forked from OSchip/llvm-project
3830 lines
132 KiB
TableGen
3830 lines
132 KiB
TableGen
//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Basic SystemZ instruction definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class InstSystemZ<int size, dag outs, dag ins, string asmstr,
|
|
list<dag> pattern> : Instruction {
|
|
let Namespace = "SystemZ";
|
|
|
|
dag OutOperandList = outs;
|
|
dag InOperandList = ins;
|
|
let Size = size;
|
|
let Pattern = pattern;
|
|
let AsmString = asmstr;
|
|
|
|
// Some instructions come in pairs, one having a 12-bit displacement
|
|
// and the other having a 20-bit displacement. Both instructions in
|
|
// the pair have the same DispKey and their DispSizes are "12" and "20"
|
|
// respectively.
|
|
string DispKey = "";
|
|
string DispSize = "none";
|
|
|
|
// Many register-based <INSN>R instructions have a memory-based <INSN>
|
|
// counterpart. OpKey uniquely identifies <INSN>R, while OpType is
|
|
// "reg" for <INSN>R and "mem" for <INSN>.
|
|
string OpKey = "";
|
|
string OpType = "none";
|
|
|
|
// Many distinct-operands instructions have older 2-operand equivalents.
|
|
// NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
|
|
// with NumOpsValue being "2" or "3" as appropriate.
|
|
string NumOpsKey = "";
|
|
string NumOpsValue = "none";
|
|
|
|
// True if this instruction is a simple D(X,B) load of a register
|
|
// (with no sign or zero extension).
|
|
bit SimpleBDXLoad = 0;
|
|
|
|
// True if this instruction is a simple D(X,B) store of a register
|
|
// (with no truncation).
|
|
bit SimpleBDXStore = 0;
|
|
|
|
// True if this instruction has a 20-bit displacement field.
|
|
bit Has20BitOffset = 0;
|
|
|
|
// True if addresses in this instruction have an index register.
|
|
bit HasIndex = 0;
|
|
|
|
// True if this is a 128-bit pseudo instruction that combines two 64-bit
|
|
// operations.
|
|
bit Is128Bit = 0;
|
|
|
|
// The access size of all memory operands in bytes, or 0 if not known.
|
|
bits<5> AccessBytes = 0;
|
|
|
|
// If the instruction sets CC to a useful value, this gives the mask
|
|
// of all possible CC results. The mask has the same form as
|
|
// SystemZ::CCMASK_*.
|
|
bits<4> CCValues = 0;
|
|
|
|
// The subset of CCValues that have the same meaning as they would after
|
|
// a comparison of the first operand against zero.
|
|
bits<4> CompareZeroCCMask = 0;
|
|
|
|
// True if the instruction is conditional and if the CC mask operand
|
|
// comes first (as for BRC, etc.).
|
|
bit CCMaskFirst = 0;
|
|
|
|
// Similar, but true if the CC mask operand comes last (as for LOC, etc.).
|
|
bit CCMaskLast = 0;
|
|
|
|
// True if the instruction is the "logical" rather than "arithmetic" form,
|
|
// in cases where a distinction exists.
|
|
bit IsLogical = 0;
|
|
|
|
let TSFlags{0} = SimpleBDXLoad;
|
|
let TSFlags{1} = SimpleBDXStore;
|
|
let TSFlags{2} = Has20BitOffset;
|
|
let TSFlags{3} = HasIndex;
|
|
let TSFlags{4} = Is128Bit;
|
|
let TSFlags{9-5} = AccessBytes;
|
|
let TSFlags{13-10} = CCValues;
|
|
let TSFlags{17-14} = CompareZeroCCMask;
|
|
let TSFlags{18} = CCMaskFirst;
|
|
let TSFlags{19} = CCMaskLast;
|
|
let TSFlags{20} = IsLogical;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mappings between instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return the version of an instruction that has an unsigned 12-bit
|
|
// displacement.
|
|
def getDisp12Opcode : InstrMapping {
|
|
let FilterClass = "InstSystemZ";
|
|
let RowFields = ["DispKey"];
|
|
let ColFields = ["DispSize"];
|
|
let KeyCol = ["20"];
|
|
let ValueCols = [["12"]];
|
|
}
|
|
|
|
// Return the version of an instruction that has a signed 20-bit displacement.
|
|
def getDisp20Opcode : InstrMapping {
|
|
let FilterClass = "InstSystemZ";
|
|
let RowFields = ["DispKey"];
|
|
let ColFields = ["DispSize"];
|
|
let KeyCol = ["12"];
|
|
let ValueCols = [["20"]];
|
|
}
|
|
|
|
// Return the memory form of a register instruction.
|
|
def getMemOpcode : InstrMapping {
|
|
let FilterClass = "InstSystemZ";
|
|
let RowFields = ["OpKey"];
|
|
let ColFields = ["OpType"];
|
|
let KeyCol = ["reg"];
|
|
let ValueCols = [["mem"]];
|
|
}
|
|
|
|
// Return the 3-operand form of a 2-operand instruction.
|
|
def getThreeOperandOpcode : InstrMapping {
|
|
let FilterClass = "InstSystemZ";
|
|
let RowFields = ["NumOpsKey"];
|
|
let ColFields = ["NumOpsValue"];
|
|
let KeyCol = ["2"];
|
|
let ValueCols = [["3"]];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction formats
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Formats are specified using operand field declarations of the form:
|
|
//
|
|
// bits<4> Rn : register input or output for operand n
|
|
// bits<5> Vn : vector register input or output for operand n
|
|
// bits<m> In : immediate value of width m for operand n
|
|
// bits<4> BDn : address operand n, which has a base and a displacement
|
|
// bits<m> XBDn : address operand n, which has an index, a base and a
|
|
// displacement
|
|
// bits<m> VBDn : address operand n, which has a vector index, a base and a
|
|
// displacement
|
|
// bits<4> Xn : index register for address operand n
|
|
// bits<4> Mn : mode value for operand n
|
|
//
|
|
// The operand numbers ("n" in the list above) follow the architecture manual.
