context.DoubleTy] = "%f";
Types[Context.LongDoubleTy] = "%Lf";
Types[Context.getPointerType(Context.CharTy)] = "%s";
Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
}
for (const auto *FD : RD->fields()) {
Value *TmpRes = nullptr;
std::string Format = llvm::Twine(ElementPad)
.concat(FD->getType().getAsString())
.concat(llvm::Twine(' '))
.concat(FD->getNameAsString())
.str();
if (FD->isBitField()) {
unsigned BitfieldWidth = FD->getBitWidthValue(CGF.getContext());
// If current field is a unnamed bitfield, we should dump only one ' '
// between type-name and ':'
if (!FD->getDeclName().isEmpty())
Format += ' ';
Format += llvm::Twine(": ").concat(llvm::Twine(BitfieldWidth)).str();
// If current field is a zero-width bitfield, we just dump a string like
// 'type-name : 0'
if (FD->isZeroSize(CGF.getContext())) {
Format += "\n";
GString = CGF.Builder.CreateGlobalStringPtr(Format);
TmpRes = CGF.Builder.CreateCall(Func, {GString});
Res = CGF.Builder.CreateAdd(Res, TmpRes);
continue;
}
}
LValue FieldLV = CGF.EmitLValueForField(RecordLV, FD);
QualType CanonicalType =
FD->getType().getUnqualifiedType().getCanonicalType();
// We check whether we are in a recursive type
if (CanonicalType->isRecordType()) {
TmpRes = dumpRecord(CGF, CanonicalType, FieldLV, Align, Func, Lvl + 1);
Res = CGF.Builder.CreateAdd(TmpRes, Res);
continue;
}
// We try to determine the best format to print the current field
const char *TypeFormat = Types.find(CanonicalType) == Types.end()
? Types[Context.VoidPtrTy]
: Types[CanonicalType];
GString = CGF.Builder.CreateGlobalStringPtr(llvm::Twine(Format)
.concat(" = ")
.concat(TypeFormat)
.concat(llvm::Twine('\n'))
.str());
RValue RV = FD->isBitField()
? CGF.EmitLoadOfBitfieldLValue(FieldLV, FD->getLocation())
: CGF.EmitLoadOfLValue(FieldLV, FD->getLocation());
TmpRes = CGF.Builder.CreateCall(Func, {GString, RV.getScalarVal()});
Res = CGF.Builder.CreateAdd(Res, TmpRes);
}
GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
Res = CGF.Builder.CreateAdd(Res, TmpRes);
return Res;
}
static bool
TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
llvm::SmallPtrSetImpl<const Decl *> &Seen) {
if (const auto *Arr = Ctx.getAsArrayType(Ty))
Ty = Ctx.getBaseElementType(Arr);
const auto *Record = Ty->getAsCXXRecordDecl();
if (!Record)
return false;
// We've already checked this type, or are in the process of checking it.
if (!Seen.insert(Record).second)
return false;
assert(Record->hasDefinition() &&
"Incomplete types should already be diagnosed");
if (Record->isDynamicClass())
return true;
for (FieldDecl *F : Record->fields()) {
if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
return true;
}
return false;
}
/// Determine if the specified type requires laundering by checking if it is a
/// dynamic class type or contains a subobject which is a dynamic class type.
static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
if (!CGM.getCodeGenOpts().StrictVTablePointers)
return false;
llvm::SmallPtrSet<const Decl *, 16> Seen;
return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
}
RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
llvm::Value *Src = EmitScalarExpr(E->getArg(0));
llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
// The builtin's shift arg may have a different type than the source arg and
// result, but the LLVM intrinsic uses the same type for all values.
llvm::Type *Ty = Src->getType();
ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
// Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
Function *F = CGM.getIntrinsic(IID, Ty);
return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
}
// Map math builtins for long-double to f128 version.
static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
switch (BuiltinID) {
#define MUTATE_LDBL(func) \
case Builtin::BI__builtin_##func##l: \
return Builtin::BI__builtin_##func##f128;
MUTATE_LDBL(sqrt)
MUTATE_LDBL(cbrt)
MUTATE_LDBL(fabs)
MUTATE_LDBL(log)
MUTATE_LDBL(log2)
MUTATE_LDBL(log10)
MUTATE_LDBL(log1p)
MUTATE_LDBL(logb)
MUTATE_LDBL(exp)
MUTATE_LDBL(exp2)
MUTATE_LDBL(expm1)
MUTATE_LDBL(fdim)
MUTATE_LDBL(hypot)
MUTATE_LDBL(ilogb)
MUTATE_LDBL(pow)
MUTATE_LDBL(fmin)
MUTATE_LDBL(fmax)
MUTATE_LDBL(ceil)
MUTATE_LDBL(trunc)
MUTATE_LDBL(rint)
MUTATE_LDBL(nearbyint)
MUTATE_LDBL(round)
MUTATE_LDBL(floor)
MUTATE_LDBL(lround)
MUTATE_LDBL(llround)
MUTATE_LDBL(lrint)
MUTATE_LDBL(llrint)
MUTATE_LDBL(fmod)
MUTATE_LDBL(modf)
MUTATE_LDBL(nan)
MUTATE_LDBL(nans)
MUTATE_LDBL(inf)
MUTATE_LDBL(fma)
MUTATE_LDBL(sin)
MUTATE_LDBL(cos)
MUTATE_LDBL(tan)
MUTATE_LDBL(sinh)
MUTATE_LDBL(cosh)
MUTATE_LDBL(tanh)
MUTATE_LDBL(asin)
MUTATE_LDBL(acos)
MUTATE_LDBL(atan)
MUTATE_LDBL(asinh)
MUTATE_LDBL(acosh)
MUTATE_LDBL(atanh)
MUTATE_LDBL(atan2)
MUTATE_LDBL(erf)
MUTATE_LDBL(erfc)
MUTATE_LDBL(ldexp)
MUTATE_LDBL(frexp)
MUTATE_LDBL(huge_val)
MUTATE_LDBL(copysign)
MUTATE_LDBL(nextafter)
MUTATE_LDBL(nexttoward)
MUTATE_LDBL(remainder)
MUTATE_LDBL(remquo)
MUTATE_LDBL(scalbln)
MUTATE_LDBL(scalbn)
MUTATE_LDBL(tgamma)
MUTATE_LDBL(lgamma)
#undef MUTATE_LDBL
default:
return BuiltinID;
}
}
RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue) {
const FunctionDecl *FD = GD.getDecl()->getAsFunction();
// See if we can constant fold this builtin. If so, don't emit it at all.
// TODO: Extend this handling to all builtin calls that we can constant-fold.
Expr::EvalResult Result;
if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
!Result.hasSideEffects()) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
Result.Val.getInt()));
if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
Result.Val.getFloat()));
}
// If current long-double semantics is IEEE 128-bit, replace math builtins
// of long-double with f128 equivalent.
// TODO: This mutation should also be applied to other targets other than PPC,
// after backend supports IEEE 128-bit style libcalls.
if (getTarget().getTriple().isPPC64() &&
&getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
// If the builtin has been declared explicitly with an assembler label,
// disable the specialized emitting below. Ideally we should communicate the
// rename in IR, or at least avoid generating the intrinsic calls that are
// likely to get lowered to the renamed library functions.
const unsigned BuiltinIDIfNoAsmLabel =
FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
// There are LLVM math intrinsics/instructions corresponding to math library
// functions except the LLVM op will never set errno while the math library
// might. Also, math builtins have the same semantics as their math library
// twins. Thus, we can transform math library and builtin calls to their
// LLVM counterparts if the call is marked 'const' (known to never set errno).
if (FD->hasAttr<ConstAttr>()) {
switch (BuiltinIDIfNoAsmLabel) {
case Builtin::BIceil:
case Builtin::BIceilf:
case Builtin::BIceill:
case Builtin::BI__builtin_ceil:
case Builtin::BI__builtin_ceilf:
case Builtin::BI__builtin_ceilf16:
case Builtin::BI__builtin_ceill:
case Builtin::BI__builtin_ceilf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::ceil,
Intrinsic::experimental_constrained_ceil));
case Builtin::BIcopysign:
case Builtin::BIcopysignf:
case Builtin::BIcopysignl:
case Builtin::BI__builtin_copysign:
case Builtin::BI__builtin_copysignf:
case Builtin::BI__builtin_copysignf16:
case Builtin::BI__builtin_copysignl:
case Builtin::BI__builtin_copysignf128:
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
case Builtin::BIcos:
case Builtin::BIcosf:
case Builtin::BIcosl:
case Builtin::BI__builtin_cos:
case Builtin::BI__builtin_cosf:
case Builtin::BI__builtin_cosf16:
case Builtin::BI__builtin_cosl:
case Builtin::BI__builtin_cosf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::cos,
Intrinsic::experimental_constrained_cos));
case Builtin::BIexp:
case Builtin::BIexpf:
case Builtin::BIexpl:
case Builtin::BI__builtin_exp:
case Builtin::BI__builtin_expf:
case Builtin::BI__builtin_expf16:
case Builtin::BI__builtin_expl:
case Builtin::BI__builtin_expf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::exp,
Intrinsic::experimental_constrained_exp));
case Builtin::BIexp2:
case Builtin::BIexp2f:
case Builtin::BIexp2l:
case Builtin::BI__builtin_exp2:
case Builtin::BI__builtin_exp2f:
case Builtin::BI__builtin_exp2f16:
case Builtin::BI__builtin_exp2l:
case Builtin::BI__builtin_exp2f128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::exp2,
Intrinsic::experimental_constrained_exp2));
case Builtin::BIfabs:
case Builtin::BIfabsf:
case Builtin::BIfabsl:
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsf16:
case Builtin::BI__builtin_fabsl:
case Builtin::BI__builtin_fabsf128:
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
case Builtin::BIfloor:
case Builtin::BIfloorf:
case Builtin::BIfloorl:
case Builtin::BI__builtin_floor:
case Builtin::BI__builtin_floorf:
case Builtin::BI__builtin_floorf16:
case Builtin::BI__builtin_floorl:
case Builtin::BI__builtin_floorf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::floor,
Intrinsic::experimental_constrained_floor));
case Builtin::BIfma:
case Builtin::BIfmaf:
case Builtin::BIfmal:
case Builtin::BI__builtin_fma:
case Builtin::BI__builtin_fmaf:
case Builtin::BI__builtin_fmaf16:
case Builtin::BI__builtin_fmal:
case Builtin::BI__builtin_fmaf128:
return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::fma,
Intrinsic::experimental_constrained_fma));
case Builtin::BIfmax:
case Builtin::BIfmaxf:
case Builtin::BIfmaxl:
case Builtin::BI__builtin_fmax:
case Builtin::BI__builtin_fmaxf:
case Builtin::BI__builtin_fmaxf16:
case Builtin::BI__builtin_fmaxl:
case Builtin::BI__builtin_fmaxf128:
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::maxnum,
Intrinsic::experimental_constrained_maxnum));
case Builtin::BIfmin:
case Builtin::BIfminf:
case Builtin::BIfminl:
case Builtin::BI__builtin_fmin:
case Builtin::BI__builtin_fminf:
case Builtin::BI__builtin_fminf16:
case Builtin::BI__builtin_fminl:
case Builtin::BI__builtin_fminf128:
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::minnum,
Intrinsic::experimental_constrained_minnum));
// fmod() is a special-case. It maps to the frem instruction rather than an
// LLVM intrinsic.
case Builtin::BIfmod:
case Builtin::BIfmodf:
case Builtin::BIfmodl:
case Builtin::BI__builtin_fmod:
case Builtin::BI__builtin_fmodf:
case Builtin::BI__builtin_fmodf16:
case Builtin::BI__builtin_fmodl:
case Builtin::BI__builtin_fmodf128: {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Value *Arg1 = EmitScalarExpr(E->getArg(0));
Value *Arg2 = EmitScalarExpr(E->getArg(1));
return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
}
case Builtin::BIlog:
case Builtin::BIlogf:
case Builtin::BIlogl:
case Builtin::BI__builtin_log:
case Builtin::BI__builtin_logf:
case Builtin::BI__builtin_logf16:
case Builtin::BI__builtin_logl:
case Builtin::BI__builtin_logf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::log,
Intrinsic::experimental_constrained_log));
case Builtin::BIlog10:
case Builtin::BIlog10f:
case Builtin::BIlog10l:
case Builtin::BI__builtin_log10:
case Builtin::BI__builtin_log10f:
case Builtin::BI__builtin_log10f16:
case Builtin::BI__builtin_log10l:
case Builtin::BI__builtin_log10f128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::log10,
Intrinsic::experimental_constrained_log10));
case Builtin::BIlog2:
case Builtin::BIlog2f:
case Builtin::BIlog2l:
case Builtin::BI__builtin_log2:
case Builtin::BI__builtin_log2f:
case Builtin::BI__builtin_log2f16:
case Builtin::BI__builtin_log2l:
case Builtin::BI__builtin_log2f128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::log2,
Intrinsic::experimental_constrained_log2));
case Builtin::BInearbyint:
case Builtin::BInearbyintf:
case Builtin::BInearbyintl:
case Builtin::BI__builtin_nearbyint:
case Builtin::BI__builtin_nearbyintf:
case Builtin::BI__builtin_nearbyintl:
case Builtin::BI__builtin_nearbyintf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::nearbyint,
Intrinsic::experimental_constrained_nearbyint));
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl:
case Builtin::BI__builtin_pow:
case Builtin::BI__builtin_powf:
case Builtin::BI__builtin_powf16:
case Builtin::BI__builtin_powl:
case Builtin::BI__builtin_powf128:
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::pow,
Intrinsic::experimental_constrained_pow));
case Builtin::BIrint:
case Builtin::BIrintf:
case Builtin::BIrintl:
case Builtin::BI__builtin_rint:
case Builtin::BI__builtin_rintf:
case Builtin::BI__builtin_rintf16:
case Builtin::BI__builtin_rintl:
case Builtin::BI__builtin_rintf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::rint,
Intrinsic::experimental_constrained_rint));
case Builtin::BIround:
case Builtin::BIroundf:
case Builtin::BIroundl:
case Builtin::BI__builtin_round:
case Builtin::BI__builtin_roundf:
case Builtin::BI__builtin_roundf16:
case Builtin::BI__builtin_roundl:
case Builtin::BI__builtin_roundf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::round,
Intrinsic::experimental_constrained_round));
case Builtin::BIsin:
case Builtin::BIsinf:
case Builtin::BIsinl:
case Builtin::BI__builtin_sin:
case Builtin::BI__builtin_sinf:
case Builtin::BI__builtin_sinf16:
case Builtin::BI__builtin_sinl:
case Builtin::BI__builtin_sinf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::sin,
Intrinsic::experimental_constrained_sin));
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl:
case Builtin::BI__builtin_sqrt:
case Builtin::BI__builtin_sqrtf:
case Builtin::BI__builtin_sqrtf16:
case Builtin::BI__builtin_sqrtl:
case Builtin::BI__builtin_sqrtf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::sqrt,
Intrinsic::experimental_constrained_sqrt));
case Builtin::BItrunc:
case Builtin::BItruncf:
case Builtin::BItruncl:
case Builtin::BI__builtin_trunc:
case Builtin::BI__builtin_truncf:
case Builtin::BI__builtin_truncf16:
case Builtin::BI__builtin_truncl:
case Builtin::BI__builtin_truncf128:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
Intrinsic::trunc,
Intrinsic::experimental_constrained_trunc));
case Builtin::BIlround:
case Builtin::BIlroundf:
case Builtin::BIlroundl:
case Builtin::BI__builtin_lround:
case Builtin::BI__builtin_lroundf:
case Builtin::BI__builtin_lroundl:
case Builtin::BI__builtin_lroundf128:
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
*this, E, Intrinsic::lround,
Intrinsic::experimental_constrained_lround));
case Builtin::BIllround:
case Builtin::BIllroundf:
case Builtin::BIllroundl:
case Builtin::BI__builtin_llround:
case Builtin::BI__builtin_llroundf:
case Builtin::BI__builtin_llroundl:
case Builtin::BI__builtin_llroundf128:
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
*this, E, Intrinsic::llround,
Intrinsic::experimental_constrained_llround));
case Builtin::BIlrint:
case Builtin::BIlrintf:
case Builtin::BIlrintl:
case Builtin::BI__builtin_lrint:
case Builtin::BI__builtin_lrintf:
case Builtin::BI__builtin_lrintl:
case Builtin::BI__builtin_lrintf128:
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
*this, E, Intrinsic::lrint,
Intrinsic::experimental_constrained_lrint));
case Builtin::BIllrint:
case Builtin::BIllrintf:
case Builtin::BIllrintl:
case Builtin::BI__builtin_llrint:
case Builtin::BI__builtin_llrintf:
case Builtin::BI__builtin_llrintl:
case Builtin::BI__builtin_llrintf128:
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
*this, E, Intrinsic::llrint,
Intrinsic::experimental_constrained_llrint));
default:
break;
}
}
switch (BuiltinIDIfNoAsmLabel) {
default: break;
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__va_start:
case Builtin::BI__builtin_va_end:
return RValue::get(
EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
? EmitScalarExpr(E->getArg(0))
: EmitVAListRef(E->getArg(0)).getPointer(),
BuiltinID != Builtin::BI__builtin_va_end));
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
llvm::Type *Type = Int8PtrTy;
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
{DstPtr, SrcPtr}));
}
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs: {
// X < 0 ? -X : X
// The negation has 'nsw' because abs of INT_MIN is undefined.
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_complex: {
Value *Real = EmitScalarExpr(E->getArg(0));
Value *Imag = EmitScalarExpr(E->getArg(1));
return RValue::getComplex({Real, Imag});
}
case Builtin::BI__builtin_conj:
case Builtin::BI__builtin_conjf:
case Builtin::BI__builtin_conjl:
case Builtin::BIconj:
case Builtin::BIconjf:
case Builtin::BIconjl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = ComplexVal.first;
Value *Imag = ComplexVal.second;
Imag = Builder.CreateFNeg(Imag, "neg");
return RValue::getComplex(std::make_pair(Real, Imag));
}
case Builtin::BI__builtin_creal:
case Builtin::BI__builtin_crealf:
case Builtin::BI__builtin_creall:
case Builtin::BIcreal:
case Builtin::BIcrealf:
case Builtin::BIcreall: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.first);
}
case Builtin::BI__builtin_dump_struct: {
llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
QualType Arg0Type = Arg0->getType()->getPointeeType();
Value *RecordPtr = EmitScalarExpr(Arg0);
LValue RecordLV = MakeAddrLValue(RecordPtr, Arg0Type, Arg0Align);
Value *Res = dumpRecord(*this, Arg0Type, RecordLV, Arg0Align,
{LLVMFuncType, Func}, 0);
return RValue::get(Res);
}
case Builtin::BI__builtin_preserve_access_index: {
// Only enabled preserved access index region when debuginfo
// is available as debuginfo is needed to preserve user-level
// access pattern.
if (!getDebugInfo()) {
CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
// Nested builtin_preserve_access_index() not supported
if (IsInPreservedAIRegion) {
CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
IsInPreservedAIRegion = true;
Value *Res = EmitScalarExpr(E->getArg(0));
IsInPreservedAIRegion = false;
return RValue::get(Res);
}
case Builtin::BI__builtin_cimag:
case Builtin::BI__builtin_cimagf:
case Builtin::BI__builtin_cimagl:
case Builtin::BIcimag:
case Builtin::BIcimagf:
case Builtin::BIcimagl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.second);
}
case Builtin::BI__builtin_clrsb:
case Builtin::BI__builtin_clrsbl:
case Builtin::BI__builtin_clrsbll: {
// clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
Value *Inverse = Builder.CreateNot(ArgValue, "not");
Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ctzs:
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clzs:
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp =
Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
llvm::ConstantInt::get(ArgType, 1));
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue);
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__lzcnt16:
case Builtin::BI__lzcnt:
case Builtin::BI__lzcnt64: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__popcnt16:
case Builtin::BI__popcnt:
case Builtin::BI__popcnt64:
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_unpredictable: {
// Always return the argument of __builtin_unpredictable. LLVM does not
// handle this builtin. Metadata for this builtin should be added directly
// to instructions such as branches or switches that use it.
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
case Builtin::BI__builtin_expect: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
// Don't generate llvm.expect on -O0 as the backend won't use it for
// anything.
// Note, we still IRGen ExpectedValue because it could have side-effects.
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
return RValue::get(ArgValue);
Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
Value *Result =
Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect_with_probability: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
llvm::APFloat Probability(0.0);
const Expr *ProbArg = E->getArg(2);
bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
assert(EvalSucceed && "probability should be able to evaluate as float");
(void)EvalSucceed;
bool LoseInfo = false;
Probability.convert(llvm::APFloat::IEEEdouble(),
llvm::RoundingMode::Dynamic, &LoseInfo);
llvm::Type *Ty = ConvertType(ProbArg->getType());
Constant *Confidence = ConstantFP::get(Ty, Probability);
// Don't generate llvm.expect.with.probability on -O0 as the backend
// won't use it for anything.
// Note, we still IRGen ExpectedValue because it could have side-effects.
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
return RValue::get(ArgValue);
Function *FnExpect =
CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
Value *Result = Builder.CreateCall(
FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_assume_aligned: {
const Expr *Ptr = E->getArg(0);
Value *PtrValue = EmitScalarExpr(Ptr);
Value *OffsetValue =
(E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
llvm::Value::MaximumAlignment);
emitAlignmentAssumption(PtrValue, Ptr,
/*The expr loc is sufficient.*/ SourceLocation(),
AlignmentCI, OffsetValue);
return RValue::get(PtrValue);
}
case Builtin::BI__assume:
case Builtin::BI__builtin_assume: {
if (E->getArg(0)->HasSideEffects(getContext()))
return RValue::get(nullptr);
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
}
case Builtin::BI__arithmetic_fence: {
// Create the builtin call if FastMath is selected, and the target
// supports the builtin, otherwise just return the argument.
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
llvm::FastMathFlags FMF = Builder.getFastMathFlags();
bool isArithmeticFenceEnabled =
FMF.allowReassoc() &&
getContext().getTargetInfo().checkArithmeticFenceSupported();
QualType ArgType = E->getArg(0)->getType();
if (ArgType->isComplexType()) {
if (isArithmeticFenceEnabled) {
QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
ConvertType(ElementType));
Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
ConvertType(ElementType));
return RValue::getComplex(std::make_pair(Real, Imag));
}
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = ComplexVal.first;
Value *Imag = ComplexVal.second;
return RValue::getComplex(std::make_pair(Real, Imag));
}
Value *ArgValue = EmitScalarExpr(E->getArg(0));
if (isArithmeticFenceEnabled)
return RValue::get(
Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
return RValue::get(ArgValue);
}
case Builtin::BI__builtin_bswap16:
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64:
case Builtin::BI_byteswap_ushort:
case Builtin::BI_byteswap_ulong:
case Builtin::BI_byteswap_uint64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
}
case Builtin::BI__builtin_bitreverse8:
case Builtin::BI__builtin_bitreverse16:
case Builtin::BI__builtin_bitreverse32:
case Builtin::BI__builtin_bitreverse64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
}
case Builtin::BI__builtin_rotateleft8:
case Builtin::BI__builtin_rotateleft16:
case Builtin::BI__builtin_rotateleft32:
case Builtin::BI__builtin_rotateleft64:
case Builtin::BI_rotl8: // Microsoft variants of rotate left
case Builtin::BI_rotl16:
case Builtin::BI_rotl:
case Builtin::BI_lrotl:
case Builtin::BI_rotl64:
return emitRotate(E, false);
case Builtin::BI__builtin_rotateright8:
case Builtin::BI__builtin_rotateright16:
case Builtin::BI__builtin_rotateright32:
case Builtin::BI__builtin_rotateright64:
case Builtin::BI_rotr8: // Microsoft variants of rotate right
case Builtin::BI_rotr16:
case Builtin::BI_rotr:
case Builtin::BI_lrotr:
case Builtin::BI_rotr64:
return emitRotate(E, true);
case Builtin::BI__builtin_constant_p: {
llvm::Type *ResultType = ConvertType(E->getType());
const Expr *Arg = E->getArg(0);
QualType ArgType = Arg->getType();
// FIXME: The allowance for Obj-C pointers and block pointers is historical
// and likely a mistake.
if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
!ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
// Per the GCC documentation, only numeric constants are recognized after
// inlining.
return RValue::get(ConstantInt::get(ResultType, 0));
if (Arg->HasSideEffects(getContext()))
// The argument is unevaluated, so be conservative if it might have
// side-effects.
return RValue::get(ConstantInt::get(ResultType, 0));
Value *ArgValue = EmitScalarExpr(Arg);
if (ArgType->isObjCObjectPointerType()) {
// Convert Objective-C objects to id because we cannot distinguish between
// LLVM types for Obj-C classes as they are opaque.
ArgType = CGM.getContext().getObjCIdType();
ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
}
Function *F =
CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
return RValue::get(Result);
}
case Builtin::BI__builtin_dynamic_object_size:
case Builtin::BI__builtin_object_size: {
unsigned Type =
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
// We pass this builtin onto the optimizer so that it can figure out the
// object size in more complex cases.
bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
/*EmittedE=*/nullptr, IsDynamic));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(Int32Ty, 3);
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
}
case Builtin::BI__builtin_readcyclecounter: {
Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin___clear_cache: {
Value *Begin = EmitScalarExpr(E->getArg(0));
Value *End = EmitScalarExpr(E->getArg(1));
Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
return RValue::get(Builder.CreateCall(F, {Begin, End}));
}
case Builtin::BI__builtin_trap:
return RValue::get(EmitTrapCall(Intrinsic::trap));
case Builtin::BI__debugbreak:
return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
case Builtin::BI__builtin_unreachable: {
EmitUnreachable(E->getExprLoc());
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("unreachable.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
if (Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
Src0->getType());
return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
}
Function *F = CGM.getIntrinsic(Intrinsic::powi,
{ Src0->getType(), Src1->getType() });
return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: llvm_unreachable("Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isnan: {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Value *V = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = V->getType();
const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
if (!Builder.getIsFPConstrained() ||
Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
!Ty->isIEEE()) {
V = Builder.CreateFCmpUNO(V, V, "cmp");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
return RValue::get(Result);
// NaN has all exp bits set and a non zero significand. Therefore:
// isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
unsigned bitsize = Ty->getScalarSizeInBits();
llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
Value *IntV = Builder.CreateBitCast(V, IntTy);
APInt AndMask = APInt::getSignedMaxValue(bitsize);
Value *AbsV =
Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
Value *Sub =
Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
// V = sign bit (Sub) <=> V = (Sub < 0)
V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
if (bitsize > 32)
V = Builder.CreateTrunc(V, ConvertType(E->getType()));
return RValue::get(V);
}
case Builtin::BI__builtin_elementwise_abs: {
Value *Result;
QualType QT = E->getArg(0)->getType();
if (auto *VecTy = QT->getAs<VectorType>())
QT = VecTy->getElementType();
if (QT->isIntegerType())
Result = Builder.CreateBinaryIntrinsic(
llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
Builder.getFalse(), nullptr, "elt.abs");
else
Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_elementwise_ceil:
return RValue::get(
emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
case Builtin::BI__builtin_elementwise_floor:
return RValue::get(
emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
case Builtin::BI__builtin_elementwise_roundeven:
return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
"elt.roundeven"));
case Builtin::BI__builtin_elementwise_trunc:
return RValue::get(
emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
case Builtin::BI__builtin_elementwise_add_sat:
case Builtin::BI__builtin_elementwise_sub_sat: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Result;
assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
QualType Ty = E->getArg(0)->getType();
if (auto *VecTy = Ty->getAs<VectorType>())
Ty = VecTy->getElementType();
bool IsSigned = Ty->isSignedIntegerType();
unsigned Opc;
if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
else
Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
return RValue::get(Result);
}
case Builtin::BI__builtin_elementwise_max: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Result;
if (Op0->getType()->isIntOrIntVectorTy()) {
QualType Ty = E->getArg(0)->getType();
if (auto *VecTy = Ty->getAs<VectorType>())
Ty = VecTy->getElementType();
Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
? llvm::Intrinsic::smax
: llvm::Intrinsic::umax,
Op0, Op1, nullptr, "elt.max");
} else
Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
return RValue::get(Result);
}
case Builtin::BI__builtin_elementwise_min: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Result;
if (Op0->getType()->isIntOrIntVectorTy()) {
QualType Ty = E->getArg(0)->getType();
if (auto *VecTy = Ty->getAs<VectorType>())
Ty = VecTy->getElementType();
Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
? llvm::Intrinsic::smin
: llvm::Intrinsic::umin,
Op0, Op1, nullptr, "elt.min");
} else
Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
return RValue::get(Result);
}
case Builtin::BI__builtin_reduce_max: {
auto GetIntrinsicID = [](QualType QT) {
if (auto *VecTy = QT->getAs<VectorType>())
QT = VecTy->getElementType();
if (QT->isSignedIntegerType())
return llvm::Intrinsic::vector_reduce_smax;
if (QT->isUnsignedIntegerType())
return llvm::Intrinsic::vector_reduce_umax;
assert(QT->isFloatingType() && "must have a float here");
return llvm::Intrinsic::vector_reduce_fmax;
};
return RValue::get(emitUnaryBuiltin(
*this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
}
case Builtin::BI__builtin_reduce_min: {
auto GetIntrinsicID = [](QualType QT) {
if (auto *VecTy = QT->getAs<VectorType>())
QT = VecTy->getElementType();
if (QT->isSignedIntegerType())
return llvm::Intrinsic::vector_reduce_smin;
if (QT->isUnsignedIntegerType())
return llvm::Intrinsic::vector_reduce_umin;
assert(QT->isFloatingType() && "must have a float here");
return llvm::Intrinsic::vector_reduce_fmin;
};
return RValue::get(emitUnaryBuiltin(
*this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
}
case Builtin::BI__builtin_reduce_xor:
return RValue::get(emitUnaryBuiltin(
*this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
case Builtin::BI__builtin_reduce_or:
return RValue::get(emitUnaryBuiltin(
*this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
case Builtin::BI__builtin_reduce_and:
return RValue::get(emitUnaryBuiltin(
*this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
case Builtin::BI__builtin_matrix_transpose: {
auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
Value *MatValue = EmitScalarExpr(E->getArg(0));
MatrixBuilder MB(Builder);
Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
MatrixTy->getNumColumns());
return RValue::get(Result);
}
case Builtin::BI__builtin_matrix_column_major_load: {
MatrixBuilder MB(Builder);
// Emit everything that isn't dependent on the first parameter type
Value *Stride = EmitScalarExpr(E->getArg(3));
const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
assert(PtrTy && "arg0 must be of pointer type");
bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
Address Src = EmitPointerWithAlignment(E->getArg(0));
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Value *Result = MB.CreateColumnMajorLoad(
Src.getElementType(), Src.getPointer(),
Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
ResultTy->getNumRows(), ResultTy->getNumColumns(),
"matrix");
return RValue::get(Result);
}
case Builtin::BI__builtin_matrix_column_major_store: {
MatrixBuilder MB(Builder);
Value *Matrix = EmitScalarExpr(E->getArg(0));
Address Dst = EmitPointerWithAlignment(E->getArg(1));
Value *Stride = EmitScalarExpr(E->getArg(2));
const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
assert(PtrTy && "arg1 must be of pointer type");
bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 0);
Value *Result = MB.CreateColumnMajorStore(
Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
return RValue::get(Result);
}
case Builtin::BIfinite:
case Builtin::BI__finite:
case Builtin::BIfinitef:
case Builtin::BI__finitef:
case Builtin::BIfinitel:
case Builtin::BI__finitel:
case Builtin::BI__builtin_isinf:
case Builtin::BI__builtin_isfinite: {
// isinf(x) --> fabs(x) == infinity
// isfinite(x) --> fabs(x) != infinity
// x != NaN via the ordered compare in either case.
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Value *V = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = V->getType();
if (!Builder.getIsFPConstrained() ||
Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
!Ty->isIEEE()) {
Value *Fabs = EmitFAbs(*this, V);
Constant *Infinity = ConstantFP::getInfinity(V->getType());
CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
? CmpInst::FCMP_OEQ
: CmpInst::FCMP_ONE;
Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
}
if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
return RValue::get(Result);
// Inf values have all exp bits set and a zero significand. Therefore:
// isinf(V) == ((V << 1) == ((exp mask) << 1))
// isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
unsigned bitsize = Ty->getScalarSizeInBits();
llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
Value *IntV = Builder.CreateBitCast(V, IntTy);
Value *Shl1 = Builder.CreateShl(IntV, 1);
const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
if (BuiltinID == Builtin::BI__builtin_isinf)
V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
else
V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf_sign: {
// isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
Value *Arg = EmitScalarExpr(E->getArg(0));
Value *AbsArg = EmitFAbs(*this, Arg);
Value *IsInf = Builder.CreateFCmpOEQ(
AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
Value *IsNeg = EmitSignBit(*this, Arg);
llvm::Type *IntTy = ConvertType(E->getType());
Value *Zero = Constant::getNullValue(IntTy);
Value *One = ConstantInt::get(IntTy, 1);
Value *NegativeOne = ConstantInt::get(IntTy, -1);
Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
return RValue::get(Result);
}
case Builtin::BI__builtin_isnormal: {
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V);
Value *IsLessThanInf =
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
V = Builder.CreateAnd(V, IsNormal, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_flt_rounds: {
Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_fpclassify: {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
Value *V = EmitScalarExpr(E->getArg(5));
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
// Create Result
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result =
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
"fpclassify_result");
// if (V==0) return FP_ZERO
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
"iszero");
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ZeroLiteral, Begin);
// if (V != V) return FP_NAN
Builder.SetInsertPoint(NotZero);
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
Builder.CreateCondBr(IsNan, End, NotNan);
Result->addIncoming(NanLiteral, NotZero);
// if (fabs(V) == infinity) return FP_INFINITY
Builder.SetInsertPoint(NotNan);
Value *VAbs = EmitFAbs(*this, V);
Value *IsInf =
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
"isinf");
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
Builder.CreateCondBr(IsInf, End, NotInf);
Result->addIncoming(InfLiteral, NotNan);
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
Builder.SetInsertPoint(NotInf);
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
Value *NormalResult =
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)));
Builder.CreateBr(End);
Result->addIncoming(NormalResult, NotInf);
// return Result
Builder.SetInsertPoint(End);
return RValue::get(Result);
}
case Builtin::BIalloca:
case Builtin::BI_alloca:
case Builtin::BI__builtin_alloca_uninitialized:
case Builtin::BI__builtin_alloca: {
Value *Size = EmitScalarExpr(E->getArg(0));
const TargetInfo &TI = getContext().getTargetInfo();
// The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
const Align SuitableAlignmentInBytes =
CGM.getContext()
.toCharUnitsFromBits(TI.getSuitableAlign())
.getAsAlign();
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
AI->setAlignment(SuitableAlignmentInBytes);
if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
return RValue::get(AI);
}
case Builtin::BI__builtin_alloca_with_align_uninitialized:
case Builtin::BI__builtin_alloca_with_align: {
Value *Size = EmitScalarExpr(E->getArg(0));
Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
const Align AlignmentInBytes =
CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
AI->setAlignment(AlignmentInBytes);
if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
initializeAlloca(*this, AI, Size, AlignmentInBytes);
return RValue::get(AI);
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *SizeVal = EmitScalarExpr(E->getArg(1));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
return RValue::get(nullptr);
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy:
case Builtin::BImempcpy:
case Builtin::BI__builtin_mempcpy: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
if (BuiltinID == Builtin::BImempcpy ||
BuiltinID == Builtin::BI__builtin_mempcpy)
return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
Dest.getPointer(), SizeVal));
else
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_memcpy_inline: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
uint64_t Size =
E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemCpyInline(Dest, Src, Size);
return RValue::get(nullptr);
}
case Builtin::BI__builtin_char_memchr:
BuiltinID = Builtin::BI__builtin_memchr;
break;
case Builtin::BI__builtin___memcpy_chk: {
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
Expr::EvalResult SizeResult, DstSizeResult;
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
break;
llvm::APSInt Size = SizeResult.Val.getInt();
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_objc_memmove_collectable: {
Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
DestAddr, SrcAddr, SizeVal);
return RValue::get(DestAddr.getPointer());
}
case Builtin::BI__builtin___memmove_chk: {
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
Expr::EvalResult SizeResult, DstSizeResult;
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
break;
llvm::APSInt Size = SizeResult.Val.getInt();
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin___memset_chk: {
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
Expr::EvalResult SizeResult, DstSizeResult;
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
break;
llvm::APSInt Size = SizeResult.Val.getInt();
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_wmemchr: {
// The MSVC runtime library does not provide a definition of wmemchr, so we
// need an inline implementation.
if (!getTarget().getTriple().isOSMSVCRT())
break;
llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
Value *Str = EmitScalarExpr(E->getArg(0));
Value *Chr = EmitScalarExpr(E->getArg(1));
Value *Size = EmitScalarExpr(E->getArg(2));
BasicBlock *Entry = Builder.GetInsertBlock();
BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
BasicBlock *Next = createBasicBlock("wmemchr.next");
BasicBlock *Exit = createBasicBlock("wmemchr.exit");
Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
EmitBlock(CmpEq);
PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
StrPhi->addIncoming(Str, Entry);
PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
SizePhi->addIncoming(Size, Entry);
CharUnits WCharAlign =
getContext().getTypeAlignInChars(getContext().WCharTy);
Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
Builder.CreateCondBr(StrEqChr, Exit, Next);
EmitBlock(Next);
Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
Value *NextSizeEq0 =
Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
StrPhi->addIncoming(NextStr, Next);
SizePhi->addIncoming(NextSize, Next);
EmitBlock(Exit);
PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
Ret->addIncoming(FoundChr, CmpEq);
return RValue::get(Ret);
}
case Builtin::BI__builtin_wmemcmp: {
// The MSVC runtime library does not provide a definition of wmemcmp, so we
// need an inline implementation.
if (!getTarget().getTriple().isOSMSVCRT())
break;
llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
Value *Dst = EmitScalarExpr(E->getArg(0));
Value *Src = EmitScalarExpr(E->getArg(1));
Value *Size = EmitScalarExpr(E->getArg(2));
BasicBlock *Entry = Builder.GetInsertBlock();
BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
BasicBlock *Next = createBasicBlock("wmemcmp.next");
BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
EmitBlock(CmpGT);
PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
DstPhi->addIncoming(Dst, Entry);
PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
SrcPhi->addIncoming(Src, Entry);
PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
SizePhi->addIncoming(Size, Entry);
CharUnits WCharAlign =
getContext().getTypeAlignInChars(getContext().WCharTy);
Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
EmitBlock(CmpLT);
Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
Builder.CreateCondBr(DstLtSrc, Exit, Next);
EmitBlock(Next);
Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
Value *NextSizeEq0 =
Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
DstPhi->addIncoming(NextDst, Next);
SrcPhi->addIncoming(NextSrc, Next);
SizePhi->addIncoming(NextSize, Next);
EmitBlock(Exit);
PHINode *Ret = Builder.CreatePHI(IntTy, 4);
Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
return RValue::get(Ret);
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
return RValue::get(Builder.CreateCall(F,
llvm::ConstantInt::get(Int32Ty, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
getContext().UnsignedIntTy);
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI_ReturnAddress: {
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
getContext().UnsignedIntTy);
Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Function *F =
CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64);
Builder.CreateCall(F, {Int, Ptr});
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_unwind_init: {
Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
case Builtin::BI__builtin_setjmp: {
// Buffer is a void**.
Address Buf = EmitPointerWithAlignment(E->getArg(0));
// Store the frame pointer to the setjmp buffer.
Value *FrameAddr = Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
ConstantInt::get(Int32Ty, 0));
Builder.CreateStore(FrameAddr, Buf);
// Store the stack pointer to the setjmp buffer.
Value *StackAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
Builder.CreateStore(StackAddr, StackSaveSlot);
// Call LLVM's EH setjmp, which is lightweight.
Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
}
case Builtin::BI__builtin_longjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
// Call LLVM's EH longjmp, which is lightweight.
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
// longjmp doesn't return; mark this as unreachable.
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("longjmp.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_launder: {
const Expr *Arg = E->getArg(0);
QualType ArgTy = Arg->getType()->getPointeeType();
Value *Ptr = EmitScalarExpr(Arg);
if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
return RValue::get(Ptr);
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_swap:
llvm_unreachable("Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
llvm::Instruction::And, true);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
StoreSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
StoreSize);
Store->setAtomic(llvm::AtomicOrdering::Release);
return RValue::get(nullptr);
}
case Builtin::BI__sync_synchronize: {
// We assume this is supposed to correspond to a C++0x-style
// sequentially-consistent fence (i.e. this is only usable for
// synchronization, not device I/O or anything like that). This intrinsic
// is really badly designed in the sense that in theory, there isn't
// any way to safely use it... but in practice, it mostly works
// to use it with non-atomic loads and stores to get acquire/release
// semantics.
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
return RValue::get(nullptr);
}
case Builtin::BI__builtin_nontemporal_load:
return RValue::get(EmitNontemporalLoad(*this, E));
case Builtin::BI__builtin_nontemporal_store:
return RValue::get(EmitNontemporalStore(*this, E));
case Builtin::BI__c11_atomic_is_lock_free:
case Builtin::BI__atomic_is_lock_free: {
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
// _Atomic(T) is always properly-aligned.
const char *LibCallName = "__atomic_is_lock_free";
CallArgList Args;
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
getContext().getSizeType());
if (BuiltinID == Builtin::BI__atomic_is_lock_free)
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
getContext().VoidPtrTy);
else
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
getContext().VoidPtrTy);
const CGFunctionInfo &FuncInfo =
CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
return EmitCall(FuncInfo, CGCallee::forDirect(Func),
ReturnValueSlot(), Args);
}
case Builtin::BI__atomic_test_and_set: {
// Look at the argument type to determine whether this is a volatile
// operation. The parameter type is always volatile.
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *Ptr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(1);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
AtomicRMWInst *Result = nullptr;
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Monotonic);
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Acquire);
break;
case 3: // memory_order_release
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Release);
break;
case 4: // memory_order_acq_rel
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::AcquireRelease);
break;
case 5: // memory_order_seq_cst
Result = Builder.CreateAtomicRMW(
llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
Result->setVolatile(Volatile);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[5] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("acquire", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("acqrel", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[5] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
Builder.SetInsertPoint(ContBB);
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
for (unsigned i = 0; i < 5; ++i) {
Builder.SetInsertPoint(BBs[i]);
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal, Orders[i]);
RMW->setVolatile(Volatile);
Result->addIncoming(RMW, BBs[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(1), BBs[1]);
SI->addCase(Builder.getInt32(2), BBs[1]);
SI->addCase(Builder.getInt32(3), BBs[2]);
SI->addCase(Builder.getInt32(4), BBs[3]);
SI->addCase(Builder.getInt32(5), BBs[4]);
Builder.SetInsertPoint(ContBB);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
case Builtin::BI__atomic_clear: {
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Address Ptr = EmitPointerWithAlignment(E->getArg(0));
Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
Value *NewVal = Builder.getInt8(0);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Store->setOrdering(llvm::AtomicOrdering::Monotonic);
break;
case 3: // memory_order_release
Store->setOrdering(llvm::AtomicOrdering::Release);
break;
case 5: // memory_order_seq_cst
Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[3] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[3] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
for (unsigned i = 0; i < 3; ++i) {
Builder.SetInsertPoint(BBs[i]);
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
Store->setOrdering(Orders[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(3), BBs[1]);
SI->addCase(Builder.getInt32(5), BBs[2]);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
case Builtin::BI__atomic_thread_fence:
case Builtin::BI__atomic_signal_fence:
case Builtin::BI__c11_atomic_thread_fence:
case Builtin::BI__c11_atomic_signal_fence: {
llvm::SyncScope::ID SSID;
if (BuiltinID == Builtin::BI__atomic_signal_fence ||
BuiltinID == Builtin::BI__c11_atomic_signal_fence)
SSID = llvm::SyncScope::SingleThread;
else
SSID = llvm::SyncScope::System;
Value *Order = EmitScalarExpr(E->getArg(0));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
break;
case 3: // memory_order_release
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
break;
case 4: // memory_order_acq_rel
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
break;
case 5: // memory_order_seq_cst
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
AcquireBB = createBasicBlock("acquire", CurFn);
ReleaseBB = createBasicBlock("release", CurFn);
AcqRelBB = createBasicBlock("acqrel", CurFn);
SeqCstBB = createBasicBlock("seqcst", CurFn);
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
Builder.SetInsertPoint(AcquireBB);
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(1), AcquireBB);
SI->addCase(Builder.getInt32(2), AcquireBB);
Builder.SetInsertPoint(ReleaseBB);
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(3), ReleaseBB);
Builder.SetInsertPoint(AcqRelBB);
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(4), AcqRelBB);
Builder.SetInsertPoint(SeqCstBB);
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(5), SeqCstBB);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
return RValue::get(
Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
ConvertType(E->getType())));
}
case Builtin::BI__warn_memset_zero_len:
return RValue::getIgnored();
case Builtin::BI__annotation: {
// Re-encode each wide string to UTF8 and make an MDString.
SmallVector<Metadata *, 1> Strings;
for (const Expr *Arg : E->arguments()) {
const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
assert(Str->getCharByteWidth() == 2);
StringRef WideBytes = Str->getBytes();
std::string StrUtf8;
if (!convertUTF16ToUTF8String(
makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
continue;
}
Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
}
// Build and MDTuple of MDStrings and emit the intrinsic call.
llvm::Function *F =
CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
return RValue::getIgnored();
}
case Builtin::BI__builtin_annotation: {
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
AnnVal->getType());
// Get the annotation string, go through casts. Sema requires this to be a
// non-wide string literal, potentially casted, so the cast<> is safe.
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
return RValue::get(
EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
}
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll: {
// We translate all of these builtins from expressions of the form:
// int x = ..., y = ..., carryin = ..., carryout, result;
// result = __builtin_addc(x, y, carryin, &carryout);
//
// to LLVM IR of the form:
//
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
// %carry1 = extractvalue {i32, i1} %tmp1, 1
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
// i32 %carryin)
// %result = extractvalue {i32, i1} %tmp2, 0
// %carry2 = extractvalue {i32, i1} %tmp2, 1
// %tmp3 = or i1 %carry1, %carry2
// %tmp4 = zext i1 %tmp3 to i32
// store i32 %tmp4, i32* %carryout
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown multiprecision builtin id.");
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
}
// Construct our resulting LLVM IR expression.
llvm::Value *Carry1;
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
X, Y, Carry1);
llvm::Value *Carry2;
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
Sum1, Carryin, Carry2);
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
X->getType());
Builder.CreateStore(CarryOut, CarryOutPtr);
return RValue::get(Sum2);
}
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_mul_overflow: {
const clang::Expr *LeftArg = E->getArg(0);
const clang::Expr *RightArg = E->getArg(1);
const clang::Expr *ResultArg = E->getArg(2);
clang::QualType ResultQTy =
ResultArg->getType()->castAs<PointerType>()->getPointeeType();
WidthAndSignedness LeftInfo =
getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
WidthAndSignedness RightInfo =
getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
WidthAndSignedness ResultInfo =
getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
// Handle mixed-sign multiplication as a special case, because adding
// runtime or backend support for our generic irgen would be too expensive.
if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
RightInfo, ResultArg, ResultQTy,
ResultInfo);
if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
ResultInfo))
return EmitCheckedUnsignedMultiplySignedResult(
*this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
ResultInfo);
WidthAndSignedness EncompassingInfo =
EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
llvm::Type *EncompassingLLVMTy =
llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default:
llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_add_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::sadd_with_overflow
: llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_sub_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::ssub_with_overflow
: llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_mul_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::smul_with_overflow
: llvm::Intrinsic::umul_with_overflow;
break;
}
llvm::Value *Left = EmitScalarExpr(LeftArg);
llvm::Value *Right = EmitScalarExpr(RightArg);
Address ResultPtr = EmitPointerWithAlignment(ResultArg);
// Extend each operand to the encompassing type.
Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
// Perform the operation on the extended values.
llvm::Value *Overflow, *Result;
Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
if (EncompassingInfo.Width > ResultInfo.Width) {
// The encompassing type is wider than the result type, so we need to
// truncate it.
llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
// To see if the truncation caused an overflow, we will extend
// the result and then compare it to the original result.
llvm::Value *ResultTruncExt = Builder.CreateIntCast(
ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
llvm::Value *TruncationOverflow =
Builder.CreateICmpNE(Result, ResultTruncExt);
Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
Result = ResultTrunc;
}
// Finally, store the result using the pointer.
bool isVolatile =
ResultArg->getType()->getPointeeType().isVolatileQualified();
Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
return RValue::get(Overflow);
}
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow: {
// We translate all of these builtins directly to the relevant llvm IR node.
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
// Decide which of the overflow intrinsics we are lowering to:
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
IntrinsicId = llvm::Intrinsic::umul_with_overflow;
break;
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
break;
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
break;
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
IntrinsicId = llvm::Intrinsic::smul_with_overflow;
break;
}
llvm::Value *Carry;
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
Builder.CreateStore(Sum, SumOutPtr);
return RValue::get(Carry);
}
case Builtin::BIaddressof:
case Builtin::BI__addressof:
case Builtin::BI__builtin_addressof:
return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
case Builtin::BI__builtin_function_start:
return RValue::get(CGM.GetFunctionStart(
E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
case Builtin::BI__builtin_operator_new:
return EmitBuiltinNewDeleteCall(
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
case Builtin::BI__builtin_operator_delete:
return EmitBuiltinNewDeleteCall(
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
case Builtin::BI__builtin_is_aligned:
return EmitBuiltinIsAligned(E);
case Builtin::BI__builtin_align_up:
return EmitBuiltinAlignTo(E, true);
case Builtin::BI__builtin_align_down:
return EmitBuiltinAlignTo(E, false);
case Builtin::BI__noop:
// __noop always evaluates to an integer literal zero.
return RValue::get(ConstantInt::get(IntTy, 0));
case Builtin::BI__builtin_call_with_static_chain: {
const CallExpr *Call = cast<CallExpr>(E->getArg(0));
const Expr *Chain = E->getArg(1);
return EmitCall(Call->getCallee()->getType(),
EmitCallee(Call->getCallee()), Call, ReturnValue,
EmitScalarExpr(Chain));
}
case Builtin::BI_InterlockedExchange8:
case Builtin::BI_InterlockedExchange16:
case Builtin::BI_InterlockedExchange:
case Builtin::BI_InterlockedExchangePointer:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
case Builtin::BI_InterlockedCompareExchangePointer:
case Builtin::BI_InterlockedCompareExchangePointer_nf: {
llvm::Type *RTy;
llvm::IntegerType *IntType =
IntegerType::get(getLLVMContext(),
getContext().getTypeSize(E->getType()));
llvm::Type *IntPtrType = IntType->getPointerTo();
llvm::Value *Destination =
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
RTy = Exchange->getType();
Exchange = Builder.CreatePtrToInt(Exchange, IntType);
llvm::Value *Comparand =
Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
auto Ordering =
BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
Ordering, Ordering);
Result->setVolatile(true);
return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
0),
RTy));
}
case Builtin::BI_InterlockedCompareExchange8:
case Builtin::BI_InterlockedCompareExchange16:
case Builtin::BI_InterlockedCompareExchange:
case Builtin::BI_InterlockedCompareExchange64:
return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
case Builtin::BI_InterlockedIncrement16:
case Builtin::BI_InterlockedIncrement:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
case Builtin::BI_InterlockedDecrement16:
case Builtin::BI_InterlockedDecrement:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
case Builtin::BI_InterlockedAnd8:
case Builtin::BI_InterlockedAnd16:
case Builtin::BI_InterlockedAnd:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
case Builtin::BI_InterlockedExchangeAdd8:
case Builtin::BI_InterlockedExchangeAdd16:
case Builtin::BI_InterlockedExchangeAdd:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
case Builtin::BI_InterlockedExchangeSub8:
case Builtin::BI_InterlockedExchangeSub16:
case Builtin::BI_InterlockedExchangeSub:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
case Builtin::BI_InterlockedOr8:
case Builtin::BI_InterlockedOr16:
case Builtin::BI_InterlockedOr:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
case Builtin::BI_InterlockedXor8:
case Builtin::BI_InterlockedXor16:
case Builtin::BI_InterlockedXor:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
case Builtin::BI_bittest64:
case Builtin::BI_bittest:
case Builtin::BI_bittestandcomplement64:
case Builtin::BI_bittestandcomplement:
case Builtin::BI_bittestandreset64:
case Builtin::BI_bittestandreset:
case Builtin::BI_bittestandset64:
case Builtin::BI_bittestandset:
case Builtin::BI_interlockedbittestandreset:
case Builtin::BI_interlockedbittestandreset64:
case Builtin::BI_interlockedbittestandset64:
case Builtin::BI_interlockedbittestandset:
case Builtin::BI_interlockedbittestandset_acq:
case Builtin::BI_interlockedbittestandset_rel:
case Builtin::BI_interlockedbittestandset_nf:
case Builtin::BI_interlockedbittestandreset_acq:
case Builtin::BI_interlockedbittestandreset_rel:
case Builtin::BI_interlockedbittestandreset_nf:
return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
// These builtins exist to emit regular volatile loads and stores not
// affected by the -fms-volatile setting.
case Builtin::BI__iso_volatile_load8:
case Builtin::BI__iso_volatile_load16:
case Builtin::BI__iso_volatile_load32:
case Builtin::BI__iso_volatile_load64:
return RValue::get(EmitISOVolatileLoad(*this, E));
case Builtin::BI__iso_volatile_store8:
case Builtin::BI__iso_volatile_store16:
case Builtin::BI__iso_volatile_store32:
case Builtin::BI__iso_volatile_store64:
return RValue::get(EmitISOVolatileStore(*this, E));
case Builtin::BI__exception_code:
case Builtin::BI_exception_code:
return RValue::get(EmitSEHExceptionCode());
case Builtin::BI__exception_info:
case Builtin::BI_exception_info:
return RValue::get(EmitSEHExceptionInfo());
case Builtin::BI__abnormal_termination:
case Builtin::BI_abnormal_termination:
return RValue::get(EmitSEHAbnormalTermination());
case Builtin::BI_setjmpex:
if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
E->getArg(0)->getType()->isPointerType())
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
break;
case Builtin::BI_setjmp:
if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
E->getArg(0)->getType()->isPointerType()) {
if (getTarget().getTriple().getArch() == llvm::Triple::x86)
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
}
break;
// C++ std:: builtins.
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
case Builtin::BIforward:
case Builtin::BIas_const:
return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
case Builtin::BI__GetExceptionInfo: {
if (llvm::GlobalVariable *GV =
CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
break;
}
case Builtin::BI__fastfail:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
case Builtin::BI__builtin_coro_size: {
auto & Context = getContext();
auto SizeTy = Context.getSizeType();
auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_coro_id:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
case Builtin::BI__builtin_coro_promise:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
case Builtin::BI__builtin_coro_resume:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
case Builtin::BI__builtin_coro_frame:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
case Builtin::BI__builtin_coro_noop:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
case Builtin::BI__builtin_coro_free:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
case Builtin::BI__builtin_coro_destroy:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
case Builtin::BI__builtin_coro_done:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
case Builtin::BI__builtin_coro_alloc:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
case Builtin::BI__builtin_coro_begin:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
case Builtin::BI__builtin_coro_end:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
case Builtin::BI__builtin_coro_suspend:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
// OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
case Builtin::BIread_pipe:
case Builtin::BIwrite_pipe: {
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Type of the generic packet parameter.
unsigned GenericAS =
getContext().getTargetAddressSpace(LangAS::opencl_generic);
llvm::Type *I8PTy = llvm::PointerType::get(
llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
// Testing which overloaded version we should generate the call for.
if (2U == E->getNumArgs()) {
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
: "__write_pipe_2";
// Creating a generic function type to be able to call with any builtin or
// user defined type.
llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
return RValue::get(
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, BCast, PacketSize, PacketAlign}));
} else {
assert(4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function");
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
: "__write_pipe_4";
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
Int32Ty, Int32Ty};
Value *Arg2 = EmitScalarExpr(E->getArg(2)),
*Arg3 = EmitScalarExpr(E->getArg(3));
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
// We know the third argument is an integer type, but we may need to cast
// it to i32.
if (Arg2->getType() != Int32Ty)
Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
return RValue::get(
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
}
}
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
// functions
case Builtin::BIreserve_read_pipe:
case Builtin::BIreserve_write_pipe:
case Builtin::BIwork_group_reserve_read_pipe:
case Builtin::BIwork_group_reserve_write_pipe:
case Builtin::BIsub_group_reserve_read_pipe:
case Builtin::BIsub_group_reserve_write_pipe: {
// Composing the mangled name for the function.
const char *Name;
if (BuiltinID == Builtin::BIreserve_read_pipe)
Name = "__reserve_read_pipe";
else if (BuiltinID == Builtin::BIreserve_write_pipe)
Name = "__reserve_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
Name = "__work_group_reserve_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
Name = "__work_group_reserve_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
Name = "__sub_group_reserve_read_pipe";
else
Name = "__sub_group_reserve_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
// We know the second argument is an integer type, but we may need to cast
// it to i32.
if (Arg1->getType() != Int32Ty)
Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
// functions
case Builtin::BIcommit_read_pipe:
case Builtin::BIcommit_write_pipe:
case Builtin::BIwork_group_commit_read_pipe:
case Builtin::BIwork_group_commit_write_pipe:
case Builtin::BIsub_group_commit_read_pipe:
case Builtin::BIsub_group_commit_write_pipe: {
const char *Name;
if (BuiltinID == Builtin::BIcommit_read_pipe)
Name = "__commit_read_pipe";
else if (BuiltinID == Builtin::BIcommit_write_pipe)
Name = "__commit_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
Name = "__work_group_commit_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
Name = "__work_group_commit_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
Name = "__sub_group_commit_read_pipe";
else
Name = "__sub_group_commit_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
case Builtin::BIget_pipe_num_packets:
case Builtin::BIget_pipe_max_packets: {
const char *BaseName;
const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
if (BuiltinID == Builtin::BIget_pipe_num_packets)
BaseName = "__get_pipe_num_packets";
else
BaseName = "__get_pipe_max_packets";
std::string Name = std::string(BaseName) +
std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
// Building the generic function prototype.
Value *Arg0 = EmitScalarExpr(E->getArg(0));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
case Builtin::BIto_global:
case Builtin::BIto_local:
case Builtin::BIto_private: {
auto Arg0 = EmitScalarExpr(E->getArg(0));
auto NewArgT = llvm::PointerType::get(Int8Ty,
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
auto NewRetT = llvm::PointerType::get(Int8Ty,
CGM.getContext().getTargetAddressSpace(
E->getType()->getPointeeType().getAddressSpace()));
auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
llvm::Value *NewArg;
if (Arg0->getType()->getPointerAddressSpace() !=
NewArgT->getPointerAddressSpace())
NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
else
NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
auto NewCall =
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
ConvertType(E->getType())));
}
// OpenCL v2.0, s6.13.17 - Enqueue kernel function.
// It contains four different overload formats specified in Table 6.13.17.1.
case Builtin::BIenqueue_kernel: {
StringRef Name; // Generated function call name
unsigned NumArgs = E->getNumArgs();
llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
if (NumArgs == 4) {
// The most basic form of the call with parameters:
// queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
Name = "__enqueue_kernel_basic";
llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
GenericVoidPtrTy};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
llvm::Value *Kernel =
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
llvm::Value *Block =
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
AttrBuilder B(Builder.getContext());
B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
llvm::AttributeList ByValAttrSet =
llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
auto RTCall =
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
{Queue, Flags, Range, Kernel, Block});
RTCall->setAttributes(ByValAttrSet);
return RValue::get(RTCall);
}
assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
// Create a temporary array to hold the sizes of local pointer arguments
// for the block. \p First is the position of the first size argument.
auto CreateArrayForSizeVar = [=](unsigned First)
-> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
llvm::APInt ArraySize(32, NumArgs - First);
QualType SizeArrayTy = getContext().getConstantArrayType(
getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
llvm::Value *TmpPtr = Tmp.getPointer();
llvm::Value *TmpSize = EmitLifetimeStart(
CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
llvm::Value *ElemPtr;
// Each of the following arguments specifies the size of the corresponding
// argument passed to the enqueued block.
auto *Zero = llvm::ConstantInt::get(IntTy, 0);
for (unsigned I = First; I < NumArgs; ++I) {
auto *Index = llvm::ConstantInt::get(IntTy, I - First);
auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
{Zero, Index});
if (I == First)
ElemPtr = GEP;
auto *V =
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
Builder.CreateAlignedStore(
V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
}
return std::tie(ElemPtr, TmpSize, TmpPtr);
};
// Could have events and/or varargs.
if (E->getArg(3)->getType()->isBlockPointerType()) {
// No events passed, but has variadic arguments.
Name = "__enqueue_kernel_varargs";
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
llvm::Value *Kernel =
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
// Create a vector of the arguments, as well as a constant value to
// express to the runtime the number of variadic arguments.
llvm::Value *const Args[] = {Queue, Flags,
Range, Kernel,
Block, ConstantInt::get(IntTy, NumArgs - 4),
ElemPtr};
llvm::Type *const ArgTys[] = {
QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
GenericVoidPtrTy, IntTy, ElemPtr->getType()};
llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
auto Call = RValue::get(
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
if (TmpSize)
EmitLifetimeEnd(TmpSize, TmpPtr);
return Call;
}
// Any calls now have event arguments passed.
if (NumArgs >= 7) {
llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
llvm::Value *NumEvents =
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
// Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
// to be a null pointer constant (including `0` literal), we can take it
// into account and emit null pointer directly.
llvm::Value *EventWaitList = nullptr;
if (E->getArg(4)->isNullPointerConstant(
getContext(), Expr::NPC_ValueDependentIsNotNull)) {
EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
} else {
EventWaitList = E->getArg(4)->getType()->isArrayType()
? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
: EmitScalarExpr(E->getArg(4));
// Convert to generic address space.
EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
}
llvm::Value *EventRet = nullptr;
if (E->getArg(5)->isNullPointerConstant(
getContext(), Expr::NPC_ValueDependentIsNotNull)) {
EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
} else {
EventRet =
Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
}
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
llvm::Value *Kernel =
Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
llvm::Value *Block =
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
std::vector<llvm::Type *> ArgTys = {
QueueTy, Int32Ty, RangeTy, Int32Ty,
EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
std::vector<llvm::Value *> Args = {Queue, Flags, Range,
NumEvents, EventWaitList, EventRet,
Kernel, Block};
if (NumArgs == 7) {
// Has events but no variadics.
Name = "__enqueue_kernel_basic_events";
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
llvm::ArrayRef<llvm::Value *>(Args)));
}
// Has event info and variadics
// Pass the number of variadics to the runtime function too.
Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
ArgTys.push_back(Int32Ty);
Name = "__enqueue_kernel_events_varargs";
llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
Args.push_back(ElemPtr);
ArgTys.push_back(ElemPtr->getType());
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
auto Call =
RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
llvm::ArrayRef<llvm::Value *>(Args)));
if (TmpSize)
EmitLifetimeEnd(TmpSize, TmpPtr);
return Call;
}
LLVM_FALLTHROUGH;
}
// OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
// parameter.
case Builtin::BIget_kernel_work_group_size: {
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
return RValue::get(EmitRuntimeCall(
CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
false),
"__get_kernel_work_group_size_impl"),
{Kernel, Arg}));
}
case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
return RValue::get(EmitRuntimeCall(
CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
false),
"__get_kernel_preferred_work_group_size_multiple_impl"),
{Kernel, Arg}));
}
case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
auto Info =
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
const char *Name =
BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
? "__get_kernel_max_sub_group_size_for_ndrange_impl"
: "__get_kernel_sub_group_count_for_ndrange_impl";
return RValue::get(EmitRuntimeCall(
CGM.CreateRuntimeFunction(
llvm::FunctionType::get(
IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
false),
Name),
{NDRange, Kernel, Block}));
}
case Builtin::BI__builtin_store_half:
case Builtin::BI__builtin_store_halff: {
Value *Val = EmitScalarExpr(E->getArg(0));
Address Address = EmitPointerWithAlignment(E->getArg(1));
Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
return RValue::get(Builder.CreateStore(HalfVal, Address));
}
case Builtin::BI__builtin_load_half: {
Address Address = EmitPointerWithAlignment(E->getArg(0));
Value *HalfVal = Builder.CreateLoad(Address);
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
}
case Builtin::BI__builtin_load_halff: {
Address Address = EmitPointerWithAlignment(E->getArg(0));
Value *HalfVal = Builder.CreateLoad(Address);
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
}
case Builtin::BIprintf:
if (getTarget().getTriple().isNVPTX() ||
getTarget().getTriple().isAMDGCN()) {
if (getLangOpts().OpenMPIsDevice)
return EmitOpenMPDevicePrintfCallExpr(E);
if (getTarget().getTriple().isNVPTX())
return EmitNVPTXDevicePrintfCallExpr(E);
if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
return EmitAMDGPUDevicePrintfCallExpr(E);
}
break;
case Builtin::BI__builtin_canonicalize:
case Builtin::BI__builtin_canonicalizef:
case Builtin::BI__builtin_canonicalizef16:
case Builtin::BI__builtin_canonicalizel:
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
case Builtin::BI__builtin_thread_pointer: {
if (!getContext().getTargetInfo().isTLSSupported())
CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
// Fall through - it's already mapped to the intrinsic by GCCBuiltin.
break;
}
case Builtin::BI__builtin_os_log_format:
return emitBuiltinOSLogFormat(*E);
case Builtin::BI__xray_customevent: {
if (!ShouldXRayInstrumentFunction())
return RValue::getIgnored();
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
XRayInstrKind::Custom))
return RValue::getIgnored();
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
return RValue::getIgnored();
Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
auto FTy = F->getFunctionType();
auto Arg0 = E->getArg(0);
auto Arg0Val = EmitScalarExpr(Arg0);
auto Arg0Ty = Arg0->getType();
auto PTy0 = FTy->getParamType(0);
if (PTy0 != Arg0Val->getType()) {
if (Arg0Ty->isArrayType())
Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
else
Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
}
auto Arg1 = EmitScalarExpr(E->getArg(1));
auto PTy1 = FTy->getParamType(1);
if (PTy1 != Arg1->getType())
Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
}
case Builtin::BI__xray_typedevent: {
// TODO: There should be a way to always emit events even if the current
// function is not instrumented. Losing events in a stream can cripple
// a trace.
if (!ShouldXRayInstrumentFunction())
return RValue::getIgnored();
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
XRayInstrKind::Typed))
return RValue::getIgnored();
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
return RValue::getIgnored();
Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
auto FTy = F->getFunctionType();
auto Arg0 = EmitScalarExpr(E->getArg(0));
auto PTy0 = FTy->getParamType(0);
if (PTy0 != Arg0->getType())
Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
auto Arg1 = E->getArg(1);
auto Arg1Val = EmitScalarExpr(Arg1);
auto Arg1Ty = Arg1->getType();
auto PTy1 = FTy->getParamType(1);
if (PTy1 != Arg1Val->getType()) {
if (Arg1Ty->isArrayType())
Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
else
Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
}
auto Arg2 = EmitScalarExpr(E->getArg(2));
auto PTy2 = FTy->getParamType(2);
if (PTy2 != Arg2->getType())
Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
}
case Builtin::BI__builtin_ms_va_start:
case Builtin::BI__builtin_ms_va_end:
return RValue::get(
EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
BuiltinID == Builtin::BI__builtin_ms_va_start));
case Builtin::BI__builtin_ms_va_copy: {
// Lower this manually. We can't reliably determine whether or not any
// given va_copy() is for a Win64 va_list from the calling convention
// alone, because it's legal to do this from a System V ABI function.
// With opaque pointer types, we won't have enough information in LLVM
// IR to determine this from the argument types, either. Best to do it
// now, while we have enough information.
Address DestAddr = EmitMSVAListRef(E->getArg(0));
Address SrcAddr = EmitMSVAListRef(E->getArg(1));
llvm::Type *BPP = Int8PtrPtrTy;
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
Int8PtrTy, DestAddr.getAlignment());
SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
Int8PtrTy, SrcAddr.getAlignment());
Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
}
case Builtin::BI__builtin_get_device_side_mangled_name: {
auto Name = CGM.getCUDARuntime().getDeviceSideName(
cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
auto Str = CGM.GetAddrOfConstantCString(Name, "");
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
llvm::ConstantInt::get(SizeTy, 0)};
auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
Str.getPointer(), Zeros);
return RValue::get(Ptr);
}
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
// the call using the normal call path, but using the unmangled
// version of the function name.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
CGM.getBuiltinLibFunction(FD, BuiltinID));
// If this is a predefined lib function (e.g. malloc), emit the call
// using exactly the normal call path.
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
// Check that a call to a target specific builtin has the correct target
// features.
// This is down here to avoid non-target specific builtins, however, if
// generic builtins start to require generic target features then we
// can move this up to the beginning of the function.
checkTargetFeatures(E, FD);
if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
StringRef Prefix =
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
if (!Prefix.empty()) {
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
// NOTE we don't need to perform a compatibility flag check here since the
// intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
// MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
if (IntrinsicID == Intrinsic::not_intrinsic)
IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
}
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
Function *F = CGM.getIntrinsic(IntrinsicID);
llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue;
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
ArgValue = EmitScalarExpr(E->getArg(i));
} else {
// If this is required to be a constant, constant fold it so that we
// know that the generated intrinsic gets a ConstantInt.
ArgValue = llvm::ConstantInt::get(
getLLVMContext(),
*E->getArg(i)->getIntegerConstantExpr(getContext()));
}
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
// XXX - vector of pointers?
if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
if (PtrTy->getAddressSpace() !=
ArgValue->getType()->getPointerAddressSpace()) {
ArgValue = Builder.CreateAddrSpaceCast(
ArgValue,
ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
}
}
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
// Cast vector type (e.g., v256i32) to x86_amx, this only happen
// in amx intrinsics.
if (PTy->isX86_AMXTy())
ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
{ArgValue->getType()}, {ArgValue});
else
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args);
QualType BuiltinRetType = E->getType();
llvm::Type *RetTy = VoidTy;
if (!BuiltinRetType->isVoidType())
RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
// XXX - vector of pointers?
if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
V = Builder.CreateAddrSpaceCast(
V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
}
}
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
// Cast x86_amx to vector type (e.g., v256i32), this only happen
// in amx intrinsics.
if (V->getType()->isX86_AMXTy())
V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
{V});
else
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// Some target-specific builtins can have aggregate return values, e.g.
// __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
// ReturnValue to be non-null, so that the target-specific emission code can
// always just emit into it.
TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
ReturnValue = ReturnValueSlot(DestPtr, false);
}
// Now see if we can emit a target-specific builtin.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
switch (EvalKind) {
case TEK_Scalar:
return RValue::get(V);
case TEK_Aggregate:
return RValue::getAggregate(ReturnValue.getValue(),
ReturnValue.isVolatile());
case TEK_Complex:
llvm_unreachable("No current target builtin returns complex");
}
llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
}
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
return GetUndefRValue(E->getType());
}
static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
unsigned BuiltinID, const CallExpr *E,
ReturnValueSlot ReturnValue,
llvm::Triple::ArchType Arch) {
switch (Arch) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
case llvm::Triple::bpfeb:
case llvm::Triple::bpfel:
return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return CGF->EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
case llvm::Triple::systemz:
return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
case llvm::Triple::hexagon:
return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue) {
if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
assert(getContext().getAuxTargetInfo() && "Missing aux target info");
return EmitTargetArchBuiltinExpr(
this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
}
return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
getTarget().getTriple().getArch());
}
static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
NeonTypeFlags TypeFlags,
bool HasLegalHalfType = true,
bool V1Ty = false,
bool AllowBFloatArgsAndRet = true) {
int IsQuad = TypeFlags.isQuad();
switch (TypeFlags.getEltType()) {
case NeonTypeFlags::Int8:
case NeonTypeFlags::Poly8:
return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
case NeonTypeFlags::Int16:
case NeonTypeFlags::Poly16:
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::BFloat16:
if (AllowBFloatArgsAndRet)
return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
else
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::Float16:
if (HasLegalHalfType)
return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
else
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::Int32:
return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Int64:
case NeonTypeFlags::Poly64:
return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
case NeonTypeFlags::Poly128:
// FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
// There is a lot of i128 and f128 API missing.
// so we use v16i8 to represent poly128 and get pattern matched.
return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
case NeonTypeFlags::Float32:
return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Float64:
return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
}
llvm_unreachable("Unknown vector element type!");
}
static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
NeonTypeFlags IntTypeFlags) {
int IsQuad = IntTypeFlags.isQuad();
switch (IntTypeFlags.getEltType()) {
case NeonTypeFlags::Int16:
return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
case NeonTypeFlags::Int32:
return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
case NeonTypeFlags::Int64:
return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
default:
llvm_unreachable("Type can't be converted to floating-point!");
}
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
const ElementCount &Count) {
Value *SV = llvm::ConstantVector::getSplat(Count, C);
return Builder.CreateShuffleVector(V, V, SV, "lane");
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
return EmitNeonSplat(V, C, EC);
}
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
const char *name,
unsigned shift, bool rightshift) {
unsigned j = 0;
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j) {
if (F->isConstrainedFPIntrinsic())
if (ai->getType()->isMetadataTy())
continue;
if (shift > 0 && shift == j)
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
else
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
}
if (F->isConstrainedFPIntrinsic())
return Builder.CreateConstrainedFPCall(F, Ops, name);
else
return Builder.CreateCall(F, Ops, name);
}
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
bool neg) {
int SV = cast<ConstantInt>(V)->getSExtValue();
return ConstantInt::get(Ty, neg ? -SV : SV);
}
// Right-shift a vector by a constant.
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
llvm::Type *Ty, bool usgn,
const char *name) {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
int EltSize = VTy->getScalarSizeInBits();
Vec = Builder.CreateBitCast(Vec, Ty);
// lshr/ashr are undefined when the shift amount is equal to the vector
// element size.
if (ShiftAmt == EltSize) {
if (usgn) {
// Right-shifting an unsigned value by its size yields 0.
return llvm::ConstantAggregateZero::get(VTy);
} else {
// Right-shifting a signed value by its size is equivalent
// to a shift of size-1.
--ShiftAmt;
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
}
}
Shift = EmitNeonShiftVector(Shift, Ty, false);
if (usgn)
return Builder.CreateLShr(Vec, Shift, name);
else
return Builder.CreateAShr(Vec, Shift, name);
}
enum {
AddRetType = (1 << 0),
Add1ArgType = (1 << 1),
Add2ArgTypes = (1 << 2),
VectorizeRetType = (1 << 3),
VectorizeArgTypes = (1 << 4),
InventFloatType = (1 << 5),
UnsignedAlts = (1 << 6),
Use64BitVectors = (1 << 7),
Use128BitVectors = (1 << 8),
Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
VectorRet = AddRetType | VectorizeRetType,
VectorRetGetArgs01 =
AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
FpCmpzModifiers =
AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
};
namespace {
struct ARMVectorIntrinsicInfo {
const char *NameHint;
unsigned BuiltinID;
unsigned LLVMIntrinsic;
unsigned AltLLVMIntrinsic;
uint64_t TypeModifier;
bool operator<(unsigned RHSBuiltinID) const {
return BuiltinID < RHSBuiltinID;
}
bool operator<(const ARMVectorIntrinsicInfo &TE) const {
return BuiltinID < TE.BuiltinID;
}
};
} // end anonymous namespace
#define NEONMAP0(NameBase) \
{ #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, 0, TypeModifier }
#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
TypeModifier }
static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
NEONMAP0(splat_lane_v),
NEONMAP0(splat_laneq_v),
NEONMAP0(splatq_lane_v),
NEONMAP0(splatq_laneq_v),
NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP1(vabs_v, arm_neon_vabs, 0),
NEONMAP1(vabsq_v, arm_neon_vabs, 0),
NEONMAP0(vadd_v),
NEONMAP0(vaddhn_v),
NEONMAP0(vaddq_v),
NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
NEONMAP1(vaeseq_v, arm_neon_aese, 0),
NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
NEONMAP1(vcage_v, arm_neon_vacge, 0),
NEONMAP1(vcageq_v, arm_neon_vacge, 0),
NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
NEONMAP1(vcale_v, arm_neon_vacge, 0),
NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
NEONMAP0(vceqz_v),
NEONMAP0(vceqzq_v),
NEONMAP0(vcgez_v),
NEONMAP0(vcgezq_v),
NEONMAP0(vcgtz_v),
NEONMAP0(vcgtzq_v),
NEONMAP0(vclez_v),
NEONMAP0(vclezq_v),
NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
NEONMAP0(vcltz_v),
NEONMAP0(vcltzq_v),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
NEONMAP0(vcvt_f16_v),
NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvt_s16_v),
NEONMAP0(vcvt_s32_v),
NEONMAP0(vcvt_s64_v),
NEONMAP0(vcvt_u16_v),
NEONMAP0(vcvt_u32_v),
NEONMAP0(vcvt_u64_v),
NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
NEONMAP0(vcvtq_f16_v),
NEONMAP0(vcvtq_f32_v),
NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_s16_v),
NEONMAP0(vcvtq_s32_v),
NEONMAP0(vcvtq_s64_v),
NEONMAP0(vcvtq_u16_v),
NEONMAP0(vcvtq_u32_v),
NEONMAP0(vcvtq_u64_v),
NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP0(vld1_dup_v),
NEONMAP1(vld1_v, arm_neon_vld1, 0),
NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
NEONMAP0(vld1q_dup_v),
NEONMAP1(vld1q_v, arm_neon_vld1, 0),
NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2_v, arm_neon_vld2, 0),
NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2q_v, arm_neon_vld2, 0),
NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3_v, arm_neon_vld3, 0),
NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3q_v, arm_neon_vld3, 0),
NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4_v, arm_neon_vld4, 0),
NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4q_v, arm_neon_vld4, 0),
NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
NEONMAP0(vmull_v),
NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType),
NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType),
NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType),
NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType),
NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
NEONMAP0(vrndi_v),
NEONMAP0(vrndiq_v),
NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP1(vst1_v, arm_neon_vst1, 0),
NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
NEONMAP1(vst1q_v, arm_neon_vst1, 0),
NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2_v, arm_neon_vst2, 0),
NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2q_v, arm_neon_vst2, 0),
NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3_v, arm_neon_vst3, 0),
NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3q_v, arm_neon_vst3, 0),
NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4_v, arm_neon_vst4, 0),
NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4q_v, arm_neon_vst4, 0),
NEONMAP0(vsubhn_v),
NEONMAP0(vtrn_v),
NEONMAP0(vtrnq_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
NEONMAP1(vusdot_v, arm_neon_usdot, 0),
NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
NEONMAP0(vuzp_v),
NEONMAP0(vuzpq_v),
NEONMAP0(vzip_v),
NEONMAP0(vzipq_v)
};
static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
NEONMAP0(splat_lane_v),
NEONMAP0(splat_laneq_v),
NEONMAP0(splatq_lane_v),
NEONMAP0(splatq_laneq_v),
NEONMAP1(vabs_v, aarch64_neon_abs, 0),
NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
NEONMAP0(vadd_v),
NEONMAP0(vaddhn_v),
NEONMAP0(vaddq_p128),
NEONMAP0(vaddq_v),
NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
NEONMAP1(vcage_v, aarch64_neon_facge, 0),
NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
NEONMAP1(vcale_v, aarch64_neon_facge, 0),
NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
NEONMAP0(vceqz_v),
NEONMAP0(vceqzq_v),
NEONMAP0(vcgez_v),
NEONMAP0(vcgezq_v),
NEONMAP0(vcgtz_v),
NEONMAP0(vcgtzq_v),
NEONMAP0(vclez_v),
NEONMAP0(vclezq_v),
NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
NEONMAP0(vcltz_v),
NEONMAP0(vcltzq_v),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
NEONMAP0(vcvt_f16_v),
NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_f16_v),
NEONMAP0(vcvtq_f32_v),
NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType),
NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType),
NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType),
NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType),
NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
NEONMAP0(vrndi_v),
NEONMAP0(vrndiq_v),
NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
NEONMAP0(vsubhn_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
};
static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
// FP16 scalar intrinisics go here.
NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
};
#undef NEONMAP0
#undef NEONMAP1
#undef NEONMAP2
#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
{ \
#NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
TypeModifier \
}
#define SVEMAP2(NameBase, TypeModifier) \
{ #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
#define GET_SVE_LLVM_INTRINSIC_MAP
#include "clang/Basic/arm_sve_builtin_cg.inc"
#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
#undef GET_SVE_LLVM_INTRINSIC_MAP
};
#undef SVEMAP1
#undef SVEMAP2
static bool NEONSIMDIntrinsicsProvenSorted = false;
static bool AArch64SIMDIntrinsicsProvenSorted = false;
static bool AArch64SISDIntrinsicsProvenSorted = false;
static bool AArch64SVEIntrinsicsProvenSorted = false;
static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
unsigned BuiltinID, bool &MapProvenSorted) {
#ifndef NDEBUG
if (!MapProvenSorted) {
assert(llvm::is_sorted(IntrinsicMap));
MapProvenSorted = true;
}
#endif
const ARMVectorIntrinsicInfo *Builtin =
llvm::lower_bound(IntrinsicMap, BuiltinID);
if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
return Builtin;
return nullptr;
}
Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
unsigned Modifier,
llvm::Type *ArgType,
const CallExpr *E) {
int VectorSize = 0;
if (Modifier & Use64BitVectors)
VectorSize = 64;
else if (Modifier & Use128BitVectors)
VectorSize = 128;
// Return type.
SmallVector<llvm::Type *, 3> Tys;
if (Modifier & AddRetType) {
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
if (Modifier & VectorizeRetType)
Ty = llvm::FixedVectorType::get(
Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
Tys.push_back(Ty);
}
// Arguments.
if (Modifier & VectorizeArgTypes) {
int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
ArgType = llvm::FixedVectorType::get(ArgType, Elts);
}
if (Modifier & (Add1ArgType | Add2ArgTypes))
Tys.push_back(ArgType);
if (Modifier & Add2ArgTypes)
Tys.push_back(ArgType);
if (Modifier & InventFloatType)
Tys.push_back(FloatTy);
return CGM.getIntrinsic(IntrinsicID, Tys);
}
static Value *EmitCommonNeonSISDBuiltinExpr(
CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
unsigned BuiltinID = SISDInfo.BuiltinID;
unsigned int Int = SISDInfo.LLVMIntrinsic;
unsigned Modifier = SISDInfo.TypeModifier;
const char *s = SISDInfo.NameHint;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vcled_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcales_f32:
case NEON::BI__builtin_neon_vcaled_f64:
case NEON::BI__builtin_neon_vcalts_f32:
case NEON::BI__builtin_neon_vcaltd_f64:
// Only one direction of comparisons actually exist, cmle is actually a cmge
// with swapped operands. The table gives us the right intrinsic but we
// still need to do the swap.
std::swap(Ops[0], Ops[1]);
break;
}
assert(Int && "Generic code assumes a valid intrinsic");
// Determine the type(s) of this overloaded AArch64 intrinsic.
const Expr *Arg = E->getArg(0);
llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
int j = 0;
ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j) {
llvm::Type *ArgTy = ai->getType();
if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
ArgTy->getPrimitiveSizeInBits())
continue;
assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
// The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
// it before inserting.
Ops[j] = CGF.Builder.CreateTruncOrBitCast(
Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
Ops[j] =
CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
}
Value *Result = CGF.EmitNeonCall(F, Ops, s);
llvm::Type *ResultType = CGF.ConvertType(E->getType());
if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
Result->getType()->getPrimitiveSizeInBits().getFixedSize())
return CGF.Builder.CreateExtractElement(Result, C0);
return CGF.Builder.CreateBitCast(Result, ResultType, s);
}
Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
const char *NameHint, unsigned Modifier, const CallExpr *E,
SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
llvm::Triple::ArchType Arch) {
// Get the last argument, which specifies the vector type.
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
Optional<llvm::APSInt> NeonTypeConst =
Arg->getIntegerConstantExpr(getContext());
if (!NeonTypeConst)
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(NeonTypeConst->getZExtValue());
bool Usgn = Type.isUnsigned();
bool Quad = Type.isQuad();
const bool HasLegalHalfType = getTarget().hasLegalHalfType();
const bool AllowBFloatArgsAndRet =
getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
llvm::FixedVectorType *VTy =
GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
unsigned Int = LLVMIntrinsic;
if ((Modifier & UnsignedAlts) && !Usgn)
Int = AltLLVMIntrinsic;
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_splat_lane_v:
case NEON::BI__builtin_neon_splat_laneq_v:
case NEON::BI__builtin_neon_splatq_lane_v:
case NEON::BI__builtin_neon_splatq_laneq_v: {
auto NumElements = VTy->getElementCount();
if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
NumElements = NumElements * 2;
if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
NumElements = NumElements.divideCoefficientBy(2);
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
}
case NEON::BI__builtin_neon_vpadd_v:
case NEON::BI__builtin_neon_vpaddq_v:
// We don't allow fp/int overloading of intrinsics.
if (VTy->getElementType()->isFloatingPointTy() &&
Int == Intrinsic::aarch64_neon_addp)
Int = Intrinsic::aarch64_neon_faddp;
break;
case NEON::BI__builtin_neon_vabs_v:
case NEON::BI__builtin_neon_vabsq_v:
if (VTy->getElementType()->isFloatingPointTy())
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
case NEON::BI__builtin_neon_vadd_v:
case NEON::BI__builtin_neon_vaddq_v: {
llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
return Builder.CreateBitCast(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vaddhn_v: {
llvm::FixedVectorType *SrcTy =
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
}
case NEON::BI__builtin_neon_vcale_v:
case NEON::BI__builtin_neon_vcaleq_v:
case NEON::BI__builtin_neon_vcalt_v:
case NEON::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vcage_v:
case NEON::BI__builtin_neon_vcageq_v:
case NEON::BI__builtin_neon_vcagt_v:
case NEON::BI__builtin_neon_vcagtq_v: {
llvm::Type *Ty;
switch (VTy->getScalarSizeInBits()) {
default: llvm_unreachable("unexpected type");
case 32:
Ty = FloatTy;
break;
case 64:
Ty = DoubleTy;
break;
case 16:
Ty = HalfTy;
break;
}
auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
llvm::Type *Tys[] = { VTy, VecFlt };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, NameHint);
}
case NEON::BI__builtin_neon_vceqz_v:
case NEON::BI__builtin_neon_vceqzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgez_v:
case NEON::BI__builtin_neon_vcgezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclez_v:
case NEON::BI__builtin_neon_vclezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtz_v:
case NEON::BI__builtin_neon_vcgtzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltz_v:
case NEON::BI__builtin_neon_vcltzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vclz_v:
case NEON::BI__builtin_neon_vclzq_v:
// We generate target-independent intrinsic, which needs a second argument
// for whether or not clz of zero is undefined; on ARM it isn't.
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
break;
case NEON::BI__builtin_neon_vcvt_f32_v:
case NEON::BI__builtin_neon_vcvtq_f32_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
HasLegalHalfType);
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_f16_v:
case NEON::BI__builtin_neon_vcvtq_f16_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
HasLegalHalfType);
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_n_f16_v:
case NEON::BI__builtin_neon_vcvt_n_f32_v:
case NEON::BI__builtin_neon_vcvt_n_f64_v:
case NEON::BI__builtin_neon_vcvtq_n_f16_v:
case NEON::BI__builtin_neon_vcvtq_n_f32_v:
case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_n_s16_v:
case NEON::BI__builtin_neon_vcvt_n_s32_v:
case NEON::BI__builtin_neon_vcvt_n_u16_v:
case NEON::BI__builtin_neon_vcvt_n_u32_v:
case NEON::BI__builtin_neon_vcvt_n_s64_v:
case NEON::BI__builtin_neon_vcvt_n_u64_v:
case NEON::BI__builtin_neon_vcvtq_n_s16_v:
case NEON::BI__builtin_neon_vcvtq_n_s32_v:
case NEON::BI__builtin_neon_vcvtq_n_u16_v:
case NEON::BI__builtin_neon_vcvtq_n_u32_v:
case NEON::BI__builtin_neon_vcvtq_n_s64_v:
case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvt_s16_v:
case NEON::BI__builtin_neon_vcvt_u16_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v:
case NEON::BI__builtin_neon_vcvtq_s16_v:
case NEON::BI__builtin_neon_vcvtq_u16_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvta_s16_v:
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvta_u16_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_s16_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvtaq_u16_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v:
case NEON::BI__builtin_neon_vcvtn_s16_v:
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtn_u16_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_s16_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtnq_u16_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v:
case NEON::BI__builtin_neon_vcvtp_s16_v:
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtp_u16_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_s16_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtpq_u16_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v:
case NEON::BI__builtin_neon_vcvtm_s16_v:
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtm_u16_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_s16_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtmq_u16_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vcvtx_f32_v: {
llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vext_v:
case NEON::BI__builtin_neon_vextq_v: {
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(i+CV);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
}
case NEON::BI__builtin_neon_vfma_v:
case NEON::BI__builtin_neon_vfmaq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
{Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
}
case NEON::BI__builtin_neon_vld1_x2_v:
case NEON::BI__builtin_neon_vld1q_x2_v:
case NEON::BI__builtin_neon_vld1_x3_v:
case NEON::BI__builtin_neon_vld1q_x3_v:
case NEON::BI__builtin_neon_vld1_x4_v:
case NEON::BI__builtin_neon_vld1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v:
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld2q_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld3q_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v:
case NEON::BI__builtin_neon_vld4q_dup_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
Value *Align = getAlignmentValue32(PtrOp1);
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
LoadInst *Ld = Builder.CreateLoad(PtrOp0);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
for (unsigned I = 2; I < Ops.size() - 1; ++I)
Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
Ops.push_back(getAlignmentValue32(PtrOp1));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vmovl_v: {
llvm::FixedVectorType *DTy =
llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
if (Usgn)
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
}
case NEON::BI__builtin_neon_vmovn_v: {
llvm::FixedVectorType *QTy =
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: the integer vmull operations could be emitted in terms of pure
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
// hoisting the exts outside loops. Until global ISel comes along that can
// see through such movement this leads to bad CodeGen. So we need an
// intrinsic for now.
Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy =
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
auto *NarrowTy =
llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vpaddl_v:
case NEON::BI__builtin_neon_vpaddlq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
auto *NarrowTy =
llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
}
case NEON::BI__builtin_neon_vqdmlal_v:
case NEON::BI__builtin_neon_vqdmlsl_v: {
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
Ops.resize(2);
return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
}
case NEON::BI__builtin_neon_vqdmulhq_lane_v:
case NEON::BI__builtin_neon_vqdmulh_lane_v:
case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
auto *RTy = cast<llvm::FixedVectorType>(Ty);
if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
RTy = llvm::FixedVectorType::get(RTy->getElementType(),
RTy->getNumElements() * 2);
llvm::Type *Tys[2] = {
RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
/*isQuad*/ false))};
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
case NEON::BI__builtin_neon_vqdmulh_laneq_v:
case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
llvm::Type *Tys[2] = {
Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
/*isQuad*/ true))};
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vqshl_n_v:
case NEON::BI__builtin_neon_vqshlq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1, false);
case NEON::BI__builtin_neon_vqshlu_n_v:
case NEON::BI__builtin_neon_vqshluq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
1, false);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
case NEON::BI__builtin_neon_vrsqrte_v:
case NEON::BI__builtin_neon_vrsqrteq_v:
Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
case NEON::BI__builtin_neon_vrndi_v:
case NEON::BI__builtin_neon_vrndiq_v:
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_nearbyint
: Intrinsic::nearbyint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
case NEON::BI__builtin_neon_vrshr_n_v:
case NEON::BI__builtin_neon_vrshrq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
1, true);
case NEON::BI__builtin_neon_vsha512hq_v:
case NEON::BI__builtin_neon_vsha512h2q_v:
case NEON::BI__builtin_neon_vsha512su0q_v:
case NEON::BI__builtin_neon_vsha512su1q_v: {
Function *F = CGM.getIntrinsic(Int);
return EmitNeonCall(F, Ops, "");
}
case NEON::BI__builtin_neon_vshl_n_v:
case NEON::BI__builtin_neon_vshlq_n_v:
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
"vshl_n");
case NEON::BI__builtin_neon_vshll_n_v: {
llvm::FixedVectorType *SrcTy =
llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
if (Usgn)
Ops[0] = Builder.CreateZExt(Ops[0], VTy);
else
Ops[0] = Builder.CreateSExt(Ops[0], VTy);
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
}
case NEON::BI__builtin_neon_vshrn_n_v: {
llvm::FixedVectorType *SrcTy =
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
if (Usgn)
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
}
case NEON::BI__builtin_neon_vshr_n_v:
case NEON::BI__builtin_neon_vshrq_n_v:
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
llvm::Type *Tys[] = {Int8PtrTy, Ty};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vsm3partw1q_v:
case NEON::BI__builtin_neon_vsm3partw2q_v:
case NEON::BI__builtin_neon_vsm3ss1q_v:
case NEON::BI__builtin_neon_vsm4ekeyq_v:
case NEON::BI__builtin_neon_vsm4eq_v: {
Function *F = CGM.getIntrinsic(Int);
return EmitNeonCall(F, Ops, "");
}
case NEON::BI__builtin_neon_vsm3tt1aq_v:
case NEON::BI__builtin_neon_vsm3tt1bq_v:
case NEON::BI__builtin_neon_vsm3tt2aq_v:
case NEON::BI__builtin_neon_vsm3tt2bq_v: {
Function *F = CGM.getIntrinsic(Int);
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
return EmitNeonCall(F, Ops, "");
}
case NEON::BI__builtin_neon_vst1_x2_v:
case NEON::BI__builtin_neon_vst1q_x2_v:
case NEON::BI__builtin_neon_vst1_x3_v:
case NEON::BI__builtin_neon_vst1q_x3_v:
case NEON::BI__builtin_neon_vst1_x4_v:
case NEON::BI__builtin_neon_vst1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
// TODO: Currently in AArch32 mode the pointer operand comes first, whereas
// in AArch64 it comes last. We may want to stick to one or another.
if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
Arch == llvm::Triple::aarch64_32) {
llvm::Type *Tys[2] = { VTy, PTy };
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
}
llvm::Type *Tys[2] = { PTy, VTy };
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vsubhn_v: {
llvm::FixedVectorType *SrcTy =
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(i+vi);
Indices.push_back(i+e+vi);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vtst_v:
case NEON::BI__builtin_neon_vtstq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
ConstantAggregateZero::get(Ty));
return Builder.CreateSExt(Ops[0], Ty, "vtst");
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(2*i+vi);
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vxarq_v: {
Function *F = CGM.getIntrinsic(Int);
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
return EmitNeonCall(F, Ops, "");
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back((i + vi*e) >> 1);
Indices.push_back(((i + vi*e) >> 1)+e);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vdot_v:
case NEON::BI__builtin_neon_vdotq_v: {
auto *InputTy =
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
llvm::Type *Tys[2] = { Ty, InputTy };
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
}
case NEON::BI__builtin_neon_vfmlal_low_v:
case NEON::BI__builtin_neon_vfmlalq_low_v: {
auto *InputTy =
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
}
case NEON::BI__builtin_neon_vfmlsl_low_v:
case NEON::BI__builtin_neon_vfmlslq_low_v: {
auto *InputTy =
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
}
case NEON::BI__builtin_neon_vfmlal_high_v:
case NEON::BI__builtin_neon_vfmlalq_high_v: {
auto *InputTy =
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
}
case NEON::BI__builtin_neon_vfmlsl_high_v:
case NEON::BI__builtin_neon_vfmlslq_high_v: {
auto *InputTy =
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
}
case NEON::BI__builtin_neon_vmmlaq_v: {
auto *InputTy =
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
llvm::Type *Tys[2] = { Ty, InputTy };
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
}
case NEON::BI__builtin_neon_vusmmlaq_v: {
auto *InputTy =
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
}
case NEON::BI__builtin_neon_vusdot_v:
case NEON::BI__builtin_neon_vusdotq_v: {
auto *InputTy =
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
}
case NEON::BI__builtin_neon_vbfdot_v:
case NEON::BI__builtin_neon_vbfdotq_v: {
llvm::Type *InputTy =
llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
llvm::Type *Tys[2] = { Ty, InputTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
}
case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
llvm::Type *Tys[1] = { Ty };
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvtfp2bf");
}
}
assert(Int && "Expected valid intrinsic number");
// Determine the type(s) of this overloaded AArch64 intrinsic.
Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
Value *Result = EmitNeonCall(F, Ops, NameHint);
llvm::Type *ResultType = ConvertType(E->getType());
// AArch64 intrinsic one-element vector type cast to
// scalar type expected by the builtin
return Builder.CreateBitCast(Result, ResultType, NameHint);
}
Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
const CmpInst::Predicate Ip, const Twine &Name) {
llvm::Type *OTy = Op->getType();
// FIXME: this is utterly horrific. We should not be looking at previous
// codegen context to find out what needs doing. Unfortunately TableGen
// currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
// (etc).
if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
OTy = BI->getOperand(0)->getType();
Op = Builder.CreateBitCast(Op, OTy);
if (OTy->getScalarType()->isFloatingPointTy()) {
if (Fp == CmpInst::FCMP_OEQ)
Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
else
Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
} else {
Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
}
return Builder.CreateSExt(Op, Ty, Name);
}
static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
Value *ExtOp, Value *IndexOp,
llvm::Type *ResTy, unsigned IntID,
const char *Name) {
SmallVector<Value *, 2> TblOps;
if (ExtOp)
TblOps.push_back(ExtOp);
// Build a vector containing sequential number like (0, 1, 2, ..., 15)
SmallVector<int, 16> Indices;
auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
Indices.push_back(2*i);
Indices.push_back(2*i+1);
}
int PairPos = 0, End = Ops.size() - 1;
while (PairPos < End) {
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
Ops[PairPos+1], Indices,
Name));
PairPos += 2;
}
// If there's an odd number of 64-bit lookup table, fill the high 64-bit
// of the 128-bit lookup table with zero.
if (PairPos == End) {
Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
ZeroTbl, Indices, Name));
}
Function *TblF;
TblOps.push_back(IndexOp);
TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
return CGF.EmitNeonCall(TblF, TblOps, Name);
}
Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
unsigned Value;
switch (BuiltinID) {
default:
return nullptr;
case ARM::BI__builtin_arm_nop:
Value = 0;
break;
case ARM::BI__builtin_arm_yield:
case ARM::BI__yield:
Value = 1;
break;
case ARM::BI__builtin_arm_wfe:
case ARM::BI__wfe:
Value = 2;
break;
case ARM::BI__builtin_arm_wfi:
case ARM::BI__wfi:
Value = 3;
break;
case ARM::BI__builtin_arm_sev:
case ARM::BI__sev:
Value = 4;
break;
case ARM::BI__builtin_arm_sevl:
case ARM::BI__sevl:
Value = 5;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
llvm::ConstantInt::get(Int32Ty, Value));
}
enum SpecialRegisterAccessKind {
NormalRead,
VolatileRead,
Write,
};
// Generates the IR for the read/write special register builtin,
// ValueType is the type of the value that is to be written or read,
// RegisterType is the type of the register being written to or read from.
static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
llvm::Type *RegisterType,
llvm::Type *ValueType,
SpecialRegisterAccessKind AccessKind,
StringRef SysReg = "") {
// write and register intrinsics only support 32 and 64 bit operations.
assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
&& "Unsupported size for register.");
CodeGen::CGBuilderTy &Builder = CGF.Builder;
CodeGen::CodeGenModule &CGM = CGF.CGM;
LLVMContext &Context = CGM.getLLVMContext();
if (SysReg.empty()) {
const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
}
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
llvm::Type *Types[] = { RegisterType };
bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
&& "Can't fit 64-bit value in 32-bit register");
if (AccessKind != Write) {
assert(AccessKind == NormalRead || AccessKind == VolatileRead);
llvm::Function *F = CGM.getIntrinsic(
AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
: llvm::Intrinsic::read_register,
Types);
llvm::Value *Call = Builder.CreateCall(F, Metadata);
if (MixedTypes)
// Read into 64 bit register and then truncate result to 32 bit.
return Builder.CreateTrunc(Call, ValueType);
if (ValueType->isPointerTy())
// Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
return Builder.CreateIntToPtr(Call, ValueType);
return Call;
}
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
if (MixedTypes) {
// Extend 32 bit write value to 64 bit to pass to write.
ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
if (ValueType->isPointerTy()) {
// Have VoidPtrTy ArgValue but want to return an i32/i64.
ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
return Builder.CreateCall(F, { Metadata, ArgValue });
}
/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
/// argument that specifies the vector type.
static bool HasExtraNeonArgument(unsigned BuiltinID) {
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_bf16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_bf16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vduph_lane_bf16:
case NEON::BI__builtin_neon_vduph_laneq_bf16:
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_bf16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_bf16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
case NEON::BI__builtin_neon_vsha1h_u32:
case NEON::BI__builtin_neon_vsha1cq_u32:
case NEON::BI__builtin_neon_vsha1pq_u32:
case NEON::BI__builtin_neon_vsha1mq_u32:
case NEON::BI__builtin_neon_vcvth_bf16_f32:
case clang::ARM::BI_MoveToCoprocessor:
case clang::ARM::BI_MoveToCoprocessor2:
return false;
}
return true;
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue,
llvm::Triple::ArchType Arch) {
if (auto Hint = GetValueForARMHint(BuiltinID))
return Hint;
if (BuiltinID == ARM::BI__emit) {
bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
llvm::FunctionType *FTy =
llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
Expr::EvalResult Result;
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
llvm_unreachable("Sema will ensure that the parameter is constant");
llvm::APSInt Value = Result.Val.getInt();
uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
llvm::InlineAsm *Emit =
IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
/*hasSideEffects=*/true)
: InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
/*hasSideEffects=*/true);
return Builder.CreateCall(Emit);
}
if (BuiltinID == ARM::BI__builtin_arm_dbg) {
Value *Option = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
}
if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *IsData = EmitScalarExpr(E->getArg(2));
// Locality is not supported on ARM target
Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == ARM::BI__builtin_arm_rbit) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == ARM::BI__builtin_arm_cls) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
}
if (BuiltinID == ARM::BI__builtin_arm_cls64) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
"cls");
}
if (BuiltinID == ARM::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
BuiltinID == ARM::BI__builtin_arm_mcrr2) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_mcrr:
F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
break;
case ARM::BI__builtin_arm_mcrr2:
F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
break;
}
// MCRR{2} instruction has 5 operands but
// the intrinsic has 4 because Rt and Rt2
// are represented as a single unsigned 64
// bit integer in the intrinsic definition
// but internally it's represented as 2 32
// bit integers.
Value *Coproc = EmitScalarExpr(E->getArg(0));
Value *Opc1 = EmitScalarExpr(E->getArg(1));
Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
Value *CRm = EmitScalarExpr(E->getArg(3));
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
}
if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
BuiltinID == ARM::BI__builtin_arm_mrrc2) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_mrrc:
F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
break;
case ARM::BI__builtin_arm_mrrc2:
F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
break;
}
Value *Coproc = EmitScalarExpr(E->getArg(0));
Value *Opc1 = EmitScalarExpr(E->getArg(1));
Value *CRm = EmitScalarExpr(E->getArg(2));
Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
// Returns an unsigned 64 bit integer, represented
// as two 32 bit integers.
Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
Rt = Builder.CreateZExt(Rt, Int64Ty);
Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
((BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 64) ||
BuiltinID == ARM::BI__ldrexd) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_ldaex:
F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
break;
case ARM::BI__builtin_arm_ldrexd:
case ARM::BI__builtin_arm_ldrex:
case ARM::BI__ldrexd:
F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
break;
}
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldrexd");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
Val0 = Builder.CreateZExt(Val0, Int64Ty);
Val1 = Builder.CreateZExt(Val1, Int64Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *IntTy =
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
llvm::Type *PtrTy = IntTy->getPointerTo();
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex,
PtrTy);
CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
Val->addParamAttr(
0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
else {
llvm::Type *IntResTy = llvm::IntegerType::get(
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
RealResTy);
}
}
if (BuiltinID == ARM::BI__builtin_arm_strexd ||
((BuiltinID == ARM::BI__builtin_arm_stlex ||
BuiltinID == ARM::BI__builtin_arm_strex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd);
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Value *Val = EmitScalarExpr(E->getArg(0));
Builder.CreateStore(Val, Tmp);
Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
Val = Builder.CreateLoad(LdPtr);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
}
if (BuiltinID == ARM::BI__builtin_arm_strex ||
BuiltinID == ARM::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
else {
llvm::Type *IntTy = llvm::IntegerType::get(
getLLVMContext(),
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlex
: Intrinsic::arm_strex,
StoreAddr->getType());
CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
CI->addParamAttr(
1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
return CI;
}
if (BuiltinID == ARM::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case ARM::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::arm_crc32b; break;
case ARM::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
case ARM::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::arm_crc32h; break;
case ARM::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
case ARM::BI__builtin_arm_crc32w:
case ARM::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::arm_crc32w; break;
case ARM::BI__builtin_arm_crc32cw:
case ARM::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
// crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
// intrinsics, hence we need different codegen for these cases.
if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
BuiltinID == ARM::BI__builtin_arm_crc32cd) {
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
Value *Arg1b = Builder.CreateLShr(Arg1, C1);
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
return Builder.CreateCall(F, {Res, Arg1b});
} else {
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
return Builder.CreateCall(F, {Arg0, Arg1});
}
}
if (BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsr ||
BuiltinID == ARM::BI__builtin_arm_wsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsrp) {
SpecialRegisterAccessKind AccessKind = Write;
if (BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp)
AccessKind = VolatileRead;
bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsr64;
llvm::Type *ValueType;
llvm::Type *RegisterType;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
RegisterType = Int32Ty;
} else if (Is64Bit) {
ValueType = RegisterType = Int64Ty;
} else {
ValueType = RegisterType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
AccessKind);
}
// Handle MSVC intrinsics before argument evaluation to prevent double
// evaluation.
if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
// Deal with MVE builtins
if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
return Result;
// Handle CDE builtins
if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
return Result;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
Address PtrOp0 = Address::invalid();
Address PtrOp1 = Address::invalid();
SmallVector<Value*, 4> Ops;
bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
for (unsigned i = 0, e = NumArgs; i != e; i++) {
if (i == 0) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v:
case NEON::BI__builtin_neon_vld1q_lane_v:
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v:
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
Ops.push_back(PtrOp0.getPointer());
continue;
}
}
if (i == 1) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v:
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v:
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld2q_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld3q_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v:
case NEON::BI__builtin_neon_vld4q_dup_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
Ops.push_back(PtrOp1.getPointer());
continue;
}
}
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
Ops.push_back(llvm::ConstantInt::get(
getLLVMContext(),
*E->getArg(i)->getIntegerConstantExpr(getContext())));
}
}
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_bf16:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_bf16:
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vduph_lane_bf16:
case NEON::BI__builtin_neon_vduph_laneq_bf16:
return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
case NEON::BI__builtin_neon_vrndns_f32: {
Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *Tys[] = {Arg->getType()};
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
return Builder.CreateCall(F, {Arg}, "vrndn"); }
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_bf16:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_bf16:
case NEON::BI__builtin_neon_vsetq_lane_f32:
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsha1h_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1cq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1pq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1mq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vcvth_bf16_f32: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
"vcvtbfp2bf");
}
// The ARM _MoveToCoprocessor builtins put the input register value as
// the first argument, but the LLVM intrinsic expects it as the third one.
case ARM::BI_MoveToCoprocessor:
case ARM::BI_MoveToCoprocessor2: {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
Ops[3], Ops[4], Ops[5]});
}
}
// Get the last argument, which specifies the vector type.
assert(HasExtraArg);
const Expr *Arg = E->getArg(E->getNumArgs()-1);
Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
if (!Result)
return nullptr;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
// Determine the overloaded type of this builtin.
llvm::Type *Ty;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
Ty = FloatTy;
else
Ty = DoubleTy;
// Determine whether this is an unsigned conversion or not.
bool usgn = Result->getZExtValue() == 1;
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
// Call the appropriate intrinsic.
Function *F = CGM.getIntrinsic(Int, Ty);
return Builder.CreateCall(F, Ops, "vcvtr");
}
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type = Result->getZExtValue();
bool usgn = Type.isUnsigned();
bool rightShift = false;
llvm::FixedVectorType *VTy =
GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
getTarget().hasBFloat16Type());
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Many NEON builtins have identical semantics and uses in ARM and
// AArch64. Emit these in a single function.
auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vld1q_lane_v:
// Handle 64-bit integer elements as a special case. Use shuffles of
// one-element vectors to avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
// Extract the other lane.
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
// Load the value as a one-element vector.
Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
Value *Align = getAlignmentValue32(PtrOp0);
Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
// Combine them.
int Indices[] = {1 - Lane, Lane};
return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
}
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vld1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
Value *Ld = Builder.CreateLoad(PtrOp0);
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
}
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int =
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1, true);
case NEON::BI__builtin_neon_vqrshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
Ops, "vqrshrun_n", 1, true);
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1, true);
case NEON::BI__builtin_neon_vqshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
Ops, "vqshrun_n", 1, true);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
Ops, "vrecpe");
case NEON::BI__builtin_neon_vrshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
Ops, "vrshrn_n", 1, true);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v:
rightShift = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v:
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
Ops, "vsli_n");
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vst1q_lane_v:
// Handle 64-bit integer elements as a special case. Use a shuffle to get
// a one-element vector and avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
Ops[2] = getAlignmentValue32(PtrOp0);
llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
Tys), Ops);
}
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vst1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
auto St = Builder.CreateStore(
Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
return St;
}
case NEON::BI__builtin_neon_vtbl1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
Ops, "vtbl1");
case NEON::BI__builtin_neon_vtbl2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
Ops, "vtbl2");
case NEON::BI__builtin_neon_vtbl3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
Ops, "vtbl3");
case NEON::BI__builtin_neon_vtbl4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
Ops, "vtbl4");
case NEON::BI__builtin_neon_vtbx1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
Ops, "vtbx1");
case NEON::BI__builtin_neon_vtbx2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
Ops, "vtbx2");
case NEON::BI__builtin_neon_vtbx3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
Ops, "vtbx3");
case NEON::BI__builtin_neon_vtbx4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
Ops, "vtbx4");
}
}
template<typename Integer>
static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
return E->getIntegerConstantExpr(Context)->getExtValue();
}
static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
llvm::Type *T, bool Unsigned) {
// Helper function called by Tablegen-constructed ARM MVE builtin codegen,
// which finds it convenient to specify signed/unsigned as a boolean flag.
return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
}
static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
uint32_t Shift, bool Unsigned) {
// MVE helper function for integer shift right. This must handle signed vs
// unsigned, and also deal specially with the case where the shift count is
// equal to the lane size. In LLVM IR, an LShr with that parameter would be
// undefined behavior, but in MVE it's legal, so we must convert it to code
// that is not undefined in IR.
unsigned LaneBits = cast<llvm::VectorType>(V->getType())
->getElementType()
->getPrimitiveSizeInBits();
if (Shift == LaneBits) {
// An unsigned shift of the full lane size always generates zero, so we can
// simply emit a zero vector. A signed shift of the full lane size does the
// same thing as shifting by one bit fewer.
if (Unsigned)
return llvm::Constant::getNullValue(V->getType());
else
--Shift;
}
return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
}
static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
// MVE-specific helper function for a vector splat, which infers the element
// count of the output vector by knowing that MVE vectors are all 128 bits
// wide.
unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
return Builder.CreateVectorSplat(Elements, V);
}
static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
CodeGenFunction *CGF,
llvm::Value *V,
llvm::Type *DestType) {
// Convert one MVE vector type into another by reinterpreting its in-register
// format.
//
// Little-endian, this is identical to a bitcast (which reinterprets the
// memory format). But big-endian, they're not necessarily the same, because
// the register and memory formats map to each other differently depending on
// the lane size.
//
// We generate a bitcast whenever we can (if we're little-endian, or if the
// lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
// that performs the different kind of reinterpretation.
if (CGF->getTarget().isBigEndian() &&
V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
return Builder.CreateCall(
CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
{DestType, V->getType()}),
V);
} else {
return Builder.CreateBitCast(V, DestType);
}
}
static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
// Make a shufflevector that extracts every other element of a vector (evens
// or odds, as desired).
SmallVector<int, 16> Indices;
unsigned InputElements =
cast<llvm::FixedVectorType>(V->getType())->getNumElements();
for (unsigned i = 0; i < InputElements; i += 2)
Indices.push_back(i + Odd);
return Builder.CreateShuffleVector(V, Indices);
}
static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
llvm::Value *V1) {
// Make a shufflevector that interleaves two vectors element by element.
assert(V0->getType() == V1->getType() && "Can't zip different vector types");
SmallVector<int, 16> Indices;
unsigned InputElements =
cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
for (unsigned i = 0; i < InputElements; i++) {
Indices.push_back(i);
Indices.push_back(i + InputElements);
}
return Builder.CreateShuffleVector(V0, V1, Indices);
}
template<unsigned HighBit, unsigned OtherBits>
static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
// MVE-specific helper function to make a vector splat of a constant such as
// UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
unsigned LaneBits = T->getPrimitiveSizeInBits();
uint32_t Value = HighBit << (LaneBits - 1);
if (OtherBits)
Value |= (1UL << (LaneBits - 1)) - 1;
llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
return ARMMVEVectorSplat(Builder, Lane);
}
static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
llvm::Value *V,
unsigned ReverseWidth) {
// MVE-specific helper function which reverses the elements of a
// vector within every (ReverseWidth)-bit collection of lanes.
SmallVector<int, 16> Indices;
unsigned LaneSize = V->getType()->getScalarSizeInBits();
unsigned Elements = 128 / LaneSize;
unsigned Mask = ReverseWidth / LaneSize - 1;
for (unsigned i = 0; i < Elements; i++)
Indices.push_back(i ^ Mask);
return Builder.CreateShuffleVector(V, Indices);
}
Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue,
llvm::Triple::ArchType Arch) {
enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
Intrinsic::ID IRIntr;
unsigned NumVectors;
// Code autogenerated by Tablegen will handle all the simple builtins.
switch (BuiltinID) {
#include "clang/Basic/arm_mve_builtin_cg.inc"
// If we didn't match an MVE builtin id at all, go back to the
// main EmitARMBuiltinExpr.
default:
return nullptr;
}
// Anything that breaks from that switch is an MVE builtin that
// needs handwritten code to generate.
switch (CustomCodeGenType) {
case CustomCodeGen::VLD24: {
llvm::SmallVector<Value *, 4> Ops;
llvm::SmallVector<llvm::Type *, 4> Tys;
auto MvecCType = E->getType();
auto MvecLType = ConvertType(MvecCType);
assert(MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct");
assert(MvecLType->getStructNumElements() == 1 &&
"Return-type struct for vld[24]q should have one element");
auto MvecLTypeInner = MvecLType->getStructElementType(0);
assert(MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array");
assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
"Array member of return-type struct vld[24]q has wrong length");
auto VecLType = MvecLTypeInner->getArrayElementType();
Tys.push_back(VecLType);
auto Addr = E->getArg(0);
Ops.push_back(EmitScalarExpr(Addr));
Tys.push_back(ConvertType(Addr->getType()));
Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
Value *LoadResult = Builder.CreateCall(F, Ops);
Value *MvecOut = UndefValue::get(MvecLType);
for (unsigned i = 0; i < NumVectors; ++i) {
Value *Vec = Builder.CreateExtractValue(LoadResult, i);
MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
}
if (ReturnValue.isNull())
return MvecOut;
else
return Builder.CreateStore(MvecOut, ReturnValue.getValue());
}
case CustomCodeGen::VST24: {
llvm::SmallVector<Value *, 4> Ops;
llvm::SmallVector<llvm::Type *, 4> Tys;
auto Addr = E->getArg(0);
Ops.push_back(EmitScalarExpr(Addr));
Tys.push_back(ConvertType(Addr->getType()));
auto MvecCType = E->getArg(1)->getType();
auto MvecLType = ConvertType(MvecCType);
assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
assert(MvecLType->getStructNumElements() == 1 &&
"Data-type struct for vst2q should have one element");
auto MvecLTypeInner = MvecLType->getStructElementType(0);
assert(MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array");
assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
"Array member of return-type struct vld[24]q has wrong length");
auto VecLType = MvecLTypeInner->getArrayElementType();
Tys.push_back(VecLType);
AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
EmitAggExpr(E->getArg(1), MvecSlot);
auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
for (unsigned i = 0; i < NumVectors; i++)
Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
Value *ToReturn = nullptr;
for (unsigned i = 0; i < NumVectors; i++) {
Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
ToReturn = Builder.CreateCall(F, Ops);
Ops.pop_back();
}
return ToReturn;
}
}
llvm_unreachable("unknown custom codegen type.");
}
Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue,
llvm::Triple::ArchType Arch) {
switch (BuiltinID) {
default:
return nullptr;
#include "clang/Basic/arm_cde_builtin_cg.inc"
}
}
static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
const CallExpr *E,
SmallVectorImpl<Value *> &Ops,
llvm::Triple::ArchType Arch) {
unsigned int Int = 0;
const char *s = nullptr;
switch (BuiltinID) {
default:
return nullptr;
case NEON::BI__builtin_neon_vtbl1_v:
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
case NEON::BI__builtin_neon_vtbl2_v:
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v:
case NEON::BI__builtin_neon_vtbl3_v:
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
case NEON::BI__builtin_neon_vtbl4_v:
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
break;
case NEON::BI__builtin_neon_vtbx1_v:
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
case NEON::BI__builtin_neon_vtbx2_v:
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
case NEON::BI__builtin_neon_vtbx3_v:
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
case NEON::BI__builtin_neon_vtbx4_v:
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
break;
}
assert(E->getNumArgs() >= 3);
// Get the last argument, which specifies the vector type.
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
if (!Result)
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type = Result->getZExtValue();
llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
if (!Ty)
return nullptr;
CodeGen::CGBuilderTy &Builder = CGF.Builder;
// AArch64 scalar builtins are not overloaded, they do not have an extra
// argument that specifies the vector type, need to handle each case.
switch (BuiltinID) {
case NEON::BI__builtin_neon_vtbl1_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl3_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbl4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbx1_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
llvm::Constant *EightV = ConstantInt::get(Ty, 8);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
"vtbx1");
}
case NEON::BI__builtin_neon_vtbx3_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
TwentyFourV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
"vtbx2");
}
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v: {
Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
}
}
if (!Int)
return nullptr;
Function *F = CGF.CGM.getIntrinsic(Int, Ty);
return CGF.EmitNeonCall(F, Ops, s);
}
Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
Op = Builder.CreateBitCast(Op, Int16Ty);
Value *V = UndefValue::get(VTy);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Op = Builder.CreateInsertElement(V, Op, CI);
return Op;
}
/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
/// access builtin. Only required if it can't be inferred from the base pointer
/// operand.
llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
switch (TypeFlags.getMemEltType()) {
case SVETypeFlags::MemEltTyDefault:
return getEltType(TypeFlags);
case SVETypeFlags::MemEltTyInt8:
return Builder.getInt8Ty();
case SVETypeFlags::MemEltTyInt16:
return Builder.getInt16Ty();
case SVETypeFlags::MemEltTyInt32:
return Builder.getInt32Ty();
case SVETypeFlags::MemEltTyInt64:
return Builder.getInt64Ty();
}
llvm_unreachable("Unknown MemEltType");
}
llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
switch (TypeFlags.getEltType()) {
default:
llvm_unreachable("Invalid SVETypeFlag!");
case SVETypeFlags::EltTyInt8:
return Builder.getInt8Ty();
case SVETypeFlags::EltTyInt16:
return Builder.getInt16Ty();
case SVETypeFlags::EltTyInt32:
return Builder.getInt32Ty();
case SVETypeFlags::EltTyInt64:
return Builder.getInt64Ty();
case SVETypeFlags::EltTyFloat16:
return Builder.getHalfTy();
case SVETypeFlags::EltTyFloat32:
return Builder.getFloatTy();
case SVETypeFlags::EltTyFloat64:
return Builder.getDoubleTy();
case SVETypeFlags::EltTyBFloat16:
return Builder.getBFloatTy();
case SVETypeFlags::EltTyBool8:
case SVETypeFlags::EltTyBool16:
case SVETypeFlags::EltTyBool32:
case SVETypeFlags::EltTyBool64:
return Builder.getInt1Ty();
}
}
// Return the llvm predicate vector type corresponding to the specified element
// TypeFlags.
llvm::ScalableVectorType *
CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
switch (TypeFlags.getEltType()) {
default: llvm_unreachable("Unhandled SVETypeFlag!");
case SVETypeFlags::EltTyInt8:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
case SVETypeFlags::EltTyInt16:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
case SVETypeFlags::EltTyInt32:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
case SVETypeFlags::EltTyInt64:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
case SVETypeFlags::EltTyBFloat16:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
case SVETypeFlags::EltTyFloat16:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
case SVETypeFlags::EltTyFloat32:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
case SVETypeFlags::EltTyFloat64:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
case SVETypeFlags::EltTyBool8:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
case SVETypeFlags::EltTyBool16:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
case SVETypeFlags::EltTyBool32:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
case SVETypeFlags::EltTyBool64:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
}
}
// Return the llvm vector type corresponding to the specified element TypeFlags.
llvm::ScalableVectorType *
CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
switch (TypeFlags.getEltType()) {
default:
llvm_unreachable("Invalid SVETypeFlag!");
case SVETypeFlags::EltTyInt8:
return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
case SVETypeFlags::EltTyInt16:
return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
case SVETypeFlags::EltTyInt32:
return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
case SVETypeFlags::EltTyInt64:
return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
case SVETypeFlags::EltTyFloat16:
return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
case SVETypeFlags::EltTyBFloat16:
return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
case SVETypeFlags::EltTyFloat32:
return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
case SVETypeFlags::EltTyFloat64:
return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
case SVETypeFlags::EltTyBool8:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
case SVETypeFlags::EltTyBool16:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
case SVETypeFlags::EltTyBool32:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
case SVETypeFlags::EltTyBool64:
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
}
}
llvm::Value *
CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
Function *Ptrue =
CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
}
constexpr unsigned SVEBitsPerBlock = 128;
static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
return llvm::ScalableVectorType::get(EltTy, NumElts);
}
// Reinterpret the input predicate so that it can be used to correctly isolate
// the elements of the specified datatype.
Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
llvm::ScalableVectorType *VTy) {
auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
if (Pred->getType() == RTy)
return Pred;
unsigned IntID;
llvm::Type *IntrinsicTy;
switch (VTy->getMinNumElements()) {
default:
llvm_unreachable("unsupported element count!");
case 2:
case 4:
case 8:
IntID = Intrinsic::aarch64_sve_convert_from_svbool;
IntrinsicTy = RTy;
break;
case 16:
IntID = Intrinsic::aarch64_sve_convert_to_svbool;
IntrinsicTy = Pred->getType();
break;
}
Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
Value *C = Builder.CreateCall(F, Pred);
assert(C->getType() == RTy && "Unexpected return type!");
return C;
}
Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value *> &Ops,
unsigned IntID) {
auto *ResultTy = getSVEType(TypeFlags);
auto *OverloadedTy =
llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
// At the ACLE level there's only one predicate type, svbool_t, which is
// mapped to <n x 16 x i1>. However, this might be incompatible with the
// actual type being loaded. For example, when loading doubles (i64) the
// predicated should be <n x 2 x i1> instead. At the IR level the type of
// the predicate and the data being loaded must match. Cast accordingly.
Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
Function *F = nullptr;
if (Ops[1]->getType()->isVectorTy())
// This is the "vector base, scalar offset" case. In order to uniquely
// map this built-in to an LLVM IR intrinsic, we need both the return type
// and the type of the vector base.
F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
else
// This is the "scalar base, vector offset case". The type of the offset
// is encoded in the name of the intrinsic. We only need to specify the
// return type in order to uniquely map this built-in to an LLVM IR
// intrinsic.
F = CGM.getIntrinsic(IntID, OverloadedTy);
// Pass 0 when the offset is missing. This can only be applied when using
// the "vector base" addressing mode for which ACLE allows no offset. The
// corresponding LLVM IR always requires an offset.
if (Ops.size() == 2) {
assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
Ops.push_back(ConstantInt::get(Int64Ty, 0));
}
// For "vector base, scalar index" scale the index so that it becomes a
// scalar offset.
if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
unsigned BytesPerElt =
OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
Ops[2] = Builder.CreateMul(Ops[2], Scale);
}
Value *Call = Builder.CreateCall(F, Ops);
// The following sext/zext is only needed when ResultTy != OverloadedTy. In
// other cases it's folded into a nop.
return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
: Builder.CreateSExt(Call, ResultTy);
}
Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value *> &Ops,
unsigned IntID) {
auto *SrcDataTy = getSVEType(TypeFlags);
auto *OverloadedTy =
llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
// In ACLE the source data is passed in the last argument, whereas in LLVM IR
// it's the first argument. Move it accordingly.
Ops.insert(Ops.begin(), Ops.pop_back_val());
Function *F = nullptr;
if (Ops[2]->getType()->isVectorTy())
// This is the "vector base, scalar offset" case. In order to uniquely
// map this built-in to an LLVM IR intrinsic, we need both the return type
// and the type of the vector base.
F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
else
// This is the "scalar base, vector offset case". The type of the offset
// is encoded in the name of the intrinsic. We only need to specify the
// return type in order to uniquely map this built-in to an LLVM IR
// intrinsic.
F = CGM.getIntrinsic(IntID, OverloadedTy);
// Pass 0 when the offset is missing. This can only be applied when using
// the "vector base" addressing mode for which ACLE allows no offset. The
// corresponding LLVM IR always requires an offset.
if (Ops.size() == 3) {
assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
Ops.push_back(ConstantInt::get(Int64Ty, 0));
}
// Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
// folded into a nop.
Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
// At the ACLE level there's only one predicate type, svbool_t, which is
// mapped to <n x 16 x i1>. However, this might be incompatible with the
// actual type being stored. For example, when storing doubles (i64) the
// predicated should be <n x 2 x i1> instead. At the IR level the type of
// the predicate and the data being stored must match. Cast accordingly.
Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
// For "vector base, scalar index" scale the index so that it becomes a
// scalar offset.
if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
unsigned BytesPerElt =
OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
Ops[3] = Builder.CreateMul(Ops[3], Scale);
}
return Builder.CreateCall(F, Ops);
}
Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value *> &Ops,
unsigned IntID) {
// The gather prefetches are overloaded on the vector input - this can either
// be the vector of base addresses or vector of offsets.
auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
if (!OverloadedTy)
OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
// Cast the predicate from svbool_t to the right number of elements.
Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
// vector + imm addressing modes
if (Ops[1]->getType()->isVectorTy()) {
if (Ops.size() == 3) {
// Pass 0 for 'vector+imm' when the index is omitted.
Ops.push_back(ConstantInt::get(Int64Ty, 0));
// The sv_prfop is the last operand in the builtin and IR intrinsic.
std::swap(Ops[2], Ops[3]);
} else {
// Index needs to be passed as scaled offset.
llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
Ops[2] = Builder.CreateMul(Ops[2], Scale);
}
}
Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
return Builder.CreateCall(F, Ops);
}
Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value*> &Ops,
unsigned IntID) {
llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
unsigned N;
switch (IntID) {
case Intrinsic::aarch64_sve_ld2:
N = 2;
break;
case Intrinsic::aarch64_sve_ld3:
N = 3;
break;
case Intrinsic::aarch64_sve_ld4:
N = 4;
break;
default:
llvm_unreachable("unknown intrinsic!");
}
auto RetTy = llvm::VectorType::get(VTy->getElementType(),
VTy->getElementCount() * N);
Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
return Builder.CreateCall(F, { Predicate, BasePtr });
}
Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value*> &Ops,
unsigned IntID) {
llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
unsigned N;
switch (IntID) {
case Intrinsic::aarch64_sve_st2:
N = 2;
break;
case Intrinsic::aarch64_sve_st3:
N = 3;
break;
case Intrinsic::aarch64_sve_st4:
N = 4;
break;
default:
llvm_unreachable("unknown intrinsic!");
}
auto TupleTy =
llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
Value *Val = Ops.back();
BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
// The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
// need to break up the tuple vector.
SmallVector<llvm::Value*, 5> Operands;
Function *FExtr =
CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
for (unsigned I = 0; I < N; ++I)
Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
Operands.append({Predicate, BasePtr});
Function *F = CGM.getIntrinsic(IntID, { VTy });
return Builder.CreateCall(F, Operands);
}
// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
// svpmullt_pair intrinsics, with the exception that their results are bitcast
// to a wider type.
Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value *> &Ops,
unsigned BuiltinID) {
// Splat scalar operand to vector (intrinsics with _n infix)
if (TypeFlags.hasSplatOperand()) {
unsigned OpNo = TypeFlags.getSplatOperand();
Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
}
// The pair-wise function has a narrower overloaded type.
Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
// Now bitcast to the wider result type.
llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
return EmitSVEReinterpret(Call, Ty);
}
Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
ArrayRef<Value *> Ops, unsigned BuiltinID) {
llvm::Type *OverloadedTy = getSVEType(TypeFlags);
Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
}
Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
SmallVectorImpl<Value *> &Ops,
unsigned BuiltinID) {
auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
auto *VectorTy = getSVEVectorForElementType(MemEltTy);
auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
Value *BasePtr = Ops[1];
// Implement the index operand if not omitted.
if (Ops.size() > 3) {
BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
}
// Prefetch intriniscs always expect an i8*
BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
Value *PrfOp = Ops.back();
Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
}
Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
llvm::Type *ReturnTy,
SmallVectorImpl<Value *> &Ops,
unsigned BuiltinID,
bool IsZExtReturn) {
QualType LangPTy = E->getArg(1)->getType();
llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
LangPTy->castAs<PointerType>()->getPointeeType());
// The vector type that is returned may be different from the
// eventual type loaded from memory.
auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
auto *Load =
cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
: Builder.CreateSExt(Load, VectorTy);
}
Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
SmallVectorImpl<Value *> &Ops,
unsigned BuiltinID) {
QualType LangPTy = E->getArg(1)->getType();
llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
LangPTy->castAs<PointerType>()->getPointeeType());
// The vector type that is stored may be different from the
// eventual type stored to memory.
auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
// Last value is always the data
llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
auto *Store =
cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
return Store;
}
// Limit the usage of scalable llvm IR generated by the ACLE by using the
// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
return Builder.CreateCall(F, Scalar);
}
Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
}
Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
// FIXME: For big endian this needs an additional REV, or needs a separate
// intrinsic that is code-generated as a no-op, because the LLVM bitcast
// instruction is defined as 'bitwise' equivalent from memory point of
// view (when storing/reloading), whereas the svreinterpret builtin
// implements bitwise equivalent cast from register point of view.
// LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
return Builder.CreateBitCast(Val, Ty);
}
static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
SmallVectorImpl<Value *> &Ops) {
auto *SplatZero = Constant::getNullValue(Ty);
Ops.insert(Ops.begin(), SplatZero);
}
static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
SmallVectorImpl<Value *> &Ops) {
auto *SplatUndef = UndefValue::get(Ty);
Ops.insert(Ops.begin(), SplatUndef);
}
SmallVector<llvm::Type *, 2>
CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
llvm::Type *ResultType,
ArrayRef<Value *> Ops) {
if (TypeFlags.isOverloadNone())
return {};
llvm::Type *DefaultType = getSVEType(TypeFlags);
if (TypeFlags.isOverloadWhile())
return {DefaultType, Ops[1]->getType()};
if (TypeFlags.isOverloadWhileRW())
return {getSVEPredType(TypeFlags), Ops[0]->getType()};
if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
return {Ops[0]->getType(), Ops.back()->getType()};
if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
return {ResultType, Ops[0]->getType()};
assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
return {DefaultType};
}
Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
llvm::Type *Ty = ConvertType(E->getType());
if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
Value *Val = EmitScalarExpr(E->getArg(0));
return EmitSVEReinterpret(Val, Ty);
}
llvm::SmallVector<Value *, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
if ((ICEArguments & (1 << i)) == 0)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
Optional<llvm::APSInt> Result =
E->getArg(i)->getIntegerConstantExpr(getContext());
assert(Result && "Expected argument to be a constant");
// Immediates for SVE llvm intrinsics are always 32bit. We can safely
// truncate because the immediate has been range checked and no valid
// immediate requires more than a handful of bits.
*Result = Result->extOrTrunc(32);
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
}
}
auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
AArch64SVEIntrinsicsProvenSorted);
SVETypeFlags TypeFlags(Builtin->TypeModifier);
if (TypeFlags.isLoad())
return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
TypeFlags.isZExtReturn());
else if (TypeFlags.isStore())
return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isGatherLoad())
return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isScatterStore())
return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isPrefetch())
return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isGatherPrefetch())
return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isStructLoad())
return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isStructStore())
return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
else if (TypeFlags.isUndef())
return UndefValue::get(Ty);
else if (Builtin->LLVMIntrinsic != 0) {
if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
InsertExplicitZeroOperand(Builder, Ty, Ops);
if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
InsertExplicitUndefOperand(Builder, Ty, Ops);
// Some ACLE builtins leave out the argument to specify the predicate
// pattern, which is expected to be expanded to an SV_ALL pattern.
if (TypeFlags.isAppendSVALL())
Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
if (TypeFlags.isInsertOp1SVALL())
Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
// Predicates must match the main datatype.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
if (PredTy->getElementType()->isIntegerTy(1))
Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
// Splat scalar operand to vector (intrinsics with _n infix)
if (TypeFlags.hasSplatOperand()) {
unsigned OpNo = TypeFlags.getSplatOperand();
Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
}
if (TypeFlags.isReverseCompare())
std::swap(Ops[1], Ops[2]);
if (TypeFlags.isReverseUSDOT())
std::swap(Ops[1], Ops[2]);
// Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
llvm::Type *OpndTy = Ops[1]->getType();
auto *SplatZero = Constant::getNullValue(OpndTy);
Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
}
Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
getSVEOverloadTypes(TypeFlags, Ty, Ops));
Value *Call = Builder.CreateCall(F, Ops);
// Predicate results must be converted to svbool_t.
if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
if (PredTy->getScalarType()->isIntegerTy(1))
Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
return Call;
}
switch (BuiltinID) {
default:
return nullptr;
case SVE::BI__builtin_sve_svmov_b_z: {
// svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
SVETypeFlags TypeFlags(Builtin->TypeModifier);
llvm::Type* OverloadedTy = getSVEType(TypeFlags);
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
}
case SVE::BI__builtin_sve_svnot_b_z: {
// svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
SVETypeFlags TypeFlags(Builtin->TypeModifier);
llvm::Type* OverloadedTy = getSVEType(TypeFlags);
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
}
case SVE::BI__builtin_sve_svmovlb_u16:
case SVE::BI__builtin_sve_svmovlb_u32:
case SVE::BI__builtin_sve_svmovlb_u64:
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
case SVE::BI__builtin_sve_svmovlb_s16:
case SVE::BI__builtin_sve_svmovlb_s32:
case SVE::BI__builtin_sve_svmovlb_s64:
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
case SVE::BI__builtin_sve_svmovlt_u16:
case SVE::BI__builtin_sve_svmovlt_u32:
case SVE::BI__builtin_sve_svmovlt_u64:
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
case SVE::BI__builtin_sve_svmovlt_s16:
case SVE::BI__builtin_sve_svmovlt_s32:
case SVE::BI__builtin_sve_svmovlt_s64:
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
case SVE::BI__builtin_sve_svpmullt_u16:
case SVE::BI__builtin_sve_svpmullt_u64:
case SVE::BI__builtin_sve_svpmullt_n_u16:
case SVE::BI__builtin_sve_svpmullt_n_u64:
return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
case SVE::BI__builtin_sve_svpmullb_u16:
case SVE::BI__builtin_sve_svpmullb_u64:
case SVE::BI__builtin_sve_svpmullb_n_u16:
case SVE::BI__builtin_sve_svpmullb_n_u64:
return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
case SVE::BI__builtin_sve_svdup_n_b8:
case SVE::BI__builtin_sve_svdup_n_b16:
case SVE::BI__builtin_sve_svdup_n_b32:
case SVE::BI__builtin_sve_svdup_n_b64: {
Value *CmpNE =
Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
}
case SVE::BI__builtin_sve_svdupq_n_b8:
case SVE::BI__builtin_sve_svdupq_n_b16:
case SVE::BI__builtin_sve_svdupq_n_b32:
case SVE::BI__builtin_sve_svdupq_n_b64:
case SVE::BI__builtin_sve_svdupq_n_u8:
case SVE::BI__builtin_sve_svdupq_n_s8:
case SVE::BI__builtin_sve_svdupq_n_u64:
case SVE::BI__builtin_sve_svdupq_n_f64:
case SVE::BI__builtin_sve_svdupq_n_s64:
case SVE::BI__builtin_sve_svdupq_n_u16:
case SVE::BI__builtin_sve_svdupq_n_f16:
case SVE::BI__builtin_sve_svdupq_n_bf16:
case SVE::BI__builtin_sve_svdupq_n_s16:
case SVE::BI__builtin_sve_svdupq_n_u32:
case SVE::BI__builtin_sve_svdupq_n_f32:
case SVE::BI__builtin_sve_svdupq_n_s32: {
// These builtins are implemented by storing each element to an array and using
// ld1rq to materialize a vector.
unsigned NumOpnds = Ops.size();
bool IsBoolTy =
cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
// For svdupq_n_b* the element type of is an integer of type 128/numelts,
// so that the compare can use the width that is natural for the expected
// number of predicate lanes.
llvm::Type *EltTy = Ops[0]->getType();
if (IsBoolTy)
EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
SmallVector<llvm::Value *, 16> VecOps;
for (unsigned I = 0; I < NumOpnds; ++I)
VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
Value *Vec = BuildVector(VecOps);
SVETypeFlags TypeFlags(Builtin->TypeModifier);
Value *Pred = EmitSVEAllTruePred(TypeFlags);
llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
Value *InsertSubVec = Builder.CreateInsertVector(
OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
Function *F =
CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
Value *DupQLane =
Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
if (!IsBoolTy)
return DupQLane;
// For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
: Intrinsic::aarch64_sve_cmpne_wide,
OverloadedTy);
Value *Call = Builder.CreateCall(
F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
}
case SVE::BI__builtin_sve_svpfalse_b:
return ConstantInt::getFalse(Ty);
case SVE::BI__builtin_sve_svlen_bf16:
case SVE::BI__builtin_sve_svlen_f16:
case SVE::BI__builtin_sve_svlen_f32:
case SVE::BI__builtin_sve_svlen_f64:
case SVE::BI__builtin_sve_svlen_s8:
case SVE::BI__builtin_sve_svlen_s16:
case SVE::BI__builtin_sve_svlen_s32:
case SVE::BI__builtin_sve_svlen_s64:
case SVE::BI__builtin_sve_svlen_u8:
case SVE::BI__builtin_sve_svlen_u16:
case SVE::BI__builtin_sve_svlen_u32:
case SVE::BI__builtin_sve_svlen_u64: {
SVETypeFlags TF(Builtin->TypeModifier);
auto VTy = cast<llvm::VectorType>(getSVEType(TF));
auto *NumEls =
llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
return Builder.CreateMul(NumEls, Builder.CreateCall(F));
}
case SVE::BI__builtin_sve_svtbl2_u8:
case SVE::BI__builtin_sve_svtbl2_s8:
case SVE::BI__builtin_sve_svtbl2_u16:
case SVE::BI__builtin_sve_svtbl2_s16:
case SVE::BI__builtin_sve_svtbl2_u32:
case SVE::BI__builtin_sve_svtbl2_s32:
case SVE::BI__builtin_sve_svtbl2_u64:
case SVE::BI__builtin_sve_svtbl2_s64:
case SVE::BI__builtin_sve_svtbl2_f16:
case SVE::BI__builtin_sve_svtbl2_bf16:
case SVE::BI__builtin_sve_svtbl2_f32:
case SVE::BI__builtin_sve_svtbl2_f64: {
SVETypeFlags TF(Builtin->TypeModifier);
auto VTy = cast<llvm::VectorType>(getSVEType(TF));
auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
Function *FExtr =
CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
return Builder.CreateCall(F, {V0, V1, Ops[1]});
}
case SVE::BI__builtin_sve_svset_neonq_s8:
case SVE::BI__builtin_sve_svset_neonq_s16:
case SVE::BI__builtin_sve_svset_neonq_s32:
case SVE::BI__builtin_sve_svset_neonq_s64:
case SVE::BI__builtin_sve_svset_neonq_u8:
case SVE::BI__builtin_sve_svset_neonq_u16:
case SVE::BI__builtin_sve_svset_neonq_u32:
case SVE::BI__builtin_sve_svset_neonq_u64:
case SVE::BI__builtin_sve_svset_neonq_f16:
case SVE::BI__builtin_sve_svset_neonq_f32:
case SVE::BI__builtin_sve_svset_neonq_f64:
case SVE::BI__builtin_sve_svset_neonq_bf16: {
return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
}
case SVE::BI__builtin_sve_svget_neonq_s8:
case SVE::BI__builtin_sve_svget_neonq_s16:
case SVE::BI__builtin_sve_svget_neonq_s32:
case SVE::BI__builtin_sve_svget_neonq_s64:
case SVE::BI__builtin_sve_svget_neonq_u8:
case SVE::BI__builtin_sve_svget_neonq_u16:
case SVE::BI__builtin_sve_svget_neonq_u32:
case SVE::BI__builtin_sve_svget_neonq_u64:
case SVE::BI__builtin_sve_svget_neonq_f16:
case SVE::BI__builtin_sve_svget_neonq_f32:
case SVE::BI__builtin_sve_svget_neonq_f64:
case SVE::BI__builtin_sve_svget_neonq_bf16: {
return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
}
case SVE::BI__builtin_sve_svdup_neonq_s8:
case SVE::BI__builtin_sve_svdup_neonq_s16:
case SVE::BI__builtin_sve_svdup_neonq_s32:
case SVE::BI__builtin_sve_svdup_neonq_s64:
case SVE::BI__builtin_sve_svdup_neonq_u8:
case SVE::BI__builtin_sve_svdup_neonq_u16:
case SVE::BI__builtin_sve_svdup_neonq_u32:
case SVE::BI__builtin_sve_svdup_neonq_u64:
case SVE::BI__builtin_sve_svdup_neonq_f16:
case SVE::BI__builtin_sve_svdup_neonq_f32:
case SVE::BI__builtin_sve_svdup_neonq_f64:
case SVE::BI__builtin_sve_svdup_neonq_bf16: {
Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0],
Builder.getInt64(0));
return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
{Insert, Builder.getInt64(0)});
}
}
/// Should not happen
return nullptr;
}
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
llvm::Triple::ArchType Arch) {
if (BuiltinID >= AArch64::FirstSVEBuiltin &&
BuiltinID <= AArch64::LastSVEBuiltin)
return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
unsigned HintID = static_cast<unsigned>(-1);
switch (BuiltinID) {
default: break;
case AArch64::BI__builtin_arm_nop:
HintID = 0;
break;
case AArch64::BI__builtin_arm_yield:
case AArch64::BI__yield:
HintID = 1;
break;
case AArch64::BI__builtin_arm_wfe:
case AArch64::BI__wfe:
HintID = 2;
break;
case AArch64::BI__builtin_arm_wfi:
case AArch64::BI__wfi:
HintID = 3;
break;
case AArch64::BI__builtin_arm_sev:
case AArch64::BI__sev:
HintID = 4;
break;
case AArch64::BI__builtin_arm_sevl:
case AArch64::BI__sevl:
HintID = 5;
break;
}
if (HintID != static_cast<unsigned>(-1)) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
}
if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *CacheLevel = EmitScalarExpr(E->getArg(2));
Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
Value *IsData = EmitScalarExpr(E->getArg(4));
Value *Locality = nullptr;
if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
// Temporal fetch, needs to convert cache level to locality.