|
|
// Assembly operands sometimes have a different order; in particular, R3 often
|
|
// is often written between operands 1 and 2.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class InstE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<2, outs, ins, asmstr, pattern> {
|
|
field bits<16> Inst;
|
|
field bits<16> SoftFail = 0;
|
|
|
|
let Inst = op;
|
|
}
|
|
|
|
class InstI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<2, outs, ins, asmstr, pattern> {
|
|
field bits<16> Inst;
|
|
field bits<16> SoftFail = 0;
|
|
|
|
bits<8> I1;
|
|
|
|
let Inst{15-8} = op;
|
|
let Inst{7-0} = I1;
|
|
}
|
|
|
|
class InstRIa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<16> I2;
|
|
|
|
let Inst{31-24} = op{11-4};
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-16} = op{3-0};
|
|
let Inst{15-0} = I2;
|
|
}
|
|
|
|
class InstRIb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<16> RI2;
|
|
|
|
let Inst{31-24} = op{11-4};
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-16} = op{3-0};
|
|
let Inst{15-0} = RI2;
|
|
}
|
|
|
|
class InstRIc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> M1;
|
|
bits<16> RI2;
|
|
|
|
let Inst{31-24} = op{11-4};
|
|
let Inst{23-20} = M1;
|
|
let Inst{19-16} = op{3-0};
|
|
let Inst{15-0} = RI2;
|
|
}
|
|
|
|
class InstRIEa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<16> I2;
|
|
bits<4> M3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = 0;
|
|
let Inst{31-16} = I2;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> M3;
|
|
bits<16> RI4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = R2;
|
|
let Inst{31-16} = RI4;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<8> I2;
|
|
bits<4> M3;
|
|
bits<16> RI4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = M3;
|
|
let Inst{31-16} = RI4;
|
|
let Inst{15-8} = I2;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<16> I2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = R3;
|
|
let Inst{31-16} = I2;
|
|
let Inst{15-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<8> I3;
|
|
bits<8> I4;
|
|
bits<8> I5;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = R2;
|
|
let Inst{31-24} = I3;
|
|
let Inst{23-16} = I4;
|
|
let Inst{15-8} = I5;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRIEg<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> M3;
|
|
bits<16> I2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = M3;
|
|
let Inst{31-16} = I2;
|
|
let Inst{15-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRILa<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<32> I2;
|
|
|
|
let Inst{47-40} = op{11-4};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = op{3-0};
|
|
let Inst{31-0} = I2;
|
|
}
|
|
|
|
class InstRILb<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<32> RI2;
|
|
|
|
let Inst{47-40} = op{11-4};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = op{3-0};
|
|
let Inst{31-0} = RI2;
|
|
}
|
|
|
|
class InstRILc<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> M1;
|
|
bits<32> RI2;
|
|
|
|
let Inst{47-40} = op{11-4};
|
|
let Inst{39-36} = M1;
|
|
let Inst{35-32} = op{3-0};
|
|
let Inst{31-0} = RI2;
|
|
}
|
|
|
|
class InstRIS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<8> I2;
|
|
bits<4> M3;
|
|
bits<16> BD4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = M3;
|
|
let Inst{31-16} = BD4;
|
|
let Inst{15-8} = I2;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<2, outs, ins, asmstr, pattern> {
|
|
field bits<16> Inst;
|
|
field bits<16> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
|
|
let Inst{15-8} = op;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<4> R2;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-12} = R1;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-4} = R3;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-8} = 0;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRFa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> R3;
|
|
bits<4> M4;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-12} = R3;
|
|
let Inst{11-8} = M4;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRFb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> R3;
|
|
bits<4> M4;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-12} = R3;
|
|
let Inst{11-8} = M4;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRFc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> M3;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRFe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> M3;
|
|
bits<4> M4;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = M4;
|
|
let Inst{7-4} = R1;
|
|
let Inst{3-0} = R2;
|
|
}
|
|
|
|
class InstRRS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R2;
|
|
bits<4> M3;
|
|
bits<16> BD4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = R2;
|
|
let Inst{31-16} = BD4;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstRXa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<20> XBD2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-0} = XBD2;
|
|
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRXb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> M1;
|
|
bits<20> XBD2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-20} = M1;
|
|
let Inst{19-0} = XBD2;
|
|
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<20> XBD2;
|
|
bits<4> M3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-16} = XBD2;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<20> XBD2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R3;
|
|
let Inst{35-16} = XBD2;
|
|
let Inst{15-12} = R1;
|
|
let Inst{11-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRXYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<28> XBD2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-8} = XBD2;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let Has20BitOffset = 1;
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRXYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> M1;
|
|
bits<28> XBD2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = M1;
|
|
let Inst{35-8} = XBD2;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let Has20BitOffset = 1;
|
|
let HasIndex = 1;
|
|
}
|
|
|
|
class InstRSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<16> BD2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-16} = R3;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstRSb<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> M3;
|
|
bits<16> BD2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-16} = M3;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstRSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<16> RI2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-20} = R1;
|
|
let Inst{19-16} = R3;
|
|
let Inst{15-0} = RI2;
|
|
}
|
|
|
|
class InstRSYa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> R3;
|
|
bits<24> BD2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = R3;
|
|
let Inst{31-8} = BD2;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let Has20BitOffset = 1;
|
|
}
|
|
|
|
class InstRSYb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<4> M3;
|
|
bits<24> BD2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = M3;
|
|
let Inst{31-8} = BD2;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let Has20BitOffset = 1;
|
|
}
|
|
|
|
class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<16> BD1;
|
|
bits<8> I2;
|
|
|
|
let Inst{31-24} = op;
|
|
let Inst{23-16} = I2;
|
|
let Inst{15-0} = BD1;
|
|
}
|
|
|
|
class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<16> BD1;
|
|
bits<16> I2;
|
|
|
|
let Inst{47-32} = op;
|
|
let Inst{31-16} = BD1;
|
|
let Inst{15-0} = I2;
|
|
}
|
|
|
|
class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<24> BD1;
|
|
bits<8> I2;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-32} = I2;
|
|
let Inst{31-8} = BD1;
|
|
let Inst{7-0} = op{7-0};
|
|
|
|
let Has20BitOffset = 1;
|
|
}
|
|
|
|
class InstSSa<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<24> BDL1;
|
|
bits<16> BD2;
|
|
|
|
let Inst{47-40} = op;
|
|
let Inst{39-16} = BDL1;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstSSd<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<20> RBD1;
|
|
bits<16> BD2;
|
|
bits<4> R3;
|
|
|
|
let Inst{47-40} = op;
|
|
let Inst{39-36} = RBD1{19-16};
|
|
let Inst{35-32} = R3;
|
|
let Inst{31-16} = RBD1{15-0};
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstSSE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<16> BD1;
|
|
bits<16> BD2;
|
|
|
|
let Inst{47-32} = op;
|
|
let Inst{31-16} = BD1;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstSSF<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<16> BD1;
|
|
bits<16> BD2;
|
|
bits<4> R3;
|
|
|
|
let Inst{47-40} = op{11-4};
|
|
let Inst{39-36} = R3;
|
|
let Inst{35-32} = op{3-0};
|
|
let Inst{31-16} = BD1;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<4, outs, ins, asmstr, pattern> {
|
|
field bits<32> Inst;
|
|
field bits<32> SoftFail = 0;
|
|
|
|
bits<16> BD2;
|
|
|
|
let Inst{31-16} = op;
|
|
let Inst{15-0} = BD2;
|
|
}
|
|
|
|
class InstVRIa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<16> I2;
|
|
bits<4> M3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = 0;
|
|
let Inst{31-16} = I2;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRIb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<8> I2;
|
|
bits<8> I3;
|
|
bits<4> M4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = 0;
|
|
let Inst{31-24} = I2;
|
|
let Inst{23-16} = I3;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRIc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V3;
|
|
bits<16> I2;
|
|
bits<4> M4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V3{3-0};
|
|
let Inst{31-16} = I2;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V3{4};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRId<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<5> V3;
|
|
bits<8> I4;
|
|
bits<4> M5;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-28} = V3{3-0};
|
|
let Inst{27-24} = 0;
|
|
let Inst{23-16} = I4;
|
|
let Inst{15-12} = M5;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9} = V3{4};
|
|
let Inst{8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRIe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<12> I3;
|
|
bits<4> M4;
|
|
bits<4> M5;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-20} = I3;
|
|
let Inst{19-16} = M5;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
// Depending on the instruction mnemonic, certain bits may be or-ed into
|
|
// the M4 value provided as explicit operand. These are passed as m4or.
|
|
class InstVRRa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
|
|
bits<4> m4or = 0>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<4> M3;
|
|
bits<4> M4;
|
|
bits<4> M5;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-24} = 0;
|
|
let Inst{23-20} = M5;
|
|
let Inst{19} = !if (!eq (m4or{3}, 1), 1, M4{3});
|
|
let Inst{18} = !if (!eq (m4or{2}, 1), 1, M4{2});
|
|
let Inst{17} = !if (!eq (m4or{1}, 1), 1, M4{1});
|
|
let Inst{16} = !if (!eq (m4or{0}, 1), 1, M4{0});
|
|
let Inst{15-12} = M3;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
// Depending on the instruction mnemonic, certain bits may be or-ed into
|
|
// the M5 value provided as explicit operand. These are passed as m5or.
|
|
class InstVRRb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
|
|
bits<4> m5or = 0>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<5> V3;
|
|
bits<4> M4;
|
|
bits<4> M5;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-28} = V3{3-0};
|
|
let Inst{27-24} = 0;
|
|
let Inst{23} = !if (!eq (m5or{3}, 1), 1, M5{3});
|
|
let Inst{22} = !if (!eq (m5or{2}, 1), 1, M5{2});
|
|
let Inst{21} = !if (!eq (m5or{1}, 1), 1, M5{1});
|
|
let Inst{20} = !if (!eq (m5or{0}, 1), 1, M5{0});
|
|
let Inst{19-16} = 0;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9} = V3{4};
|
|
let Inst{8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRRc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<5> V3;
|
|
bits<4> M4;
|
|
bits<4> M5;
|
|
bits<4> M6;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-28} = V3{3-0};
|
|
let Inst{27-24} = 0;
|
|
let Inst{23-20} = M6;
|
|
let Inst{19-16} = M5;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9} = V3{4};
|
|
let Inst{8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
// Depending on the instruction mnemonic, certain bits may be or-ed into
|
|
// the M6 value provided as explicit operand. These are passed as m6or.
|
|
class InstVRRd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern,
|
|
bits<4> m6or = 0>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<5> V3;
|
|
bits<5> V4;
|
|
bits<4> M5;
|
|
bits<4> M6;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-28} = V3{3-0};
|
|
let Inst{27-24} = M5;
|
|
let Inst{23} = !if (!eq (m6or{3}, 1), 1, M6{3});
|
|
let Inst{22} = !if (!eq (m6or{2}, 1), 1, M6{2});
|
|
let Inst{21} = !if (!eq (m6or{1}, 1), 1, M6{1});
|
|
let Inst{20} = !if (!eq (m6or{0}, 1), 1, M6{0});
|
|
let Inst{19-16} = 0;
|
|
let Inst{15-12} = V4{3-0};
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9} = V3{4};
|
|
let Inst{8} = V4{4};
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRRe<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<5> V2;
|
|
bits<5> V3;
|
|
bits<5> V4;
|
|
bits<4> M5;
|
|
bits<4> M6;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V2{3-0};
|
|
let Inst{31-28} = V3{3-0};
|
|
let Inst{27-24} = M6;
|
|
let Inst{23-20} = 0;
|
|
let Inst{19-16} = M5;
|
|
let Inst{15-12} = V4{3-0};
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V2{4};
|
|
let Inst{9} = V3{4};
|
|
let Inst{8} = V4{4};
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRRf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<4> R2;
|
|
bits<4> R3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = R2;
|
|
let Inst{31-28} = R3;
|
|
let Inst{27-12} = 0;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRSa<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<16> BD2;
|
|
bits<5> V3;
|
|
bits<4> M4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = V3{3-0};
|
|
let Inst{31-16} = BD2;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = V3{4};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRSb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<16> BD2;
|
|
bits<4> R3;
|
|
bits<4> M4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-32} = R3;
|
|
let Inst{31-16} = BD2;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRSc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<4> R1;
|
|
bits<16> BD2;
|
|
bits<5> V3;
|
|
bits<4> M4;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = R1;
|
|
let Inst{35-32} = V3{3-0};
|
|
let Inst{31-16} = BD2;
|
|
let Inst{15-12} = M4;
|
|
let Inst{11} = 0;
|
|
let Inst{10} = V3{4};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRV<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<21> VBD2;
|
|
bits<4> M3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-16} = VBD2{19-0};
|
|
let Inst{15-12} = M3;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10} = VBD2{20};
|
|
let Inst{9-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
class InstVRX<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSystemZ<6, outs, ins, asmstr, pattern> {
|
|
field bits<48> Inst;
|
|
field bits<48> SoftFail = 0;
|
|
|
|
bits<5> V1;
|
|
bits<20> XBD2;
|
|
bits<4> M3;
|
|
|
|
let Inst{47-40} = op{15-8};
|
|
let Inst{39-36} = V1{3-0};
|
|
let Inst{35-16} = XBD2;
|
|
let Inst{15-12} = M3;
|
|
let Inst{11} = V1{4};
|
|
let Inst{10-8} = 0;
|
|
let Inst{7-0} = op{7-0};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction classes for .insn directives
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class DirectiveInsnE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstE<0, outs, ins, asmstr, pattern> {
|
|
bits<16> enc;
|
|
|
|
let Inst = enc;
|
|
}
|
|
|
|
class DirectiveInsnRI<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRIa<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-24} = enc{31-24};
|
|
let Inst{19-16} = enc{19-16};
|
|
}
|
|
|
|
class DirectiveInsnRIE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRIEd<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRIL<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRILa<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
string type;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{35-32} = enc{35-32};
|
|
}
|
|
|
|
class DirectiveInsnRIS<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRIS<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRR<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRR<0, outs, ins, asmstr, pattern> {
|
|
bits<16> enc;
|
|
|
|
let Inst{15-8} = enc{15-8};
|
|
}
|
|
|
|
class DirectiveInsnRRE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRRE<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-16} = enc{31-16};
|
|
}
|
|
|
|
class DirectiveInsnRRF<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRRFa<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-16} = enc{31-16};
|
|
}
|
|
|
|
class DirectiveInsnRRS<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRRS<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRS<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRSa<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-24} = enc{31-24};
|
|
}
|
|
|
|
// RSE is like RSY except with a 12 bit displacement (instead of 20).
|
|
class DirectiveInsnRSE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRSYa<6, outs, ins, asmstr, pattern> {
|
|
bits <48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{31-16} = BD2{15-0};
|
|
let Inst{15-8} = 0;
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRSI<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRSI<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-24} = enc{31-24};
|
|
}
|
|
|
|
class DirectiveInsnRSY<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRSYa<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRX<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRXa<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-24} = enc{31-24};
|
|
}
|
|
|
|
class DirectiveInsnRXE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRXE<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let M3 = 0;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRXF<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRXF<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnRXY<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstRXYa<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnS<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstS<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-16} = enc{31-16};
|
|
}
|
|
|
|
class DirectiveInsnSI<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSI<0, outs, ins, asmstr, pattern> {
|
|
bits<32> enc;
|
|
|
|
let Inst{31-24} = enc{31-24};
|
|
}
|
|
|
|
class DirectiveInsnSIY<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSIY<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{7-0} = enc{7-0};
|
|
}
|
|
|
|
class DirectiveInsnSIL<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSIL<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-32} = enc{47-32};
|
|
}
|
|
|
|
class DirectiveInsnSS<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSSd<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
}
|
|
|
|
class DirectiveInsnSSE<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSSE<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-32} = enc{47-32};
|
|
}
|
|
|
|
class DirectiveInsnSSF<dag outs, dag ins, string asmstr, list<dag> pattern>
|
|
: InstSSF<0, outs, ins, asmstr, pattern> {
|
|
bits<48> enc;
|
|
|
|
let Inst{47-40} = enc{47-40};
|
|
let Inst{35-32} = enc{35-32};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Variants of instructions with condition mask
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// For instructions using a condition mask (e.g. conditional branches,
|
|
// compare-and-branch instructions, or conditional move instructions),
|
|
// we generally need to create multiple instruction patterns:
|
|
//
|
|
// - One used for code generation, which encodes the condition mask as an
|
|
// MI operand, but writes out an extended mnemonic for better readability.