Locality = llvm::ConstantInt::get(Int32Ty,
-cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
} else {
// Streaming fetch.
Locality = llvm::ConstantInt::get(Int32Ty, 0);
}
// FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
// PLDL3STRM or PLDL2STRM.
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
assert((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
assert((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__builtin_arm_cls) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
"cls");
}
if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
"cls");
}
if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
BuiltinID == AArch64::BI__builtin_arm_frint32z) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = Arg->getType();
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
Arg, "frint32z");
}
if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
BuiltinID == AArch64::BI__builtin_arm_frint64z) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = Arg->getType();
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
Arg, "frint64z");
}
if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
BuiltinID == AArch64::BI__builtin_arm_frint32x) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = Arg->getType();
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
Arg, "frint32x");
}
if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
BuiltinID == AArch64::BI__builtin_arm_frint64x) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
llvm::Type *Ty = Arg->getType();
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
Arg, "frint64x");
}
if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
assert((getContext().getTypeSize(E->getType()) == 32) &&
"__jcvt of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
}
if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
BuiltinID == AArch64::BI__builtin_arm_st64b ||
BuiltinID == AArch64::BI__builtin_arm_st64bv ||
BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
// Load from the address via an LLVM intrinsic, receiving a
// tuple of 8 i64 words, and store each one to ValPtr.
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
llvm::Value *Val = Builder.CreateCall(F, MemAddr);
llvm::Value *ToRet;
for (size_t i = 0; i < 8; i++) {
llvm::Value *ValOffsetPtr =
Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
Address Addr =
Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
}
return ToRet;
} else {
// Load 8 i64 words from ValPtr, and store them to the address
// via an LLVM intrinsic.
SmallVector<llvm::Value *, 9> Args;
Args.push_back(MemAddr);
for (size_t i = 0; i < 8; i++) {
llvm::Value *ValOffsetPtr =
Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
Address Addr =
Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
Args.push_back(Builder.CreateLoad(Addr));
}
auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
? Intrinsic::aarch64_st64b
: BuiltinID == AArch64::BI__builtin_arm_st64bv
? Intrinsic::aarch64_st64bv
: Intrinsic::aarch64_st64bv0);
Function *F = CGM.getIntrinsic(Intr);
return Builder.CreateCall(F, Args);
}
}
if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
? Intrinsic::aarch64_rndr
: Intrinsic::aarch64_rndrrs);
Function *F = CGM.getIntrinsic(Intr);
llvm::Value *Val = Builder.CreateCall(F);
Value *RandomValue = Builder.CreateExtractValue(Val, 0);
Value *Status = Builder.CreateExtractValue(Val, 1);
Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
Builder.CreateStore(RandomValue, MemAddress);
Status = Builder.CreateZExt(Status, Int32Ty);
return Status;
}
if (BuiltinID == AArch64::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp);
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldxp");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
Val0 = Builder.CreateZExt(Val0, Int128Ty);
Val1 = Builder.CreateZExt(Val1, Int128Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
} else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *IntTy =
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
llvm::Type *PtrTy = IntTy->getPointerTo();
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr,
PtrTy);
CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
Val->addParamAttr(
0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
llvm::Type *IntResTy = llvm::IntegerType::get(
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
RealResTy);
}
if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp);
llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
Tmp = Builder.CreateElementBitCast(Tmp, STy);
llvm::Value *Val = Builder.CreateLoad(Tmp);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
}
if (BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
else {
llvm::Type *IntTy = llvm::IntegerType::get(
getLLVMContext(),
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr,
StoreAddr->getType());
CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
CI->addParamAttr(
1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
return CI;
}
if (BuiltinID == AArch64::BI__getReg) {
Expr::EvalResult Result;
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
llvm_unreachable("Sema will ensure that the parameter is constant");
llvm::APSInt Value = Result.Val.getInt();
LLVMContext &Context = CGM.getLLVMContext();
std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
llvm::Function *F =
CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
return Builder.CreateCall(F, Metadata);
}
if (BuiltinID == AArch64::BI__break) {
Expr::EvalResult Result;
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
llvm_unreachable("Sema will ensure that the parameter is constant");
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
}
if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
return Builder.CreateCall(F);
}
if (BuiltinID == AArch64::BI_ReadWriteBarrier)
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
llvm::SyncScope::SingleThread);
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case AArch64::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
case AArch64::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
case AArch64::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
case AArch64::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
case AArch64::BI__builtin_arm_crc32w:
CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
case AArch64::BI__builtin_arm_crc32cw:
CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
case AArch64::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
case AArch64::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
return Builder.CreateCall(F, {Arg0, Arg1});
}
// Memory Operations (MOPS)
if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
Value *Dst = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Value *Size = EmitScalarExpr(E->getArg(2));
Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
Val = Builder.CreateTrunc(Val, Int8Ty);
Size = Builder.CreateIntCast(Size, Int64Ty, false);
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
}
// Memory Tagging Extensions (MTE) Intrinsics
Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case AArch64::BI__builtin_arm_irg:
MTEIntrinsicID = Intrinsic::aarch64_irg; break;
case AArch64::BI__builtin_arm_addg:
MTEIntrinsicID = Intrinsic::aarch64_addg; break;
case AArch64::BI__builtin_arm_gmi:
MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
case AArch64::BI__builtin_arm_ldg:
MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
case AArch64::BI__builtin_arm_stg:
MTEIntrinsicID = Intrinsic::aarch64_stg; break;
case AArch64::BI__builtin_arm_subp:
MTEIntrinsicID = Intrinsic::aarch64_subp; break;
}
if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
llvm::Type *T = ConvertType(E->getType());
if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
Value *Pointer = EmitScalarExpr(E->getArg(0));
Value *Mask = EmitScalarExpr(E->getArg(1));
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
Mask = Builder.CreateZExt(Mask, Int64Ty);
Value *RV = Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
return Builder.CreatePointerCast(RV, T);
}
if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
Value *Pointer = EmitScalarExpr(E->getArg(0));
Value *TagOffset = EmitScalarExpr(E->getArg(1));
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
Value *RV = Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
return Builder.CreatePointerCast(RV, T);
}
if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
Value *Pointer = EmitScalarExpr(E->getArg(0));
Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
return Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
}
// Although it is possible to supply a different return
// address (first arg) to this intrinsic, for now we set
// return address same as input address.
if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
Value *TagAddress = EmitScalarExpr(E->getArg(0));
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
Value *RV = Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
return Builder.CreatePointerCast(RV, T);
}
// Although it is possible to supply a different tag (to set)
// to this intrinsic (as first arg), for now we supply
// the tag that is in input address arg (common use case).
if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
Value *TagAddress = EmitScalarExpr(E->getArg(0));
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
return Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
}
if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
Value *PointerA = EmitScalarExpr(E->getArg(0));
Value *PointerB = EmitScalarExpr(E->getArg(1));
PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
return Builder.CreateCall(
CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
}
}
if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsr ||
BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
BuiltinID == AArch64::BI__builtin_arm_wsrp) {
SpecialRegisterAccessKind AccessKind = Write;
if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp)
AccessKind = VolatileRead;
bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
BuiltinID != AArch64::BI__builtin_arm_wsr;
llvm::Type *ValueType;
llvm::Type *RegisterType = Int64Ty;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
} else if (Is64Bit) {
ValueType = Int64Ty;
} else {
ValueType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
AccessKind);
}
if (BuiltinID == AArch64::BI_ReadStatusReg ||
BuiltinID == AArch64::BI_WriteStatusReg) {
LLVMContext &Context = CGM.getLLVMContext();
unsigned SysReg =
E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
std::string SysRegStr;
llvm::raw_string_ostream(SysRegStr) <<
((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
((SysReg >> 11) & 7) << ":" <<
((SysReg >> 7) & 15) << ":" <<
((SysReg >> 3) & 15) << ":" <<
( SysReg & 7);
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
llvm::Type *RegisterType = Int64Ty;
llvm::Type *Types[] = { RegisterType };
if (BuiltinID == AArch64::BI_ReadStatusReg) {
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
return Builder.CreateCall(F, Metadata);
}
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
return Builder.CreateCall(F, { Metadata, ArgValue });
}
if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
llvm::Function *F =
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
return Builder.CreateCall(F);
}
if (BuiltinID == AArch64::BI__builtin_sponentry) {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
return Builder.CreateCall(F);
}
if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
llvm::Type *ResType = ConvertType(E->getType());
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
bool IsSigned = BuiltinID == AArch64::BI__mulh;
Value *LHS =
Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
Value *RHS =
Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
Value *MulResult, *HigherBits;
if (IsSigned) {
MulResult = Builder.CreateNSWMul(LHS, RHS);
HigherBits = Builder.CreateAShr(MulResult, 64);
} else {
MulResult = Builder.CreateNUWMul(LHS, RHS);
HigherBits = Builder.CreateLShr(MulResult, 64);
}
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
return HigherBits;
}
// Handle MSVC intrinsics before argument evaluation to prevent double
// evaluation.
if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
llvm::SmallVector<Value*, 4> Ops;
Address PtrOp0 = Address::invalid();
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
if (i == 0) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v:
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v:
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1q_lane_v:
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
Ops.push_back(PtrOp0.getPointer());
continue;
}
}
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
Ops.push_back(llvm::ConstantInt::get(
getLLVMContext(),
*E->getArg(i)->getIntegerConstantExpr(getContext())));
}
}
auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
if (Builtin) {
Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
assert(Result && "SISD intrinsic should have been handled");
return Result;
}
const Expr *Arg = E->getArg(E->getNumArgs()-1);
NeonTypeFlags Type(0);
if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
// Determine the type of this overloaded NEON intrinsic.
Type = NeonTypeFlags(Result->getZExtValue());
bool usgn = Type.isUnsigned();
bool quad = Type.isQuad();
// Handle non-overloaded intrinsics first.
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vabsh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
case NEON::BI__builtin_neon_vaddq_p128: {
llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
return Builder.CreateBitCast(Ops[0], Int128Ty);
}
case NEON::BI__builtin_neon_vldrq_p128: {
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
return Builder.CreateAlignedLoad(Int128Ty, Ptr,
CharUnits::fromQuantity(16));
}
case NEON::BI__builtin_neon_vstrq_p128: {
llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
}
case NEON::BI__builtin_neon_vcvts_f32_u32:
case NEON::BI__builtin_neon_vcvtd_f64_u64:
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vcvts_f32_s32:
case NEON::BI__builtin_neon_vcvtd_f64_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
if (usgn)
return Builder.CreateUIToFP(Ops[0], FTy);
return Builder.CreateSIToFP(Ops[0], FTy);
}
case NEON::BI__builtin_neon_vcvth_f16_u16:
case NEON::BI__builtin_neon_vcvth_f16_u32:
case NEON::BI__builtin_neon_vcvth_f16_u64:
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vcvth_f16_s16:
case NEON::BI__builtin_neon_vcvth_f16_s32:
case NEON::BI__builtin_neon_vcvth_f16_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
llvm::Type *FTy = HalfTy;
llvm::Type *InTy;
if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
InTy = Int64Ty;
else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
InTy = Int32Ty;
else
InTy = Int16Ty;
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
if (usgn)
return Builder.CreateUIToFP(Ops[0], FTy);
return Builder.CreateSIToFP(Ops[0], FTy);
}
case NEON::BI__builtin_neon_vcvtah_u16_f16:
case NEON::BI__builtin_neon_vcvtmh_u16_f16:
case NEON::BI__builtin_neon_vcvtnh_u16_f16:
case NEON::BI__builtin_neon_vcvtph_u16_f16:
case NEON::BI__builtin_neon_vcvth_u16_f16:
case NEON::BI__builtin_neon_vcvtah_s16_f16:
case NEON::BI__builtin_neon_vcvtmh_s16_f16:
case NEON::BI__builtin_neon_vcvtnh_s16_f16:
case NEON::BI__builtin_neon_vcvtph_s16_f16:
case NEON::BI__builtin_neon_vcvth_s16_f16: {
unsigned Int;
llvm::Type* InTy = Int32Ty;
llvm::Type* FTy = HalfTy;
llvm::Type *Tys[2] = {InTy, FTy};
Ops.push_back(EmitScalarExpr(E->getArg(0)));
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vcvtah_u16_f16:
Int = Intrinsic::aarch64_neon_fcvtau; break;
case NEON::BI__builtin_neon_vcvtmh_u16_f16:
Int = Intrinsic::aarch64_neon_fcvtmu; break;
case NEON::BI__builtin_neon_vcvtnh_u16_f16:
Int = Intrinsic::aarch64_neon_fcvtnu; break;
case NEON::BI__builtin_neon_vcvtph_u16_f16:
Int = Intrinsic::aarch64_neon_fcvtpu; break;
case NEON::BI__builtin_neon_vcvth_u16_f16:
Int = Intrinsic::aarch64_neon_fcvtzu; break;
case NEON::BI__builtin_neon_vcvtah_s16_f16:
Int = Intrinsic::aarch64_neon_fcvtas; break;
case NEON::BI__builtin_neon_vcvtmh_s16_f16:
Int = Intrinsic::aarch64_neon_fcvtms; break;
case NEON::BI__builtin_neon_vcvtnh_s16_f16:
Int = Intrinsic::aarch64_neon_fcvtns; break;
case NEON::BI__builtin_neon_vcvtph_s16_f16:
Int = Intrinsic::aarch64_neon_fcvtps; break;
case NEON::BI__builtin_neon_vcvth_s16_f16:
Int = Intrinsic::aarch64_neon_fcvtzs; break;
}
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vcaleh_f16:
case NEON::BI__builtin_neon_vcalth_f16:
case NEON::BI__builtin_neon_vcageh_f16:
case NEON::BI__builtin_neon_vcagth_f16: {
unsigned Int;
llvm::Type* InTy = Int32Ty;
llvm::Type* FTy = HalfTy;
llvm::Type *Tys[2] = {InTy, FTy};
Ops.push_back(EmitScalarExpr(E->getArg(1)));
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vcageh_f16:
Int = Intrinsic::aarch64_neon_facge; break;
case NEON::BI__builtin_neon_vcagth_f16:
Int = Intrinsic::aarch64_neon_facgt; break;
case NEON::BI__builtin_neon_vcaleh_f16:
Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
case NEON::BI__builtin_neon_vcalth_f16:
Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
}
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vcvth_n_s16_f16:
case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
unsigned Int;
llvm::Type* InTy = Int32Ty;
llvm::Type* FTy = HalfTy;
llvm::Type *Tys[2] = {InTy, FTy};
Ops.push_back(EmitScalarExpr(E->getArg(1)));
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vcvth_n_s16_f16:
Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
case NEON::BI__builtin_neon_vcvth_n_u16_f16:
Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
}
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vcvth_n_f16_s16:
case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
unsigned Int;
llvm::Type* FTy = HalfTy;
llvm::Type* InTy = Int32Ty;
llvm::Type *Tys[2] = {FTy, InTy};
Ops.push_back(EmitScalarExpr(E->getArg(1)));
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vcvth_n_f16_s16:
Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
break;
case NEON::BI__builtin_neon_vcvth_n_f16_u16:
Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
Ops[0] = Builder.CreateZExt(Ops[0], InTy);
break;
}
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
}
case NEON::BI__builtin_neon_vpaddd_s64: {
auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpaddd_f64: {
auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpadds_f32: {
auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f32, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f32 into a scalar f32.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vceqzd_s64:
case NEON::BI__builtin_neon_vceqzd_f64:
case NEON::BI__builtin_neon_vceqzs_f32:
case NEON::BI__builtin_neon_vceqzh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgezd_s64:
case NEON::BI__builtin_neon_vcgezd_f64:
case NEON::BI__builtin_neon_vcgezs_f32:
case NEON::BI__builtin_neon_vcgezh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclezd_s64:
case NEON::BI__builtin_neon_vclezd_f64:
case NEON::BI__builtin_neon_vclezs_f32:
case NEON::BI__builtin_neon_vclezh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtzd_s64:
case NEON::BI__builtin_neon_vcgtzd_f64:
case NEON::BI__builtin_neon_vcgtzs_f32:
case NEON::BI__builtin_neon_vcgtzh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltzd_s64:
case NEON::BI__builtin_neon_vcltzd_f64:
case NEON::BI__builtin_neon_vcltzs_f32:
case NEON::BI__builtin_neon_vcltzh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vceqzd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[0] =
Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
}
case NEON::BI__builtin_neon_vceqd_f64:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcged_f64:
case NEON::BI__builtin_neon_vcgtd_f64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
if (P == llvm::FCmpInst::FCMP_OEQ)
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqs_f32:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcges_f32:
case NEON::BI__builtin_neon_vcgts_f32: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
if (P == llvm::FCmpInst::FCMP_OEQ)
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqh_f16:
case NEON::BI__builtin_neon_vcleh_f16:
case NEON::BI__builtin_neon_vclth_f16:
case NEON::BI__builtin_neon_vcgeh_f16:
case NEON::BI__builtin_neon_vcgth_f16: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
if (P == llvm::FCmpInst::FCMP_OEQ)
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:
case NEON::BI__builtin_neon_vcgtd_s64:
case NEON::BI__builtin_neon_vcgtd_u64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vcged_u64:
case NEON::BI__builtin_neon_vcged_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcled_s64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
}
case NEON::BI__builtin_neon_vtstd_s64:
case NEON::BI__builtin_neon_vtstd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
}
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_bf16:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_bf16:
case NEON::BI__builtin_neon_vsetq_lane_f32:
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vset_lane_f64:
// The vector type needs a cast for the v1f64 variant.
Ops[1] =
Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsetq_lane_f64:
// The vector type needs a cast for the v2f64 variant.
Ops[1] =
Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vdupb_lane_i8:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vdupb_laneq_i8:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vduph_lane_i16:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vduph_laneq_i16:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vdups_lane_i32:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdups_lane_f32:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdups_lane");
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vdups_laneq_i32:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vdupd_lane_i64:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdupd_lane_f64:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdupd_lane");
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vdupd_laneq_i64:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_f32:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vget_lane_f64:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vdups_laneq_f32:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vgetq_lane_f64:
case NEON::BI__builtin_neon_vdupd_laneq_f64:
Ops[0] =
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vaddh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
case NEON::BI__builtin_neon_vsubh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
case NEON::BI__builtin_neon_vmulh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
case NEON::BI__builtin_neon_vdivh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
case NEON::BI__builtin_neon_vfmah_f16:
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
{EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
case NEON::BI__builtin_neon_vfmsh_f16: {
// FIXME: This should be an fneg instruction:
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
{Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
}
case NEON::BI__builtin_neon_vaddd_s64:
case NEON::BI__builtin_neon_vaddd_u64:
return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
case NEON::BI__builtin_neon_vsubd_s64:
case NEON::BI__builtin_neon_vsubd_u64:
return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
case NEON::BI__builtin_neon_vqdmlalh_s16:
case NEON::BI__builtin_neon_vqdmlslh_s16: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqshlud_n_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
Ops, "vqshlu_n");
}
case NEON::BI__builtin_neon_vqshld_n_u64:
case NEON::BI__builtin_neon_vqshld_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
? Intrinsic::aarch64_neon_uqshl
: Intrinsic::aarch64_neon_sqshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
}
case NEON::BI__builtin_neon_vrshrd_n_u64:
case NEON::BI__builtin_neon_vrshrd_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
Ops[1] = ConstantInt::get(Int64Ty, -SV);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
}
case NEON::BI__builtin_neon_vrsrad_n_u64:
case NEON::BI__builtin_neon_vrsrad_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
{Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
}
case NEON::BI__builtin_neon_vshld_n_s64:
case NEON::BI__builtin_neon_vshld_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateShl(
Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
}
case NEON::BI__builtin_neon_vshrd_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateAShr(
Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
}
case NEON::BI__builtin_neon_vshrd_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
if (ShiftAmt == 64)
return ConstantInt::get(Int64Ty, 0);
return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
}
case NEON::BI__builtin_neon_vsrad_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
Ops[1] = Builder.CreateAShr(
Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vsrad_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
// As Op + 0 = Op, return Ops[0] directly.
if (ShiftAmt == 64)
return Ops[0];
Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(Ops[2]));
auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_s32:
case NEON::BI__builtin_neon_vqdmlsls_s32: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_lane_s32:
case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(Ops[2]);
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vget_lane_bf16:
case NEON::BI__builtin_neon_vduph_lane_bf16:
case NEON::BI__builtin_neon_vduph_lane_f16: {
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
}
case NEON::BI__builtin_neon_vgetq_lane_bf16:
case NEON::BI__builtin_neon_vduph_laneq_bf16:
case NEON::BI__builtin_neon_vduph_laneq_f16: {
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
}
case AArch64::BI_InterlockedAdd: {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Add, Arg0, Arg1,
llvm::AtomicOrdering::SequentiallyConsistent);
return Builder.CreateAdd(RMWI, Arg1);
}
}
llvm::FixedVectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Not all intrinsics handled by the common case work for AArch64 yet, so only
// defer to common code if it's been added to our special map.
Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
AArch64SIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops,
/*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
return V;
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vbsl_v:
case NEON::BI__builtin_neon_vbslq_v: {
llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
return Builder.CreateBitCast(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vfma_lane_v:
case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
// The ARM builtins (and instructions) have the addend as the first
// operand, but the 'fma' intrinsics have it last. Swap it around here.
Value *Addend = Ops[0];
Value *Multiplicand = Ops[1];
Value *LaneSource = Ops[2];
Ops[0] = Multiplicand;
Ops[1] = LaneSource;
Ops[2] = Addend;
// Now adjust things to handle the lane access.
auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
? llvm::FixedVectorType::get(VTy->getElementType(),
VTy->getNumElements() / 2)
: VTy;
llvm::Constant *cst = cast<Constant>(Ops[3]);
Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
Ops.pop_back();
Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
: Intrinsic::fma;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
}
case NEON::BI__builtin_neon_vfma_laneq_v: {
auto *VTy = cast<llvm::FixedVectorType>(Ty);
// v1f64 fma should be mapped to Neon scalar f64 fma
if (VTy && VTy->getElementType() == DoubleTy) {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
llvm::FixedVectorType *VTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
Value *Result;
Result = emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
DoubleTy, {Ops[1], Ops[2], Ops[0]});
return Builder.CreateBitCast(Result, Ty);
}
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
VTy->getNumElements() * 2);
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
cast<ConstantInt>(Ops[3]));
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
{Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmaq_laneq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
{Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmah_lane_f16:
case NEON::BI__builtin_neon_vfmas_lane_f32:
case NEON::BI__builtin_neon_vfmah_laneq_f16:
case NEON::BI__builtin_neon_vfmas_laneq_f32:
case NEON::BI__builtin_neon_vfmad_lane_f64:
case NEON::BI__builtin_neon_vfmad_laneq_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(3)));
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
return emitCallMaybeConstrainedFPBuiltin(
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
{Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vmax_v:
case NEON::BI__builtin_neon_vmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
case NEON::BI__builtin_neon_vmaxh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Int = Intrinsic::aarch64_neon_fmax;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
}
case NEON::BI__builtin_neon_vmin_v:
case NEON::BI__builtin_neon_vminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
case NEON::BI__builtin_neon_vminh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Int = Intrinsic::aarch64_neon_fmin;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
}
case NEON::BI__builtin_neon_vabd_v:
case NEON::BI__builtin_neon_vabdq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
unsigned ArgElts = VTy->getNumElements();
llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
unsigned BitWidth = EltTy->getBitWidth();
auto *ArgTy = llvm::FixedVectorType::get(
llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
llvm::Type* Tys[2] = { VTy, ArgTy };
Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
SmallVector<llvm::Value*, 1> TmpOps;
TmpOps.push_back(Ops[1]);
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
return Builder.CreateAdd(tmp, addend);
}
case NEON::BI__builtin_neon_vpmin_v:
case NEON::BI__builtin_neon_vpminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
case NEON::BI__builtin_neon_vpmax_v:
case NEON::BI__builtin_neon_vpmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
case NEON::BI__builtin_neon_vminnm_v:
case NEON::BI__builtin_neon_vminnmq_v:
Int = Intrinsic::aarch64_neon_fminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
case NEON::BI__builtin_neon_vminnmh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Int = Intrinsic::aarch64_neon_fminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
case NEON::BI__builtin_neon_vmaxnm_v:
case NEON::BI__builtin_neon_vmaxnmq_v:
Int = Intrinsic::aarch64_neon_fmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
case NEON::BI__builtin_neon_vmaxnmh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Int = Intrinsic::aarch64_neon_fmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
case NEON::BI__builtin_neon_vrecpss_f32: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
Ops, "vrecps");
}
case NEON::BI__builtin_neon_vrecpsd_f64:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
Ops, "vrecps");
case NEON::BI__builtin_neon_vrecpsh_f16:
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
Ops, "vrecps");
case NEON::BI__builtin_neon_vqshrun_n_v:
Int = Intrinsic::aarch64_neon_sqshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
case NEON::BI__builtin_neon_vqrshrun_n_v:
Int = Intrinsic::aarch64_neon_sqrshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
case NEON::BI__builtin_neon_vrshrn_n_v:
Int = Intrinsic::aarch64_neon_rshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
case NEON::BI__builtin_neon_vrndah_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_round
: Intrinsic::round;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
}
case NEON::BI__builtin_neon_vrnda_v:
case NEON::BI__builtin_neon_vrndaq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_round
: Intrinsic::round;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
}
case NEON::BI__builtin_neon_vrndih_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_nearbyint
: Intrinsic::nearbyint;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
}
case NEON::BI__builtin_neon_vrndmh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_floor
: Intrinsic::floor;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
}
case NEON::BI__builtin_neon_vrndm_v:
case NEON::BI__builtin_neon_vrndmq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_floor
: Intrinsic::floor;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
}
case NEON::BI__builtin_neon_vrndnh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_roundeven
: Intrinsic::roundeven;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
}
case NEON::BI__builtin_neon_vrndn_v:
case NEON::BI__builtin_neon_vrndnq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_roundeven
: Intrinsic::roundeven;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
}
case NEON::BI__builtin_neon_vrndns_f32: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_roundeven
: Intrinsic::roundeven;
return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
}
case NEON::BI__builtin_neon_vrndph_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_ceil
: Intrinsic::ceil;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
}
case NEON::BI__builtin_neon_vrndp_v:
case NEON::BI__builtin_neon_vrndpq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_ceil
: Intrinsic::ceil;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
}
case NEON::BI__builtin_neon_vrndxh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_rint
: Intrinsic::rint;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
}
case NEON::BI__builtin_neon_vrndx_v:
case NEON::BI__builtin_neon_vrndxq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_rint
: Intrinsic::rint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
}
case NEON::BI__builtin_neon_vrndh_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_trunc
: Intrinsic::trunc;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
}
case NEON::BI__builtin_neon_vrnd32x_v:
case NEON::BI__builtin_neon_vrnd32xq_v: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Intrinsic::aarch64_neon_frint32x;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
}
case NEON::BI__builtin_neon_vrnd32z_v:
case NEON::BI__builtin_neon_vrnd32zq_v: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Intrinsic::aarch64_neon_frint32z;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
}
case NEON::BI__builtin_neon_vrnd64x_v:
case NEON::BI__builtin_neon_vrnd64xq_v: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Intrinsic::aarch64_neon_frint64x;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
}
case NEON::BI__builtin_neon_vrnd64z_v:
case NEON::BI__builtin_neon_vrnd64zq_v: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Intrinsic::aarch64_neon_frint64z;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
}
case NEON::BI__builtin_neon_vrnd_v:
case NEON::BI__builtin_neon_vrndq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_trunc
: Intrinsic::trunc;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
}
case NEON::BI__builtin_neon_vcvt_f64_v:
case NEON::BI__builtin_neon_vcvtq_f64_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_f64_f32: {
assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
"unexpected vcvt_f64_f32 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_f32_f64: {
assert(Type.getEltType() == NeonTypeFlags::Float32 &&
"unexpected vcvt_f32_f64 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvt_s16_v:
case NEON::BI__builtin_neon_vcvt_u16_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v:
case NEON::BI__builtin_neon_vcvtq_s16_v:
case NEON::BI__builtin_neon_vcvtq_u16_v: {
Int =
usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
}
case NEON::BI__builtin_neon_vcvta_s16_v:
case NEON::BI__builtin_neon_vcvta_u16_v:
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s16_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u16_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
}
case NEON::BI__builtin_neon_vcvtm_s16_v:
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s16_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtm_u16_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u16_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
}
case NEON::BI__builtin_neon_vcvtn_s16_v:
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s16_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtn_u16_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u16_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
}
case NEON::BI__builtin_neon_vcvtp_s16_v:
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s16_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtp_u16_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u16_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
}
case NEON::BI__builtin_neon_vmulx_v:
case NEON::BI__builtin_neon_vmulxq_v: {
Int = Intrinsic::aarch64_neon_fmulx;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
}
case NEON::BI__builtin_neon_vmulxh_lane_f16:
case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
// vmulx_lane should be mapped to Neon scalar mulx after
// extracting the scalar element
Ops.push_back(EmitScalarExpr(E->getArg(2)));
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
Ops.pop_back();
Int = Intrinsic::aarch64_neon_fmulx;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
}
case NEON::BI__builtin_neon_vmul_lane_v:
case NEON::BI__builtin_neon_vmul_laneq_v: {
// v1f64 vmul_lane should be mapped to Neon scalar mul lane
bool Quad = false;
if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
Quad = true;
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
llvm::FixedVectorType *VTy =
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
return Builder.CreateBitCast(Result, Ty);
}
case NEON::BI__builtin_neon_vnegd_s64:
return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
case NEON::BI__builtin_neon_vnegh_f16:
return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
case NEON::BI__builtin_neon_vpmaxnm_v:
case NEON::BI__builtin_neon_vpmaxnmq_v: {
Int = Intrinsic::aarch64_neon_fmaxnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
}
case NEON::BI__builtin_neon_vpminnm_v:
case NEON::BI__builtin_neon_vpminnmq_v: {
Int = Intrinsic::aarch64_neon_fminnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
}
case NEON::BI__builtin_neon_vsqrth_f16: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_sqrt
: Intrinsic::sqrt;
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
}
case NEON::BI__builtin_neon_vsqrt_v:
case NEON::BI__builtin_neon_vsqrtq_v: {
Int = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_sqrt
: Intrinsic::sqrt;
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
}
case NEON::BI__builtin_neon_vrbit_v:
case NEON::BI__builtin_neon_vrbitq_v: {
Int = Intrinsic::bitreverse;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
}
case NEON::BI__builtin_neon_vaddv_u8:
// FIXME: These are handled by the AArch64 scalar code.
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vaddv_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddv_u16:
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vaddv_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddvq_u8:
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vaddvq_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddvq_u16:
usgn = true;
LLVM_FALLTHROUGH;
case NEON::BI__builtin_neon_vaddvq_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_f16: {
Int = Intrinsic::aarch64_neon_fmaxv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vmaxvq_f16: {
Int = Intrinsic::aarch64_neon_fmaxv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vminv_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_f16: {
Int = Intrinsic::aarch64_neon_fminv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vminvq_f16: {
Int = Intrinsic::aarch64_neon_fminv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vmaxnmv_f16: {
Int = Intrinsic::aarch64_neon_fmaxnmv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vmaxnmvq_f16: {
Int = Intrinsic::aarch64_neon_fmaxnmv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vminnmv_f16: {
Int = Intrinsic::aarch64_neon_fminnmv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vminnmvq_f16: {
Int = Intrinsic::aarch64_neon_fminnmv;
Ty = HalfTy;
VTy = llvm::FixedVectorType::get(HalfTy, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
return Builder.CreateTrunc(Ops[0], HalfTy);
}
case NEON::BI__builtin_neon_vmul_n_f64: {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
return Builder.CreateFMul(Ops[0], RHS);
}
case NEON::BI__builtin_neon_vaddlv_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlv_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v: {
Int = Intrinsic::aarch64_neon_vsri;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsri_n");
}
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v: {
Int = Intrinsic::aarch64_neon_vsli;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsli_n");
}
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v: {
Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
SmallVector<llvm::Value*,2> TmpOps;
TmpOps.push_back(Ops[1]);
TmpOps.push_back(Ops[2]);
Function* F = CGM.getIntrinsic(Int, Ty);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
return Builder.CreateAdd(Ops[0], tmp);
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
}
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1q_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
PtrOp0.getAlignment());
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
}
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
PtrOp0.getAlignment());
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
PtrOp0.getAlignment());
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld2q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld3q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_dup_v:
case NEON::BI__builtin_neon_vld4q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(i+vi);
Indices.push_back(i+e+vi);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(2*i+vi);
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<int, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back((i + vi*e) >> 1);
Indices.push_back(((i + vi*e) >> 1)+e);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vqtbl1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
Ops, "vtbl1");
}
case NEON::BI__builtin_neon_vqtbl2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
Ops, "vtbl2");
}
case NEON::BI__builtin_neon_vqtbl3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
Ops, "vtbl3");
}
case NEON::BI__builtin_neon_vqtbl4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
Ops, "vtbl4");
}
case NEON::BI__builtin_neon_vqtbx1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
Ops, "vtbx1");
}
case NEON::BI__builtin_neon_vqtbx2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
Ops, "vtbx2");
}
case NEON::BI__builtin_neon_vqtbx3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
Ops, "vtbx3");
}
case NEON::BI__builtin_neon_vqtbx4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
Ops, "vtbx4");
}
case NEON::BI__builtin_neon_vsqadd_v:
case NEON::BI__builtin_neon_vsqaddq_v: {
Int = Intrinsic::aarch64_neon_usqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
}
case NEON::BI__builtin_neon_vuqadd_v:
case NEON::BI__builtin_neon_vuqaddq_v: {
Int = Intrinsic::aarch64_neon_suqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
}
}
}
Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
BuiltinID == BPF::BI__builtin_btf_type_id ||
BuiltinID == BPF::BI__builtin_preserve_type_info ||
BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin");
// A sequence number, injected into IR builtin functions, to
// prevent CSE given the only difference of the funciton
// may just be the debuginfo metadata.
static uint32_t BuiltinSeqNum;
switch (BuiltinID) {
default:
llvm_unreachable("Unexpected BPF builtin");
case BPF::BI__builtin_preserve_field_info: {
const Expr *Arg = E->getArg(0);
bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
if (!getDebugInfo()) {
CGM.Error(E->getExprLoc(),
"using __builtin_preserve_field_info() without -g");
return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
: EmitLValue(Arg).getPointer(*this);
}
// Enable underlying preserve_*_access_index() generation.
bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
IsInPreservedAIRegion = true;
Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
: EmitLValue(Arg).getPointer(*this);
IsInPreservedAIRegion = OldIsInPreservedAIRegion;
ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
// Built the IR for the preserve_field_info intrinsic.
llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
{FieldAddr->getType()});
return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
}
case BPF::BI__builtin_btf_type_id:
case BPF::BI__builtin_preserve_type_info: {
if (!getDebugInfo()) {
CGM.Error(E->getExprLoc(), "using builtin function without -g");
return nullptr;
}
const Expr *Arg0 = E->getArg(0);
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
Arg0->getType(), Arg0->getExprLoc());
ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
llvm::Function *FnDecl;
if (BuiltinID == BPF::BI__builtin_btf_type_id)
FnDecl = llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
else
FnDecl = llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
return Fn;
}
case BPF::BI__builtin_preserve_enum_value: {
if (!getDebugInfo()) {
CGM.Error(E->getExprLoc(), "using builtin function without -g");
return nullptr;
}
const Expr *Arg0 = E->getArg(0);
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
Arg0->getType(), Arg0->getExprLoc());
// Find enumerator
const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
auto &InitVal = Enumerator->getInitVal();
std::string InitValStr;
if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
InitValStr = std::to_string(InitVal.getSExtValue());
else
InitValStr = std::to_string(InitVal.getZExtValue());
std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
CallInst *Fn =
Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
return Fn;
}
}
}
llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value*> Ops) {
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
"Not a power-of-two sized vector!");
bool AllConstants = true;
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
AllConstants &= isa<Constant>(Ops[i]);
// If this is a constant vector, create a ConstantVector.
if (AllConstants) {
SmallVector<llvm::Constant*, 16> CstOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
CstOps.push_back(cast<Constant>(Ops[i]));
return llvm::ConstantVector::get(CstOps);
}
// Otherwise, insertelement the values to build the vector.
Value *Result = llvm::UndefValue::get(
llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
return Result;
}
// Convert the mask from an integer type to a vector of i1.
static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
unsigned NumElts) {
auto *MaskTy = llvm::FixedVectorType::get(
CGF.Builder.getInt1Ty(),
cast<IntegerType>(Mask->getType())->getBitWidth());
Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
// If we have less than 8 elements, then the starting mask was an i8 and
// we need to extract down to the right number of elements.
if (NumElts < 8) {
int Indices[4];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i;
MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
makeArrayRef(Indices, NumElts),
"extract");
}
return MaskVec;
}
static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
Align Alignment) {
// Cast the pointer to right type.
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
Value *MaskVec = getMaskVecValue(
CGF, Ops[2],
cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
}
static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
Align Alignment) {
// Cast the pointer to right type.
llvm::Type *Ty = Ops[1]->getType();
Value *Ptr =
CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Value *MaskVec = getMaskVecValue(
CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
}
static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
ArrayRef<Value *> Ops) {
auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
llvm::Type *PtrTy = ResultTy->getElementType();
// Cast the pointer to element type.
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(PtrTy));
Value *MaskVec = getMaskVecValue(
CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
ResultTy);
return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
}
static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
ArrayRef<Value *> Ops,
bool IsCompress) {
auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
: Intrinsic::x86_avx512_mask_expand;
llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
}
static Value *EmitX86CompressStore(CodeGenFunction &CGF,
ArrayRef<Value *> Ops) {
auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
llvm::Type *PtrTy = ResultTy->getElementType();
// Cast the pointer to element type.
Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(PtrTy));
Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
ResultTy);
return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
}
static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
ArrayRef<Value *> Ops,
bool InvertLHS = false) {
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
if (InvertLHS)
LHS = CGF.Builder.CreateNot(LHS);
return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
Ops[0]->getType());
}
static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
Value *Amt, bool IsRight) {
llvm::Type *Ty = Op0->getType();
// Amount may be scalar immediate, in which case create a splat vector.
// Funnel shifts amounts are treated as modulo and types are all power-of-2 so
// we only care about the lowest log2 bits anyway.
if (Amt->getType() != Ty) {
unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
}
unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
Function *F = CGF.CGM.getIntrinsic(IID, Ty);
return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
}
static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
bool IsSigned) {
Value *Op0 = Ops[0];
Value *Op1 = Ops[1];
llvm::Type *Ty = Op0->getType();
uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
CmpInst::Predicate Pred;
switch (Imm) {
case 0x0:
Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
break;
case 0x1:
Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
break;
case 0x2:
Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
break;
case 0x3:
Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
break;
case 0x4:
Pred = ICmpInst::ICMP_EQ;
break;
case 0x5:
Pred = ICmpInst::ICMP_NE;
break;
case 0x6:
return llvm::Constant::getNullValue(Ty); // FALSE
case 0x7:
return llvm::Constant::getAllOnesValue(Ty); // TRUE
default:
llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
}
Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
return Res;
}
static Value *EmitX86Select(CodeGenFunction &CGF,
Value *Mask, Value *Op0, Value *Op1) {
// If the mask is all ones just return first argument.
if (const auto *C = dyn_cast<Constant>(Mask))
if (C->isAllOnesValue())
return Op0;
Mask = getMaskVecValue(
CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
return CGF.Builder.CreateSelect(Mask, Op0, Op1);
}
static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
Value *Mask, Value *Op0, Value *Op1) {
// If the mask is all ones just return first argument.
if (const auto *C = dyn_cast<Constant>(Mask))
if (C->isAllOnesValue())
return Op0;
auto *MaskTy = llvm::FixedVectorType::get(
CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
return CGF.Builder.CreateSelect(Mask, Op0, Op1);
}
static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
unsigned NumElts, Value *MaskIn) {
if (MaskIn) {
const auto *C = dyn_cast<Constant>(MaskIn);
if (!C || !C->isAllOnesValue())
Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
}
if (NumElts < 8) {
int Indices[8];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i;
for (unsigned i = NumElts; i != 8; ++i)
Indices[i] = i % NumElts + NumElts;
Cmp = CGF.Builder.CreateShuffleVector(
Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
}
return CGF.Builder.CreateBitCast(Cmp,
IntegerType::get(CGF.getLLVMContext(),
std::max(NumElts, 8U)));
}
static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
bool Signed, ArrayRef<Value *> Ops) {
assert((Ops.size() == 2 || Ops.size() == 4) &&
"Unexpected number of arguments");
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Value *Cmp;
if (CC == 3) {
Cmp = Constant::getNullValue(
llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
} else if (CC == 7) {
Cmp = Constant::getAllOnesValue(
llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
} else {
ICmpInst::Predicate Pred;
switch (CC) {
default: llvm_unreachable("Unknown condition code");
case 0: Pred = ICmpInst::ICMP_EQ; break;
case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
case 4: Pred = ICmpInst::ICMP_NE; break;
case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
}
Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
}
Value *MaskIn = nullptr;
if (Ops.size() == 4)
MaskIn = Ops[3];
return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
}
static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
Value *Zero = Constant::getNullValue(In->getType());
return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
}
static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
ArrayRef<Value *> Ops, bool IsSigned) {
unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
llvm::Type *Ty = Ops[1]->getType();
Value *Res;
if (Rnd != 4) {
Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
: Intrinsic::x86_avx512_uitofp_round;
Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
} else {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
: CGF.Builder.CreateUIToFP(Ops[0], Ty);
}
return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
}
// Lowers X86 FMA intrinsics to IR.
static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
ArrayRef<Value *> Ops, unsigned BuiltinID,
bool IsAddSub) {
bool Subtract = false;
Intrinsic::ID IID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: break;
case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
break;
case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
break;
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
break;
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
Subtract = true;
LLVM_FALLTHROUGH;
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
break;
}
Value *A = Ops[0];
Value *B = Ops[1];
Value *C = Ops[2];
if (Subtract)
C = CGF.Builder.CreateFNeg(C);
Value *Res;
// Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
if (IID != Intrinsic::not_intrinsic &&
(cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
IsAddSub)) {
Function *Intr = CGF.CGM.getIntrinsic(IID);
Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
} else {
llvm::Type *Ty = A->getType();
Function *FMA;
if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
} else {
FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
Res = CGF.Builder.CreateCall(FMA, {A, B, C});
}
}
// Handle any required masking.
Value *MaskFalseVal = nullptr;
switch (BuiltinID) {
case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
MaskFalseVal = Ops[0];
break;
case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
break;
case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
MaskFalseVal = Ops[2];
break;
}
if (MaskFalseVal)
return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
return Res;
}
static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
MutableArrayRef<Value *> Ops, Value *Upper,
bool ZeroMask = false, unsigned PTIdx = 0,
bool NegAcc = false) {
unsigned Rnd = 4;
if (Ops.size() > 4)
Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
if (NegAcc)
Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
Value *Res;
if (Rnd != 4) {
Intrinsic::ID IID;
switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
case 16:
IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
break;
case 32:
IID = Intrinsic::x86_avx512_vfmadd_f32;
break;
case 64:
IID = Intrinsic::x86_avx512_vfmadd_f64;
break;
default:
llvm_unreachable("Unexpected size");
}
Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
{Ops[0], Ops[1], Ops[2], Ops[4]});
} else if (CGF.Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
Function *FMA = CGF.CGM.getIntrinsic(
Intrinsic::experimental_constrained_fma, Ops[0]->getType());
Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
} else {
Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
}
// If we have more than 3 arguments, we need to do masking.
if (Ops.size() > 3) {
Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
: Ops[PTIdx];
// If we negated the accumulator and the its the PassThru value we need to
// bypass the negate. Conveniently Upper should be the same thing in this
// case.
if (NegAcc && PTIdx == 2)
PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
}
return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
}
static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
ArrayRef<Value *> Ops) {
llvm::Type *Ty = Ops[0]->getType();
// Arguments have a vXi32 type so cast to vXi64.
Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
Ty->getPrimitiveSizeInBits() / 64);
Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
if (IsSigned) {
// Shift left then arithmetic shift right.
Constant *ShiftAmt = ConstantInt::get(Ty, 32);
LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
} else {
// Clear the upper bits.
Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
LHS = CGF.Builder.CreateAnd(LHS, Mask);
RHS = CGF.Builder.CreateAnd(RHS, Mask);
}
return CGF.Builder.CreateMul(LHS, RHS);
}
// Emit a masked pternlog intrinsic. This only exists because the header has to
// use a macro and we aren't able to pass the input argument to a pternlog
// builtin and a select builtin without evaluating it twice.
static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
ArrayRef<Value *> Ops) {
llvm::Type *Ty = Ops[0]->getType();
unsigned VecWidth = Ty->getPrimitiveSizeInBits();
unsigned EltWidth = Ty->getScalarSizeInBits();
Intrinsic::ID IID;
if (VecWidth == 128 && EltWidth == 32)
IID = Intrinsic::x86_avx512_pternlog_d_128;
else if (VecWidth == 256 && EltWidth == 32)
IID = Intrinsic::x86_avx512_pternlog_d_256;
else if (VecWidth == 512 && EltWidth == 32)
IID = Intrinsic::x86_avx512_pternlog_d_512;
else if (VecWidth == 128 && EltWidth == 64)
IID = Intrinsic::x86_avx512_pternlog_q_128;
else if (VecWidth == 256 && EltWidth == 64)
IID = Intrinsic::x86_avx512_pternlog_q_256;
else if (VecWidth == 512 && EltWidth == 64)
IID = Intrinsic::x86_avx512_pternlog_q_512;
else
llvm_unreachable("Unexpected intrinsic");
Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
Ops.drop_back());
Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
}
static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
llvm::Type *DstTy) {
unsigned NumberOfElements =
cast<llvm::FixedVectorType>(DstTy)->getNumElements();
Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
}
Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
return EmitX86CpuIs(CPUStr);
}
// Convert F16 halfs to floats.
static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
ArrayRef<Value *> Ops,
llvm::Type *DstTy) {
assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
"Unknown cvtph2ps intrinsic");
// If the SAE intrinsic doesn't use default rounding then we can't upgrade.
if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
Function *F =
CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
}
unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
Value *Src = Ops[0];
// Extract the subvector.
if (NumDstElts !=
cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
assert(NumDstElts == 4 && "Unexpected vector size");
Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
}
// Bitcast from vXi16 to vXf16.
auto *HalfTy = llvm::FixedVectorType::get(
llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
Src = CGF.Builder.CreateBitCast(Src, HalfTy);
// Perform the fp-extension.
Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
if (Ops.size() >= 3)
Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
return Res;
}
// Convert a BF16 to a float.
static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
const CallExpr *E,
ArrayRef<Value *> Ops) {
llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
llvm::Type *ResultType = CGF.ConvertType(E->getType());
Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
return BitCast;
}
Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
llvm::Type *Int32Ty = Builder.getInt32Ty();
// Matching the struct layout from the compiler-rt/libgcc structure that is
// filled in:
// unsigned int __cpu_vendor;
// unsigned int __cpu_type;
// unsigned int __cpu_subtype;
// unsigned int __cpu_features[1];
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
llvm::ArrayType::get(Int32Ty, 1));
// Grab the global __cpu_model.
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
// Calculate the index needed to access the correct field based on the
// range. Also adjust the expected value.
unsigned Index;
unsigned Value;
std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
#define X86_VENDOR(ENUM, STRING) \
.Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
.Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
#define X86_CPU_TYPE(ENUM, STR) \
.Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
#define X86_CPU_SUBTYPE(ENUM, STR) \
.Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
#include "llvm/Support/X86TargetParser.def"
.Default({0, 0});
assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
// Grab the appropriate field from __cpu_model.
llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, Index)};
llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
CharUnits::fromQuantity(4));
// Check the value of the field against the requested value.
return Builder.CreateICmpEQ(CpuValue,
llvm::ConstantInt::get(Int32Ty, Value));
}
Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
return EmitX86CpuSupports(FeatureStr);
}
Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
}
llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
uint32_t Features1 = Lo_32(FeaturesMask);
uint32_t Features2 = Hi_32(FeaturesMask);
Value *Result = Builder.getTrue();
if (Features1 != 0) {
// Matching the struct layout from the compiler-rt/libgcc structure that is
// filled in:
// unsigned int __cpu_vendor;
// unsigned int __cpu_type;
// unsigned int __cpu_subtype;
// unsigned int __cpu_features[1];
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
llvm::ArrayType::get(Int32Ty, 1));
// Grab the global __cpu_model.
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
// Grab the first (0th) element from the field __cpu_features off of the
// global in the struct STy.
Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
Builder.getInt32(0)};
Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
CharUnits::fromQuantity(4));
// Check the value of the bit corresponding to the feature requested.
Value *Mask = Builder.getInt32(Features1);
Value *Bitset = Builder.CreateAnd(Features, Mask);
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
Result = Builder.CreateAnd(Result, Cmp);
}
if (Features2 != 0) {
llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
"__cpu_features2");
cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
CharUnits::fromQuantity(4));
// Check the value of the bit corresponding to the feature requested.
Value *Mask = Builder.getInt32(Features2);
Value *Bitset = Builder.CreateAnd(Features, Mask);
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
Result = Builder.CreateAnd(Result, Cmp);
}
return Result;
}
Value *CodeGenFunction::EmitX86CpuInit() {
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
/*Variadic*/ false);
llvm::FunctionCallee Func =
CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
cast<llvm::GlobalValue>(Func.getCallee())
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
return Builder.CreateCall(Func);
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (BuiltinID == X86::BI__builtin_cpu_is)
return EmitX86CpuIs(E);
if (BuiltinID == X86::BI__builtin_cpu_supports)
return EmitX86CpuSupports(E);
if (BuiltinID == X86::BI__builtin_cpu_init)
return EmitX86CpuInit();
// Handle MSVC intrinsics before argument evaluation to prevent double
// evaluation.
if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
SmallVector<Value*, 4> Ops;
bool IsMaskFCmp = false;
bool IsConjFMA = false;
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
continue;
}
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
Ops.push_back(llvm::ConstantInt::get(
getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
}
// These exist so that the builtin that takes an immediate can be bounds
// checked by clang to avoid passing bad immediates to the backend. Since
// AVX has a larger immediate than SSE we would need separate builtins to
// do the different bounds checking. Rather than create a clang specific
// SSE only builtin, this implements eight separate builtins to match gcc
// implementation.
auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops);
};
// For the vector forms of FP comparisons, translate the builtins directly to
// IR.
// TODO: The builtins could be removed if the SSE header files used vector
// extension comparisons directly (vector ordered/unordered may need
// additional support via __builtin_isnan()).
auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
bool IsSignaling) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Value *Cmp;
if (IsSignaling)
Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
else
Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
return Builder.CreateBitCast(Sext, FPVecTy);
};
switch (BuiltinID) {
default: return nullptr;
case X86::BI_mm_prefetch: {
Value *Address = Ops[0];
ConstantInt *C = cast<ConstantInt>(Ops[1]);
Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
Value *Data = ConstantInt::get(Int32Ty, 1);
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
return Builder.CreateCall(F, {Address, RW, Locality, Data});
}
case X86::BI_mm_clflush: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
Ops[0]);
}
case X86::BI_mm_lfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
}
case X86::BI_mm_mfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
}
case X86::BI_mm_sfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
}
case X86::BI_mm_pause: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
}
case X86::BI__rdtsc: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
}
case X86::BI__builtin_ia32_rdtscp: {
Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
Ops[0]);
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_lzcnt_u16:
case X86::BI__builtin_ia32_lzcnt_u32:
case X86::BI__builtin_ia32_lzcnt_u64: {
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
}
case X86::BI__builtin_ia32_tzcnt_u16:
case X86::BI__builtin_ia32_tzcnt_u32:
case X86::BI__builtin_ia32_tzcnt_u64: {
Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
}
case X86::BI__builtin_ia32_undef128:
case X86::BI__builtin_ia32_undef256:
case X86::BI__builtin_ia32_undef512:
// The x86 definition of "undef" is not the same as the LLVM definition
// (PR32176). We leave optimizing away an unnecessary zero constant to the
// IR optimizer and backend.
// TODO: If we had a "freeze" IR instruction to generate a fixed undef
// value, we should use that here instead of a zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v2si:
return Builder.CreateBitCast(BuildVector(Ops),
llvm::Type::getX86_MMXTy(getLLVMContext()));
case X86::BI__builtin_ia32_vec_ext_v2si:
case X86::BI__builtin_ia32_vec_ext_v16qi:
case X86::BI__builtin_ia32_vec_ext_v8hi:
case X86::BI__builtin_ia32_vec_ext_v4si:
case X86::BI__builtin_ia32_vec_ext_v4sf:
case X86::BI__builtin_ia32_vec_ext_v2di:
case X86::BI__builtin_ia32_vec_ext_v32qi:
case X86::BI__builtin_ia32_vec_ext_v16hi:
case X86::BI__builtin_ia32_vec_ext_v8si:
case X86::BI__builtin_ia32_vec_ext_v4di: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
Index &= NumElts - 1;
// These builtins exist so we can ensure the index is an ICE and in range.
// Otherwise we could just do this in the header file.
return Builder.CreateExtractElement(Ops[0], Index);
}
case X86::BI__builtin_ia32_vec_set_v16qi:
case X86::BI__builtin_ia32_vec_set_v8hi:
case X86::BI__builtin_ia32_vec_set_v4si:
case X86::BI__builtin_ia32_vec_set_v2di:
case X86::BI__builtin_ia32_vec_set_v32qi:
case X86::BI__builtin_ia32_vec_set_v16hi:
case X86::BI__builtin_ia32_vec_set_v8si:
case X86::BI__builtin_ia32_vec_set_v4di: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
Index &= NumElts - 1;
// These builtins exist so we can ensure the index is an ICE and in range.
// Otherwise we could just do this in the header file.
return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
}
case X86::BI_mm_setcsr:
case X86::BI__builtin_ia32_ldmxcsr: {
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
}
case X86::BI_mm_getcsr:
case X86::BI__builtin_ia32_stmxcsr: {
Address Tmp = CreateMemTemp(E->getType());
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_xsave:
case X86::BI__builtin_ia32_xsave64:
case X86::BI__builtin_ia32_xrstor:
case X86::BI__builtin_ia32_xrstor64:
case X86::BI__builtin_ia32_xsaveopt:
case X86::BI__builtin_ia32_xsaveopt64:
case X86::BI__builtin_ia32_xrstors:
case X86::BI__builtin_ia32_xrstors64:
case X86::BI__builtin_ia32_xsavec:
case X86::BI__builtin_ia32_xsavec64:
case X86::BI__builtin_ia32_xsaves:
case X86::BI__builtin_ia32_xsaves64:
case X86::BI__builtin_ia32_xsetbv:
case X86::BI_xsetbv: {
Intrinsic::ID ID;
#define INTRINSIC_X86_XSAVE_ID(NAME) \
case X86::BI__builtin_ia32_##NAME: \
ID = Intrinsic::x86_##NAME; \
break
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
INTRINSIC_X86_XSAVE_ID(xsave);
INTRINSIC_X86_XSAVE_ID(xsave64);
INTRINSIC_X86_XSAVE_ID(xrstor);
INTRINSIC_X86_XSAVE_ID(xrstor64);
INTRINSIC_X86_XSAVE_ID(xsaveopt);
INTRINSIC_X86_XSAVE_ID(xsaveopt64);
INTRINSIC_X86_XSAVE_ID(xrstors);
INTRINSIC_X86_XSAVE_ID(xrstors64);
INTRINSIC_X86_XSAVE_ID(xsavec);
INTRINSIC_X86_XSAVE_ID(xsavec64);
INTRINSIC_X86_XSAVE_ID(xsaves);
INTRINSIC_X86_XSAVE_ID(xsaves64);
INTRINSIC_X86_XSAVE_ID(xsetbv);
case X86::BI_xsetbv:
ID = Intrinsic::x86_xsetbv;
break;
}
#undef INTRINSIC_X86_XSAVE_ID
Value *Mhi = Builder.CreateTrunc(
Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
Ops[1] = Mhi;
Ops.push_back(Mlo);
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
case X86::BI__builtin_ia32_xgetbv:
case X86::BI_xgetbv:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
case X86::BI__builtin_ia32_storedqudi128_mask:
case X86::BI__builtin_ia32_storedqusi128_mask:
case X86::BI__builtin_ia32_storedquhi128_mask:
case X86::BI__builtin_ia32_storedquqi128_mask:
case X86::BI__builtin_ia32_storeupd128_mask:
case X86::BI__builtin_ia32_storeups128_mask:
case X86::BI__builtin_ia32_storedqudi256_mask:
case X86::BI__builtin_ia32_storedqusi256_mask:
case X86::BI__builtin_ia32_storedquhi256_mask:
case X86::BI__builtin_ia32_storedquqi256_mask:
case X86::BI__builtin_ia32_storeupd256_mask:
case X86::BI__builtin_ia32_storeups256_mask:
case X86::BI__builtin_ia32_storedqudi512_mask:
case X86::BI__builtin_ia32_storedqusi512_mask:
case X86::BI__builtin_ia32_storedquhi512_mask:
case X86::BI__builtin_ia32_storedquqi512_mask:
case X86::BI__builtin_ia32_storeupd512_mask:
case X86::BI__builtin_ia32_storeups512_mask:
return EmitX86MaskedStore(*this, Ops, Align(1));
case X86::BI__builtin_ia32_storesh128_mask:
case X86::BI__builtin_ia32_storess128_mask:
case X86::BI__builtin_ia32_storesd128_mask:
return EmitX86MaskedStore(*this, Ops, Align(1));
case X86::BI__builtin_ia32_vpopcntb_128:
case X86::BI__builtin_ia32_vpopcntd_128:
case X86::BI__builtin_ia32_vpopcntq_128:
case X86::BI__builtin_ia32_vpopcntw_128:
case X86::BI__builtin_ia32_vpopcntb_256:
case X86::BI__builtin_ia32_vpopcntd_256:
case X86::BI__builtin_ia32_vpopcntq_256:
case X86::BI__builtin_ia32_vpopcntw_256:
case X86::BI__builtin_ia32_vpopcntb_512:
case X86::BI__builtin_ia32_vpopcntd_512:
case X86::BI__builtin_ia32_vpopcntq_512:
case X86::BI__builtin_ia32_vpopcntw_512: {
llvm::Type *ResultType = ConvertType(E->getType());
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, Ops);
}
case X86::BI__builtin_ia32_cvtmask2b128:
case X86::BI__builtin_ia32_cvtmask2b256:
case X86::BI__builtin_ia32_cvtmask2b512:
case X86::BI__builtin_ia32_cvtmask2w128:
case X86::BI__builtin_ia32_cvtmask2w256:
case X86::BI__builtin_ia32_cvtmask2w512:
case X86::BI__builtin_ia32_cvtmask2d128:
case X86::BI__builtin_ia32_cvtmask2d256:
case X86::BI__builtin_ia32_cvtmask2d512:
case X86::BI__builtin_ia32_cvtmask2q128:
case X86::BI__builtin_ia32_cvtmask2q256:
case X86::BI__builtin_ia32_cvtmask2q512:
return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
case X86::BI__builtin_ia32_cvtb2mask128:
case X86::BI__builtin_ia32_cvtb2mask256:
case X86::BI__builtin_ia32_cvtb2mask512:
case X86::BI__builtin_ia32_cvtw2mask128:
case X86::BI__builtin_ia32_cvtw2mask256:
case X86::BI__builtin_ia32_cvtw2mask512:
case X86::BI__builtin_ia32_cvtd2mask128:
case X86::BI__builtin_ia32_cvtd2mask256:
case X86::BI__builtin_ia32_cvtd2mask512:
case X86::BI__builtin_ia32_cvtq2mask128:
case X86::BI__builtin_ia32_cvtq2mask256:
case X86::BI__builtin_ia32_cvtq2mask512:
return EmitX86ConvertToMask(*this, Ops[0]);
case X86::BI__builtin_ia32_cvtdq2ps512_mask:
case X86::BI__builtin_ia32_cvtqq2ps512_mask:
case X86::BI__builtin_ia32_cvtqq2pd512_mask:
case X86::BI__builtin_ia32_vcvtw2ph512_mask:
case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
case X86::BI__builtin_ia32_cvtudq2ps512_mask:
case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
case X86::BI__builtin_ia32_vfmaddss3:
case X86::BI__builtin_ia32_vfmaddsd3:
case X86::BI__builtin_ia32_vfmaddsh3_mask:
case X86::BI__builtin_ia32_vfmaddss3_mask:
case X86::BI__builtin_ia32_vfmaddsd3_mask:
return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
case X86::BI__builtin_ia32_vfmaddss:
case X86::BI__builtin_ia32_vfmaddsd:
return EmitScalarFMAExpr(*this, E, Ops,
Constant::getNullValue(Ops[0]->getType()));
case X86::BI__builtin_ia32_vfmaddsh3_maskz:
case X86::BI__builtin_ia32_vfmaddss3_maskz:
case X86::BI__builtin_ia32_vfmaddsd3_maskz:
return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
case X86::BI__builtin_ia32_vfmaddsh3_mask3:
case X86::BI__builtin_ia32_vfmaddss3_mask3:
case X86::BI__builtin_ia32_vfmaddsd3_mask3:
return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
case X86::BI__builtin_ia32_vfmsubsh3_mask3:
case X86::BI__builtin_ia32_vfmsubss3_mask3:
case X86::BI__builtin_ia32_vfmsubsd3_mask3:
return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
/*NegAcc*/ true);
case X86::BI__builtin_ia32_vfmaddph:
case X86::BI__builtin_ia32_vfmaddps:
case X86::BI__builtin_ia32_vfmaddpd:
case X86::BI__builtin_ia32_vfmaddph256:
case X86::BI__builtin_ia32_vfmaddps256:
case X86::BI__builtin_ia32_vfmaddpd256:
case X86::BI__builtin_ia32_vfmaddph512_mask:
case X86::BI__builtin_ia32_vfmaddph512_maskz:
case X86::BI__builtin_ia32_vfmaddph512_mask3:
case X86::BI__builtin_ia32_vfmaddps512_mask:
case X86::BI__builtin_ia32_vfmaddps512_maskz:
case X86::BI__builtin_ia32_vfmaddps512_mask3:
case X86::BI__builtin_ia32_vfmsubps512_mask3:
case X86::BI__builtin_ia32_vfmaddpd512_mask:
case X86::BI__builtin_ia32_vfmaddpd512_maskz:
case X86::BI__builtin_ia32_vfmaddpd512_mask3:
case X86::BI__builtin_ia32_vfmsubpd512_mask3:
case X86::BI__builtin_ia32_vfmsubph512_mask3:
return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
case X86::BI__builtin_ia32_vfmaddsubph512_mask:
case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
case X86::BI__builtin_ia32_vfmaddsubps512_mask:
case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
case X86::BI__builtin_ia32_movdqa32store128_mask:
case X86::BI__builtin_ia32_movdqa64store128_mask:
case X86::BI__builtin_ia32_storeaps128_mask:
case X86::BI__builtin_ia32_storeapd128_mask:
case X86::BI__builtin_ia32_movdqa32store256_mask:
case X86::BI__builtin_ia32_movdqa64store256_mask:
case X86::BI__builtin_ia32_storeaps256_mask:
case X86::BI__builtin_ia32_storeapd256_mask:
case X86::BI__builtin_ia32_movdqa32store512_mask:
case X86::BI__builtin_ia32_movdqa64store512_mask:
case X86::BI__builtin_ia32_storeaps512_mask:
case X86::BI__builtin_ia32_storeapd512_mask:
return EmitX86MaskedStore(
*this, Ops,
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
case X86::BI__builtin_ia32_loadups128_mask:
case X86::BI__builtin_ia32_loadups256_mask:
case X86::BI__builtin_ia32_loadups512_mask:
case X86::BI__builtin_ia32_loadupd128_mask:
case X86::BI__builtin_ia32_loadupd256_mask:
case X86::BI__builtin_ia32_loadupd512_mask:
case X86::BI__builtin_ia32_loaddquqi128_mask:
case X86::BI__builtin_ia32_loaddquqi256_mask:
case X86::BI__builtin_ia32_loaddquqi512_mask:
case X86::BI__builtin_ia32_loaddquhi128_mask:
case X86::BI__builtin_ia32_loaddquhi256_mask:
case X86::BI__builtin_ia32_loaddquhi512_mask:
case X86::BI__builtin_ia32_loaddqusi128_mask:
case X86::BI__builtin_ia32_loaddqusi256_mask:
case X86::BI__builtin_ia32_loaddqusi512_mask:
case X86::BI__builtin_ia32_loaddqudi128_mask:
case X86::BI__builtin_ia32_loaddqudi256_mask:
case X86::BI__builtin_ia32_loaddqudi512_mask:
return EmitX86MaskedLoad(*this, Ops, Align(1));
case X86::BI__builtin_ia32_loadsh128_mask:
case X86::BI__builtin_ia32_loadss128_mask:
case X86::BI__builtin_ia32_loadsd128_mask:
return EmitX86MaskedLoad(*this, Ops, Align(1));
case X86::BI__builtin_ia32_loadaps128_mask:
case X86::BI__builtin_ia32_loadaps256_mask:
case X86::BI__builtin_ia32_loadaps512_mask:
case X86::BI__builtin_ia32_loadapd128_mask:
case X86::BI__builtin_ia32_loadapd256_mask:
case X86::BI__builtin_ia32_loadapd512_mask:
case X86::BI__builtin_ia32_movdqa32load128_mask:
case X86::BI__builtin_ia32_movdqa32load256_mask:
case X86::BI__builtin_ia32_movdqa32load512_mask:
case X86::BI__builtin_ia32_movdqa64load128_mask:
case X86::BI__builtin_ia32_movdqa64load256_mask:
case X86::BI__builtin_ia32_movdqa64load512_mask:
return EmitX86MaskedLoad(
*this, Ops,
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
case X86::BI__builtin_ia32_expandloaddf128_mask:
case X86::BI__builtin_ia32_expandloaddf256_mask:
case X86::BI__builtin_ia32_expandloaddf512_mask:
case X86::BI__builtin_ia32_expandloadsf128_mask:
case X86::BI__builtin_ia32_expandloadsf256_mask:
case X86::BI__builtin_ia32_expandloadsf512_mask:
case X86::BI__builtin_ia32_expandloaddi128_mask:
case X86::BI__builtin_ia32_expandloaddi256_mask:
case X86::BI__builtin_ia32_expandloaddi512_mask:
case X86::BI__builtin_ia32_expandloadsi128_mask:
case X86::BI__builtin_ia32_expandloadsi256_mask:
case X86::BI__builtin_ia32_expandloadsi512_mask:
case X86::BI__builtin_ia32_expandloadhi128_mask:
case X86::BI__builtin_ia32_expandloadhi256_mask:
case X86::BI__builtin_ia32_expandloadhi512_mask:
case X86::BI__builtin_ia32_expandloadqi128_mask:
case X86::BI__builtin_ia32_expandloadqi256_mask:
case X86::BI__builtin_ia32_expandloadqi512_mask:
return EmitX86ExpandLoad(*this, Ops);
case X86::BI__builtin_ia32_compressstoredf128_mask:
case X86::BI__builtin_ia32_compressstoredf256_mask:
case X86::BI__builtin_ia32_compressstoredf512_mask:
case X86::BI__builtin_ia32_compressstoresf128_mask:
case X86::BI__builtin_ia32_compressstoresf256_mask:
case X86::BI__builtin_ia32_compressstoresf512_mask:
case X86::BI__builtin_ia32_compressstoredi128_mask:
case X86::BI__builtin_ia32_compressstoredi256_mask:
case X86::BI__builtin_ia32_compressstoredi512_mask:
case X86::BI__builtin_ia32_compressstoresi128_mask:
case X86::BI__builtin_ia32_compressstoresi256_mask:
case X86::BI__builtin_ia32_compressstoresi512_mask:
case X86::BI__builtin_ia32_compressstorehi128_mask:
case X86::BI__builtin_ia32_compressstorehi256_mask:
case X86::BI__builtin_ia32_compressstorehi512_mask:
case X86::BI__builtin_ia32_compressstoreqi128_mask:
case X86::BI__builtin_ia32_compressstoreqi256_mask:
case X86::BI__builtin_ia32_compressstoreqi512_mask:
return EmitX86CompressStore(*this, Ops);
case X86::BI__builtin_ia32_expanddf128_mask:
case X86::BI__builtin_ia32_expanddf256_mask:
case X86::BI__builtin_ia32_expanddf512_mask:
case X86::BI__builtin_ia32_expandsf128_mask:
case X86::BI__builtin_ia32_expandsf256_mask:
case X86::BI__builtin_ia32_expandsf512_mask:
case X86::BI__builtin_ia32_expanddi128_mask:
case X86::BI__builtin_ia32_expanddi256_mask:
case X86::BI__builtin_ia32_expanddi512_mask:
case X86::BI__builtin_ia32_expandsi128_mask:
case X86::BI__builtin_ia32_expandsi256_mask:
case X86::BI__builtin_ia32_expandsi512_mask:
case X86::BI__builtin_ia32_expandhi128_mask:
case X86::BI__builtin_ia32_expandhi256_mask:
case X86::BI__builtin_ia32_expandhi512_mask:
case X86::BI__builtin_ia32_expandqi128_mask:
case X86::BI__builtin_ia32_expandqi256_mask:
case X86::BI__builtin_ia32_expandqi512_mask:
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
case X86::BI__builtin_ia32_compressdf128_mask:
case X86::BI__builtin_ia32_compressdf256_mask:
case X86::BI__builtin_ia32_compressdf512_mask:
case X86::BI__builtin_ia32_compresssf128_mask:
case X86::BI__builtin_ia32_compresssf256_mask:
case X86::BI__builtin_ia32_compresssf512_mask:
case X86::BI__builtin_ia32_compressdi128_mask:
case X86::BI__builtin_ia32_compressdi256_mask:
case X86::BI__builtin_ia32_compressdi512_mask:
case X86::BI__builtin_ia32_compresssi128_mask:
case X86::BI__builtin_ia32_compresssi256_mask:
case X86::BI__builtin_ia32_compresssi512_mask:
case X86::BI__builtin_ia32_compresshi128_mask:
case X86::BI__builtin_ia32_compresshi256_mask:
case X86::BI__builtin_ia32_compresshi512_mask:
case X86::BI__builtin_ia32_compressqi128_mask:
case X86::BI__builtin_ia32_compressqi256_mask:
case X86::BI__builtin_ia32_compressqi512_mask:
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
case X86::BI__builtin_ia32_gather3div2df:
case X86::BI__builtin_ia32_gather3div2di:
case X86::BI__builtin_ia32_gather3div4df:
case X86::BI__builtin_ia32_gather3div4di:
case X86::BI__builtin_ia32_gather3div4sf:
case X86::BI__builtin_ia32_gather3div4si:
case X86::BI__builtin_ia32_gather3div8sf:
case X86::BI__builtin_ia32_gather3div8si:
case X86::BI__builtin_ia32_gather3siv2df:
case X86::BI__builtin_ia32_gather3siv2di:
case X86::BI__builtin_ia32_gather3siv4df:
case X86::BI__builtin_ia32_gather3siv4di:
case X86::BI__builtin_ia32_gather3siv4sf:
case X86::BI__builtin_ia32_gather3siv4si:
case X86::BI__builtin_ia32_gather3siv8sf:
case X86::BI__builtin_ia32_gather3siv8si:
case X86::BI__builtin_ia32_gathersiv8df:
case X86::BI__builtin_ia32_gathersiv16sf:
case X86::BI__builtin_ia32_gatherdiv8df:
case X86::BI__builtin_ia32_gatherdiv16sf:
case X86::BI__builtin_ia32_gathersiv8di:
case X86::BI__builtin_ia32_gathersiv16si:
case X86::BI__builtin_ia32_gatherdiv8di:
case X86::BI__builtin_ia32_gatherdiv16si: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unexpected builtin");
case X86::BI__builtin_ia32_gather3div2df:
IID = Intrinsic::x86_avx512_mask_gather3div2_df;
break;
case X86::BI__builtin_ia32_gather3div2di:
IID = Intrinsic::x86_avx512_mask_gather3div2_di;
break;
case X86::BI__builtin_ia32_gather3div4df:
IID = Intrinsic::x86_avx512_mask_gather3div4_df;
break;
case X86::BI__builtin_ia32_gather3div4di:
IID = Intrinsic::x86_avx512_mask_gather3div4_di;
break;
case X86::BI__builtin_ia32_gather3div4sf:
IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
break;
case X86::BI__builtin_ia32_gather3div4si:
IID = Intrinsic::x86_avx512_mask_gather3div4_si;
break;
case X86::BI__builtin_ia32_gather3div8sf:
IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
break;
case X86::BI__builtin_ia32_gather3div8si:
IID = Intrinsic::x86_avx512_mask_gather3div8_si;
break;
case X86::BI__builtin_ia32_gather3siv2df:
IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
break;
case X86::BI__builtin_ia32_gather3siv2di:
IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
break;
case X86::BI__builtin_ia32_gather3siv4df:
IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
break;
case X86::BI__builtin_ia32_gather3siv4di:
IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
break;
case X86::BI__builtin_ia32_gather3siv4sf:
IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
break;
case X86::BI__builtin_ia32_gather3siv4si:
IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
break;
case X86::BI__builtin_ia32_gather3siv8sf:
IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
break;
case X86::BI__builtin_ia32_gather3siv8si:
IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
break;
case X86::BI__builtin_ia32_gathersiv8df:
IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
break;
case X86::BI__builtin_ia32_gathersiv16sf:
IID = Intrinsic::x86_avx512_mask_gather_dps_512;
break;
case X86::BI__builtin_ia32_gatherdiv8df:
IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
break;
case X86::BI__builtin_ia32_gatherdiv16sf:
IID = Intrinsic::x86_avx512_mask_gather_qps_512;
break;
case X86::BI__builtin_ia32_gathersiv8di:
IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
break;
case X86::BI__builtin_ia32_gathersiv16si:
IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
break;
case X86::BI__builtin_ia32_gatherdiv8di:
IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
break;
case X86::BI__builtin_ia32_gatherdiv16si:
IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
break;
}
unsigned MinElts = std::min(
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
Function *Intr = CGM.getIntrinsic(IID);
return Builder.CreateCall(Intr, Ops);
}
case X86::BI__builtin_ia32_scattersiv8df:
case X86::BI__builtin_ia32_scattersiv16sf:
case X86::BI__builtin_ia32_scatterdiv8df:
case X86::BI__builtin_ia32_scatterdiv16sf:
case X86::BI__builtin_ia32_scattersiv8di:
case X86::BI__builtin_ia32_scattersiv16si:
case X86::BI__builtin_ia32_scatterdiv8di:
case X86::BI__builtin_ia32_scatterdiv16si:
case X86::BI__builtin_ia32_scatterdiv2df:
case X86::BI__builtin_ia32_scatterdiv2di:
case X86::BI__builtin_ia32_scatterdiv4df:
case X86::BI__builtin_ia32_scatterdiv4di:
case X86::BI__builtin_ia32_scatterdiv4sf:
case X86::BI__builtin_ia32_scatterdiv4si:
case X86::BI__builtin_ia32_scatterdiv8sf:
case X86::BI__builtin_ia32_scatterdiv8si:
case X86::BI__builtin_ia32_scattersiv2df:
case X86::BI__builtin_ia32_scattersiv2di:
case X86::BI__builtin_ia32_scattersiv4df:
case X86::BI__builtin_ia32_scattersiv4di:
case X86::BI__builtin_ia32_scattersiv4sf:
case X86::BI__builtin_ia32_scattersiv4si:
case X86::BI__builtin_ia32_scattersiv8sf:
case X86::BI__builtin_ia32_scattersiv8si: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unexpected builtin");
case X86::BI__builtin_ia32_scattersiv8df:
IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
break;
case X86::BI__builtin_ia32_scattersiv16sf:
IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
break;
case X86::BI__builtin_ia32_scatterdiv8df:
IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
break;
case X86::BI__builtin_ia32_scatterdiv16sf:
IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
break;
case X86::BI__builtin_ia32_scattersiv8di:
IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
break;
case X86::BI__builtin_ia32_scattersiv16si:
IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
break;
case X86::BI__builtin_ia32_scatterdiv8di:
IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
break;
case X86::BI__builtin_ia32_scatterdiv16si:
IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
break;
case X86::BI__builtin_ia32_scatterdiv2df:
IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
break;
case X86::BI__builtin_ia32_scatterdiv2di:
IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
break;
case X86::BI__builtin_ia32_scatterdiv4df:
IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
break;
case X86::BI__builtin_ia32_scatterdiv4di:
IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
break;
case X86::BI__builtin_ia32_scatterdiv4sf:
IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
break;
case X86::BI__builtin_ia32_scatterdiv4si:
IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
break;
case X86::BI__builtin_ia32_scatterdiv8sf:
IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
break;
case X86::BI__builtin_ia32_scatterdiv8si:
IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
break;
case X86::BI__builtin_ia32_scattersiv2df:
IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
break;
case X86::BI__builtin_ia32_scattersiv2di:
IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
break;
case X86::BI__builtin_ia32_scattersiv4df:
IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
break;
case X86::BI__builtin_ia32_scattersiv4di:
IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
break;
case X86::BI__builtin_ia32_scattersiv4sf:
IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
break;
case X86::BI__builtin_ia32_scattersiv4si:
IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
break;
case X86::BI__builtin_ia32_scattersiv8sf:
IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
break;
case X86::BI__builtin_ia32_scattersiv8si:
IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
break;
}
unsigned MinElts = std::min(
cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
Function *Intr = CGM.getIntrinsic(IID);
return Builder.CreateCall(Intr, Ops);
}
case X86::BI__builtin_ia32_vextractf128_pd256:
case X86::BI__builtin_ia32_vextractf128_ps256:
case X86::BI__builtin_ia32_vextractf128_si256:
case X86::BI__builtin_ia32_extract128i256:
case X86::BI__builtin_ia32_extractf64x4_mask:
case X86::BI__builtin_ia32_extractf32x4_mask:
case X86::BI__builtin_ia32_extracti64x4_mask:
case X86::BI__builtin_ia32_extracti32x4_mask:
case X86::BI__builtin_ia32_extractf32x8_mask:
case X86::BI__builtin_ia32_extracti32x8_mask:
case X86::BI__builtin_ia32_extractf32x4_256_mask:
case X86::BI__builtin_ia32_extracti32x4_256_mask:
case X86::BI__builtin_ia32_extractf64x2_256_mask:
case X86::BI__builtin_ia32_extracti64x2_256_mask:
case X86::BI__builtin_ia32_extractf64x2_512_mask:
case X86::BI__builtin_ia32_extracti64x2_512_mask: {
auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
unsigned NumElts = DstTy->getNumElements();
unsigned SrcNumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
unsigned SubVectors = SrcNumElts / NumElts;
unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
Index &= SubVectors - 1; // Remove any extra bits.
Index *= NumElts;
int Indices[16];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i + Index;
Value *Res = Builder.CreateShuffleVector(Ops[0],
makeArrayRef(Indices, NumElts),
"extract");
if (Ops.size() == 4)
Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
return Res;
}
case X86::BI__builtin_ia32_vinsertf128_pd256:
case X86::BI__builtin_ia32_vinsertf128_ps256:
case X86::BI__builtin_ia32_vinsertf128_si256:
case X86::BI__builtin_ia32_insert128i256:
case X86::BI__builtin_ia32_insertf64x4:
case X86::BI__builtin_ia32_insertf32x4:
case X86::BI__builtin_ia32_inserti64x4:
case X86::BI__builtin_ia32_inserti32x4:
case X86::BI__builtin_ia32_insertf32x8:
case X86::BI__builtin_ia32_inserti32x8:
case X86::BI__builtin_ia32_insertf32x4_256:
case X86::BI__builtin_ia32_inserti32x4_256:
case X86::BI__builtin_ia32_insertf64x2_256:
case X86::BI__builtin_ia32_inserti64x2_256:
case X86::BI__builtin_ia32_insertf64x2_512:
case X86::BI__builtin_ia32_inserti64x2_512: {
unsigned DstNumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
unsigned SrcNumElts =
cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
unsigned SubVectors = DstNumElts / SrcNumElts;
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
Index &= SubVectors - 1; // Remove any extra bits.
Index *= SrcNumElts;
int Indices[16];
for (unsigned i = 0; i != DstNumElts; ++i)
Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
Value *Op1 = Builder.CreateShuffleVector(Ops[1],
makeArrayRef(Indices, DstNumElts),
"widen");
for (unsigned i = 0; i != DstNumElts; ++i) {
if (i >= Index && i < (Index + SrcNumElts))
Indices[i] = (i - Index) + DstNumElts;
else
Indices[i] = i;
}
return Builder.CreateShuffleVector(Ops[0], Op1,
makeArrayRef(Indices, DstNumElts),
"insert");
}
case X86::BI__builtin_ia32_pmovqd512_mask:
case X86::BI__builtin_ia32_pmovwb512_mask: {
Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
return EmitX86Select(*this, Ops[2], Res, Ops[1]);
}
case X86::BI__builtin_ia32_pmovdb512_mask:
case X86::BI__builtin_ia32_pmovdw512_mask:
case X86::BI__builtin_ia32_pmovqw512_mask: {
if (const auto *C = dyn_cast<Constant>(Ops[2]))
if (C->isAllOnesValue())
return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_pmovdb512_mask:
IID = Intrinsic::x86_avx512_mask_pmov_db_512;
break;
case X86::BI__builtin_ia32_pmovdw512_mask:
IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
break;
case X86::BI__builtin_ia32_pmovqw512_mask:
IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
break;
}
Function *Intr = CGM.getIntrinsic(IID);
return Builder.CreateCall(Intr, Ops);
}
case X86::BI__builtin_ia32_pblendw128:
case X86::BI__builtin_ia32_blendpd:
case X86::BI__builtin_ia32_blendps:
case X86::BI__builtin_ia32_blendpd256:
case X86::BI__builtin_ia32_blendps256:
case X86::BI__builtin_ia32_pblendw256:
case X86::BI__builtin_ia32_pblendd128:
case X86::BI__builtin_ia32_pblendd256: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
int Indices[16];
// If there are more than 8 elements, the immediate is used twice so make
// sure we handle that.
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
return Builder.CreateShuffleVector(Ops[0], Ops[1],
makeArrayRef(Indices, NumElts),
"blend");
}
case X86::BI__builtin_ia32_pshuflw:
case X86::BI__builtin_ia32_pshuflw256:
case X86::BI__builtin_ia32_pshuflw512: {
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
Imm = (Imm & 0xff) * 0x01010101;
int Indices[32];
for (unsigned l = 0; l != NumElts; l += 8) {
for (unsigned i = 0; i != 4; ++i) {
Indices[l + i] = l + (Imm & 3);
Imm >>= 2;
}
for (unsigned i = 4; i != 8; ++i)
Indices[l + i] = l + i;
}
return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
"pshuflw");
}
case X86::BI__builtin_ia32_pshufhw:
case X86::BI__builtin_ia32_pshufhw256:
case X86::BI__builtin_ia32_pshufhw512: {
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
Imm = (Imm & 0xff) * 0x01010101;
int Indices[32];
for (unsigned l = 0; l != NumElts; l += 8) {
for (unsigned i = 0; i != 4; ++i)
Indices[l + i] = l + i;
for (unsigned i = 4; i != 8; ++i) {
Indices[l + i] = l + 4 + (Imm & 3);
Imm >>= 2;
}
}
return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
"pshufhw");
}
case X86::BI__builtin_ia32_pshufd:
case X86::BI__builtin_ia32_pshufd256:
case X86::BI__builtin_ia32_pshufd512:
case X86::BI__builtin_ia32_vpermilpd:
case X86::BI__builtin_ia32_vpermilps:
case X86::BI__builtin_ia32_vpermilpd256:
case X86::BI__builtin_ia32_vpermilps256:
case X86::BI__builtin_ia32_vpermilpd512:
case X86::BI__builtin_ia32_vpermilps512: {
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
Imm = (Imm & 0xff) * 0x01010101;
int Indices[16];
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
Indices[i + l] = (Imm % NumLaneElts) + l;
Imm /= NumLaneElts;
}
}
return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
"permil");
}
case X86::BI__builtin_ia32_shufpd:
case X86::BI__builtin_ia32_shufpd256:
case X86::BI__builtin_ia32_shufpd512:
case X86::BI__builtin_ia32_shufps:
case X86::BI__builtin_ia32_shufps256:
case X86::BI__builtin_ia32_shufps512: {
uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
Imm = (Imm & 0xff) * 0x01010101;
int Indices[16];
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
unsigned Index = Imm % NumLaneElts;
Imm /= NumLaneElts;
if (i >= (NumLaneElts / 2))
Index += NumElts;
Indices[l + i] = l + Index;
}
}
return Builder.CreateShuffleVector(Ops[0], Ops[1],
makeArrayRef(Indices, NumElts),
"shufp");
}
case X86::BI__builtin_ia32_permdi256:
case X86::BI__builtin_ia32_permdf256:
case X86::BI__builtin_ia32_permdi512:
case X86::BI__builtin_ia32_permdf512: {
unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
// These intrinsics operate on 256-bit lanes of four 64-bit elements.
int Indices[8];
for (unsigned l = 0; l != NumElts; l += 4)
for (unsigned i = 0; i != 4; ++i)
Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
"perm");
}
case X86::BI__builtin_ia32_palignr128:
case X86::BI__builtin_ia32_palignr256:
case X86::BI__builtin_ia32_palignr512: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
assert(NumElts % 16 == 0);
// If palignr is shifting the pair of vectors more than the size of two
// lanes, emit zero.
if (ShiftVal >= 32)
return llvm::Constant::getNullValue(ConvertType(E->getType()));
// If palignr is shifting the pair of input vectors more than one lane,
// but less than two lanes, convert to shifting in zeroes.
if (ShiftVal > 16) {
ShiftVal -= 16;
Ops[1] = Ops[0];
Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
}
int Indices[64];
// 256-bit palignr operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != NumElts; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = ShiftVal + i;
if (Idx >= 16)
Idx += NumElts - 16; // End of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
return Builder.CreateShuffleVector(Ops[1], Ops[0],
makeArrayRef(Indices, NumElts),
"palignr");
}
case X86::BI__builtin_ia32_alignd128:
case X86::BI__builtin_ia32_alignd256:
case X86::BI__builtin_ia32_alignd512:
case X86::BI__builtin_ia32_alignq128:
case X86::BI__builtin_ia32_alignq256:
case X86::BI__builtin_ia32_alignq512: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
// Mask the shift amount to width of a vector.
ShiftVal &= NumElts - 1;
int Indices[16];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i + ShiftVal;
return Builder.CreateShuffleVector(Ops[1], Ops[0],
makeArrayRef(Indices, NumElts),
"valign");
}
case X86::BI__builtin_ia32_shuf_f32x4_256:
case X86::BI__builtin_ia32_shuf_f64x2_256:
case X86::BI__builtin_ia32_shuf_i32x4_256:
case X86::BI__builtin_ia32_shuf_i64x2_256:
case X86::BI__builtin_ia32_shuf_f32x4:
case X86::BI__builtin_ia32_shuf_f64x2:
case X86::BI__builtin_ia32_shuf_i32x4:
case X86::BI__builtin_ia32_shuf_i64x2: {
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
unsigned NumElts = Ty->getNumElements();
unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
unsigned NumLaneElts = NumElts / NumLanes;
int Indices[16];
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
unsigned Index = (Imm % NumLanes) * NumLaneElts;
Imm /= NumLanes; // Discard the bits we just used.
if (l >= (NumElts / 2))
Index += NumElts; // Switch to other source.
for (unsigned i = 0; i != NumLaneElts; ++i) {
Indices[l + i] = Index + i;
}
}
return Builder.CreateShuffleVector(Ops[0], Ops[1],
makeArrayRef(Indices, NumElts),
"shuf");
}
case X86::BI__builtin_ia32_vperm2f128_pd256:
case X86::BI__builtin_ia32_vperm2f128_ps256:
case X86::BI__builtin_ia32_vperm2f128_si256:
case X86::BI__builtin_ia32_permti256: {
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
// This takes a very simple approach since there are two lanes and a
// shuffle can have 2 inputs. So we reserve the first input for the first
// lane and the second input for the second lane. This may result in
// duplicate sources, but this can be dealt with in the backend.
Value *OutOps[2];
int Indices[8];
for (unsigned l = 0; l != 2; ++l) {
// Determine the source for this lane.
if (Imm & (1 << ((l * 4) + 3)))
OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
else if (Imm & (1 << ((l * 4) + 1)))
OutOps[l] = Ops[1];
else
OutOps[l] = Ops[0];
for (unsigned i = 0; i != NumElts/2; ++i) {
// Start with ith element of the source for this lane.
unsigned Idx = (l * NumElts) + i;
// If bit 0 of the immediate half is set, switch to the high half of
// the source.
if (Imm & (1 << (l * 4)))
Idx += NumElts/2;
Indices[(l * (NumElts/2)) + i] = Idx;
}
}
return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
makeArrayRef(Indices, NumElts),
"vperm");
}
case X86::BI__builtin_ia32_pslldqi128_byteshift:
case X86::BI__builtin_ia32_pslldqi256_byteshift:
case X86::BI__builtin_ia32_pslldqi512_byteshift: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
// Builtin type is vXi64 so multiply by 8 to get bytes.
unsigned NumElts = ResultType->getNumElements() * 8;
// If pslldq is shifting the vector more than 15 bytes, emit zero.
if (ShiftVal >= 16)
return llvm::Constant::getNullValue(ResultType);
int Indices[64];
// 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != NumElts; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = NumElts + i - ShiftVal;
if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Value *Zero = llvm::Constant::getNullValue(VecTy);
Value *SV = Builder.CreateShuffleVector(Zero, Cast,
makeArrayRef(Indices, NumElts),
"pslldq");
return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
}
case X86::BI__builtin_ia32_psrldqi128_byteshift:
case X86::BI__builtin_ia32_psrldqi256_byteshift:
case X86::BI__builtin_ia32_psrldqi512_byteshift: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
// Builtin type is vXi64 so multiply by 8 to get bytes.
unsigned NumElts = ResultType->getNumElements() * 8;
// If psrldq is shifting the vector more than 15 bytes, emit zero.
if (ShiftVal >= 16)
return llvm::Constant::getNullValue(ResultType);
int Indices[64];
// 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != NumElts; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = i + ShiftVal;
if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Value *Zero = llvm::Constant::getNullValue(VecTy);
Value *SV = Builder.CreateShuffleVector(Cast, Zero,
makeArrayRef(Indices, NumElts),
"psrldq");
return Builder.CreateBitCast(SV, ResultType, "cast");
}
case X86::BI__builtin_ia32_kshiftliqi:
case X86::BI__builtin_ia32_kshiftlihi:
case X86::BI__builtin_ia32_kshiftlisi:
case X86::BI__builtin_ia32_kshiftlidi: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
if (ShiftVal >= NumElts)
return llvm::Constant::getNullValue(Ops[0]->getType());
Value *In = getMaskVecValue(*this, Ops[0], NumElts);
int Indices[64];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = NumElts + i - ShiftVal;
Value *Zero = llvm::Constant::getNullValue(In->getType());
Value *SV = Builder.CreateShuffleVector(Zero, In,
makeArrayRef(Indices, NumElts),
"kshiftl");
return Builder.CreateBitCast(SV, Ops[0]->getType());
}
case X86::BI__builtin_ia32_kshiftriqi:
case X86::BI__builtin_ia32_kshiftrihi:
case X86::BI__builtin_ia32_kshiftrisi:
case X86::BI__builtin_ia32_kshiftridi: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
if (ShiftVal >= NumElts)
return llvm::Constant::getNullValue(Ops[0]->getType());
Value *In = getMaskVecValue(*this, Ops[0], NumElts);
int Indices[64];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i + ShiftVal;
Value *Zero = llvm::Constant::getNullValue(In->getType());
Value *SV = Builder.CreateShuffleVector(In, Zero,
makeArrayRef(Indices, NumElts),
"kshiftr");
return Builder.CreateBitCast(SV, Ops[0]->getType());
}
case X86::BI__builtin_ia32_movnti:
case X86::BI__builtin_ia32_movnti64:
case X86::BI__builtin_ia32_movntsd:
case X86::BI__builtin_ia32_movntss: {
llvm::MDNode *Node = llvm::MDNode::get(
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
Value *Ptr = Ops[0];
Value *Src = Ops[1];
// Extract the 0'th element of the source vector.
if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
BuiltinID == X86::BI__builtin_ia32_movntss)
Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(
Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
// Unaligned nontemporal store of the scalar value.
StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
SI->setAlignment(llvm::Align(1));
return SI;
}
// Rotate is a special case of funnel shift - 1st 2 args are the same.
case X86::BI__builtin_ia32_vprotb:
case X86::BI__builtin_ia32_vprotw:
case X86::BI__builtin_ia32_vprotd:
case X86::BI__builtin_ia32_vprotq:
case X86::BI__builtin_ia32_vprotbi:
case X86::BI__builtin_ia32_vprotwi:
case X86::BI__builtin_ia32_vprotdi:
case X86::BI__builtin_ia32_vprotqi:
case X86::BI__builtin_ia32_prold128:
case X86::BI__builtin_ia32_prold256:
case X86::BI__builtin_ia32_prold512:
case X86::BI__builtin_ia32_prolq128:
case X86::BI__builtin_ia32_prolq256:
case X86::BI__builtin_ia32_prolq512:
case X86::BI__builtin_ia32_prolvd128:
case X86::BI__builtin_ia32_prolvd256:
case X86::BI__builtin_ia32_prolvd512:
case X86::BI__builtin_ia32_prolvq128:
case X86::BI__builtin_ia32_prolvq256:
case X86::BI__builtin_ia32_prolvq512:
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
case X86::BI__builtin_ia32_prord128:
case X86::BI__builtin_ia32_prord256:
case X86::BI__builtin_ia32_prord512:
case X86::BI__builtin_ia32_prorq128:
case X86::BI__builtin_ia32_prorq256:
case X86::BI__builtin_ia32_prorq512:
case X86::BI__builtin_ia32_prorvd128:
case X86::BI__builtin_ia32_prorvd256:
case X86::BI__builtin_ia32_prorvd512:
case X86::BI__builtin_ia32_prorvq128:
case X86::BI__builtin_ia32_prorvq256:
case X86::BI__builtin_ia32_prorvq512:
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
case X86::BI__builtin_ia32_selectb_128:
case X86::BI__builtin_ia32_selectb_256:
case X86::BI__builtin_ia32_selectb_512:
case X86::BI__builtin_ia32_selectw_128:
case X86::BI__builtin_ia32_selectw_256:
case X86::BI__builtin_ia32_selectw_512:
case X86::BI__builtin_ia32_selectd_128:
case X86::BI__builtin_ia32_selectd_256:
case X86::BI__builtin_ia32_selectd_512:
case X86::BI__builtin_ia32_selectq_128:
case X86::BI__builtin_ia32_selectq_256:
case X86::BI__builtin_ia32_selectq_512:
case X86::BI__builtin_ia32_selectph_128:
case X86::BI__builtin_ia32_selectph_256:
case X86::BI__builtin_ia32_selectph_512:
case X86::BI__builtin_ia32_selectps_128:
case X86::BI__builtin_ia32_selectps_256:
case X86::BI__builtin_ia32_selectps_512:
case X86::BI__builtin_ia32_selectpd_128:
case X86::BI__builtin_ia32_selectpd_256:
case X86::BI__builtin_ia32_selectpd_512:
return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
case X86::BI__builtin_ia32_selectsh_128:
case X86::BI__builtin_ia32_selectss_128:
case X86::BI__builtin_ia32_selectsd_128: {
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
A = EmitX86ScalarSelect(*this, Ops[0], A, B);
return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
}
case X86::BI__builtin_ia32_cmpb128_mask:
case X86::BI__builtin_ia32_cmpb256_mask:
case X86::BI__builtin_ia32_cmpb512_mask:
case X86::BI__builtin_ia32_cmpw128_mask:
case X86::BI__builtin_ia32_cmpw256_mask:
case X86::BI__builtin_ia32_cmpw512_mask:
case X86::BI__builtin_ia32_cmpd128_mask:
case X86::BI__builtin_ia32_cmpd256_mask:
case X86::BI__builtin_ia32_cmpd512_mask:
case X86::BI__builtin_ia32_cmpq128_mask:
case X86::BI__builtin_ia32_cmpq256_mask:
case X86::BI__builtin_ia32_cmpq512_mask: {
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
return EmitX86MaskedCompare(*this, CC, true, Ops);
}
case X86::BI__builtin_ia32_ucmpb128_mask:
case X86::BI__builtin_ia32_ucmpb256_mask:
case X86::BI__builtin_ia32_ucmpb512_mask:
case X86::BI__builtin_ia32_ucmpw128_mask:
case X86::BI__builtin_ia32_ucmpw256_mask:
case X86::BI__builtin_ia32_ucmpw512_mask:
case X86::BI__builtin_ia32_ucmpd128_mask:
case X86::BI__builtin_ia32_ucmpd256_mask:
case X86::BI__builtin_ia32_ucmpd512_mask:
case X86::BI__builtin_ia32_ucmpq128_mask:
case X86::BI__builtin_ia32_ucmpq256_mask:
case X86::BI__builtin_ia32_ucmpq512_mask: {
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
return EmitX86MaskedCompare(*this, CC, false, Ops);
}
case X86::BI__builtin_ia32_vpcomb:
case X86::BI__builtin_ia32_vpcomw:
case X86::BI__builtin_ia32_vpcomd:
case X86::BI__builtin_ia32_vpcomq:
return EmitX86vpcom(*this, Ops, true);
case X86::BI__builtin_ia32_vpcomub:
case X86::BI__builtin_ia32_vpcomuw:
case X86::BI__builtin_ia32_vpcomud:
case X86::BI__builtin_ia32_vpcomuq:
return EmitX86vpcom(*this, Ops, false);
case X86::BI__builtin_ia32_kortestcqi:
case X86::BI__builtin_ia32_kortestchi:
case X86::BI__builtin_ia32_kortestcsi:
case X86::BI__builtin_ia32_kortestcdi: {
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
Value *Cmp = Builder.CreateICmpEQ(Or, C);
return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_kortestzqi:
case X86::BI__builtin_ia32_kortestzhi:
case X86::BI__builtin_ia32_kortestzsi:
case X86::BI__builtin_ia32_kortestzdi: {
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
Value *Cmp = Builder.CreateICmpEQ(Or, C);
return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
}
case X86::BI__builtin_ia32_ktestcqi:
case X86::BI__builtin_ia32_ktestzqi:
case X86::BI__builtin_ia32_ktestchi:
case X86::BI__builtin_ia32_ktestzhi:
case X86::BI__builtin_ia32_ktestcsi:
case X86::BI__builtin_ia32_ktestzsi:
case X86::BI__builtin_ia32_ktestcdi:
case X86::BI__builtin_ia32_ktestzdi: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_ktestcqi:
IID = Intrinsic::x86_avx512_ktestc_b;
break;
case X86::BI__builtin_ia32_ktestzqi:
IID = Intrinsic::x86_avx512_ktestz_b;
break;
case X86::BI__builtin_ia32_ktestchi:
IID = Intrinsic::x86_avx512_ktestc_w;
break;
case X86::BI__builtin_ia32_ktestzhi:
IID = Intrinsic::x86_avx512_ktestz_w;
break;
case X86::BI__builtin_ia32_ktestcsi:
IID = Intrinsic::x86_avx512_ktestc_d;
break;
case X86::BI__builtin_ia32_ktestzsi:
IID = Intrinsic::x86_avx512_ktestz_d;
break;
case X86::BI__builtin_ia32_ktestcdi:
IID = Intrinsic::x86_avx512_ktestc_q;
break;
case X86::BI__builtin_ia32_ktestzdi:
IID = Intrinsic::x86_avx512_ktestz_q;
break;
}
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
Function *Intr = CGM.getIntrinsic(IID);
return Builder.CreateCall(Intr, {LHS, RHS});
}
case X86::BI__builtin_ia32_kaddqi:
case X86::BI__builtin_ia32_kaddhi:
case X86::BI__builtin_ia32_kaddsi:
case X86::BI__builtin_ia32_kadddi: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_kaddqi:
IID = Intrinsic::x86_avx512_kadd_b;
break;
case X86::BI__builtin_ia32_kaddhi:
IID = Intrinsic::x86_avx512_kadd_w;
break;
case X86::BI__builtin_ia32_kaddsi:
IID = Intrinsic::x86_avx512_kadd_d;
break;
case X86::BI__builtin_ia32_kadddi:
IID = Intrinsic::x86_avx512_kadd_q;
break;
}
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
Function *Intr = CGM.getIntrinsic(IID);
Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
return Builder.CreateBitCast(Res, Ops[0]->getType());
}
case X86::BI__builtin_ia32_kandqi:
case X86::BI__builtin_ia32_kandhi:
case X86::BI__builtin_ia32_kandsi:
case X86::BI__builtin_ia32_kanddi:
return EmitX86MaskLogic(*this, Instruction::And, Ops);
case X86::BI__builtin_ia32_kandnqi:
case X86::BI__builtin_ia32_kandnhi:
case X86::BI__builtin_ia32_kandnsi:
case X86::BI__builtin_ia32_kandndi:
return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
case X86::BI__builtin_ia32_korqi:
case X86::BI__builtin_ia32_korhi:
case X86::BI__builtin_ia32_korsi:
case X86::BI__builtin_ia32_kordi:
return EmitX86MaskLogic(*this, Instruction::Or, Ops);
case X86::BI__builtin_ia32_kxnorqi:
case X86::BI__builtin_ia32_kxnorhi:
case X86::BI__builtin_ia32_kxnorsi:
case X86::BI__builtin_ia32_kxnordi:
return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
case X86::BI__builtin_ia32_kxorqi:
case X86::BI__builtin_ia32_kxorhi:
case X86::BI__builtin_ia32_kxorsi:
case X86::BI__builtin_ia32_kxordi:
return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
case X86::BI__builtin_ia32_knotqi:
case X86::BI__builtin_ia32_knothi:
case X86::BI__builtin_ia32_knotsi:
case X86::BI__builtin_ia32_knotdi: {
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
return Builder.CreateBitCast(Builder.CreateNot(Res),
Ops[0]->getType());
}
case X86::BI__builtin_ia32_kmovb:
case X86::BI__builtin_ia32_kmovw:
case X86::BI__builtin_ia32_kmovd:
case X86::BI__builtin_ia32_kmovq: {
// Bitcast to vXi1 type and then back to integer. This gets the mask
// register type into the IR, but might be optimized out depending on
// what's around it.
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
return Builder.CreateBitCast(Res, Ops[0]->getType());
}
case X86::BI__builtin_ia32_kunpckdi:
case X86::BI__builtin_ia32_kunpcksi:
case X86::BI__builtin_ia32_kunpckhi: {
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
int Indices[64];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i;
// First extract half of each vector. This gives better codegen than
// doing it in a single shuffle.
LHS = Builder.CreateShuffleVector(LHS, LHS,
makeArrayRef(Indices, NumElts / 2));
RHS = Builder.CreateShuffleVector(RHS, RHS,
makeArrayRef(Indices, NumElts / 2));
// Concat the vectors.
// NOTE: Operands are swapped to match the intrinsic definition.
Value *Res = Builder.CreateShuffleVector(RHS, LHS,
makeArrayRef(Indices, NumElts));
return Builder.CreateBitCast(Res, Ops[0]->getType());
}
case X86::BI__builtin_ia32_vplzcntd_128:
case X86::BI__builtin_ia32_vplzcntd_256:
case X86::BI__builtin_ia32_vplzcntd_512:
case X86::BI__builtin_ia32_vplzcntq_128:
case X86::BI__builtin_ia32_vplzcntq_256:
case X86::BI__builtin_ia32_vplzcntq_512: {
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
}
case X86::BI__builtin_ia32_sqrtss:
case X86::BI__builtin_ia32_sqrtsd: {
Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
Function *F;
if (Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
A->getType());
A = Builder.CreateConstrainedFPCall(F, {A});
} else {
F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
A = Builder.CreateCall(F, {A});
}
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
}
case X86::BI__builtin_ia32_sqrtsh_round_mask:
case X86::BI__builtin_ia32_sqrtsd_round_mask:
case X86::BI__builtin_ia32_sqrtss_round_mask: {
unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
// otherwise keep the intrinsic.
if (CC != 4) {
Intrinsic::ID IID;
switch (BuiltinID) {
default:
llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_sqrtsh_round_mask:
IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
break;
case X86::BI__builtin_ia32_sqrtsd_round_mask:
IID = Intrinsic::x86_avx512_mask_sqrt_sd;
break;
case X86::BI__builtin_ia32_sqrtss_round_mask:
IID = Intrinsic::x86_avx512_mask_sqrt_ss;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
}
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
Function *F;
if (Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
A->getType());
A = Builder.CreateConstrainedFPCall(F, A);
} else {
F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
A = Builder.CreateCall(F, A);
}
Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
}
case X86::BI__builtin_ia32_sqrtpd256:
case X86::BI__builtin_ia32_sqrtpd:
case X86::BI__builtin_ia32_sqrtps256:
case X86::BI__builtin_ia32_sqrtps:
case X86::BI__builtin_ia32_sqrtph256:
case X86::BI__builtin_ia32_sqrtph:
case X86::BI__builtin_ia32_sqrtph512:
case X86::BI__builtin_ia32_sqrtps512:
case X86::BI__builtin_ia32_sqrtpd512: {
if (Ops.size() == 2) {
unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
// otherwise keep the intrinsic.
if (CC != 4) {
Intrinsic::ID IID;
switch (BuiltinID) {
default:
llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_sqrtph512:
IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
break;
case X86::BI__builtin_ia32_sqrtps512:
IID = Intrinsic::x86_avx512_sqrt_ps_512;
break;
case X86::BI__builtin_ia32_sqrtpd512:
IID = Intrinsic::x86_avx512_sqrt_pd_512;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
}
}
if (Builder.getIsFPConstrained()) {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
Ops[0]->getType());
return Builder.CreateConstrainedFPCall(F, Ops[0]);
} else {
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
return Builder.CreateCall(F, Ops[0]);
}
}
case X86::BI__builtin_ia32_pmuludq128:
case X86::BI__builtin_ia32_pmuludq256:
case X86::BI__builtin_ia32_pmuludq512:
return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
case X86::BI__builtin_ia32_pmuldq128:
case X86::BI__builtin_ia32_pmuldq256:
case X86::BI__builtin_ia32_pmuldq512:
return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
case X86::BI__builtin_ia32_pternlogd512_mask:
case X86::BI__builtin_ia32_pternlogq512_mask:
case X86::BI__builtin_ia32_pternlogd128_mask:
case X86::BI__builtin_ia32_pternlogd256_mask:
case X86::BI__builtin_ia32_pternlogq128_mask:
case X86::BI__builtin_ia32_pternlogq256_mask:
return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
case X86::BI__builtin_ia32_pternlogd512_maskz:
case X86::BI__builtin_ia32_pternlogq512_maskz:
case X86::BI__builtin_ia32_pternlogd128_maskz:
case X86::BI__builtin_ia32_pternlogd256_maskz:
case X86::BI__builtin_ia32_pternlogq128_maskz:
case X86::BI__builtin_ia32_pternlogq256_maskz:
return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
case X86::BI__builtin_ia32_vpshldd128:
case X86::BI__builtin_ia32_vpshldd256:
case X86::BI__builtin_ia32_vpshldd512:
case X86::BI__builtin_ia32_vpshldq128:
case X86::BI__builtin_ia32_vpshldq256:
case X86::BI__builtin_ia32_vpshldq512:
case X86::BI__builtin_ia32_vpshldw128:
case X86::BI__builtin_ia32_vpshldw256:
case X86::BI__builtin_ia32_vpshldw512:
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
case X86::BI__builtin_ia32_vpshrdd128:
case X86::BI__builtin_ia32_vpshrdd256:
case X86::BI__builtin_ia32_vpshrdd512:
case X86::BI__builtin_ia32_vpshrdq128:
case X86::BI__builtin_ia32_vpshrdq256:
case X86::BI__builtin_ia32_vpshrdq512:
case X86::BI__builtin_ia32_vpshrdw128:
case X86::BI__builtin_ia32_vpshrdw256:
case X86::BI__builtin_ia32_vpshrdw512:
// Ops 0 and 1 are swapped.
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
case X86::BI__builtin_ia32_vpshldvd128:
case X86::BI__builtin_ia32_vpshldvd256:
case X86::BI__builtin_ia32_vpshldvd512:
case X86::BI__builtin_ia32_vpshldvq128:
case X86::BI__builtin_ia32_vpshldvq256:
case X86::BI__builtin_ia32_vpshldvq512:
case X86::BI__builtin_ia32_vpshldvw128:
case X86::BI__builtin_ia32_vpshldvw256:
case X86::BI__builtin_ia32_vpshldvw512:
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
case X86::BI__builtin_ia32_vpshrdvd128:
case X86::BI__builtin_ia32_vpshrdvd256:
case X86::BI__builtin_ia32_vpshrdvd512:
case X86::BI__builtin_ia32_vpshrdvq128:
case X86::BI__builtin_ia32_vpshrdvq256:
case X86::BI__builtin_ia32_vpshrdvq512:
case X86::BI__builtin_ia32_vpshrdvw128:
case X86::BI__builtin_ia32_vpshrdvw256:
case X86::BI__builtin_ia32_vpshrdvw512:
// Ops 0 and 1 are swapped.
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
// Reductions
case X86::BI__builtin_ia32_reduce_add_d512:
case X86::BI__builtin_ia32_reduce_add_q512: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0]});
}
case X86::BI__builtin_ia32_reduce_fadd_pd512:
case X86::BI__builtin_ia32_reduce_fadd_ps512:
case X86::BI__builtin_ia32_reduce_fadd_ph512:
case X86::BI__builtin_ia32_reduce_fadd_ph256:
case X86::BI__builtin_ia32_reduce_fadd_ph128: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
Builder.getFastMathFlags().setAllowReassoc();
return Builder.CreateCall(F, {Ops[0], Ops[1]});
}
case X86::BI__builtin_ia32_reduce_fmul_pd512:
case X86::BI__builtin_ia32_reduce_fmul_ps512:
case X86::BI__builtin_ia32_reduce_fmul_ph512:
case X86::BI__builtin_ia32_reduce_fmul_ph256:
case X86::BI__builtin_ia32_reduce_fmul_ph128: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
Builder.getFastMathFlags().setAllowReassoc();
return Builder.CreateCall(F, {Ops[0], Ops[1]});
}
case X86::BI__builtin_ia32_reduce_fmax_pd512:
case X86::BI__builtin_ia32_reduce_fmax_ps512:
case X86::BI__builtin_ia32_reduce_fmax_ph512:
case X86::BI__builtin_ia32_reduce_fmax_ph256:
case X86::BI__builtin_ia32_reduce_fmax_ph128: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
Builder.getFastMathFlags().setNoNaNs();
return Builder.CreateCall(F, {Ops[0]});
}
case X86::BI__builtin_ia32_reduce_fmin_pd512:
case X86::BI__builtin_ia32_reduce_fmin_ps512:
case X86::BI__builtin_ia32_reduce_fmin_ph512:
case X86::BI__builtin_ia32_reduce_fmin_ph256:
case X86::BI__builtin_ia32_reduce_fmin_ph128: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
Builder.getFastMathFlags().setNoNaNs();
return Builder.CreateCall(F, {Ops[0]});
}
case X86::BI__builtin_ia32_reduce_mul_d512:
case X86::BI__builtin_ia32_reduce_mul_q512: {
Function *F =
CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0]});
}
// 3DNow!
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi: {
llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
return Builder.CreateCall(F, Ops, "pswapd");
}
case X86::BI__builtin_ia32_rdrand16_step:
case X86::BI__builtin_ia32_rdrand32_step:
case X86::BI__builtin_ia32_rdrand64_step:
case X86::BI__builtin_ia32_rdseed16_step:
case X86::BI__builtin_ia32_rdseed32_step:
case X86::BI__builtin_ia32_rdseed64_step: {
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_rdrand16_step:
ID = Intrinsic::x86_rdrand_16;
break;
case X86::BI__builtin_ia32_rdrand32_step:
ID = Intrinsic::x86_rdrand_32;
break;
case X86::BI__builtin_ia32_rdrand64_step:
ID = Intrinsic::x86_rdrand_64;
break;
case X86::BI__builtin_ia32_rdseed16_step:
ID = Intrinsic::x86_rdseed_16;
break;
case X86::BI__builtin_ia32_rdseed32_step:
ID = Intrinsic::x86_rdseed_32;
break;
case X86::BI__builtin_ia32_rdseed64_step:
ID = Intrinsic::x86_rdseed_64;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
Ops[0]);
return Builder.CreateExtractValue(Call, 1);
}
case X86::BI__builtin_ia32_addcarryx_u32:
case X86::BI__builtin_ia32_addcarryx_u64:
case X86::BI__builtin_ia32_subborrow_u32:
case X86::BI__builtin_ia32_subborrow_u64: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_addcarryx_u32:
IID = Intrinsic::x86_addcarry_32;
break;
case X86::BI__builtin_ia32_addcarryx_u64:
IID = Intrinsic::x86_addcarry_64;
break;
case X86::BI__builtin_ia32_subborrow_u32:
IID = Intrinsic::x86_subborrow_32;
break;
case X86::BI__builtin_ia32_subborrow_u64:
IID = Intrinsic::x86_subborrow_64;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
{ Ops[0], Ops[1], Ops[2] });
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
Ops[3]);
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_fpclassps128_mask:
case X86::BI__builtin_ia32_fpclassps256_mask:
case X86::BI__builtin_ia32_fpclassps512_mask:
case X86::BI__builtin_ia32_fpclassph128_mask:
case X86::BI__builtin_ia32_fpclassph256_mask:
case X86::BI__builtin_ia32_fpclassph512_mask:
case X86::BI__builtin_ia32_fpclasspd128_mask:
case X86::BI__builtin_ia32_fpclasspd256_mask:
case X86::BI__builtin_ia32_fpclasspd512_mask: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Value *MaskIn = Ops[2];
Ops.erase(&Ops[2]);
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_fpclassph128_mask:
ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
break;
case X86::BI__builtin_ia32_fpclassph256_mask:
ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
break;
case X86::BI__builtin_ia32_fpclassph512_mask:
ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
break;
case X86::BI__builtin_ia32_fpclassps128_mask:
ID = Intrinsic::x86_avx512_fpclass_ps_128;
break;
case X86::BI__builtin_ia32_fpclassps256_mask:
ID = Intrinsic::x86_avx512_fpclass_ps_256;
break;
case X86::BI__builtin_ia32_fpclassps512_mask:
ID = Intrinsic::x86_avx512_fpclass_ps_512;
break;
case X86::BI__builtin_ia32_fpclasspd128_mask:
ID = Intrinsic::x86_avx512_fpclass_pd_128;
break;
case X86::BI__builtin_ia32_fpclasspd256_mask:
ID = Intrinsic::x86_avx512_fpclass_pd_256;
break;
case X86::BI__builtin_ia32_fpclasspd512_mask:
ID = Intrinsic::x86_avx512_fpclass_pd_512;
break;
}
Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
}
case X86::BI__builtin_ia32_vp2intersect_q_512:
case X86::BI__builtin_ia32_vp2intersect_q_256:
case X86::BI__builtin_ia32_vp2intersect_q_128:
case X86::BI__builtin_ia32_vp2intersect_d_512:
case X86::BI__builtin_ia32_vp2intersect_d_256:
case X86::BI__builtin_ia32_vp2intersect_d_128: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_vp2intersect_q_512:
ID = Intrinsic::x86_avx512_vp2intersect_q_512;
break;
case X86::BI__builtin_ia32_vp2intersect_q_256:
ID = Intrinsic::x86_avx512_vp2intersect_q_256;
break;
case X86::BI__builtin_ia32_vp2intersect_q_128:
ID = Intrinsic::x86_avx512_vp2intersect_q_128;
break;
case X86::BI__builtin_ia32_vp2intersect_d_512:
ID = Intrinsic::x86_avx512_vp2intersect_d_512;
break;
case X86::BI__builtin_ia32_vp2intersect_d_256:
ID = Intrinsic::x86_avx512_vp2intersect_d_256;
break;
case X86::BI__builtin_ia32_vp2intersect_d_128:
ID = Intrinsic::x86_avx512_vp2intersect_d_128;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
Value *Result = Builder.CreateExtractValue(Call, 0);
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
Builder.CreateDefaultAlignedStore(Result, Ops[2]);
Result = Builder.CreateExtractValue(Call, 1);
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
}
case X86::BI__builtin_ia32_vpmultishiftqb128:
case X86::BI__builtin_ia32_vpmultishiftqb256:
case X86::BI__builtin_ia32_vpmultishiftqb512: {
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_vpmultishiftqb128:
ID = Intrinsic::x86_avx512_pmultishift_qb_128;
break;
case X86::BI__builtin_ia32_vpmultishiftqb256:
ID = Intrinsic::x86_avx512_pmultishift_qb_256;
break;
case X86::BI__builtin_ia32_vpmultishiftqb512:
ID = Intrinsic::x86_avx512_pmultishift_qb_512;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Value *MaskIn = Ops[2];
Ops.erase(&Ops[2]);
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
break;
case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
break;
case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
break;
}
Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
}
// packed comparison intrinsics
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpeqpd:
return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpltpd:
return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmplepd:
return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpunordpd:
return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpneqpd:
return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnltpd:
return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpnlepd:
return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpordpd:
return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
case X86::BI__builtin_ia32_cmpph128_mask:
case X86::BI__builtin_ia32_cmpph256_mask:
case X86::BI__builtin_ia32_cmpph512_mask:
case X86::BI__builtin_ia32_cmpps128_mask:
case X86::BI__builtin_ia32_cmpps256_mask:
case X86::BI__builtin_ia32_cmpps512_mask:
case X86::BI__builtin_ia32_cmppd128_mask:
case X86::BI__builtin_ia32_cmppd256_mask:
case X86::BI__builtin_ia32_cmppd512_mask:
IsMaskFCmp = true;
LLVM_FALLTHROUGH;
case X86::BI__builtin_ia32_cmpps:
case X86::BI__builtin_ia32_cmpps256:
case X86::BI__builtin_ia32_cmppd:
case X86::BI__builtin_ia32_cmppd256: {
// Lowering vector comparisons to fcmp instructions, while
// ignoring signalling behaviour requested
// ignoring rounding mode requested
// This is only possible if fp-model is not strict and FENV_ACCESS is off.
// The third argument is the comparison condition, and integer in the
// range [0, 31]
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
// Lowering to IR fcmp instruction.
// Ignoring requested signaling behaviour,
// e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
FCmpInst::Predicate Pred;
bool IsSignaling;
// Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
// behavior is inverted. We'll handle that after the switch.
switch (CC & 0xf) {
case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
default: llvm_unreachable("Unhandled CC");
}
// Invert the signalling behavior for 16-31.
if (CC & 0x10)
IsSignaling = !IsSignaling;
// If the predicate is true or false and we're using constrained intrinsics,
// we don't have a compare intrinsic we can use. Just use the legacy X86
// specific intrinsic.
// If the intrinsic is mask enabled and we're using constrained intrinsics,
// use the legacy X86 specific intrinsic.
if (Builder.getIsFPConstrained() &&
(Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
IsMaskFCmp)) {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unexpected builtin");
case X86::BI__builtin_ia32_cmpps:
IID = Intrinsic::x86_sse_cmp_ps;
break;
case X86::BI__builtin_ia32_cmpps256:
IID = Intrinsic::x86_avx_cmp_ps_256;
break;
case X86::BI__builtin_ia32_cmppd:
IID = Intrinsic::x86_sse2_cmp_pd;
break;
case X86::BI__builtin_ia32_cmppd256:
IID = Intrinsic::x86_avx_cmp_pd_256;
break;
case X86::BI__builtin_ia32_cmpps512_mask:
IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
break;
case X86::BI__builtin_ia32_cmppd512_mask:
IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
break;
case X86::BI__builtin_ia32_cmpps128_mask:
IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
break;
case X86::BI__builtin_ia32_cmpps256_mask:
IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
break;
case X86::BI__builtin_ia32_cmppd128_mask:
IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
break;
case X86::BI__builtin_ia32_cmppd256_mask:
IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
break;
}
Function *Intr = CGM.getIntrinsic(IID);
if (IsMaskFCmp) {
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
Value *Cmp = Builder.CreateCall(Intr, Ops);
return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
}
return Builder.CreateCall(Intr, Ops);
}
// Builtins without the _mask suffix return a vector of integers
// of the same width as the input vectors
if (IsMaskFCmp) {
// We ignore SAE if strict FP is disabled. We only keep precise
// exception behavior under strict FP.
// NOTE: If strict FP does ever go through here a CGFPOptionsRAII
// object will be required.
unsigned NumElts =
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
Value *Cmp;
if (IsSignaling)
Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
else
Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
}
return getVectorFCmpIR(Pred, IsSignaling);
}
// SSE scalar comparison intrinsics
case X86::BI__builtin_ia32_cmpeqss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
case X86::BI__builtin_ia32_cmpltss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
case X86::BI__builtin_ia32_cmpless:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
case X86::BI__builtin_ia32_cmpunordss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
case X86::BI__builtin_ia32_cmpneqss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
case X86::BI__builtin_ia32_cmpnltss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
case X86::BI__builtin_ia32_cmpnless:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
case X86::BI__builtin_ia32_cmpordss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
case X86::BI__builtin_ia32_cmpeqsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
case X86::BI__builtin_ia32_cmpltsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
case X86::BI__builtin_ia32_cmplesd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
case X86::BI__builtin_ia32_cmpunordsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
case X86::BI__builtin_ia32_cmpneqsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
case X86::BI__builtin_ia32_cmpnltsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
case X86::BI__builtin_ia32_cmpnlesd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
case X86::BI__builtin_ia32_cmpordsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
// f16c half2float intrinsics
case X86::BI__builtin_ia32_vcvtph2ps:
case X86::BI__builtin_ia32_vcvtph2ps256:
case X86::BI__builtin_ia32_vcvtph2ps_mask:
case X86::BI__builtin_ia32_vcvtph2ps256_mask:
case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
}
// AVX512 bf16 intrinsics
case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
Ops[2] = getMaskVecValue(
*this, Ops[2],
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
}
case X86::BI__builtin_ia32_cvtsbf162ss_32:
return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
Intrinsic::ID IID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
break;
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
break;
}
Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
return EmitX86Select(*this, Ops[2], Res, Ops[1]);
}
case X86::BI__cpuid:
case X86::BI__cpuidex: {
Value *FuncId = EmitScalarExpr(E->getArg(1));
Value *SubFuncId = BuiltinID == X86::BI__cpuidex
? EmitScalarExpr(E->getArg(2))
: llvm::ConstantInt::get(Int32Ty, 0);
llvm::StructType *CpuidRetTy =
llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
llvm::FunctionType *FTy =
llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
StringRef Asm, Constraints;
if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
Asm = "cpuid";
Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
} else {
// x86-64 uses %rbx as the base register, so preserve it.
Asm = "xchgq %rbx, ${1:q}\n"
"cpuid\n"
"xchgq %rbx, ${1:q}";
Constraints = "={ax},=r,={cx},={dx},0,2";
}
llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
/*hasSideEffects=*/false);
Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
Value *BasePtr = EmitScalarExpr(E->getArg(0));
Value *Store = nullptr;
for (unsigned i = 0; i < 4; i++) {
Value *Extracted = Builder.CreateExtractValue(IACall, i);
Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
}
// Return the last store instruction to signal that we have emitted the
// the intrinsic.
return Store;
}
case X86::BI__emul:
case X86::BI__emulu: {
llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
bool isSigned = (BuiltinID == X86::BI__emul);
Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
}
case X86::BI__mulh:
case X86::BI__umulh:
case X86::BI_mul128:
case X86::BI_umul128: {
llvm::Type *ResType = ConvertType(E->getType());
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
Value *MulResult, *HigherBits;
if (IsSigned) {
MulResult = Builder.CreateNSWMul(LHS, RHS);
HigherBits = Builder.CreateAShr(MulResult, 64);
} else {
MulResult = Builder.CreateNUWMul(LHS, RHS);
HigherBits = Builder.CreateLShr(MulResult, 64);
}
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
return HigherBits;
Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
Builder.CreateStore(HigherBits, HighBitsAddress);
return Builder.CreateIntCast(MulResult, ResType, IsSigned);
}
case X86::BI__faststorefence: {
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
llvm::SyncScope::System);
}
case X86::BI__shiftleft128:
case X86::BI__shiftright128: {
llvm::Function *F = CGM.getIntrinsic(
BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
Int64Ty);
// Flip low/high ops and zero-extend amount to matching type.
// shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
// shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
std::swap(Ops[0], Ops[1]);
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
return Builder.CreateCall(F, Ops);
}
case X86::BI_ReadWriteBarrier:
case X86::BI_ReadBarrier:
case X86::BI_WriteBarrier: {
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
llvm::SyncScope::SingleThread);
}
case X86::BI_AddressOfReturnAddress: {
Function *F =
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
return Builder.CreateCall(F);
}
case X86::BI__stosb: {
// We treat __stosb as a volatile memset - it may not generate "rep stosb"
// instruction, but it will create a memset that won't be optimized away.
return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
}
case X86::BI__ud2:
// llvm.trap makes a ud2a instruction on x86.
return EmitTrapCall(Intrinsic::trap);
case X86::BI__int2c: {
// This syscall signals a driver assertion failure in x86 NT kernels.
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
getLLVMContext(), llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoReturn);
llvm::CallInst *CI = Builder.CreateCall(IA);
CI->setAttributes(NoReturnAttr);
return CI;
}
case X86::BI__readfsbyte:
case X86::BI__readfsword:
case X86::BI__readfsdword:
case X86::BI__readfsqword: {
llvm::Type *IntTy = ConvertType(E->getType());
Value *Ptr =
Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
LoadInst *Load = Builder.CreateAlignedLoad(
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
Load->setVolatile(true);
return Load;
}
case X86::BI__readgsbyte:
case X86::BI__readgsword:
case X86::BI__readgsdword:
case X86::BI__readgsqword: {
llvm::Type *IntTy = ConvertType(E->getType());
Value *Ptr =
Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
LoadInst *Load = Builder.CreateAlignedLoad(
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
Load->setVolatile(true);
return Load;
}
case X86::BI__builtin_ia32_encodekey128_u32: {
Intrinsic::ID IID = Intrinsic::x86_encodekey128;
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
for (int i = 0; i < 3; ++i) {
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
Ptr = Builder.CreateBitCast(
Ptr, llvm::PointerType::getUnqual(Extract->getType()));
Builder.CreateAlignedStore(Extract, Ptr, Align(1));
}
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_encodekey256_u32: {
Intrinsic::ID IID = Intrinsic::x86_encodekey256;
Value *Call =
Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
for (int i = 0; i < 4; ++i) {
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
Ptr = Builder.CreateBitCast(
Ptr, llvm::PointerType::getUnqual(Extract->getType()));
Builder.CreateAlignedStore(Extract, Ptr, Align(1));
}
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_aesenc128kl_u8:
case X86::BI__builtin_ia32_aesdec128kl_u8:
case X86::BI__builtin_ia32_aesenc256kl_u8:
case X86::BI__builtin_ia32_aesdec256kl_u8: {
Intrinsic::ID IID;
StringRef BlockName;
switch (BuiltinID) {
default:
llvm_unreachable("Unexpected builtin");
case X86::BI__builtin_ia32_aesenc128kl_u8:
IID = Intrinsic::x86_aesenc128kl;
BlockName = "aesenc128kl";
break;
case X86::BI__builtin_ia32_aesdec128kl_u8:
IID = Intrinsic::x86_aesdec128kl;
BlockName = "aesdec128kl";
break;
case X86::BI__builtin_ia32_aesenc256kl_u8:
IID = Intrinsic::x86_aesenc256kl;
BlockName = "aesenc256kl";
break;
case X86::BI__builtin_ia32_aesdec256kl_u8:
IID = Intrinsic::x86_aesdec256kl;
BlockName = "aesdec256kl";
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
BasicBlock *NoError =
createBasicBlock(BlockName + "_no_error", this->CurFn);
BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
Value *Ret = Builder.CreateExtractValue(Call, 0);
Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
Value *Out = Builder.CreateExtractValue(Call, 1);
Builder.CreateCondBr(Succ, NoError, Error);
Builder.SetInsertPoint(NoError);
Builder.CreateDefaultAlignedStore(Out, Ops[0]);
Builder.CreateBr(End);
Builder.SetInsertPoint(Error);
Constant *Zero = llvm::Constant::getNullValue(Out->getType());
Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
Builder.CreateBr(End);
Builder.SetInsertPoint(End);
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_aesencwide128kl_u8:
case X86::BI__builtin_ia32_aesdecwide128kl_u8:
case X86::BI__builtin_ia32_aesencwide256kl_u8:
case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
Intrinsic::ID IID;
StringRef BlockName;
switch (BuiltinID) {
case X86::BI__builtin_ia32_aesencwide128kl_u8:
IID = Intrinsic::x86_aesencwide128kl;
BlockName = "aesencwide128kl";
break;
case X86::BI__builtin_ia32_aesdecwide128kl_u8:
IID = Intrinsic::x86_aesdecwide128kl;
BlockName = "aesdecwide128kl";
break;
case X86::BI__builtin_ia32_aesencwide256kl_u8:
IID = Intrinsic::x86_aesencwide256kl;
BlockName = "aesencwide256kl";
break;
case X86::BI__builtin_ia32_aesdecwide256kl_u8:
IID = Intrinsic::x86_aesdecwide256kl;
BlockName = "aesdecwide256kl";
break;
}
llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
Value *InOps[9];
InOps[0] = Ops[2];
for (int i = 0; i != 8; ++i) {
Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
BasicBlock *NoError =
createBasicBlock(BlockName + "_no_error", this->CurFn);
BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
Value *Ret = Builder.CreateExtractValue(Call, 0);
Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
Builder.CreateCondBr(Succ, NoError, Error);
Builder.SetInsertPoint(NoError);
for (int i = 0; i != 8; ++i) {
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
Builder.CreateAlignedStore(Extract, Ptr, Align(16));
}
Builder.CreateBr(End);
Builder.SetInsertPoint(Error);
for (int i = 0; i != 8; ++i) {
Value *Out = Builder.CreateExtractValue(Call, i + 1);
Constant *Zero = llvm::Constant::getNullValue(Out->getType());
Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
Builder.CreateAlignedStore(Zero, Ptr, Align(16));
}
Builder.CreateBr(End);
Builder.SetInsertPoint(End);
return Builder.CreateExtractValue(Call, 0);
}
case X86::BI__builtin_ia32_vfcmaddcph512_mask:
IsConjFMA = true;
LLVM_FALLTHROUGH;
case X86::BI__builtin_ia32_vfmaddcph512_mask: {
Intrinsic::ID IID = IsConjFMA
? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
: Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
return EmitX86Select(*this, Ops[3], Call, Ops[0]);
}
case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
IsConjFMA = true;
LLVM_FALLTHROUGH;
case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
: Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
return EmitX86Select(*this, And, Call, Ops[0]);
}
case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
IsConjFMA = true;
LLVM_FALLTHROUGH;
case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
: Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
static constexpr int Mask[] = {0, 5, 6, 7};
return Builder.CreateShuffleVector(Call, Ops[2], Mask);
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
// Do not emit the builtin arguments in the arguments of a function call,
// because the evaluation order of function arguments is not specified in C++.
// This is important when testing to ensure the arguments are emitted in the
// same order every time. Eg:
// Instead of:
// return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
// EmitScalarExpr(E->getArg(1)), "swdiv");
// Use:
// Value *Op0 = EmitScalarExpr(E->getArg(0));
// Value *Op1 = EmitScalarExpr(E->getArg(1));
// return Builder.CreateFDiv(Op0, Op1, "swdiv")
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: return nullptr;
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
// call __builtin_readcyclecounter.
case PPC::BI__builtin_ppc_get_timebase:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
// vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
case PPC::BI__builtin_vsx_lxvd2x:
case PPC::BI__builtin_vsx_lxvw4x:
case PPC::BI__builtin_vsx_lxvd2x_be:
case PPC::BI__builtin_vsx_lxvw4x_be:
case PPC::BI__builtin_vsx_lxvl:
case PPC::BI__builtin_vsx_lxvll:
{
SmallVector<Value *, 2> Ops;
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops.push_back(EmitScalarExpr(E->getArg(1)));
if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
BuiltinID == PPC::BI__builtin_vsx_lxvll){
Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
}else {
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
case PPC::BI__builtin_vsx_lxvd2x:
ID = Intrinsic::ppc_vsx_lxvd2x;
break;
case PPC::BI__builtin_vsx_lxvw4x:
ID = Intrinsic::ppc_vsx_lxvw4x;
break;
case PPC::BI__builtin_vsx_lxvd2x_be:
ID = Intrinsic::ppc_vsx_lxvd2x_be;
break;
case PPC::BI__builtin_vsx_lxvw4x_be:
ID = Intrinsic::ppc_vsx_lxvw4x_be;
break;
case PPC::BI__builtin_vsx_lxvl:
ID = Intrinsic::ppc_vsx_lxvl;
break;
case PPC::BI__builtin_vsx_lxvll:
ID = Intrinsic::ppc_vsx_lxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st, vec_xst_be
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
case PPC::BI__builtin_vsx_stxvd2x:
case PPC::BI__builtin_vsx_stxvw4x:
case PPC::BI__builtin_vsx_stxvd2x_be:
case PPC::BI__builtin_vsx_stxvw4x_be:
case PPC::BI__builtin_vsx_stxvl:
case PPC::BI__builtin_vsx_stxvll:
{
SmallVector<Value *, 3> Ops;
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
BuiltinID == PPC::BI__builtin_vsx_stxvll ){
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
}else {
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
case PPC::BI__builtin_vsx_stxvd2x:
ID = Intrinsic::ppc_vsx_stxvd2x;
break;
case PPC::BI__builtin_vsx_stxvw4x:
ID = Intrinsic::ppc_vsx_stxvw4x;
break;
case PPC::BI__builtin_vsx_stxvd2x_be:
ID = Intrinsic::ppc_vsx_stxvd2x_be;
break;
case PPC::BI__builtin_vsx_stxvw4x_be:
ID = Intrinsic::ppc_vsx_stxvw4x_be;
break;
case PPC::BI__builtin_vsx_stxvl:
ID = Intrinsic::ppc_vsx_stxvl;
break;
case PPC::BI__builtin_vsx_stxvll:
ID = Intrinsic::ppc_vsx_stxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
case PPC::BI__builtin_vsx_ldrmb: {
// Essentially boils down to performing an unaligned VMX load sequence so
// as to avoid crossing a page boundary and then shuffling the elements
// into the right side of the vector register.
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
llvm::Type *ResTy = ConvertType(E->getType());
bool IsLE = getTarget().isLittleEndian();
// If the user wants the entire vector, just load the entire vector.
if (NumBytes == 16) {
Value *BC = Builder.CreateBitCast(Op0, ResTy->getPointerTo());
Value *LD =
Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
if (!IsLE)
return LD;
// Reverse the bytes on LE.
SmallVector<int, 16> RevMask;
for (int Idx = 0; Idx < 16; Idx++)
RevMask.push_back(15 - Idx);
return Builder.CreateShuffleVector(LD, LD, RevMask);
}
llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
: Intrinsic::ppc_altivec_lvsl);
llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
Value *HiMem = Builder.CreateGEP(
Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
Op0 = IsLE ? HiLd : LoLd;
Op1 = IsLE ? LoLd : HiLd;
Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
if (IsLE) {
SmallVector<int, 16> Consts;
for (int Idx = 0; Idx < 16; Idx++) {
int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
: 16 - (NumBytes - Idx);
Consts.push_back(Val);
}
return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
Zero, Consts);
}
SmallVector<Constant *, 16> Consts;
for (int Idx = 0; Idx < 16; Idx++)
Consts.push_back(Builder.getInt8(NumBytes + Idx));
Value *Mask2 = ConstantVector::get(Consts);
return Builder.CreateBitCast(
Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
}
case PPC::BI__builtin_vsx_strmb: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
bool IsLE = getTarget().isLittleEndian();
auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
// Storing the whole vector, simply store it on BE and reverse bytes and
// store on LE.
if (Width == 16) {
Value *BC = Builder.CreateBitCast(Op0, Op2->getType()->getPointerTo());
Value *StVec = Op2;
if (IsLE) {
SmallVector<int, 16> RevMask;
for (int Idx = 0; Idx < 16; Idx++)
RevMask.push_back(15 - Idx);
StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
}
return Builder.CreateStore(
StVec, Address(BC, Op2->getType(), CharUnits::fromQuantity(1)));
}
auto *ConvTy = Int64Ty;
unsigned NumElts = 0;
switch (Width) {
default:
llvm_unreachable("width for stores must be a power of 2");
case 8:
ConvTy = Int64Ty;
NumElts = 2;
break;
case 4:
ConvTy = Int32Ty;
NumElts = 4;
break;
case 2:
ConvTy = Int16Ty;
NumElts = 8;
break;
case 1:
ConvTy = Int8Ty;
NumElts = 16;
break;
}
Value *Vec = Builder.CreateBitCast(
Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
Value *Ptr =
Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
if (IsLE && Width > 1) {
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
Elt = Builder.CreateCall(F, Elt);
}
return Builder.CreateStore(
Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
};
unsigned Stored = 0;
unsigned RemainingBytes = NumBytes;
Value *Result;
if (NumBytes == 16)
return StoreSubVec(16, 0, 0);
if (NumBytes >= 8) {
Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
RemainingBytes -= 8;
Stored += 8;
}
if (RemainingBytes >= 4) {
Result = StoreSubVec(4, NumBytes - Stored - 4,
IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
RemainingBytes -= 4;
Stored += 4;
}
if (RemainingBytes >= 2) {
Result = StoreSubVec(2, NumBytes - Stored - 2,
IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
RemainingBytes -= 2;
Stored += 2;
}
if (RemainingBytes)
Result =
StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
return Result;
}
// Square root
case PPC::BI__builtin_vsx_xvsqrtsp:
case PPC::BI__builtin_vsx_xvsqrtdp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (Builder.getIsFPConstrained()) {
llvm::Function *F = CGM.getIntrinsic(
Intrinsic::experimental_constrained_sqrt, ResultType);
return Builder.CreateConstrainedFPCall(F, X);
} else {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
return Builder.CreateCall(F, X);
}
}
// Count leading zeros
case PPC::BI__builtin_altivec_vclzb:
case PPC::BI__builtin_altivec_vclzh:
case PPC::BI__builtin_altivec_vclzw:
case PPC::BI__builtin_altivec_vclzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vctzb:
case PPC::BI__builtin_altivec_vctzh:
case PPC::BI__builtin_altivec_vctzw:
case PPC::BI__builtin_altivec_vctzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vec_replace_elt:
case PPC::BI__builtin_altivec_vec_replace_unaligned: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
// The third argument of vec_replace_elt and vec_replace_unaligned must
// be a compile time constant and will be emitted either to the vinsw
// or vinsd instruction.
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI &&
"Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
llvm::Type *ResultType = ConvertType(E->getType());
llvm::Function *F = nullptr;
Value *Call = nullptr;
int64_t ConstArg = ArgCI->getSExtValue();
unsigned ArgWidth = Op1->getType()->getPrimitiveSizeInBits();
bool Is32Bit = false;
assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
// The input to vec_replace_elt is an element index, not a byte index.
if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
ConstArg *= ArgWidth / 8;
if (ArgWidth == 32) {
Is32Bit = true;
// When the second argument is 32 bits, it can either be an integer or
// a float. The vinsw intrinsic is used in this case.
F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
// Fix the constant according to endianess.
if (getTarget().isLittleEndian())
ConstArg = 12 - ConstArg;
} else {
// When the second argument is 64 bits, it can either be a long long or
// a double. The vinsd intrinsic is used in this case.