|
|
// - One pattern for the base form of the instruction with an explicit
|
|
// condition mask (encoded as a plain integer MI operand).
|
|
// - Specific patterns for each extended mnemonic, where the condition mask
|
|
// is implied by the pattern name and not otherwise encoded at all.
|
|
//
|
|
// We need the latter primarily for the assembler and disassembler, since the
|
|
// assembler parser is not able to decode part of an instruction mnemonic
|
|
// into an operand. Thus we provide separate patterns for each mnemonic.
|
|
//
|
|
// Note that in some cases there are two different mnemonics for the same
|
|
// condition mask. In this case we cannot have both instructions available
|
|
// to the disassembler at the same time since the encodings are not distinct.
|
|
// Therefore the alternate forms are marked isAsmParserOnly.
|
|
//
|
|
// We don't make one of the two names an alias of the other because
|
|
// we need the custom parsing routines to select the correct register class.
|
|
//
|
|
// This section provides helpers for generating the specific forms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// A class to describe a variant of an instruction with condition mask.
|
|
class CondVariant<bits<4> ccmaskin, string suffixin, bit alternatein> {
|
|
// The fixed condition mask to use.
|
|
bits<4> ccmask = ccmaskin;
|
|
|
|
// The suffix to use for the extended assembler mnemonic.
|
|
string suffix = suffixin;
|
|
|
|
// Whether this is an alternate that needs to be marked isAsmParserOnly.
|
|
bit alternate = alternatein;
|
|
}
|
|
|
|
// Condition mask 15 means "always true", which is used to define
|
|
// unconditional branches as a variant of conditional branches.
|
|
def CondAlways : CondVariant<15, "", 0>;
|
|
|
|
// Condition masks for general instructions that can set all 4 bits.
|
|
def CondVariantO : CondVariant<1, "o", 0>;
|
|
def CondVariantH : CondVariant<2, "h", 0>;
|
|
def CondVariantP : CondVariant<2, "p", 1>;
|
|
def CondVariantNLE : CondVariant<3, "nle", 0>;
|
|
def CondVariantL : CondVariant<4, "l", 0>;
|
|
def CondVariantM : CondVariant<4, "m", 1>;
|
|
def CondVariantNHE : CondVariant<5, "nhe", 0>;
|
|
def CondVariantLH : CondVariant<6, "lh", 0>;
|
|
def CondVariantNE : CondVariant<7, "ne", 0>;
|
|
def CondVariantNZ : CondVariant<7, "nz", 1>;
|
|
def CondVariantE : CondVariant<8, "e", 0>;
|
|
def CondVariantZ : CondVariant<8, "z", 1>;
|
|
def CondVariantNLH : CondVariant<9, "nlh", 0>;
|
|
def CondVariantHE : CondVariant<10, "he", 0>;
|
|
def CondVariantNL : CondVariant<11, "nl", 0>;
|
|
def CondVariantNM : CondVariant<11, "nm", 1>;
|
|
def CondVariantLE : CondVariant<12, "le", 0>;
|
|
def CondVariantNH : CondVariant<13, "nh", 0>;
|
|
def CondVariantNP : CondVariant<13, "np", 1>;
|
|
def CondVariantNO : CondVariant<14, "no", 0>;
|
|
|
|
// A helper class to look up one of the above by name.
|
|
class CV<string name>
|
|
: CondVariant<!cast<CondVariant>("CondVariant"#name).ccmask,
|
|
!cast<CondVariant>("CondVariant"#name).suffix,
|
|
!cast<CondVariant>("CondVariant"#name).alternate>;
|
|
|
|
// Condition masks for integer instructions (e.g. compare-and-branch).
|
|
// This is like the list above, except that condition 3 is not possible
|
|
// and that the low bit of the mask is therefore always 0. This means
|
|
// that each condition has two names. Conditions "o" and "no" are not used.
|
|
def IntCondVariantH : CondVariant<2, "h", 0>;
|
|
def IntCondVariantNLE : CondVariant<2, "nle", 1>;
|
|
def IntCondVariantL : CondVariant<4, "l", 0>;
|
|
def IntCondVariantNHE : CondVariant<4, "nhe", 1>;
|
|
def IntCondVariantLH : CondVariant<6, "lh", 0>;
|
|
def IntCondVariantNE : CondVariant<6, "ne", 1>;
|
|
def IntCondVariantE : CondVariant<8, "e", 0>;
|
|
def IntCondVariantNLH : CondVariant<8, "nlh", 1>;
|
|
def IntCondVariantHE : CondVariant<10, "he", 0>;
|
|
def IntCondVariantNL : CondVariant<10, "nl", 1>;
|
|
def IntCondVariantLE : CondVariant<12, "le", 0>;
|
|
def IntCondVariantNH : CondVariant<12, "nh", 1>;
|
|
|
|
// A helper class to look up one of the above by name.
|
|
class ICV<string name>
|
|
: CondVariant<!cast<CondVariant>("IntCondVariant"#name).ccmask,
|
|
!cast<CondVariant>("IntCondVariant"#name).suffix,
|
|
!cast<CondVariant>("IntCondVariant"#name).alternate>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction definitions with semantics
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes have the form [Cond]<Category><Format>, where <Format> is one
|
|
// of the formats defined above and where <Category> describes the inputs
|
|
// and outputs. "Cond" is used if the instruction is conditional,
|
|
// in which case the 4-bit condition-code mask is added as a final operand.
|
|
// <Category> can be one of:
|
|
//
|
|
// Inherent:
|
|
// One register output operand and no input operands.
|
|
//
|
|
// StoreInherent:
|
|
// One address operand. The instruction stores to the address.
|
|
//
|
|
// SideEffectInherent:
|
|
// No input or output operands, but causes some side effect.
|
|
//
|
|
// Branch:
|
|
// One branch target. The instruction branches to the target.
|
|
//
|
|
// Call:
|
|
// One output operand and one branch target. The instruction stores
|
|
// the return address to the output operand and branches to the target.
|
|
//
|
|
// CmpBranch:
|
|
// Two input operands and one optional branch target. The instruction
|
|
// compares the two input operands and branches or traps on the result.
|
|
//
|
|
// BranchUnary:
|
|
// One register output operand, one register input operand and
|
|
// one branch displacement. The instructions stores a modified
|
|
// form of the source register in the destination register and
|
|
// branches on the result.
|
|
//
|
|
// BranchBinary:
|
|
// One register output operand, two register input operands and one branch
|
|
// displacement. The instructions stores a modified form of one of the
|
|
// source registers in the destination register and branches on the result.
|
|
//
|
|
// LoadMultiple:
|
|
// One address input operand and two explicit output operands.