F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
// Fix the constant for little endian.
if (getTarget().isLittleEndian())
ConstArg = 8 - ConstArg;
}
Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
// Depending on ArgWidth, the input vector could be a float or a double.
// If the input vector is a float type, bitcast the inputs to integers. Or,
// if the input vector is a double, bitcast the inputs to 64-bit integers.
if (!Op1->getType()->isIntegerTy(ArgWidth)) {
Op0 = Builder.CreateBitCast(
Op0, Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
: llvm::FixedVectorType::get(Int64Ty, 2));
Op1 = Builder.CreateBitCast(Op1, Is32Bit ? Int32Ty : Int64Ty);
}
// Emit the call to vinsw or vinsd.
Call = Builder.CreateCall(F, {Op0, Op1, Op2});
// Depending on the builtin, bitcast to the approriate result type.
if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
!Op1->getType()->isIntegerTy())
return Builder.CreateBitCast(Call, ResultType);
else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
Op1->getType()->isIntegerTy())
return Call;
else
return Builder.CreateBitCast(Call,
llvm::FixedVectorType::get(Int8Ty, 16));
}
case PPC::BI__builtin_altivec_vpopcntb:
case PPC::BI__builtin_altivec_vpopcnth:
case PPC::BI__builtin_altivec_vpopcntw:
case PPC::BI__builtin_altivec_vpopcntd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, X);
}
case PPC::BI__builtin_altivec_vadduqm:
case PPC::BI__builtin_altivec_vsubuqm: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
return Builder.CreateAdd(Op0, Op1, "vadduqm");
else
return Builder.CreateSub(Op0, Op1, "vsubuqm");
}
// Rotate and insert under mask operation.
// __rldimi(rs, is, shift, mask)
// (rotl64(rs, shift) & mask) | (is & ~mask)
// __rlwimi(rs, is, shift, mask)
// (rotl(rs, shift) & mask) | (is & ~mask)
case PPC::BI__builtin_ppc_rldimi:
case PPC::BI__builtin_ppc_rlwimi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
llvm::Type *Ty = Op0->getType();
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
Op2 = Builder.CreateZExt(Op2, Int64Ty);
Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
Value *X = Builder.CreateAnd(Shift, Op3);
Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
return Builder.CreateOr(X, Y);
}
// Rotate and insert under mask operation.
// __rlwnm(rs, shift, mask)
// rotl(rs, shift) & mask
case PPC::BI__builtin_ppc_rlwnm: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Type *Ty = Op0->getType();
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
return Builder.CreateAnd(Shift, Op2);
}
case PPC::BI__builtin_ppc_poppar4:
case PPC::BI__builtin_ppc_poppar8: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = Op0->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
Value *Tmp = Builder.CreateCall(F, Op0);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return Result;
}
case PPC::BI__builtin_ppc_cmpb: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
if (getTarget().getTriple().isPPC64()) {
Function *F =
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
}
// For 32 bit, emit the code as below:
// %conv = trunc i64 %a to i32
// %conv1 = trunc i64 %b to i32
// %shr = lshr i64 %a, 32
// %conv2 = trunc i64 %shr to i32
// %shr3 = lshr i64 %b, 32
// %conv4 = trunc i64 %shr3 to i32
// %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
// %conv5 = zext i32 %0 to i64
// %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
// %conv614 = zext i32 %1 to i64
// %shl = shl nuw i64 %conv614, 32
// %or = or i64 %shl, %conv5
// ret i64 %or
Function *F =
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
Value *ArgOneHi =
Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
Value *ArgTwoHi =
Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
Value *ResLo = Builder.CreateZExt(
Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
Value *ResHiShift = Builder.CreateZExt(
Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
return Builder.CreateOr(ResLo, ResHi);
}
// Copy sign
case PPC::BI__builtin_vsx_xvcpsgnsp:
case PPC::BI__builtin_vsx_xvcpsgndp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
ID = Intrinsic::copysign;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
// Rounding/truncation
case PPC::BI__builtin_vsx_xvrspip:
case PPC::BI__builtin_vsx_xvrdpip:
case PPC::BI__builtin_vsx_xvrdpim:
case PPC::BI__builtin_vsx_xvrspim:
case PPC::BI__builtin_vsx_xvrdpi:
case PPC::BI__builtin_vsx_xvrspi:
case PPC::BI__builtin_vsx_xvrdpic:
case PPC::BI__builtin_vsx_xvrspic:
case PPC::BI__builtin_vsx_xvrdpiz:
case PPC::BI__builtin_vsx_xvrspiz: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
BuiltinID == PPC::BI__builtin_vsx_xvrspim)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_floor
: Intrinsic::floor;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
BuiltinID == PPC::BI__builtin_vsx_xvrspi)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_round
: Intrinsic::round;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
BuiltinID == PPC::BI__builtin_vsx_xvrspic)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_rint
: Intrinsic::rint;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
BuiltinID == PPC::BI__builtin_vsx_xvrspip)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_ceil
: Intrinsic::ceil;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_trunc
: Intrinsic::trunc;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
: Builder.CreateCall(F, X);
}
// Absolute value
case PPC::BI__builtin_vsx_xvabsdp:
case PPC::BI__builtin_vsx_xvabssp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
// Fastmath by default
case PPC::BI__builtin_ppc_recipdivf:
case PPC::BI__builtin_ppc_recipdivd:
case PPC::BI__builtin_ppc_rsqrtf:
case PPC::BI__builtin_ppc_rsqrtd: {
FastMathFlags FMF = Builder.getFastMathFlags();
Builder.getFastMathFlags().setFast();
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
Value *Y = EmitScalarExpr(E->getArg(1));
Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
auto *One = ConstantFP::get(ResultType, 1.0);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
case PPC::BI__builtin_ppc_alignx: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
llvm::Value::MaximumAlignment);
emitAlignmentAssumption(Op1, E->getArg(1),
/*The expr loc is sufficient.*/ SourceLocation(),
AlignmentCI, nullptr);
return Op1;
}
case PPC::BI__builtin_ppc_rdlam: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Type *Ty = Op0->getType();
Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
return Builder.CreateAnd(Rotate, Op2);
}
case PPC::BI__builtin_ppc_load2r: {
Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
}
// FMA variations
case PPC::BI__builtin_ppc_fnmsub:
case PPC::BI__builtin_ppc_fnmsubs:
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
llvm::Function *F;
if (Builder.getIsFPConstrained())
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
else
F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
switch (BuiltinID) {
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
if (Builder.getIsFPConstrained())
return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
else
return Builder.CreateCall(F, {X, Y, Z});
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
if (Builder.getIsFPConstrained())
return Builder.CreateFNeg(
Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
else
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
if (Builder.getIsFPConstrained())
return Builder.CreateConstrainedFPCall(
F, {X, Y, Builder.CreateFNeg(Z, "neg")});
else
return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
case PPC::BI__builtin_ppc_fnmsub:
case PPC::BI__builtin_ppc_fnmsubs:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp:
if (Builder.getIsFPConstrained())
return Builder.CreateFNeg(
Builder.CreateConstrainedFPCall(
F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
"neg");
else
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
}
llvm_unreachable("Unknown FMA operation");
return nullptr; // Suppress no-return warning
}
case PPC::BI__builtin_vsx_insertword: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
// Third argument is a compile time constant int. It must be clamped to
// to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI &&
"Third arg to xxinsertw intrinsic must be constant integer");
const int64_t MaxIndex = 12;
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
// The builtin semantics don't exactly match the xxinsertw instructions
// semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
// word from the first argument, and inserts it in the second argument. The
// instruction extracts the word from its second input register and inserts
// it into its first input register, so swap the first and second arguments.
std::swap(Op0, Op1);
// Need to cast the second argument from a vector of unsigned int to a
// vector of long long.
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
if (getTarget().isLittleEndian()) {
// Reverse the double words in the vector we will extract from.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
// Reverse the index.
Index = MaxIndex - Index;
}
// Intrinsic expects the first arg to be a vector of int.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
Op2 = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, {Op0, Op1, Op2});
}
case PPC::BI__builtin_vsx_extractuword: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
// Intrinsic expects the first argument to be a vector of doublewords.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
// The second argument is a compile time constant int that needs to
// be clamped to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
assert(ArgCI &&
"Second Arg to xxextractuw intrinsic must be a constant integer!");
const int64_t MaxIndex = 12;
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
if (getTarget().isLittleEndian()) {
// Reverse the index.
Index = MaxIndex - Index;
Op1 = ConstantInt::getSigned(Int32Ty, Index);
// Emit the call, then reverse the double words of the results vector.
Value *Call = Builder.CreateCall(F, {Op0, Op1});
Value *ShuffleCall =
Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
return ShuffleCall;
} else {
Op1 = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, {Op0, Op1});
}
}
case PPC::BI__builtin_vsx_xxpermdi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI && "Third arg must be constant integer!");
unsigned Index = ArgCI->getZExtValue();
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
// Account for endianness by treating this as just a shuffle. So we use the
// same indices for both LE and BE in order to produce expected results in
// both cases.
int ElemIdx0 = (Index & 2) >> 1;
int ElemIdx1 = 2 + (Index & 1);
int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
QualType BIRetType = E->getType();
auto RetTy = ConvertType(BIRetType);
return Builder.CreateBitCast(ShuffleCall, RetTy);
}
case PPC::BI__builtin_vsx_xxsldwi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI && "Third argument must be a compile time constant");
unsigned Index = ArgCI->getZExtValue() & 0x3;
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
// Create a shuffle mask
int ElemIdx0;
int ElemIdx1;
int ElemIdx2;
int ElemIdx3;
if (getTarget().isLittleEndian()) {
// Little endian element N comes from element 8+N-Index of the
// concatenated wide vector (of course, using modulo arithmetic on
// the total number of elements).
ElemIdx0 = (8 - Index) % 8;
ElemIdx1 = (9 - Index) % 8;
ElemIdx2 = (10 - Index) % 8;
ElemIdx3 = (11 - Index) % 8;
} else {
// Big endian ElemIdx<N> = Index + N
ElemIdx0 = Index;
ElemIdx1 = Index + 1;
ElemIdx2 = Index + 2;
ElemIdx3 = Index + 3;
}
int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
QualType BIRetType = E->getType();
auto RetTy = ConvertType(BIRetType);
return Builder.CreateBitCast(ShuffleCall, RetTy);
}
case PPC::BI__builtin_pack_vector_int128: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
bool isLittleEndian = getTarget().isLittleEndian();
Value *UndefValue =
llvm::UndefValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
Value *Res = Builder.CreateInsertElement(
UndefValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
Res = Builder.CreateInsertElement(Res, Op1,
(uint64_t)(isLittleEndian ? 0 : 1));
return Builder.CreateBitCast(Res, ConvertType(E->getType()));
}
case PPC::BI__builtin_unpack_vector_int128: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
ConstantInt *Index = cast<ConstantInt>(Op1);
Value *Unpacked = Builder.CreateBitCast(
Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
if (getTarget().isLittleEndian())
Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
return Builder.CreateExtractElement(Unpacked, Index);
}
case PPC::BI__builtin_ppc_sthcx: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
return Builder.CreateCall(F, {Op0, Op1});
}
// The PPC MMA builtins take a pointer to a __vector_quad as an argument.
// Some of the MMA instructions accumulate their result into an existing
// accumulator whereas the others generate a new accumulator. So we need to
// use custom code generation to expand a builtin call with a pointer to a
// load (if the corresponding instruction accumulates its result) followed by
// the call to the intrinsic and a store of the result.
#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
case PPC::BI__builtin_##Name:
#include "clang/Basic/BuiltinsPPC.def"
{
SmallVector<Value *, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
if (E->getArg(i)->getType()->isArrayType())
Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
else
Ops.push_back(EmitScalarExpr(E->getArg(i)));
// The first argument of these two builtins is a pointer used to store their
// result. However, the llvm intrinsics return their result in multiple
// return values. So, here we emit code extracting these values from the
// intrinsic results and storing them using that pointer.
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
unsigned NumVecs = 2;
auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
NumVecs = 4;
Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
}
llvm::Function *F = CGM.getIntrinsic(Intrinsic);
Address Addr = EmitPointerWithAlignment(E->getArg(1));
Value *Vec = Builder.CreateLoad(Addr);
Value *Call = Builder.CreateCall(F, {Vec});
llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
for (unsigned i=0; i<NumVecs; i++) {
Value *Vec = Builder.CreateExtractValue(Call, i);
llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
}
return Call;
}
if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
BuiltinID == PPC::BI__builtin_mma_build_acc) {
// Reverse the order of the operands for LE, so the
// same builtin call can be used on both LE and BE
// without the need for the programmer to swap operands.
// The operands are reversed starting from the second argument,
// the first operand is the pointer to the pair/accumulator
// that is being built.
if (getTarget().isLittleEndian())
std::reverse(Ops.begin() + 1, Ops.end());
}
bool Accumulate;
switch (BuiltinID) {
#define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
case PPC::BI__builtin_##Name: \
ID = Intrinsic::ppc_##Intr; \
Accumulate = Acc; \
break;
#include "clang/Basic/BuiltinsPPC.def"
}
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
BuiltinID == PPC::BI__builtin_vsx_stxvp ||
BuiltinID == PPC::BI__builtin_mma_lxvp ||
BuiltinID == PPC::BI__builtin_mma_stxvp) {
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
BuiltinID == PPC::BI__builtin_mma_lxvp) {
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
} else {
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
}
Ops.pop_back();
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
SmallVector<Value*, 4> CallOps;
if (Accumulate) {
Address Addr = EmitPointerWithAlignment(E->getArg(0));
Value *Acc = Builder.CreateLoad(Addr);
CallOps.push_back(Acc);
}
for (unsigned i=1; i<Ops.size(); i++)
CallOps.push_back(Ops[i]);
llvm::Function *F = CGM.getIntrinsic(ID);
Value *Call = Builder.CreateCall(F, CallOps);
return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
}
case PPC::BI__builtin_ppc_compare_and_swap:
case PPC::BI__builtin_ppc_compare_and_swaplp: {
Address Addr = EmitPointerWithAlignment(E->getArg(0));
Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
Value *OldVal = Builder.CreateLoad(OldValAddr);
QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
LValue LV = MakeAddrLValue(Addr, AtomicTy);
Value *Op2 = EmitScalarExpr(E->getArg(2));
auto Pair = EmitAtomicCompareExchange(
LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
// Unlike c11's atomic_compare_exchange, accroding to
// https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
// > In either case, the contents of the memory location specified by addr
// > are copied into the memory location specified by old_val_addr.
// But it hasn't specified storing to OldValAddr is atomic or not and
// which order to use. Now following XL's codegen, treat it as a normal
// store.
Value *LoadedVal = Pair.first.getScalarVal();
Builder.CreateStore(LoadedVal, OldValAddr);
return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
}
case PPC::BI__builtin_ppc_fetch_and_add:
case PPC::BI__builtin_ppc_fetch_and_addlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_and:
case PPC::BI__builtin_ppc_fetch_and_andlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_or:
case PPC::BI__builtin_ppc_fetch_and_orlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_swap:
case PPC::BI__builtin_ppc_fetch_and_swaplp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_ldarx:
case PPC::BI__builtin_ppc_lwarx:
case PPC::BI__builtin_ppc_lharx:
case PPC::BI__builtin_ppc_lbarx:
return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
case PPC::BI__builtin_ppc_mfspr: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
? Int32Ty
: Int64Ty;
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
return Builder.CreateCall(F, {Op0});
}
case PPC::BI__builtin_ppc_mtspr: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
? Int32Ty
: Int64Ty;
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
return Builder.CreateCall(F, {Op0, Op1});
}
case PPC::BI__builtin_ppc_popcntb: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
return Builder.CreateCall(F, {ArgValue}, "popcntb");
}
case PPC::BI__builtin_ppc_mtfsf: {
// The builtin takes a uint32 that needs to be cast to an
// f64 to be passed to the intrinsic.
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
return Builder.CreateCall(F, {Op0, Cast}, "");
}
case PPC::BI__builtin_ppc_swdiv_nochk:
case PPC::BI__builtin_ppc_swdivs_nochk: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
FastMathFlags FMF = Builder.getFastMathFlags();
Builder.getFastMathFlags().setFast();
Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
case PPC::BI__builtin_ppc_fric:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::rint,
Intrinsic::experimental_constrained_rint))
.getScalarVal();
case PPC::BI__builtin_ppc_frim:
case PPC::BI__builtin_ppc_frims:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::floor,
Intrinsic::experimental_constrained_floor))
.getScalarVal();
case PPC::BI__builtin_ppc_frin:
case PPC::BI__builtin_ppc_frins:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::round,
Intrinsic::experimental_constrained_round))
.getScalarVal();
case PPC::BI__builtin_ppc_frip:
case PPC::BI__builtin_ppc_frips:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::ceil,
Intrinsic::experimental_constrained_ceil))
.getScalarVal();
case PPC::BI__builtin_ppc_friz:
case PPC::BI__builtin_ppc_frizs:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::trunc,
Intrinsic::experimental_constrained_trunc))
.getScalarVal();
case PPC::BI__builtin_ppc_fsqrt:
case PPC::BI__builtin_ppc_fsqrts:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::sqrt,
Intrinsic::experimental_constrained_sqrt))
.getScalarVal();
case PPC::BI__builtin_ppc_test_data_class: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Op0->getType();
unsigned IntrinsicID;
if (ArgType->isDoubleTy())
IntrinsicID = Intrinsic::ppc_test_data_class_d;
else if (ArgType->isFloatTy())
IntrinsicID = Intrinsic::ppc_test_data_class_f;
else
llvm_unreachable("Invalid Argument Type");
return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), {Op0, Op1},
"test_data_class");
}
case PPC::BI__builtin_ppc_maxfe: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_maxfl: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_maxfs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfe: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfl: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_swdiv:
case PPC::BI__builtin_ppc_swdivs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
return Builder.CreateFDiv(Op0, Op1, "swdiv");
}
}
}
namespace {
// If \p E is not null pointer, insert address space cast to match return
// type of \p E if necessary.
Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
const CallExpr *E = nullptr) {
auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
auto *Call = CGF.Builder.CreateCall(F);
Call->addRetAttr(
Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
if (!E)
return Call;
QualType BuiltinRetType = E->getType();
auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
if (RetTy == Call->getType())
return Call;
return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
}
Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
auto *Call = CGF.Builder.CreateCall(F);
Call->addRetAttr(
Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
return Call;
}
// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
clang::TargetOptions::COV_5;
Constant *Offset;
Value *DP;
if (IsCOV_5) {
// Indexing the implicit kernarg segment.
Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
DP = EmitAMDGPUImplicitArgPtr(CGF);
} else {
// Indexing the HSA kernel_dispatch_packet struct.
Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
DP = EmitAMDGPUDispatchPtr(CGF);
}
auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
auto *DstTy =
CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
auto *LD = CGF.Builder.CreateLoad(
Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
llvm::MDNode::get(CGF.getLLVMContext(), None));
return LD;
}
// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
const unsigned XOffset = 12;
auto *DP = EmitAMDGPUDispatchPtr(CGF);
// Indexing the HSA kernel_dispatch_packet struct.
auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
auto *DstTy =
CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
auto *LD = CGF.Builder.CreateLoad(
Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
llvm::MDNode::get(CGF.getLLVMContext(), None));
return LD;
}
} // namespace
// For processing memory ordering and memory scope arguments of various
// amdgcn builtins.
// \p Order takes a C++11 comptabile memory-ordering specifier and converts
// it into LLVM's memory ordering specifier using atomic C ABI, and writes
// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
// specific SyncScopeID and writes it to \p SSID.
bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
llvm::AtomicOrdering &AO,
llvm::SyncScope::ID &SSID) {
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
// Map C11/C++11 memory ordering to LLVM memory ordering
assert(llvm::isValidAtomicOrderingCABI(ord));
switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
case llvm::AtomicOrderingCABI::acquire:
case llvm::AtomicOrderingCABI::consume:
AO = llvm::AtomicOrdering::Acquire;
break;
case llvm::AtomicOrderingCABI::release:
AO = llvm::AtomicOrdering::Release;
break;
case llvm::AtomicOrderingCABI::acq_rel:
AO = llvm::AtomicOrdering::AcquireRelease;
break;
case llvm::AtomicOrderingCABI::seq_cst:
AO = llvm::AtomicOrdering::SequentiallyConsistent;
break;
case llvm::AtomicOrderingCABI::relaxed:
AO = llvm::AtomicOrdering::Monotonic;
break;
}
StringRef scp;
llvm::getConstantStringInfo(Scope, scp);
SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
return true;
}
return false;
}
Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
llvm::SyncScope::ID SSID;
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_div_scale:
case AMDGPU::BI__builtin_amdgcn_div_scalef: {
// Translate from the intrinsics's struct return to the builtin's out
// argument.
Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Z = EmitScalarExpr(E->getArg(2));
llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
X->getType());
llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
llvm::Type *RealFlagType = FlagOutPtr.getElementType();
llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
Builder.CreateStore(FlagExt, FlagOutPtr);
return Result;
}
case AMDGPU::BI__builtin_amdgcn_div_fmas:
case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
Src0->getType());
llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
}
case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
case AMDGPU::BI__builtin_amdgcn_mov_dpp:
case AMDGPU::BI__builtin_amdgcn_update_dpp: {
llvm::SmallVector<llvm::Value *, 6> Args;
for (unsigned I = 0; I != E->getNumArgs(); ++I)
Args.push_back(EmitScalarExpr(E->getArg(I)));
assert(Args.size() == 5 || Args.size() == 6);
if (Args.size() == 5)
Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
Function *F =
CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
return Builder.CreateCall(F, Args);
}
case AMDGPU::BI__builtin_amdgcn_div_fixup:
case AMDGPU::BI__builtin_amdgcn_div_fixupf:
case AMDGPU::BI__builtin_amdgcn_div_fixuph:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
case AMDGPU::BI__builtin_amdgcn_trig_preop:
case AMDGPU::BI__builtin_amdgcn_trig_preopf:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
case AMDGPU::BI__builtin_amdgcn_rcp:
case AMDGPU::BI__builtin_amdgcn_rcpf:
case AMDGPU::BI__builtin_amdgcn_rcph:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
case AMDGPU::BI__builtin_amdgcn_sqrt:
case AMDGPU::BI__builtin_amdgcn_sqrtf:
case AMDGPU::BI__builtin_amdgcn_sqrth:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
case AMDGPU::BI__builtin_amdgcn_rsq:
case AMDGPU::BI__builtin_amdgcn_rsqf:
case AMDGPU::BI__builtin_amdgcn_rsqh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
case AMDGPU::BI__builtin_amdgcn_sinf:
case AMDGPU::BI__builtin_amdgcn_sinh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
case AMDGPU::BI__builtin_amdgcn_cosf:
case AMDGPU::BI__builtin_amdgcn_cosh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
return EmitAMDGPUDispatchPtr(*this, E);
case AMDGPU::BI__builtin_amdgcn_log_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
case AMDGPU::BI__builtin_amdgcn_ldexp:
case AMDGPU::BI__builtin_amdgcn_ldexpf:
case AMDGPU::BI__builtin_amdgcn_ldexph:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
case AMDGPU::BI__builtin_amdgcn_frexp_mant:
case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
case AMDGPU::BI__builtin_amdgcn_frexp_manth:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
case AMDGPU::BI__builtin_amdgcn_frexp_exp:
case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
Value *Src0 = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
{ Builder.getInt32Ty(), Src0->getType() });
return Builder.CreateCall(F, Src0);
}
case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
Value *Src0 = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
{ Builder.getInt16Ty(), Src0->getType() });
return Builder.CreateCall(F, Src0);
}
case AMDGPU::BI__builtin_amdgcn_fract:
case AMDGPU::BI__builtin_amdgcn_fractf:
case AMDGPU::BI__builtin_amdgcn_fracth:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
case AMDGPU::BI__builtin_amdgcn_lerp:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
case AMDGPU::BI__builtin_amdgcn_ubfe:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
case AMDGPU::BI__builtin_amdgcn_sbfe:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
case AMDGPU::BI__builtin_amdgcn_uicmp:
case AMDGPU::BI__builtin_amdgcn_uicmpl:
case AMDGPU::BI__builtin_amdgcn_sicmp:
case AMDGPU::BI__builtin_amdgcn_sicmpl: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
// FIXME-GFX10: How should 32 bit mask be handled?
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
{ Builder.getInt64Ty(), Src0->getType() });
return Builder.CreateCall(F, { Src0, Src1, Src2 });
}
case AMDGPU::BI__builtin_amdgcn_fcmp:
case AMDGPU::BI__builtin_amdgcn_fcmpf: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
// FIXME-GFX10: How should 32 bit mask be handled?
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
{ Builder.getInt64Ty(), Src0->getType() });
return Builder.CreateCall(F, { Src0, Src1, Src2 });
}
case AMDGPU::BI__builtin_amdgcn_class:
case AMDGPU::BI__builtin_amdgcn_classf:
case AMDGPU::BI__builtin_amdgcn_classh:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
case AMDGPU::BI__builtin_amdgcn_fmed3f:
case AMDGPU::BI__builtin_amdgcn_fmed3h:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
case AMDGPU::BI__builtin_amdgcn_ds_append:
case AMDGPU::BI__builtin_amdgcn_ds_consume: {
Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
Value *Src0 = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
return Builder.CreateCall(F, { Src0, Builder.getFalse() });
}
case AMDGPU::BI__builtin_amdgcn_ds_faddf:
case AMDGPU::BI__builtin_amdgcn_ds_fminf:
case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
Intrinsic::ID Intrin;
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_ds_faddf:
Intrin = Intrinsic::amdgcn_ds_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_ds_fminf:
Intrin = Intrinsic::amdgcn_ds_fmin;
break;
case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
Intrin = Intrinsic::amdgcn_ds_fmax;
break;
}
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
llvm::FunctionType *FTy = F->getFunctionType();
llvm::Type *PTy = FTy->getParamType(0);
Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
}
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
Intrinsic::ID IID;
llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
ArgTy = llvm::Type::getFloatTy(getLLVMContext());
IID = Intrinsic::amdgcn_global_atomic_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
ArgTy = llvm::FixedVectorType::get(
llvm::Type::getHalfTy(getLLVMContext()), 2);
IID = Intrinsic::amdgcn_global_atomic_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
IID = Intrinsic::amdgcn_global_atomic_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
IID = Intrinsic::amdgcn_global_atomic_fmin;
break;
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
IID = Intrinsic::amdgcn_global_atomic_fmax;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
IID = Intrinsic::amdgcn_flat_atomic_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
IID = Intrinsic::amdgcn_flat_atomic_fmin;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
IID = Intrinsic::amdgcn_flat_atomic_fmax;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
ArgTy = llvm::Type::getFloatTy(getLLVMContext());
IID = Intrinsic::amdgcn_flat_atomic_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
ArgTy = llvm::FixedVectorType::get(
llvm::Type::getHalfTy(getLLVMContext()), 2);
IID = Intrinsic::amdgcn_flat_atomic_fadd;
break;
}
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
llvm::Value *Val = EmitScalarExpr(E->getArg(1));
llvm::Function *F =
CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
return Builder.CreateCall(F, {Addr, Val});
}
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
Intrinsic::ID IID;
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
break;
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
break;
}
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
llvm::Value *Val = EmitScalarExpr(E->getArg(1));
llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
return Builder.CreateCall(F, {Addr, Val});
}
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
Intrinsic::ID IID;
llvm::Type *ArgTy;
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
ArgTy = llvm::Type::getFloatTy(getLLVMContext());
IID = Intrinsic::amdgcn_ds_fadd;
break;
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
IID = Intrinsic::amdgcn_ds_fadd;
break;
}
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
llvm::Value *Val = EmitScalarExpr(E->getArg(1));
llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
}
case AMDGPU::BI__builtin_amdgcn_read_exec: {
CallInst *CI = cast<CallInst>(
EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
CI->setConvergent();
return CI;
}
case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
"exec_lo" : "exec_hi";
CallInst *CI = cast<CallInst>(
EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
CI->setConvergent();
return CI;
}
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
// The builtins take these arguments as vec4 where the last element is
// ignored. The intrinsic takes them as vec3.
RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
ArrayRef<int>{0, 1, 2});
RayDir =
Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
ArrayRef<int>{0, 1, 2});
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
{NodePtr->getType(), RayDir->getType()});
return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
RayInverseDir, TextureDescr});
}
// amdgcn workitem
case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
// amdgcn workgroup size
case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
return EmitAMDGPUWorkGroupSize(*this, 0);
case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
return EmitAMDGPUWorkGroupSize(*this, 1);
case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
return EmitAMDGPUWorkGroupSize(*this, 2);
// amdgcn grid size
case AMDGPU::BI__builtin_amdgcn_grid_size_x:
return EmitAMDGPUGridSize(*this, 0);
case AMDGPU::BI__builtin_amdgcn_grid_size_y:
return EmitAMDGPUGridSize(*this, 1);
case AMDGPU::BI__builtin_amdgcn_grid_size_z:
return EmitAMDGPUGridSize(*this, 2);
// r600 intrinsics
case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
case AMDGPU::BI__builtin_r600_read_tidig_x:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
case AMDGPU::BI__builtin_r600_read_tidig_y:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
case AMDGPU::BI__builtin_r600_read_tidig_z:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
case AMDGPU::BI__builtin_amdgcn_alignbit: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
return Builder.CreateCall(F, { Src0, Src1, Src2 });
}
case AMDGPU::BI__builtin_amdgcn_fence: {
if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1)), AO, SSID))
return Builder.CreateFence(AO, SSID);
LLVM_FALLTHROUGH;
}
case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
unsigned BuiltinAtomicOp;
llvm::Type *ResultType = ConvertType(E->getType());
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
break;
case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
break;
}
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
llvm::Function *F =
CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)), AO, SSID)) {
// llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
// scope as unsigned values
Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
}
LLVM_FALLTHROUGH;
}
default:
return nullptr;
}
}
/// Handle a SystemZ function in which the final argument is a pointer
/// to an int that receives the post-instruction CC value. At the LLVM level
/// this is represented as a function that returns a {result, cc} pair.
static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
unsigned IntrinsicID,
const CallExpr *E) {
unsigned NumArgs = E->getNumArgs() - 1;
SmallVector<Value *, 8> Args(NumArgs);
for (unsigned I = 0; I < NumArgs; ++I)
Args[I] = CGF.EmitScalarExpr(E->getArg(I));
Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
Value *Call = CGF.Builder.CreateCall(F, Args);
Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
CGF.Builder.CreateStore(CC, CCPtr);
return CGF.Builder.CreateExtractValue(Call, 0);
}
Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case SystemZ::BI__builtin_tbegin: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbegin_nofloat: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbeginc: {
Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tabort: {
Value *Data = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
}
case SystemZ::BI__builtin_non_tx_store: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Data = EmitScalarExpr(E->getArg(1));
Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
return Builder.CreateCall(F, {Data, Address});
}
// Vector builtins. Note that most vector builtins are mapped automatically
// to target-specific LLVM intrinsics. The ones handled specially here can
// be represented via standard LLVM IR, which is preferable to enable common
// LLVM optimizations.
case SystemZ::BI__builtin_s390_vpopctb:
case SystemZ::BI__builtin_s390_vpopcth:
case SystemZ::BI__builtin_s390_vpopctf:
case SystemZ::BI__builtin_s390_vpopctg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vclzb:
case SystemZ::BI__builtin_s390_vclzh:
case SystemZ::BI__builtin_s390_vclzf:
case SystemZ::BI__builtin_s390_vclzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vctzb:
case SystemZ::BI__builtin_s390_vctzh:
case SystemZ::BI__builtin_s390_vctzf:
case SystemZ::BI__builtin_s390_vctzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vfsqsb:
case SystemZ::BI__builtin_s390_vfsqdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
return Builder.CreateConstrainedFPCall(F, { X });
} else {
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
return Builder.CreateCall(F, X);
}
}
case SystemZ::BI__builtin_s390_vfmasb:
case SystemZ::BI__builtin_s390_vfmadb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
} else {
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Z});
}
}
case SystemZ::BI__builtin_s390_vfmssb:
case SystemZ::BI__builtin_s390_vfmsdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
} else {
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
}
}
case SystemZ::BI__builtin_s390_vfnmasb:
case SystemZ::BI__builtin_s390_vfnmadb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
} else {
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
}
}
case SystemZ::BI__builtin_s390_vfnmssb:
case SystemZ::BI__builtin_s390_vfnmsdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
Value *NegZ = Builder.CreateFNeg(Z, "sub");
return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
} else {
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
Value *NegZ = Builder.CreateFNeg(Z, "neg");
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
}
}
case SystemZ::BI__builtin_s390_vflpsb:
case SystemZ::BI__builtin_s390_vflpdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vflnsb:
case SystemZ::BI__builtin_s390_vflndb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
}
case SystemZ::BI__builtin_s390_vfisb:
case SystemZ::BI__builtin_s390_vfidb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
// Constant-fold the M4 and M5 mask arguments.
llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
// Check whether this instance can be represented via a LLVM standard
// intrinsic. We only support some combinations of M4 and M5.
Intrinsic::ID ID = Intrinsic::not_intrinsic;
Intrinsic::ID CI;
switch (M4.getZExtValue()) {
default: break;
case 0: // IEEE-inexact exception allowed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::rint;
CI = Intrinsic::experimental_constrained_rint; break;
}
break;
case 4: // IEEE-inexact exception suppressed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::nearbyint;
CI = Intrinsic::experimental_constrained_nearbyint; break;
case 1: ID = Intrinsic::round;
CI = Intrinsic::experimental_constrained_round; break;
case 5: ID = Intrinsic::trunc;
CI = Intrinsic::experimental_constrained_trunc; break;
case 6: ID = Intrinsic::ceil;
CI = Intrinsic::experimental_constrained_ceil; break;
case 7: ID = Intrinsic::floor;
CI = Intrinsic::experimental_constrained_floor; break;
}
break;
}
if (ID != Intrinsic::not_intrinsic) {
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(CI, ResultType);
return Builder.CreateConstrainedFPCall(F, X);
} else {
Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
}
switch (BuiltinID) { // FIXME: constrained version?
case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
default: llvm_unreachable("Unknown BuiltinID");
}
Function *F = CGM.getIntrinsic(ID);
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
return Builder.CreateCall(F, {X, M4Value, M5Value});
}
case SystemZ::BI__builtin_s390_vfmaxsb:
case SystemZ::BI__builtin_s390_vfmaxdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
// Constant-fold the M4 mask argument.
llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
// Check whether this instance can be represented via a LLVM standard
// intrinsic. We only support some values of M4.
Intrinsic::ID ID = Intrinsic::not_intrinsic;
Intrinsic::ID CI;
switch (M4.getZExtValue()) {
default: break;
case 4: ID = Intrinsic::maxnum;
CI = Intrinsic::experimental_constrained_maxnum; break;
}
if (ID != Intrinsic::not_intrinsic) {
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(CI, ResultType);
return Builder.CreateConstrainedFPCall(F, {X, Y});
} else {
Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
}
switch (BuiltinID) {
case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
default: llvm_unreachable("Unknown BuiltinID");
}
Function *F = CGM.getIntrinsic(ID);
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
return Builder.CreateCall(F, {X, Y, M4Value});
}
case SystemZ::BI__builtin_s390_vfminsb:
case SystemZ::BI__builtin_s390_vfmindb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
// Constant-fold the M4 mask argument.
llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
// Check whether this instance can be represented via a LLVM standard
// intrinsic. We only support some values of M4.
Intrinsic::ID ID = Intrinsic::not_intrinsic;
Intrinsic::ID CI;
switch (M4.getZExtValue()) {
default: break;
case 4: ID = Intrinsic::minnum;
CI = Intrinsic::experimental_constrained_minnum; break;
}
if (ID != Intrinsic::not_intrinsic) {
if (Builder.getIsFPConstrained()) {
Function *F = CGM.getIntrinsic(CI, ResultType);
return Builder.CreateConstrainedFPCall(F, {X, Y});
} else {
Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
}
switch (BuiltinID) {
case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
default: llvm_unreachable("Unknown BuiltinID");
}
Function *F = CGM.getIntrinsic(ID);
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
return Builder.CreateCall(F, {X, Y, M4Value});
}
case SystemZ::BI__builtin_s390_vlbrh:
case SystemZ::BI__builtin_s390_vlbrf:
case SystemZ::BI__builtin_s390_vlbrg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
return Builder.CreateCall(F, X);
}
// Vector intrinsics that output the post-instruction CC value.
#define INTRINSIC_WITH_CC(NAME) \
case SystemZ::BI__builtin_##NAME: \
return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
INTRINSIC_WITH_CC(s390_vpkshs);
INTRINSIC_WITH_CC(s390_vpksfs);
INTRINSIC_WITH_CC(s390_vpksgs);
INTRINSIC_WITH_CC(s390_vpklshs);
INTRINSIC_WITH_CC(s390_vpklsfs);
INTRINSIC_WITH_CC(s390_vpklsgs);
INTRINSIC_WITH_CC(s390_vceqbs);
INTRINSIC_WITH_CC(s390_vceqhs);
INTRINSIC_WITH_CC(s390_vceqfs);
INTRINSIC_WITH_CC(s390_vceqgs);
INTRINSIC_WITH_CC(s390_vchbs);
INTRINSIC_WITH_CC(s390_vchhs);
INTRINSIC_WITH_CC(s390_vchfs);
INTRINSIC_WITH_CC(s390_vchgs);
INTRINSIC_WITH_CC(s390_vchlbs);
INTRINSIC_WITH_CC(s390_vchlhs);
INTRINSIC_WITH_CC(s390_vchlfs);
INTRINSIC_WITH_CC(s390_vchlgs);
INTRINSIC_WITH_CC(s390_vfaebs);
INTRINSIC_WITH_CC(s390_vfaehs);
INTRINSIC_WITH_CC(s390_vfaefs);
INTRINSIC_WITH_CC(s390_vfaezbs);
INTRINSIC_WITH_CC(s390_vfaezhs);
INTRINSIC_WITH_CC(s390_vfaezfs);
INTRINSIC_WITH_CC(s390_vfeebs);
INTRINSIC_WITH_CC(s390_vfeehs);
INTRINSIC_WITH_CC(s390_vfeefs);
INTRINSIC_WITH_CC(s390_vfeezbs);
INTRINSIC_WITH_CC(s390_vfeezhs);
INTRINSIC_WITH_CC(s390_vfeezfs);
INTRINSIC_WITH_CC(s390_vfenebs);
INTRINSIC_WITH_CC(s390_vfenehs);
INTRINSIC_WITH_CC(s390_vfenefs);
INTRINSIC_WITH_CC(s390_vfenezbs);
INTRINSIC_WITH_CC(s390_vfenezhs);
INTRINSIC_WITH_CC(s390_vfenezfs);
INTRINSIC_WITH_CC(s390_vistrbs);
INTRINSIC_WITH_CC(s390_vistrhs);
INTRINSIC_WITH_CC(s390_vistrfs);
INTRINSIC_WITH_CC(s390_vstrcbs);
INTRINSIC_WITH_CC(s390_vstrchs);
INTRINSIC_WITH_CC(s390_vstrcfs);
INTRINSIC_WITH_CC(s390_vstrczbs);
INTRINSIC_WITH_CC(s390_vstrczhs);
INTRINSIC_WITH_CC(s390_vstrczfs);
INTRINSIC_WITH_CC(s390_vfcesbs);
INTRINSIC_WITH_CC(s390_vfcedbs);
INTRINSIC_WITH_CC(s390_vfchsbs);
INTRINSIC_WITH_CC(s390_vfchdbs);
INTRINSIC_WITH_CC(s390_vfchesbs);
INTRINSIC_WITH_CC(s390_vfchedbs);
INTRINSIC_WITH_CC(s390_vftcisb);
INTRINSIC_WITH_CC(s390_vftcidb);
INTRINSIC_WITH_CC(s390_vstrsb);
INTRINSIC_WITH_CC(s390_vstrsh);
INTRINSIC_WITH_CC(s390_vstrsf);
INTRINSIC_WITH_CC(s390_vstrszb);
INTRINSIC_WITH_CC(s390_vstrszh);
INTRINSIC_WITH_CC(s390_vstrszf);
#undef INTRINSIC_WITH_CC
default:
return nullptr;
}
}
namespace {
// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
struct NVPTXMmaLdstInfo {
unsigned NumResults; // Number of elements to load/store
// Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
unsigned IID_col;
unsigned IID_row;
};
#define MMA_INTR(geom_op_type, layout) \
Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
#define MMA_LDST(n, geom_op_type) \
{ n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
switch (BuiltinID) {
// FP MMA loads
case NVPTX::BI__hmma_m16n16k16_ld_a:
return MMA_LDST(8, m16n16k16_load_a_f16);
case NVPTX::BI__hmma_m16n16k16_ld_b:
return MMA_LDST(8, m16n16k16_load_b_f16);
case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
return MMA_LDST(4, m16n16k16_load_c_f16);
case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
return MMA_LDST(8, m16n16k16_load_c_f32);
case NVPTX::BI__hmma_m32n8k16_ld_a:
return MMA_LDST(8, m32n8k16_load_a_f16);
case NVPTX::BI__hmma_m32n8k16_ld_b:
return MMA_LDST(8, m32n8k16_load_b_f16);
case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
return MMA_LDST(4, m32n8k16_load_c_f16);
case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
return MMA_LDST(8, m32n8k16_load_c_f32);
case NVPTX::BI__hmma_m8n32k16_ld_a:
return MMA_LDST(8, m8n32k16_load_a_f16);
case NVPTX::BI__hmma_m8n32k16_ld_b:
return MMA_LDST(8, m8n32k16_load_b_f16);
case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
return MMA_LDST(4, m8n32k16_load_c_f16);
case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
return MMA_LDST(8, m8n32k16_load_c_f32);
// Integer MMA loads
case NVPTX::BI__imma_m16n16k16_ld_a_s8:
return MMA_LDST(2, m16n16k16_load_a_s8);
case NVPTX::BI__imma_m16n16k16_ld_a_u8:
return MMA_LDST(2, m16n16k16_load_a_u8);
case NVPTX::BI__imma_m16n16k16_ld_b_s8:
return MMA_LDST(2, m16n16k16_load_b_s8);
case NVPTX::BI__imma_m16n16k16_ld_b_u8:
return MMA_LDST(2, m16n16k16_load_b_u8);
case NVPTX::BI__imma_m16n16k16_ld_c:
return MMA_LDST(8, m16n16k16_load_c_s32);
case NVPTX::BI__imma_m32n8k16_ld_a_s8:
return MMA_LDST(4, m32n8k16_load_a_s8);
case NVPTX::BI__imma_m32n8k16_ld_a_u8:
return MMA_LDST(4, m32n8k16_load_a_u8);
case NVPTX::BI__imma_m32n8k16_ld_b_s8:
return MMA_LDST(1, m32n8k16_load_b_s8);
case NVPTX::BI__imma_m32n8k16_ld_b_u8:
return MMA_LDST(1, m32n8k16_load_b_u8);
case NVPTX::BI__imma_m32n8k16_ld_c:
return MMA_LDST(8, m32n8k16_load_c_s32);
case NVPTX::BI__imma_m8n32k16_ld_a_s8:
return MMA_LDST(1, m8n32k16_load_a_s8);
case NVPTX::BI__imma_m8n32k16_ld_a_u8:
return MMA_LDST(1, m8n32k16_load_a_u8);
case NVPTX::BI__imma_m8n32k16_ld_b_s8:
return MMA_LDST(4, m8n32k16_load_b_s8);
case NVPTX::BI__imma_m8n32k16_ld_b_u8:
return MMA_LDST(4, m8n32k16_load_b_u8);
case NVPTX::BI__imma_m8n32k16_ld_c:
return MMA_LDST(8, m8n32k16_load_c_s32);
// Sub-integer MMA loads.
// Only row/col layout is supported by A/B fragments.
case NVPTX::BI__imma_m8n8k32_ld_a_s4:
return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
case NVPTX::BI__imma_m8n8k32_ld_a_u4:
return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
case NVPTX::BI__imma_m8n8k32_ld_b_s4:
return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
case NVPTX::BI__imma_m8n8k32_ld_b_u4:
return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
case NVPTX::BI__imma_m8n8k32_ld_c:
return MMA_LDST(2, m8n8k32_load_c_s32);
case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
case NVPTX::BI__bmma_m8n8k128_ld_c:
return MMA_LDST(2, m8n8k128_load_c_s32);
// Double MMA loads
case NVPTX::BI__dmma_m8n8k4_ld_a:
return MMA_LDST(1, m8n8k4_load_a_f64);
case NVPTX::BI__dmma_m8n8k4_ld_b:
return MMA_LDST(1, m8n8k4_load_b_f64);
case NVPTX::BI__dmma_m8n8k4_ld_c:
return MMA_LDST(2, m8n8k4_load_c_f64);
// Alternate float MMA loads
case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
return MMA_LDST(4, m16n16k16_load_a_bf16);
case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
return MMA_LDST(4, m16n16k16_load_b_bf16);
case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
return MMA_LDST(2, m8n32k16_load_a_bf16);
case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
return MMA_LDST(8, m8n32k16_load_b_bf16);
case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
return MMA_LDST(8, m32n8k16_load_a_bf16);
case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
return MMA_LDST(2, m32n8k16_load_b_bf16);
case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
return MMA_LDST(4, m16n16k8_load_a_tf32);
case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
return MMA_LDST(4, m16n16k8_load_b_tf32);
case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
return MMA_LDST(8, m16n16k8_load_c_f32);
// NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
// PTX and LLVM IR where stores always use fragment D, NVCC builtins always
// use fragment C for both loads and stores.
// FP MMA stores.
case NVPTX::BI__hmma_m16n16k16_st_c_f16:
return MMA_LDST(4, m16n16k16_store_d_f16);
case NVPTX::BI__hmma_m16n16k16_st_c_f32:
return MMA_LDST(8, m16n16k16_store_d_f32);
case NVPTX::BI__hmma_m32n8k16_st_c_f16:
return MMA_LDST(4, m32n8k16_store_d_f16);
case NVPTX::BI__hmma_m32n8k16_st_c_f32:
return MMA_LDST(8, m32n8k16_store_d_f32);
case NVPTX::BI__hmma_m8n32k16_st_c_f16:
return MMA_LDST(4, m8n32k16_store_d_f16);
case NVPTX::BI__hmma_m8n32k16_st_c_f32:
return MMA_LDST(8, m8n32k16_store_d_f32);
// Integer and sub-integer MMA stores.