|
|
// The instruction loads a range of registers from the address,
|
|
// with the explicit operands giving the first and last register
|
|
// to load. Other loaded registers are added as implicit definitions.
|
|
//
|
|
// StoreMultiple:
|
|
// Two explicit input register operands and an address operand.
|
|
// The instruction stores a range of registers to the address,
|
|
// with the explicit operands giving the first and last register
|
|
// to store. Other stored registers are added as implicit uses.
|
|
//
|
|
// StoreLength:
|
|
// One value operand, one length operand and one address operand.
|
|
// The instruction stores the value operand to the address but
|
|
// doesn't write more than the number of bytes specified by the
|
|
// length operand.
|
|
//
|
|
// LoadAddress:
|
|
// One register output operand and one address operand.
|
|
//
|
|
// Unary:
|
|
// One register output operand and one input operand.
|
|
//
|
|
// Store:
|
|
// One address operand and one other input operand. The instruction
|
|
// stores to the address.
|
|
//
|
|
// SideEffectUnary:
|
|
// One input operand. No output operands, but causes some side effect.
|
|
//
|
|
// Binary:
|
|
// One register output operand and two input operands.
|
|
//
|
|
// StoreBinary:
|
|
// One address operand and two other input operands. The instruction
|
|
// stores to the address.
|
|
//
|
|
// SideEffectBinary:
|
|
// Two input operands. No output operands, but causes some side effect.
|
|
//
|
|
// Compare:
|
|
// Two input operands and an implicit CC output operand.
|
|
//
|
|
// Test:
|
|
// Two input operands and an implicit CC output operand. The second
|
|
// input operand is an "address" operand used as a test class mask.
|
|
//
|
|
// Ternary:
|
|
// One register output operand and three input operands.
|
|
//
|
|
// SideEffectTernary:
|
|
// Three input operands. No output operands, but causes some side effect.
|
|
//
|
|
// Quaternary:
|
|
// One register output operand and four input operands.
|
|
//
|
|
// LoadAndOp:
|
|
// One output operand and two input operands, one of which is an address.
|
|
// The instruction both reads from and writes to the address.
|
|
//
|
|
// CmpSwap:
|
|
// One output operand and three input operands, one of which is an address.
|
|
// The instruction both reads from and writes to the address.
|
|
//
|
|
// RotateSelect:
|
|
// One output operand and five input operands. The first two operands
|
|
// are registers and the other three are immediates.
|
|
//
|
|
// Prefetch:
|
|
// One 4-bit immediate operand and one address operand. The immediate
|
|
// operand is 1 for a load prefetch and 2 for a store prefetch.
|
|
//
|
|
// The format determines which input operands are tied to output operands,
|
|
// and also determines the shape of any address operand.
|
|
//
|
|
// Multiclasses of the form <Category><Format>Pair define two instructions,
|
|
// one with <Category><Format> and one with <Category><Format>Y. The name
|
|
// of the first instruction has no suffix, the name of the second has
|
|
// an extra "y".
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
SDPatternOperator operator>
|
|
: InstRRE<opcode, (outs cls:$R1), (ins),
|
|
mnemonic#"\t$R1",
|
|
[(set cls:$R1, (operator))]> {
|
|
let R2 = 0;
|
|
}
|
|
|
|
class InherentVRIa<string mnemonic, bits<16> opcode, bits<16> value>
|
|
: InstVRIa<opcode, (outs VR128:$V1), (ins), mnemonic#"\t$V1", []> {
|
|
let I2 = value;
|
|
let M3 = 0;
|
|
}
|
|
|
|
class StoreInherentS<string mnemonic, bits<16> opcode>
|
|
: InstS<opcode, (outs), (ins bdaddr12only:$BD2),
|
|
mnemonic#"\t$BD2", []> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class SideEffectInherentE<string mnemonic, bits<16>opcode>
|
|
: InstE<opcode, (outs), (ins), mnemonic, []> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class SideEffectInherentS<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator>
|
|
: InstS<opcode, (outs), (ins), mnemonic, [(operator)]> {
|
|
let hasSideEffects = 1;
|
|
let BD2 = 0;
|
|
}
|
|
|
|
// Allow an optional TLS marker symbol to generate TLS call relocations.
|
|
class CallRI<string mnemonic, bits<12> opcode>
|
|
: InstRIb<opcode, (outs), (ins GR64:$R1, brtarget16tls:$RI2),
|
|
mnemonic#"\t$R1, $RI2", []>;
|
|
|
|
// Allow an optional TLS marker symbol to generate TLS call relocations.
|
|
class CallRIL<string mnemonic, bits<12> opcode>
|
|
: InstRILb<opcode, (outs), (ins GR64:$R1, brtarget32tls:$RI2),
|
|
mnemonic#"\t$R1, $RI2", []>;
|
|
|
|
class CallRR<string mnemonic, bits<8> opcode>
|
|
: InstRR<opcode, (outs), (ins GR64:$R1, ADDR64:$R2),
|
|
mnemonic#"\t$R1, $R2", []>;
|
|
|
|
class CallRX<string mnemonic, bits<8> opcode>
|
|
: InstRXa<opcode, (outs), (ins GR64:$R1, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2", []>;
|
|
|
|
class CondBranchRI<string mnemonic, bits<12> opcode,
|
|
SDPatternOperator operator = null_frag>
|
|
: InstRIc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget16:$RI2),
|
|
!subst("#", "${M1}", mnemonic)#"\t$RI2",
|
|
[(operator cond4:$valid, cond4:$M1, bb:$RI2)]> {
|
|
let CCMaskFirst = 1;
|
|
}
|
|
|
|
class AsmCondBranchRI<string mnemonic, bits<12> opcode>
|
|
: InstRIc<opcode, (outs), (ins imm32zx4:$M1, brtarget16:$RI2),
|
|
mnemonic#"\t$M1, $RI2", []>;
|
|
|
|
class FixedCondBranchRI<CondVariant V, string mnemonic, bits<12> opcode,
|
|
SDPatternOperator operator = null_frag>
|
|
: InstRIc<opcode, (outs), (ins brtarget16:$RI2),
|
|
!subst("#", V.suffix, mnemonic)#"\t$RI2", [(operator bb:$RI2)]> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M1 = V.ccmask;
|
|
}
|
|
|
|
class CondBranchRIL<string mnemonic, bits<12> opcode>
|
|
: InstRILc<opcode, (outs), (ins cond4:$valid, cond4:$M1, brtarget32:$RI2),
|
|
!subst("#", "${M1}", mnemonic)#"\t$RI2", []> {
|
|
let CCMaskFirst = 1;
|
|
}
|
|
|
|
class AsmCondBranchRIL<string mnemonic, bits<12> opcode>
|
|
: InstRILc<opcode, (outs), (ins imm32zx4:$M1, brtarget32:$RI2),
|
|
mnemonic#"\t$M1, $RI2", []>;
|
|
|
|
class FixedCondBranchRIL<CondVariant V, string mnemonic, bits<12> opcode>
|
|
: InstRILc<opcode, (outs), (ins brtarget32:$RI2),
|
|
!subst("#", V.suffix, mnemonic)#"\t$RI2", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M1 = V.ccmask;
|
|
}
|
|
|
|
class CondBranchRR<string mnemonic, bits<8> opcode>
|
|
: InstRR<opcode, (outs), (ins cond4:$valid, cond4:$R1, GR64:$R2),
|
|
!subst("#", "${R1}", mnemonic)#"\t$R2", []> {
|
|
let CCMaskFirst = 1;
|
|
}
|
|
|
|
class AsmCondBranchRR<string mnemonic, bits<8> opcode>
|
|
: InstRR<opcode, (outs), (ins imm32zx4:$R1, GR64:$R2),
|
|
mnemonic#"\t$R1, $R2", []>;
|
|
|
|
class FixedCondBranchRR<CondVariant V, string mnemonic, bits<8> opcode,
|
|
SDPatternOperator operator = null_frag>
|
|
: InstRR<opcode, (outs), (ins ADDR64:$R2),
|
|
!subst("#", V.suffix, mnemonic)#"\t$R2", [(operator ADDR64:$R2)]> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let R1 = V.ccmask;
|
|
}
|
|
|
|
class CondBranchRX<string mnemonic, bits<8> opcode>
|
|
: InstRXb<opcode, (outs), (ins cond4:$valid, cond4:$M1, bdxaddr12only:$XBD2),
|
|
!subst("#", "${M1}", mnemonic)#"\t$XBD2", []> {
|
|
let CCMaskFirst = 1;
|
|
}
|
|
|
|
class AsmCondBranchRX<string mnemonic, bits<8> opcode>
|
|
: InstRXb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$M1, $XBD2", []>;
|
|
|
|
class FixedCondBranchRX<CondVariant V, string mnemonic, bits<8> opcode>
|
|
: InstRXb<opcode, (outs), (ins bdxaddr12only:$XBD2),
|
|
!subst("#", V.suffix, mnemonic)#"\t$XBD2", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M1 = V.ccmask;
|
|
}
|
|
|
|
class CmpBranchRIEa<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $I2", []>;
|
|
|
|
class AsmCmpBranchRIEa<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $I2, $M3", []>;
|
|
|
|
class FixedCmpBranchRIEa<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEa<opcode, (outs), (ins cls:$R1, imm:$I2),
|
|
mnemonic#V.suffix#"\t$R1, $I2", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CmpBranchRIEaPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRIEa<mnemonic, opcode, cls, imm>;
|
|
def Asm : AsmCmpBranchRIEa<mnemonic, opcode, cls, imm>;
|
|
}
|
|
|
|
class CmpBranchRIEb<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRIEb<opcode, (outs),
|
|
(ins cls:$R1, cls:$R2, cond4:$M3, brtarget16:$RI4),
|
|
mnemonic#"$M3\t$R1, $R2, $RI4", []>;
|
|
|
|
class AsmCmpBranchRIEb<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRIEb<opcode, (outs),
|
|
(ins cls:$R1, cls:$R2, imm32zx4:$M3, brtarget16:$RI4),
|
|
mnemonic#"\t$R1, $R2, $M3, $RI4", []>;
|
|
|
|
class FixedCmpBranchRIEb<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRIEb<opcode, (outs), (ins cls:$R1, cls:$R2, brtarget16:$RI4),
|
|
mnemonic#V.suffix#"\t$R1, $R2, $RI4", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CmpBranchRIEbPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRIEb<mnemonic, opcode, cls>;
|
|
def Asm : AsmCmpBranchRIEb<mnemonic, opcode, cls>;
|
|
}
|
|
|
|
class CmpBranchRIEc<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEc<opcode, (outs),
|
|
(ins cls:$R1, imm:$I2, cond4:$M3, brtarget16:$RI4),
|
|
mnemonic#"$M3\t$R1, $I2, $RI4", []>;
|
|
|
|
class AsmCmpBranchRIEc<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEc<opcode, (outs),
|
|
(ins cls:$R1, imm:$I2, imm32zx4:$M3, brtarget16:$RI4),
|
|
mnemonic#"\t$R1, $I2, $M3, $RI4", []>;
|
|
|
|
class FixedCmpBranchRIEc<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEc<opcode, (outs), (ins cls:$R1, imm:$I2, brtarget16:$RI4),
|
|
mnemonic#V.suffix#"\t$R1, $I2, $RI4", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CmpBranchRIEcPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRIEc<mnemonic, opcode, cls, imm>;
|
|
def Asm : AsmCmpBranchRIEc<mnemonic, opcode, cls, imm>;
|
|
}
|
|
|
|
class CmpBranchRRFc<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $R2", []>;
|
|
|
|
class AsmCmpBranchRRFc<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $R2, $M3", []>;
|
|
|
|
multiclass CmpBranchRRFcPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRRFc<mnemonic, opcode, cls>;
|
|
def Asm : AsmCmpBranchRRFc<mnemonic, opcode, cls>;
|
|
}
|
|
|
|
class FixedCmpBranchRRFc<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRFc<opcode, (outs), (ins cls:$R1, cls:$R2),
|
|
mnemonic#V.suffix#"\t$R1, $R2", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
class CmpBranchRRS<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRS<opcode, (outs),
|
|
(ins cls:$R1, cls:$R2, cond4:$M3, bdaddr12only:$BD4),
|
|
mnemonic#"$M3\t$R1, $R2, $BD4", []>;
|
|
|
|
class AsmCmpBranchRRS<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRS<opcode, (outs),
|
|
(ins cls:$R1, cls:$R2, imm32zx4:$M3, bdaddr12only:$BD4),
|
|
mnemonic#"\t$R1, $R2, $M3, $BD4", []>;
|
|
|
|
class FixedCmpBranchRRS<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls>
|
|
: InstRRS<opcode, (outs), (ins cls:$R1, cls:$R2, bdaddr12only:$BD4),
|
|
mnemonic#V.suffix#"\t$R1, $R2, $BD4", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CmpBranchRRSPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRRS<mnemonic, opcode, cls>;
|
|
def Asm : AsmCmpBranchRRS<mnemonic, opcode, cls>;
|
|
}
|
|
|
|
class CmpBranchRIS<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIS<opcode, (outs),
|
|
(ins cls:$R1, imm:$I2, cond4:$M3, bdaddr12only:$BD4),
|
|
mnemonic#"$M3\t$R1, $I2, $BD4", []>;
|
|
|
|
class AsmCmpBranchRIS<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIS<opcode, (outs),
|
|
(ins cls:$R1, imm:$I2, imm32zx4:$M3, bdaddr12only:$BD4),
|
|
mnemonic#"\t$R1, $I2, $M3, $BD4", []>;
|
|
|
|
class FixedCmpBranchRIS<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIS<opcode, (outs), (ins cls:$R1, imm:$I2, bdaddr12only:$BD4),
|
|
mnemonic#V.suffix#"\t$R1, $I2, $BD4", []> {
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CmpBranchRISPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CmpBranchRIS<mnemonic, opcode, cls, imm>;
|
|
def Asm : AsmCmpBranchRIS<mnemonic, opcode, cls, imm>;
|
|
}
|
|
|
|
class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
|
|
: InstRIb<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$RI2),
|
|
mnemonic##"\t$R1, $RI2", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BranchBinaryRSI<string mnemonic, bits<8> opcode, RegisterOperand cls>
|
|
: InstRSI<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, brtarget16:$RI2),
|
|
mnemonic##"\t$R1, $R3, $RI2", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class LoadMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
|
|
AddressingMode mode = bdaddr12only>
|
|
: InstRSa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2", []> {
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYa<opcode, (outs cls:$R1, cls:$R3), (ins mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2", []> {
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
multiclass LoadMultipleRSPair<string mnemonic, bits<8> rsOpcode,
|
|
bits<16> rsyOpcode, RegisterOperand cls> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : LoadMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : LoadMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class LoadMultipleVRSa<string mnemonic, bits<16> opcode>
|
|
: InstVRSa<opcode, (outs VR128:$V1, VR128:$V3), (ins bdaddr12only:$BD2),
|
|
mnemonic#"\t$V1, $V3, $BD2", []> {
|
|
let M4 = 0;
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls>
|
|
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
|
|
mnemonic#"\t$R1, $RI2",
|
|
[(operator cls:$R1, pcrel32:$RI2)]> {
|
|
let mayStore = 1;
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, mode:$XBD2)]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, mode:$XBD2)]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
bits<5> bytes> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
|
|
bdxaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class StoreVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<5> bytes, bits<4> type = 0>
|
|
: InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$V1, $XBD2",
|
|