// Another naming quirk. Unlike other MMA builtins that use PTX types in the
// name, integer loads/stores use LLVM's i32.
case NVPTX::BI__imma_m16n16k16_st_c_i32:
return MMA_LDST(8, m16n16k16_store_d_s32);
case NVPTX::BI__imma_m32n8k16_st_c_i32:
return MMA_LDST(8, m32n8k16_store_d_s32);
case NVPTX::BI__imma_m8n32k16_st_c_i32:
return MMA_LDST(8, m8n32k16_store_d_s32);
case NVPTX::BI__imma_m8n8k32_st_c_i32:
return MMA_LDST(2, m8n8k32_store_d_s32);
case NVPTX::BI__bmma_m8n8k128_st_c_i32:
return MMA_LDST(2, m8n8k128_store_d_s32);
// Double MMA store
case NVPTX::BI__dmma_m8n8k4_st_c_f64:
return MMA_LDST(2, m8n8k4_store_d_f64);
// Alternate float MMA store
case NVPTX::BI__mma_m16n16k8_st_c_f32:
return MMA_LDST(8, m16n16k8_store_d_f32);
default:
llvm_unreachable("Unknown MMA builtin");
}
}
#undef MMA_LDST
#undef MMA_INTR
struct NVPTXMmaInfo {
unsigned NumEltsA;
unsigned NumEltsB;
unsigned NumEltsC;
unsigned NumEltsD;
// Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
// over 'col' for layout. The index of non-satf variants is expected to match
// the undocumented layout constants used by CUDA's mma.hpp.
std::array<unsigned, 8> Variants;
unsigned getMMAIntrinsic(int Layout, bool Satf) {
unsigned Index = Layout + 4 * Satf;
if (Index >= Variants.size())
return 0;
return Variants[Index];
}
};
// Returns an intrinsic that matches Layout and Satf for valid combinations of
// Layout and Satf, 0 otherwise.
static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
// clang-format off
#define MMA_VARIANTS(geom, type) \
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
#define MMA_SATF_VARIANTS(geom, type) \
MMA_VARIANTS(geom, type), \
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
// Sub-integer MMA only supports row.col layout.
#define MMA_VARIANTS_I4(geom, type) \
0, \
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
0, \
0, \
0, \
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
0, \
0
// b1 MMA does not support .satfinite.
#define MMA_VARIANTS_B1_XOR(geom, type) \
0, \
Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
0, \
0, \
0, \
0, \
0, \
0
#define MMA_VARIANTS_B1_AND(geom, type) \
0, \
Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
0, \
0, \
0, \
0, \
0, \
0
// clang-format on
switch (BuiltinID) {
// FP MMA
// Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
// NumEltsN of return value are ordered as A,B,C,D.
case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
// Integer MMA
case NVPTX::BI__imma_m16n16k16_mma_s8:
return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
case NVPTX::BI__imma_m16n16k16_mma_u8:
return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
case NVPTX::BI__imma_m32n8k16_mma_s8:
return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
case NVPTX::BI__imma_m32n8k16_mma_u8:
return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
case NVPTX::BI__imma_m8n32k16_mma_s8:
return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
case NVPTX::BI__imma_m8n32k16_mma_u8:
return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
// Sub-integer MMA
case NVPTX::BI__imma_m8n8k32_mma_s4:
return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
case NVPTX::BI__imma_m8n8k32_mma_u4:
return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
// Double MMA
case NVPTX::BI__dmma_m8n8k4_mma_f64:
return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
// Alternate FP MMA
case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
default:
llvm_unreachable("Unexpected builtin ID.");
}
#undef MMA_VARIANTS
#undef MMA_SATF_VARIANTS
#undef MMA_VARIANTS_I4
#undef MMA_VARIANTS_B1_AND
#undef MMA_VARIANTS_B1_XOR
}
} // namespace
Value *
CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
auto MakeLdg = [&](unsigned IntrinsicID) {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ArgType = E->getArg(0)->getType();
clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(ArgType);
llvm::Type *ElemTy = ConvertTypeForMem(ArgType->getPointeeType());
return Builder.CreateCall(
CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
{Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
};
auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
Value *Ptr = EmitScalarExpr(E->getArg(0));
llvm::Type *ElemTy =
ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
return Builder.CreateCall(
CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1))});
};
switch (BuiltinID) {
case NVPTX::BI__nvvm_atom_add_gen_i:
case NVPTX::BI__nvvm_atom_add_gen_l:
case NVPTX::BI__nvvm_atom_add_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
case NVPTX::BI__nvvm_atom_sub_gen_i:
case NVPTX::BI__nvvm_atom_sub_gen_l:
case NVPTX::BI__nvvm_atom_sub_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
case NVPTX::BI__nvvm_atom_and_gen_i:
case NVPTX::BI__nvvm_atom_and_gen_l:
case NVPTX::BI__nvvm_atom_and_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
case NVPTX::BI__nvvm_atom_or_gen_i:
case NVPTX::BI__nvvm_atom_or_gen_l:
case NVPTX::BI__nvvm_atom_or_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
case NVPTX::BI__nvvm_atom_xor_gen_i:
case NVPTX::BI__nvvm_atom_xor_gen_l:
case NVPTX::BI__nvvm_atom_xor_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
case NVPTX::BI__nvvm_atom_xchg_gen_i:
case NVPTX::BI__nvvm_atom_xchg_gen_l:
case NVPTX::BI__nvvm_atom_xchg_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
case NVPTX::BI__nvvm_atom_max_gen_i:
case NVPTX::BI__nvvm_atom_max_gen_l:
case NVPTX::BI__nvvm_atom_max_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
case NVPTX::BI__nvvm_atom_max_gen_ui:
case NVPTX::BI__nvvm_atom_max_gen_ul:
case NVPTX::BI__nvvm_atom_max_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
case NVPTX::BI__nvvm_atom_min_gen_i:
case NVPTX::BI__nvvm_atom_min_gen_l:
case NVPTX::BI__nvvm_atom_min_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
case NVPTX::BI__nvvm_atom_min_gen_ui:
case NVPTX::BI__nvvm_atom_min_gen_ul:
case NVPTX::BI__nvvm_atom_min_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
case NVPTX::BI__nvvm_atom_cas_gen_i:
case NVPTX::BI__nvvm_atom_cas_gen_l:
case NVPTX::BI__nvvm_atom_cas_gen_ll:
// __nvvm_atom_cas_gen_* should return the old value rather than the
// success flag.
return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
case NVPTX::BI__nvvm_atom_add_gen_f:
case NVPTX::BI__nvvm_atom_add_gen_d: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
AtomicOrdering::SequentiallyConsistent);
}
case NVPTX::BI__nvvm_atom_inc_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Function *FnALI32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
return Builder.CreateCall(FnALI32, {Ptr, Val});
}
case NVPTX::BI__nvvm_atom_dec_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Function *FnALD32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
return Builder.CreateCall(FnALD32, {Ptr, Val});
}
case NVPTX::BI__nvvm_ldg_c:
case NVPTX::BI__nvvm_ldg_c2:
case NVPTX::BI__nvvm_ldg_c4:
case NVPTX::BI__nvvm_ldg_s:
case NVPTX::BI__nvvm_ldg_s2:
case NVPTX::BI__nvvm_ldg_s4:
case NVPTX::BI__nvvm_ldg_i:
case NVPTX::BI__nvvm_ldg_i2:
case NVPTX::BI__nvvm_ldg_i4:
case NVPTX::BI__nvvm_ldg_l:
case NVPTX::BI__nvvm_ldg_ll:
case NVPTX::BI__nvvm_ldg_ll2:
case NVPTX::BI__nvvm_ldg_uc:
case NVPTX::BI__nvvm_ldg_uc2:
case NVPTX::BI__nvvm_ldg_uc4:
case NVPTX::BI__nvvm_ldg_us:
case NVPTX::BI__nvvm_ldg_us2:
case NVPTX::BI__nvvm_ldg_us4:
case NVPTX::BI__nvvm_ldg_ui:
case NVPTX::BI__nvvm_ldg_ui2:
case NVPTX::BI__nvvm_ldg_ui4:
case NVPTX::BI__nvvm_ldg_ul:
case NVPTX::BI__nvvm_ldg_ull:
case NVPTX::BI__nvvm_ldg_ull2:
// PTX Interoperability section 2.2: "For a vector with an even number of
// elements, its alignment is set to number of elements times the alignment
// of its member: n*alignof(t)."
return MakeLdg(Intrinsic::nvvm_ldg_global_i);
case NVPTX::BI__nvvm_ldg_f:
case NVPTX::BI__nvvm_ldg_f2:
case NVPTX::BI__nvvm_ldg_f4:
case NVPTX::BI__nvvm_ldg_d:
case NVPTX::BI__nvvm_ldg_d2:
return MakeLdg(Intrinsic::nvvm_ldg_global_f);
case NVPTX::BI__nvvm_atom_cta_add_gen_i:
case NVPTX::BI__nvvm_atom_cta_add_gen_l:
case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_add_gen_i:
case NVPTX::BI__nvvm_atom_sys_add_gen_l:
case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_add_gen_f:
case NVPTX::BI__nvvm_atom_cta_add_gen_d:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
case NVPTX::BI__nvvm_atom_sys_add_gen_f:
case NVPTX::BI__nvvm_atom_sys_add_gen_d:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_max_gen_i:
case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
case NVPTX::BI__nvvm_atom_cta_max_gen_l:
case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_max_gen_i:
case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
case NVPTX::BI__nvvm_atom_sys_max_gen_l:
case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_min_gen_i:
case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
case NVPTX::BI__nvvm_atom_cta_min_gen_l:
case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_min_gen_i:
case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
case NVPTX::BI__nvvm_atom_sys_min_gen_l:
case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_and_gen_i:
case NVPTX::BI__nvvm_atom_cta_and_gen_l:
case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_and_gen_i:
case NVPTX::BI__nvvm_atom_sys_and_gen_l:
case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_or_gen_i:
case NVPTX::BI__nvvm_atom_cta_or_gen_l:
case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_or_gen_i:
case NVPTX::BI__nvvm_atom_sys_or_gen_l:
case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
llvm::Type *ElemTy =
ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
return Builder.CreateCall(
CGM.getIntrinsic(
Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
}
case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
llvm::Type *ElemTy =
ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
return Builder.CreateCall(
CGM.getIntrinsic(
Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
}
case NVPTX::BI__nvvm_match_all_sync_i32p:
case NVPTX::BI__nvvm_match_all_sync_i64p: {
Value *Mask = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
Value *ResultPair = Builder.CreateCall(
CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
? Intrinsic::nvvm_match_all_sync_i32p
: Intrinsic::nvvm_match_all_sync_i64p),
{Mask, Val});
Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
PredOutPtr.getElementType());
Builder.CreateStore(Pred, PredOutPtr);
return Builder.CreateExtractValue(ResultPair, 0);
}
// FP MMA loads
case NVPTX::BI__hmma_m16n16k16_ld_a:
case NVPTX::BI__hmma_m16n16k16_ld_b:
case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
case NVPTX::BI__hmma_m32n8k16_ld_a:
case NVPTX::BI__hmma_m32n8k16_ld_b:
case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
case NVPTX::BI__hmma_m8n32k16_ld_a:
case NVPTX::BI__hmma_m8n32k16_ld_b:
case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
// Integer MMA loads.
case NVPTX::BI__imma_m16n16k16_ld_a_s8:
case NVPTX::BI__imma_m16n16k16_ld_a_u8:
case NVPTX::BI__imma_m16n16k16_ld_b_s8:
case NVPTX::BI__imma_m16n16k16_ld_b_u8:
case NVPTX::BI__imma_m16n16k16_ld_c:
case NVPTX::BI__imma_m32n8k16_ld_a_s8:
case NVPTX::BI__imma_m32n8k16_ld_a_u8:
case NVPTX::BI__imma_m32n8k16_ld_b_s8:
case NVPTX::BI__imma_m32n8k16_ld_b_u8:
case NVPTX::BI__imma_m32n8k16_ld_c:
case NVPTX::BI__imma_m8n32k16_ld_a_s8:
case NVPTX::BI__imma_m8n32k16_ld_a_u8:
case NVPTX::BI__imma_m8n32k16_ld_b_s8:
case NVPTX::BI__imma_m8n32k16_ld_b_u8:
case NVPTX::BI__imma_m8n32k16_ld_c:
// Sub-integer MMA loads.
case NVPTX::BI__imma_m8n8k32_ld_a_s4:
case NVPTX::BI__imma_m8n8k32_ld_a_u4:
case NVPTX::BI__imma_m8n8k32_ld_b_s4:
case NVPTX::BI__imma_m8n8k32_ld_b_u4:
case NVPTX::BI__imma_m8n8k32_ld_c:
case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
case NVPTX::BI__bmma_m8n8k128_ld_c:
// Double MMA loads.
case NVPTX::BI__dmma_m8n8k4_ld_a:
case NVPTX::BI__dmma_m8n8k4_ld_b:
case NVPTX::BI__dmma_m8n8k4_ld_c:
// Alternate float MMA loads.
case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
Address Dst = EmitPointerWithAlignment(E->getArg(0));
Value *Src = EmitScalarExpr(E->getArg(1));
Value *Ldm = EmitScalarExpr(E->getArg(2));
Optional<llvm::APSInt> isColMajorArg =
E->getArg(3)->getIntegerConstantExpr(getContext());
if (!isColMajorArg)
return nullptr;
bool isColMajor = isColMajorArg->getSExtValue();
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
unsigned IID = isColMajor ? II.IID_col : II.IID_row;
if (IID == 0)
return nullptr;
Value *Result =
Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
// Save returned values.
assert(II.NumResults);
if (II.NumResults == 1) {
Builder.CreateAlignedStore(Result, Dst.getPointer(),
CharUnits::fromQuantity(4));
} else {
for (unsigned i = 0; i < II.NumResults; ++i) {
Builder.CreateAlignedStore(
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
Dst.getElementType()),
Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
}
}
return Result;
}
case NVPTX::BI__hmma_m16n16k16_st_c_f16:
case NVPTX::BI__hmma_m16n16k16_st_c_f32:
case NVPTX::BI__hmma_m32n8k16_st_c_f16:
case NVPTX::BI__hmma_m32n8k16_st_c_f32:
case NVPTX::BI__hmma_m8n32k16_st_c_f16:
case NVPTX::BI__hmma_m8n32k16_st_c_f32:
case NVPTX::BI__imma_m16n16k16_st_c_i32:
case NVPTX::BI__imma_m32n8k16_st_c_i32:
case NVPTX::BI__imma_m8n32k16_st_c_i32:
case NVPTX::BI__imma_m8n8k32_st_c_i32:
case NVPTX::BI__bmma_m8n8k128_st_c_i32:
case NVPTX::BI__dmma_m8n8k4_st_c_f64:
case NVPTX::BI__mma_m16n16k8_st_c_f32: {
Value *Dst = EmitScalarExpr(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *Ldm = EmitScalarExpr(E->getArg(2));
Optional<llvm::APSInt> isColMajorArg =
E->getArg(3)->getIntegerConstantExpr(getContext());
if (!isColMajorArg)
return nullptr;
bool isColMajor = isColMajorArg->getSExtValue();
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
unsigned IID = isColMajor ? II.IID_col : II.IID_row;
if (IID == 0)
return nullptr;
Function *Intrinsic =
CGM.getIntrinsic(IID, Dst->getType());
llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
SmallVector<Value *, 10> Values = {Dst};
for (unsigned i = 0; i < II.NumResults; ++i) {
Value *V = Builder.CreateAlignedLoad(
Src.getElementType(),
Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
Values.push_back(Builder.CreateBitCast(V, ParamType));
}
Values.push_back(Ldm);
Value *Result = Builder.CreateCall(Intrinsic, Values);
return Result;
}
// BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
// Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
case NVPTX::BI__imma_m16n16k16_mma_s8:
case NVPTX::BI__imma_m16n16k16_mma_u8:
case NVPTX::BI__imma_m32n8k16_mma_s8:
case NVPTX::BI__imma_m32n8k16_mma_u8:
case NVPTX::BI__imma_m8n32k16_mma_s8:
case NVPTX::BI__imma_m8n32k16_mma_u8:
case NVPTX::BI__imma_m8n8k32_mma_s4:
case NVPTX::BI__imma_m8n8k32_mma_u4:
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
case NVPTX::BI__dmma_m8n8k4_mma_f64:
case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
Address Dst = EmitPointerWithAlignment(E->getArg(0));
Address SrcA = EmitPointerWithAlignment(E->getArg(1));
Address SrcB = EmitPointerWithAlignment(E->getArg(2));
Address SrcC = EmitPointerWithAlignment(E->getArg(3));
Optional<llvm::APSInt> LayoutArg =
E->getArg(4)->getIntegerConstantExpr(getContext());
if (!LayoutArg)
return nullptr;
int Layout = LayoutArg->getSExtValue();
if (Layout < 0 || Layout > 3)
return nullptr;
llvm::APSInt SatfArg;
if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
SatfArg = 0; // .b1 does not have satf argument.
else if (Optional<llvm::APSInt> OptSatfArg =
E->getArg(5)->getIntegerConstantExpr(getContext()))
SatfArg = *OptSatfArg;
else
return nullptr;
bool Satf = SatfArg.getSExtValue();
NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
if (IID == 0) // Unsupported combination of Layout/Satf.
return nullptr;
SmallVector<Value *, 24> Values;
Function *Intrinsic = CGM.getIntrinsic(IID);
llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
// Load A
for (unsigned i = 0; i < MI.NumEltsA; ++i) {
Value *V = Builder.CreateAlignedLoad(
SrcA.getElementType(),
Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
Values.push_back(Builder.CreateBitCast(V, AType));
}
// Load B
llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
for (unsigned i = 0; i < MI.NumEltsB; ++i) {
Value *V = Builder.CreateAlignedLoad(
SrcB.getElementType(),
Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
Values.push_back(Builder.CreateBitCast(V, BType));
}
// Load C
llvm::Type *CType =
Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
for (unsigned i = 0; i < MI.NumEltsC; ++i) {
Value *V = Builder.CreateAlignedLoad(
SrcC.getElementType(),
Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
Values.push_back(Builder.CreateBitCast(V, CType));
}
Value *Result = Builder.CreateCall(Intrinsic, Values);
llvm::Type *DType = Dst.getElementType();
for (unsigned i = 0; i < MI.NumEltsD; ++i)
Builder.CreateAlignedStore(
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
llvm::ConstantInt::get(IntTy, i)),
CharUnits::fromQuantity(4));
return Result;
}
default:
return nullptr;
}
}
namespace {
struct BuiltinAlignArgs {
llvm::Value *Src = nullptr;
llvm::Type *SrcType = nullptr;
llvm::Value *Alignment = nullptr;
llvm::Value *Mask = nullptr;
llvm::IntegerType *IntType = nullptr;
BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
QualType AstType = E->getArg(0)->getType();
if (AstType->isArrayType())
Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
else
Src = CGF.EmitScalarExpr(E->getArg(0));
SrcType = Src->getType();
if (SrcType->isPointerTy()) {
IntType = IntegerType::get(
CGF.getLLVMContext(),
CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
} else {
assert(SrcType->isIntegerTy());
IntType = cast<llvm::IntegerType>(SrcType);
}
Alignment = CGF.EmitScalarExpr(E->getArg(1));
Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
auto *One = llvm::ConstantInt::get(IntType, 1);
Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
}
};
} // namespace
/// Generate (x & (y-1)) == 0.
RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
BuiltinAlignArgs Args(E, *this);
llvm::Value *SrcAddress = Args.Src;
if (Args.SrcType->isPointerTy())
SrcAddress =
Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
return RValue::get(Builder.CreateICmpEQ(
Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
}
/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
/// TODO: actually use ptrmask once most optimization passes know about it.
RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
BuiltinAlignArgs Args(E, *this);
llvm::Value *SrcAddr = Args.Src;
if (Args.Src->getType()->isPointerTy())
SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
llvm::Value *SrcForMask = SrcAddr;
if (AlignUp) {
// When aligning up we have to first add the mask to ensure we go over the
// next alignment value and then align down to the next valid multiple.
// By adding the mask, we ensure that align_up on an already aligned
// value will not change the value.
SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
}
// Invert the mask to only clear the lower bits.
llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
llvm::Value *Result =
Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
if (Args.Src->getType()->isPointerTy()) {
/// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
// Result = Builder.CreateIntrinsic(
// Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
// {SrcForMask, NegatedMask}, nullptr, "aligned_result");
Result->setName("aligned_intptr");
llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
// The result must point to the same underlying allocation. This means we
// can use an inbounds GEP to enable better optimization.
Value *Base = EmitCastToVoidPtr(Args.Src);
if (getLangOpts().isSignedOverflowDefined())
Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
else
Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
/*SignedIndices=*/true,
/*isSubtraction=*/!AlignUp,
E->getExprLoc(), "aligned_result");
Result = Builder.CreatePointerCast(Result, Args.SrcType);
// Emit an alignment assumption to ensure that the new alignment is
// propagated to loads/stores, etc.
emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
}
assert(Result->getType() == Args.SrcType);
return RValue::get(Result);
}
Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_memory_size: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *I = EmitScalarExpr(E->getArg(0));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
return Builder.CreateCall(Callee, I);
}
case WebAssembly::BI__builtin_wasm_memory_grow: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *Args[] = {EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1))};
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
return Builder.CreateCall(Callee, Args);
}
case WebAssembly::BI__builtin_wasm_tls_size: {
llvm::Type *ResultType = ConvertType(E->getType());
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_tls_align: {
llvm::Type *ResultType = ConvertType(E->getType());
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_tls_base: {
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_throw: {
Value *Tag = EmitScalarExpr(E->getArg(0));
Value *Obj = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
return Builder.CreateCall(Callee, {Tag, Obj});
}
case WebAssembly::BI__builtin_wasm_rethrow: {
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
Value *Addr = EmitScalarExpr(E->getArg(0));
Value *Expected = EmitScalarExpr(E->getArg(1));
Value *Timeout = EmitScalarExpr(E->getArg(2));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
}
case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
Value *Addr = EmitScalarExpr(E->getArg(0));
Value *Expected = EmitScalarExpr(E->getArg(1));
Value *Timeout = EmitScalarExpr(E->getArg(2));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
}
case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
Value *Addr = EmitScalarExpr(E->getArg(0));
Value *Count = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
return Builder.CreateCall(Callee, {Addr, Count});
}
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
Value *Src = EmitScalarExpr(E->getArg(0));
llvm::Type *ResT = ConvertType(E->getType());
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
return Builder.CreateCall(Callee, {Src});
}
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
Value *Src = EmitScalarExpr(E->getArg(0));
llvm::Type *ResT = ConvertType(E->getType());
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
{ResT, Src->getType()});
return Builder.CreateCall(Callee, {Src});
}
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
Value *Src = EmitScalarExpr(E->getArg(0));
llvm::Type *ResT = ConvertType(E->getType());
Function *Callee =
CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
return Builder.CreateCall(Callee, {Src});
}
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
Value *Src = EmitScalarExpr(E->getArg(0));
llvm::Type *ResT = ConvertType(E->getType());
Function *Callee =
CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
return Builder.CreateCall(Callee, {Src});
}
case WebAssembly::BI__builtin_wasm_min_f32:
case WebAssembly::BI__builtin_wasm_min_f64:
case WebAssembly::BI__builtin_wasm_min_f32x4:
case WebAssembly::BI__builtin_wasm_min_f64x2: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee =
CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_max_f32:
case WebAssembly::BI__builtin_wasm_max_f64:
case WebAssembly::BI__builtin_wasm_max_f32x4:
case WebAssembly::BI__builtin_wasm_max_f64x2: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee =
CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_pmin_f32x4:
case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_pmax_f32x4:
case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_ceil_f32x4:
case WebAssembly::BI__builtin_wasm_floor_f32x4:
case WebAssembly::BI__builtin_wasm_trunc_f32x4:
case WebAssembly::BI__builtin_wasm_nearest_f32x4:
case WebAssembly::BI__builtin_wasm_ceil_f64x2:
case WebAssembly::BI__builtin_wasm_floor_f64x2:
case WebAssembly::BI__builtin_wasm_trunc_f64x2:
case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_ceil_f32x4:
case WebAssembly::BI__builtin_wasm_ceil_f64x2:
IntNo = Intrinsic::ceil;
break;
case WebAssembly::BI__builtin_wasm_floor_f32x4:
case WebAssembly::BI__builtin_wasm_floor_f64x2:
IntNo = Intrinsic::floor;
break;
case WebAssembly::BI__builtin_wasm_trunc_f32x4:
case WebAssembly::BI__builtin_wasm_trunc_f64x2:
IntNo = Intrinsic::trunc;
break;
case WebAssembly::BI__builtin_wasm_nearest_f32x4:
case WebAssembly::BI__builtin_wasm_nearest_f64x2:
IntNo = Intrinsic::nearbyint;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Value *Value = EmitScalarExpr(E->getArg(0));
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
return Builder.CreateCall(Callee, Value);
}
case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
Value *Src = EmitScalarExpr(E->getArg(0));
Value *Indices = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
return Builder.CreateCall(Callee, {Src, Indices});
}
case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
IntNo = Intrinsic::sadd_sat;
break;
case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
IntNo = Intrinsic::uadd_sat;
break;
case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
IntNo = Intrinsic::wasm_sub_sat_signed;
break;
case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
IntNo = Intrinsic::wasm_sub_sat_unsigned;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_abs_i8x16:
case WebAssembly::BI__builtin_wasm_abs_i16x8:
case WebAssembly::BI__builtin_wasm_abs_i32x4:
case WebAssembly::BI__builtin_wasm_abs_i64x2: {
Value *Vec = EmitScalarExpr(E->getArg(0));
Value *Neg = Builder.CreateNeg(Vec, "neg");
Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
}
case WebAssembly::BI__builtin_wasm_min_s_i8x16:
case WebAssembly::BI__builtin_wasm_min_u_i8x16:
case WebAssembly::BI__builtin_wasm_max_s_i8x16:
case WebAssembly::BI__builtin_wasm_max_u_i8x16:
case WebAssembly::BI__builtin_wasm_min_s_i16x8:
case WebAssembly::BI__builtin_wasm_min_u_i16x8:
case WebAssembly::BI__builtin_wasm_max_s_i16x8:
case WebAssembly::BI__builtin_wasm_max_u_i16x8:
case WebAssembly::BI__builtin_wasm_min_s_i32x4:
case WebAssembly::BI__builtin_wasm_min_u_i32x4:
case WebAssembly::BI__builtin_wasm_max_s_i32x4:
case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Value *ICmp;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_min_s_i8x16:
case WebAssembly::BI__builtin_wasm_min_s_i16x8:
case WebAssembly::BI__builtin_wasm_min_s_i32x4:
ICmp = Builder.CreateICmpSLT(LHS, RHS);
break;
case WebAssembly::BI__builtin_wasm_min_u_i8x16:
case WebAssembly::BI__builtin_wasm_min_u_i16x8:
case WebAssembly::BI__builtin_wasm_min_u_i32x4:
ICmp = Builder.CreateICmpULT(LHS, RHS);
break;
case WebAssembly::BI__builtin_wasm_max_s_i8x16:
case WebAssembly::BI__builtin_wasm_max_s_i16x8:
case WebAssembly::BI__builtin_wasm_max_s_i32x4:
ICmp = Builder.CreateICmpSGT(LHS, RHS);
break;
case WebAssembly::BI__builtin_wasm_max_u_i8x16:
case WebAssembly::BI__builtin_wasm_max_u_i16x8:
case WebAssembly::BI__builtin_wasm_max_u_i32x4:
ICmp = Builder.CreateICmpUGT(LHS, RHS);
break;
default:
llvm_unreachable("unexpected builtin ID");
}
return Builder.CreateSelect(ICmp, LHS, RHS);
}
case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
ConvertType(E->getType()));
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
Value *Vec = EmitScalarExpr(E->getArg(0));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
IntNo = Intrinsic::wasm_extadd_pairwise_signed;
break;
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
break;
default:
llvm_unreachable("unexptected builtin ID");
}
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
return Builder.CreateCall(Callee, Vec);
}
case WebAssembly::BI__builtin_wasm_bitselect: {
Value *V1 = EmitScalarExpr(E->getArg(0));
Value *V2 = EmitScalarExpr(E->getArg(1));
Value *C = EmitScalarExpr(E->getArg(2));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {V1, V2, C});
}
case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
Value *Vec = EmitScalarExpr(E->getArg(0));
Function *Callee =
CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
return Builder.CreateCall(Callee, {Vec});
}
case WebAssembly::BI__builtin_wasm_any_true_v128:
case WebAssembly::BI__builtin_wasm_all_true_i8x16:
case WebAssembly::BI__builtin_wasm_all_true_i16x8:
case WebAssembly::BI__builtin_wasm_all_true_i32x4:
case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_any_true_v128:
IntNo = Intrinsic::wasm_anytrue;
break;
case WebAssembly::BI__builtin_wasm_all_true_i8x16:
case WebAssembly::BI__builtin_wasm_all_true_i16x8:
case WebAssembly::BI__builtin_wasm_all_true_i32x4:
case WebAssembly::BI__builtin_wasm_all_true_i64x2:
IntNo = Intrinsic::wasm_alltrue;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Value *Vec = EmitScalarExpr(E->getArg(0));
Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
return Builder.CreateCall(Callee, {Vec});
}
case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
Value *Vec = EmitScalarExpr(E->getArg(0));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
return Builder.CreateCall(Callee, {Vec});
}
case WebAssembly::BI__builtin_wasm_abs_f32x4:
case WebAssembly::BI__builtin_wasm_abs_f64x2: {
Value *Vec = EmitScalarExpr(E->getArg(0));
Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
return Builder.CreateCall(Callee, {Vec});
}
case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
Value *Vec = EmitScalarExpr(E->getArg(0));
Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
return Builder.CreateCall(Callee, {Vec});
}
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
Value *Low = EmitScalarExpr(E->getArg(0));
Value *High = EmitScalarExpr(E->getArg(1));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
IntNo = Intrinsic::wasm_narrow_signed;
break;
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
IntNo = Intrinsic::wasm_narrow_unsigned;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Function *Callee =
CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
return Builder.CreateCall(Callee, {Low, High});
}
case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
Value *Vec = EmitScalarExpr(E->getArg(0));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
IntNo = Intrinsic::fptosi_sat;
break;
case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
IntNo = Intrinsic::fptoui_sat;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
llvm::Type *SrcT = Vec->getType();
llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
Value *Trunc = Builder.CreateCall(Callee, Vec);
Value *Splat = Constant::getNullValue(TruncT);
return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
}
case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
Value *Ops[18];
size_t OpIdx = 0;
Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
while (OpIdx < 18) {
Optional<llvm::APSInt> LaneConst =
E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
assert(LaneConst && "Constant arg isn't actually constant?");
Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
}
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
return Builder.CreateCall(Callee, Ops);
}
case WebAssembly::BI__builtin_wasm_fma_f32x4:
case WebAssembly::BI__builtin_wasm_fms_f32x4:
case WebAssembly::BI__builtin_wasm_fma_f64x2:
case WebAssembly::BI__builtin_wasm_fms_f64x2: {
Value *A = EmitScalarExpr(E->getArg(0));
Value *B = EmitScalarExpr(E->getArg(1));
Value *C = EmitScalarExpr(E->getArg(2));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_fma_f32x4:
case WebAssembly::BI__builtin_wasm_fma_f64x2:
IntNo = Intrinsic::wasm_fma;
break;
case WebAssembly::BI__builtin_wasm_fms_f32x4:
case WebAssembly::BI__builtin_wasm_fms_f64x2:
IntNo = Intrinsic::wasm_fms;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
return Builder.CreateCall(Callee, {A, B, C});
}
case WebAssembly::BI__builtin_wasm_laneselect_i8x16:
case WebAssembly::BI__builtin_wasm_laneselect_i16x8:
case WebAssembly::BI__builtin_wasm_laneselect_i32x4:
case WebAssembly::BI__builtin_wasm_laneselect_i64x2: {
Value *A = EmitScalarExpr(E->getArg(0));
Value *B = EmitScalarExpr(E->getArg(1));
Value *C = EmitScalarExpr(E->getArg(2));
Function *Callee =
CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType());
return Builder.CreateCall(Callee, {A, B, C});
}
case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
Value *Src = EmitScalarExpr(E->getArg(0));
Value *Indices = EmitScalarExpr(E->getArg(1));
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
return Builder.CreateCall(Callee, {Src, Indices});
}
case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
IntNo = Intrinsic::wasm_relaxed_min;
break;
case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
IntNo = Intrinsic::wasm_relaxed_max;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
return Builder.CreateCall(Callee, {LHS, RHS});
}
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
Value *Vec = EmitScalarExpr(E->getArg(0));
unsigned IntNo;
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
IntNo = Intrinsic::wasm_relaxed_trunc_signed;
break;
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
break;
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
break;
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
break;
default:
llvm_unreachable("unexpected builtin ID");
}
Function *Callee = CGM.getIntrinsic(IntNo);
return Builder.CreateCall(Callee, {Vec});
}
default:
return nullptr;
}
}
static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
struct Info {
unsigned BuiltinID;
Intrinsic::ID IntrinsicID;
unsigned VecLen;
};
Info Infos[] = {
#define CUSTOM_BUILTIN_MAPPING(x,s) \
{ Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
// Legacy builtins that take a vector in place of a vector predicate.
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
#undef CUSTOM_BUILTIN_MAPPING
};
auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
(void)SortOnce;
const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
Info{BuiltinID, 0, 0}, CmpInfo);
if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
return {Intrinsic::not_intrinsic, 0};
return {F->IntrinsicID, F->VecLen};
}
Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
Intrinsic::ID ID;
unsigned VecLen;
std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
// The base pointer is passed by address, so it needs to be loaded.
Address A = EmitPointerWithAlignment(E->getArg(0));
Address BP = Address(Builder.CreateBitCast(
A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
llvm::Value *Base = Builder.CreateLoad(BP);
// The treatment of both loads and stores is the same: the arguments for
// the builtin are the same as the arguments for the intrinsic.
// Load:
// builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
// builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
// Store:
// builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
// builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
SmallVector<llvm::Value*,5> Ops = { Base };
for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
// The load intrinsics generate two results (Value, NewBase), stores
// generate one (NewBase). The new base address needs to be stored.
llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
: Result;
llvm::Value *LV = Builder.CreateBitCast(
EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
Address Dest = EmitPointerWithAlignment(E->getArg(0));
llvm::Value *RetVal =
Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
if (IsLoad)
RetVal = Builder.CreateExtractValue(Result, 0);
return RetVal;
};
// Handle the conversion of bit-reverse load intrinsics to bit code.
// The intrinsic call after this function only reads from memory and the
// write to memory is dealt by the store instruction.
auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
// The intrinsic generates one result, which is the new value for the base
// pointer. It needs to be returned. The result of the load instruction is
// passed to intrinsic by address, so the value needs to be stored.
llvm::Value *BaseAddress =
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
// Expressions like &(*pt++) will be incremented per evaluation.
// EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
// per call.
Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
Int8Ty, DestAddr.getAlignment());
llvm::Value *DestAddress = DestAddr.getPointer();
// Operands are Base, Dest, Modifier.
// The intrinsic format in LLVM IR is defined as
// { ValueType, i8* } (i8*, i32).
llvm::Value *Result = Builder.CreateCall(
CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
// The value needs to be stored as the variable is passed by reference.
llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
// The store needs to be truncated to fit the destination type.
// While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
// to be handled with stores of respective destination type.
DestVal = Builder.CreateTrunc(DestVal, DestTy);
llvm::Value *DestForStore =
Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
// The updated value of the base pointer is returned.
return Builder.CreateExtractValue(Result, 1);
};
auto V2Q = [this, VecLen] (llvm::Value *Vec) {
Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
: Intrinsic::hexagon_V6_vandvrt;
return Builder.CreateCall(CGM.getIntrinsic(ID),
{Vec, Builder.getInt32(-1)});
};
auto Q2V = [this, VecLen] (llvm::Value *Pred) {
Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
: Intrinsic::hexagon_V6_vandqrt;
return Builder.CreateCall(CGM.getIntrinsic(ID),
{Pred, Builder.getInt32(-1)});
};
switch (BuiltinID) {
// These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
// and the corresponding C/C++ builtins use loads/stores to update
// the predicate.
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
// Get the type from the 0-th argument.
llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
Address PredAddr = Builder.CreateElementBitCast(
EmitPointerWithAlignment(E->getArg(2)), VecType);
llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
{EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
PredAddr.getAlignment());
return Builder.CreateExtractValue(Result, 0);
}
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
SmallVector<llvm::Value*,4> Ops;
const Expr *PredOp = E->getArg(0);
// There will be an implicit cast to a boolean vector. Strip it.
if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
if (Cast->getCastKind() == CK_BitCast)
PredOp = Cast->getSubExpr();
Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
}
for (int i = 1, e = E->getNumArgs(); i != e; ++i)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
return MakeCircOp(ID, /*IsLoad=*/true);
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
return MakeCircOp(ID, /*IsLoad=*/false);
case Hexagon::BI__builtin_brev_ldub:
return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
case Hexagon::BI__builtin_brev_ldb:
return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
case Hexagon::BI__builtin_brev_lduh:
return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
case Hexagon::BI__builtin_brev_ldh:
return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
case Hexagon::BI__builtin_brev_ldw:
return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
case Hexagon::BI__builtin_brev_ldd:
return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
} // switch
return nullptr;
}
Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
const CallExpr *E,
ReturnValueSlot ReturnValue) {
SmallVector<Value *, 4> Ops;
llvm::Type *ResultType = ConvertType(E->getType());
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
Intrinsic::ID ID = Intrinsic::not_intrinsic;
unsigned NF = 1;
constexpr unsigned TAIL_UNDISTURBED = 0;
// Required for overloaded intrinsics.
llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin ID");
case RISCV::BI__builtin_riscv_orc_b_32:
case RISCV::BI__builtin_riscv_orc_b_64:
case RISCV::BI__builtin_riscv_clz_32:
case RISCV::BI__builtin_riscv_clz_64:
case RISCV::BI__builtin_riscv_clmul:
case RISCV::BI__builtin_riscv_clmulh:
case RISCV::BI__builtin_riscv_clmulr:
case RISCV::BI__builtin_riscv_bcompress_32:
case RISCV::BI__builtin_riscv_bcompress_64:
case RISCV::BI__builtin_riscv_bdecompress_32:
case RISCV::BI__builtin_riscv_bdecompress_64:
case RISCV::BI__builtin_riscv_bfp_32:
case RISCV::BI__builtin_riscv_bfp_64:
case RISCV::BI__builtin_riscv_grev_32:
case RISCV::BI__builtin_riscv_grev_64:
case RISCV::BI__builtin_riscv_gorc_32:
case RISCV::BI__builtin_riscv_gorc_64:
case RISCV::BI__builtin_riscv_shfl_32:
case RISCV::BI__builtin_riscv_shfl_64:
case RISCV::BI__builtin_riscv_unshfl_32:
case RISCV::BI__builtin_riscv_unshfl_64:
case RISCV::BI__builtin_riscv_xperm4:
case RISCV::BI__builtin_riscv_xperm8:
case RISCV::BI__builtin_riscv_xperm_n:
case RISCV::BI__builtin_riscv_xperm_b:
case RISCV::BI__builtin_riscv_xperm_h:
case RISCV::BI__builtin_riscv_xperm_w:
case RISCV::BI__builtin_riscv_crc32_b:
case RISCV::BI__builtin_riscv_crc32_h:
case RISCV::BI__builtin_riscv_crc32_w:
case RISCV::BI__builtin_riscv_crc32_d:
case RISCV::BI__builtin_riscv_crc32c_b:
case RISCV::BI__builtin_riscv_crc32c_h:
case RISCV::BI__builtin_riscv_crc32c_w:
case RISCV::BI__builtin_riscv_crc32c_d:
case RISCV::BI__builtin_riscv_fsl_32:
case RISCV::BI__builtin_riscv_fsr_32:
case RISCV::BI__builtin_riscv_fsl_64:
case RISCV::BI__builtin_riscv_fsr_64:
case RISCV::BI__builtin_riscv_brev8:
case RISCV::BI__builtin_riscv_zip_32:
case RISCV::BI__builtin_riscv_unzip_32: {
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin ID");
// Zbb
case RISCV::BI__builtin_riscv_orc_b_32:
case RISCV::BI__builtin_riscv_orc_b_64:
ID = Intrinsic::riscv_orc_b;
break;
case RISCV::BI__builtin_riscv_clz_32:
case RISCV::BI__builtin_riscv_clz_64: {
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
}
// Zbc
case RISCV::BI__builtin_riscv_clmul:
ID = Intrinsic::riscv_clmul;
break;
case RISCV::BI__builtin_riscv_clmulh:
ID = Intrinsic::riscv_clmulh;
break;
case RISCV::BI__builtin_riscv_clmulr:
ID = Intrinsic::riscv_clmulr;
break;
// Zbe
case RISCV::BI__builtin_riscv_bcompress_32:
case RISCV::BI__builtin_riscv_bcompress_64:
ID = Intrinsic::riscv_bcompress;
break;
case RISCV::BI__builtin_riscv_bdecompress_32:
case RISCV::BI__builtin_riscv_bdecompress_64:
ID = Intrinsic::riscv_bdecompress;
break;
// Zbf
case RISCV::BI__builtin_riscv_bfp_32:
case RISCV::BI__builtin_riscv_bfp_64:
ID = Intrinsic::riscv_bfp;
break;
// Zbp
case RISCV::BI__builtin_riscv_grev_32:
case RISCV::BI__builtin_riscv_grev_64:
ID = Intrinsic::riscv_grev;
break;
case RISCV::BI__builtin_riscv_gorc_32:
case RISCV::BI__builtin_riscv_gorc_64:
ID = Intrinsic::riscv_gorc;
break;
case RISCV::BI__builtin_riscv_shfl_32:
case RISCV::BI__builtin_riscv_shfl_64:
ID = Intrinsic::riscv_shfl;
break;
case RISCV::BI__builtin_riscv_unshfl_32:
case RISCV::BI__builtin_riscv_unshfl_64:
ID = Intrinsic::riscv_unshfl;
break;
case RISCV::BI__builtin_riscv_xperm_n:
ID = Intrinsic::riscv_xperm_n;
break;
case RISCV::BI__builtin_riscv_xperm_b:
ID = Intrinsic::riscv_xperm_b;
break;
case RISCV::BI__builtin_riscv_xperm_h:
ID = Intrinsic::riscv_xperm_h;
break;
case RISCV::BI__builtin_riscv_xperm_w:
ID = Intrinsic::riscv_xperm_w;
break;
// Zbr
case RISCV::BI__builtin_riscv_crc32_b:
ID = Intrinsic::riscv_crc32_b;
break;
case RISCV::BI__builtin_riscv_crc32_h:
ID = Intrinsic::riscv_crc32_h;
break;
case RISCV::BI__builtin_riscv_crc32_w:
ID = Intrinsic::riscv_crc32_w;
break;
case RISCV::BI__builtin_riscv_crc32_d:
ID = Intrinsic::riscv_crc32_d;
break;
case RISCV::BI__builtin_riscv_crc32c_b:
ID = Intrinsic::riscv_crc32c_b;
break;
case RISCV::BI__builtin_riscv_crc32c_h:
ID = Intrinsic::riscv_crc32c_h;
break;
case RISCV::BI__builtin_riscv_crc32c_w:
ID = Intrinsic::riscv_crc32c_w;
break;
case RISCV::BI__builtin_riscv_crc32c_d:
ID = Intrinsic::riscv_crc32c_d;
break;
// Zbt
case RISCV::BI__builtin_riscv_fsl_32:
case RISCV::BI__builtin_riscv_fsl_64:
ID = Intrinsic::riscv_fsl;
break;
case RISCV::BI__builtin_riscv_fsr_32:
case RISCV::BI__builtin_riscv_fsr_64:
ID = Intrinsic::riscv_fsr;
break;
// Zbkx
case RISCV::BI__builtin_riscv_xperm8:
ID = Intrinsic::riscv_xperm8;
break;
case RISCV::BI__builtin_riscv_xperm4:
ID = Intrinsic::riscv_xperm4;
break;
// Zbkb
case RISCV::BI__builtin_riscv_brev8:
ID = Intrinsic::riscv_brev8;
break;
case RISCV::BI__builtin_riscv_zip_32:
ID = Intrinsic::riscv_zip;
break;
case RISCV::BI__builtin_riscv_unzip_32:
ID = Intrinsic::riscv_unzip;
break;
}
IntrinsicTypes = {ResultType};
break;
}
// Zk builtins
// Zknd
case RISCV::BI__builtin_riscv_aes32dsi_32:
ID = Intrinsic::riscv_aes32dsi;
break;
case RISCV::BI__builtin_riscv_aes32dsmi_32:
ID = Intrinsic::riscv_aes32dsmi;
break;
case RISCV::BI__builtin_riscv_aes64ds_64:
ID = Intrinsic::riscv_aes64ds;
break;
case RISCV::BI__builtin_riscv_aes64dsm_64:
ID = Intrinsic::riscv_aes64dsm;
break;
case RISCV::BI__builtin_riscv_aes64im_64:
ID = Intrinsic::riscv_aes64im;
break;
// Zkne
case RISCV::BI__builtin_riscv_aes32esi_32:
ID = Intrinsic::riscv_aes32esi;
break;
case RISCV::BI__builtin_riscv_aes32esmi_32:
ID = Intrinsic::riscv_aes32esmi;
break;
case RISCV::BI__builtin_riscv_aes64es_64:
ID = Intrinsic::riscv_aes64es;
break;
case RISCV::BI__builtin_riscv_aes64esm_64:
ID = Intrinsic::riscv_aes64esm;
break;
// Zknd & Zkne
case RISCV::BI__builtin_riscv_aes64ks1i_64:
ID = Intrinsic::riscv_aes64ks1i;
break;
case RISCV::BI__builtin_riscv_aes64ks2_64:
ID = Intrinsic::riscv_aes64ks2;
break;
// Zknh
case RISCV::BI__builtin_riscv_sha256sig0:
ID = Intrinsic::riscv_sha256sig0;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sha256sig1:
ID = Intrinsic::riscv_sha256sig1;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sha256sum0:
ID = Intrinsic::riscv_sha256sum0;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sha256sum1:
ID = Intrinsic::riscv_sha256sum1;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sha512sig0_64:
ID = Intrinsic::riscv_sha512sig0;
break;
case RISCV::BI__builtin_riscv_sha512sig0h_32:
ID = Intrinsic::riscv_sha512sig0h;
break;
case RISCV::BI__builtin_riscv_sha512sig0l_32:
ID = Intrinsic::riscv_sha512sig0l;
break;
case RISCV::BI__builtin_riscv_sha512sig1_64:
ID = Intrinsic::riscv_sha512sig1;
break;
case RISCV::BI__builtin_riscv_sha512sig1h_32:
ID = Intrinsic::riscv_sha512sig1h;
break;
case RISCV::BI__builtin_riscv_sha512sig1l_32:
ID = Intrinsic::riscv_sha512sig1l;
break;
case RISCV::BI__builtin_riscv_sha512sum0_64:
ID = Intrinsic::riscv_sha512sum0;
break;
case RISCV::BI__builtin_riscv_sha512sum0r_32:
ID = Intrinsic::riscv_sha512sum0r;
break;
case RISCV::BI__builtin_riscv_sha512sum1_64:
ID = Intrinsic::riscv_sha512sum1;
break;
case RISCV::BI__builtin_riscv_sha512sum1r_32:
ID = Intrinsic::riscv_sha512sum1r;
break;
// Zksed
case RISCV::BI__builtin_riscv_sm4ks:
ID = Intrinsic::riscv_sm4ks;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sm4ed:
ID = Intrinsic::riscv_sm4ed;
IntrinsicTypes = {ResultType};
break;
// Zksh
case RISCV::BI__builtin_riscv_sm3p0:
ID = Intrinsic::riscv_sm3p0;
IntrinsicTypes = {ResultType};
break;
case RISCV::BI__builtin_riscv_sm3p1:
ID = Intrinsic::riscv_sm3p1;
IntrinsicTypes = {ResultType};
break;
// Vector builtins are handled from here.
#include "clang/Basic/riscv_vector_builtin_cg.inc"
}
assert(ID != Intrinsic::not_intrinsic);
llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
return Builder.CreateCall(F, Ops, "");
}