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2)))]> {
|
|
let M3 = type;
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class StoreLengthVRSb<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, bits<5> bytes>
|
|
: InstVRSb<opcode, (outs), (ins VR128:$V1, GR32:$R3, bdaddr12only:$BD2),
|
|
mnemonic#"\t$V1, $R3, $BD2",
|
|
[(operator VR128:$V1, GR32:$R3, bdaddr12only:$BD2)]> {
|
|
let M4 = 0;
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class StoreMultipleRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
|
|
AddressingMode mode = bdaddr12only>
|
|
: InstRSa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2", []> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYa<opcode, (outs), (ins cls:$R1, cls:$R3, mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2", []> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
multiclass StoreMultipleRSPair<string mnemonic, bits<8> rsOpcode,
|
|
bits<16> rsyOpcode, RegisterOperand cls> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : StoreMultipleRS<mnemonic, rsOpcode, cls, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : StoreMultipleRSY<mnemonic#"y", rsyOpcode, cls, bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class StoreMultipleVRSa<string mnemonic, bits<16> opcode>
|
|
: InstVRSa<opcode, (outs), (ins VR128:$V1, VR128:$V3, bdaddr12only:$BD2),
|
|
mnemonic#"\t$V1, $V3, $BD2", []> {
|
|
let M4 = 0;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
// StoreSI* instructions are used to store an integer to memory, but the
|
|
// addresses are more restricted than for normal stores. If we are in the
|
|
// situation of having to force either the address into a register or the
|
|
// constant into a register, it's usually better to do the latter.
|
|
// We therefore match the address in the same way as a normal store and
|
|
// only use the StoreSI* instruction if the matched address is suitable.
|
|
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
Immediate imm>
|
|
: InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
Immediate imm>
|
|
: InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator imm:$I2, mviaddr20pair:$BD1)]> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
Immediate imm>
|
|
: InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
|
|
SDPatternOperator operator, Immediate imm> {
|
|
let DispKey = mnemonic in {
|
|
let DispSize = "12" in
|
|
def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
|
|
let DispSize = "20" in
|
|
def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
|
|
}
|
|
}
|
|
|
|
class StoreSSE<string mnemonic, bits<16> opcode>
|
|
: InstSSE<opcode, (outs), (ins bdaddr12only:$BD1, bdaddr12only:$BD2),
|
|
mnemonic#"\t$BD1, $BD2", []> {
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class CondStoreRSY<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $BD2", []> {
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
let CCMaskLast = 1;
|
|
}
|
|
|
|
// Like CondStoreRSY, but used for the raw assembly form. The condition-code
|
|
// mask is the third operand rather than being part of the mnemonic.
|
|
class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $BD2, $M3", []> {
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
// Like CondStoreRSY, but with a fixed CC mask.
|
|
class FixedCondStoreRSY<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs), (ins cls:$R1, mode:$BD2),
|
|
mnemonic#V.suffix#"\t$R1, $BD2", []> {
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CondStoreRSYPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
|
|
def Asm : AsmCondStoreRSY<mnemonic, opcode, cls, bytes, mode>;
|
|
}
|
|
|
|
class SideEffectUnaryI<string mnemonic, bits<8> opcode, Immediate imm>
|
|
: InstI<opcode, (outs), (ins imm:$I1),
|
|
mnemonic#"\t$I1", []> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class SideEffectUnaryRR<string mnemonic, bits<8>opcode, RegisterOperand cls>
|
|
: InstRR<opcode, (outs), (ins cls:$R1),
|
|
mnemonic#"\t$R1", []> {
|
|
let hasSideEffects = 1;
|
|
let R2 = 0;
|
|
}
|
|
|
|
class SideEffectUnaryS<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator>
|
|
: InstS<opcode, (outs), (ins bdaddr12only:$BD2),
|
|
mnemonic#"\t$BD2", [(operator bdaddr12only:$BD2)]> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class LoadAddressRX<string mnemonic, bits<8> opcode,
|
|
SDPatternOperator operator, AddressingMode mode>
|
|
: InstRXa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set GR64:$R1, (operator mode:$XBD2))]>;
|
|
|
|
class LoadAddressRXY<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, AddressingMode mode>
|
|
: InstRXYa<opcode, (outs GR64:$R1), (ins mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set GR64:$R1, (operator mode:$XBD2))]>;
|
|
|
|
multiclass LoadAddressRXPair<string mnemonic, bits<8> rxOpcode,
|
|
bits<16> rxyOpcode, SDPatternOperator operator> {
|
|
let DispKey = mnemonic in {
|
|
let DispSize = "12" in
|
|
def "" : LoadAddressRX<mnemonic, rxOpcode, operator, laaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : LoadAddressRXY<mnemonic#"y", rxyOpcode, operator, laaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class LoadAddressRIL<string mnemonic, bits<12> opcode,
|
|
SDPatternOperator operator>
|
|
: InstRILb<opcode, (outs GR64:$R1), (ins pcrel32:$RI2),
|
|
mnemonic#"\t$R1, $RI2",
|
|
[(set GR64:$R1, (operator pcrel32:$RI2))]>;
|
|
|
|
class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(set cls1:$R1, (operator cls2:$R2))]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
}
|
|
|
|
class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(set cls1:$R1, (operator cls2:$R2))]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
}
|
|
|
|
// These instructions are generated by if conversion. The old value of R1
|
|
// is added as an implicit use.
|
|
class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
|
|
RegisterOperand cls2>
|
|
: InstRRFc<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $R2", []> {
|
|
let CCMaskLast = 1;
|
|
}
|
|
|
|
class CondUnaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
Immediate imm>
|
|
: InstRIEg<opcode, (outs cls:$R1), (ins imm:$I2, cond4:$valid, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $I2", []> {
|
|
let CCMaskLast = 1;
|
|
}
|
|
|
|
// Like CondUnaryRRF, but used for the raw assembly form. The condition-code
|
|
// mask is the third operand rather than being part of the mnemonic.
|
|
class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
|
|
RegisterOperand cls2>
|
|
: InstRRFc<opcode, (outs cls1:$R1),
|
|
(ins cls1:$R1src, cls2:$R2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $R2, $M3", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class AsmCondUnaryRIE<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
Immediate imm>
|
|
: InstRIEg<opcode, (outs cls:$R1),
|
|
(ins cls:$R1src, imm:$I2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $I2, $M3", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
// Like CondUnaryRRF, but with a fixed CC mask.
|
|
class FixedCondUnaryRRF<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRRFc<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
|
|
mnemonic#V.suffix#"\t$R1, $R2", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
class FixedCondUnaryRIE<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEg<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
mnemonic#V.suffix#"\t$R1, $I2", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CondUnaryRRFPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls1, RegisterOperand cls2> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CondUnaryRRF<mnemonic, opcode, cls1, cls2>;
|
|
def Asm : AsmCondUnaryRRF<mnemonic, opcode, cls1, cls2>;
|
|
}
|
|
|
|
multiclass CondUnaryRIEPair<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, Immediate imm> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CondUnaryRIE<mnemonic, opcode, cls, imm>;
|
|
def Asm : AsmCondUnaryRIE<mnemonic, opcode, cls, imm>;
|
|
}
|
|
|
|
class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIa<opcode, (outs cls:$R1), (ins imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(set cls:$R1, (operator imm:$I2))]>;
|
|
|
|
class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRILa<opcode, (outs cls:$R1), (ins imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(set cls:$R1, (operator imm:$I2))]>;
|
|
|
|
class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls>
|
|
: InstRILb<opcode, (outs cls:$R1), (ins pcrel32:$RI2),
|
|
mnemonic#"\t$R1, $RI2",
|
|
[(set cls:$R1, (operator pcrel32:$RI2))]> {
|
|
let mayLoad = 1;
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
class CondUnaryRSY<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
bits<5> bytes, AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs cls:$R1),
|
|
(ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$M3),
|
|
mnemonic#"$M3\t$R1, $BD2",
|
|
[(set cls:$R1,
|
|
(z_select_ccmask (operator bdaddr20only:$BD2), cls:$R1src,
|
|
cond4:$valid, cond4:$M3))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let CCMaskLast = 1;
|
|
}
|
|
|
|
// Like CondUnaryRSY, but used for the raw assembly form. The condition-code
|
|
// mask is the third operand rather than being part of the mnemonic.
|
|
class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$M3),
|
|
mnemonic#"\t$R1, $BD2, $M3", []> {
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
// Like CondUnaryRSY, but with a fixed CC mask.
|
|
class FixedCondUnaryRSY<CondVariant V, string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
|
|
mnemonic#V.suffix#"\t$R1, $BD2", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let isAsmParserOnly = V.alternate;
|
|
let M3 = V.ccmask;
|
|
}
|
|
|
|
multiclass CondUnaryRSYPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdaddr20only> {
|
|
let isCodeGenOnly = 1 in
|
|
def "" : CondUnaryRSY<mnemonic, opcode, operator, cls, bytes, mode>;
|
|
def Asm : AsmCondUnaryRSY<mnemonic, opcode, cls, bytes, mode>;
|
|
}
|
|
|
|
|
|
class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: InstRXa<opcode, (outs cls:$R1), (ins mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator mode:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes>
|
|
: InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let M3 = 0;
|
|
}
|
|
|
|
class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: InstRXYa<opcode, (outs cls:$R1), (ins mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator mode:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
bits<5> bytes> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
|
|
bdxaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class UnaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, Immediate imm, bits<4> type = 0>
|
|
: InstVRIa<opcode, (outs tr.op:$V1), (ins imm:$I2),
|
|
mnemonic#"\t$V1, $I2",
|
|
[(set tr.op:$V1, (tr.vt (operator imm:$I2)))]> {
|
|
let M3 = type;
|
|
}
|
|
|
|
class UnaryVRIaGeneric<string mnemonic, bits<16> opcode, Immediate imm>
|
|
: InstVRIa<opcode, (outs VR128:$V1), (ins imm:$I2, imm32zx4:$M3),
|
|
mnemonic#"\t$V1, $I2, $M3", []>;
|
|
|
|
class UnaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0,
|
|
bits<4> m5 = 0>
|
|
: InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2),
|
|
mnemonic#"\t$V1, $V2",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2))))]> {
|
|
let M3 = type;
|
|
let M4 = m4;
|
|
let M5 = m5;
|
|
}
|
|
|
|
class UnaryVRRaGeneric<string mnemonic, bits<16> opcode, bits<4> m4 = 0,
|
|
bits<4> m5 = 0>
|
|
: InstVRRa<opcode, (outs VR128:$V1), (ins VR128:$V2, imm32zx4:$M3),
|
|
mnemonic#"\t$V1, $V2, $M3", []> {
|
|
let M4 = m4;
|
|
let M5 = m5;
|
|
}
|
|
|
|
class UnaryVRRaFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0>
|
|
: InstVRRa<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V2, $M3, $M4", []> {
|
|
let M5 = m5;
|
|
}
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M5.
|
|
// The form that does not set CC has an extra operand to optionally allow
|
|
// specifying arbitrary M5 values in assembler.
|
|
multiclass UnaryExtraVRRaSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type> {
|
|
let M3 = type, M4 = 0 in
|
|
def "" : InstVRRa<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M5", []>;
|
|
def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2))),
|
|
(!cast<Instruction>(NAME) tr2.op:$V2, 0)>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2",
|
|
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2, 0)>;
|
|
let Defs = [CC] in
|
|
def S : UnaryVRRa<mnemonic##"s", opcode, operator_cc, tr1, tr2,
|
|
type, 0, 1>;
|
|
}
|
|
|
|
multiclass UnaryExtraVRRaSPairGeneric<string mnemonic, bits<16> opcode> {
|
|
let M4 = 0 in
|
|
def "" : InstVRRa<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M3, $M5", []>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $M3",
|
|
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2,
|
|
imm32zx4:$M3, 0)>;
|
|
}
|
|
|
|
class UnaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<5> bytes, bits<4> type = 0>
|
|
: InstVRX<opcode, (outs tr.op:$V1), (ins bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$V1, $XBD2",
|
|
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2)))]> {
|
|
let M3 = type;
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class UnaryVRXGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
|
|
mnemonic#"\t$V1, $XBD2, $M3", []> {
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
class SideEffectBinaryRX<string mnemonic, bits<8> opcode,
|
|
RegisterOperand cls>
|
|
: InstRXa<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
|
|
mnemonic##"\t$R1, $XBD2", []> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class SideEffectBinaryRILPC<string mnemonic, bits<12> opcode,
|
|
RegisterOperand cls>
|
|
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
|
|
mnemonic##"\t$R1, $RI2", []> {
|
|
let hasSideEffects = 1;
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
class SideEffectBinarySIL<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, Immediate imm>
|
|
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2", [(operator bdaddr12only:$BD1, imm:$I2)]> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BinaryRRFa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2,
|
|
RegisterOperand cls3>
|
|
: InstRRFa<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
|
|
mnemonic#"\t$R1, $R2, $R3",
|
|
[(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
|
|
let M4 = 0;
|
|
}
|
|
|
|
multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
|
|
SDPatternOperator operator, RegisterOperand cls1,
|
|
RegisterOperand cls2> {
|
|
let NumOpsKey = mnemonic in {
|
|
let NumOpsValue = "3" in
|
|
def K : BinaryRRFa<mnemonic#"k", opcode2, null_frag, cls1, cls1, cls2>,
|
|
Requires<[FeatureDistinctOps]>;
|
|
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
|
|
def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
|
|
}
|
|
}
|
|
|
|
multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
|
|
SDPatternOperator operator, RegisterOperand cls1,
|
|
RegisterOperand cls2> {
|
|
let NumOpsKey = mnemonic in {
|
|
let NumOpsValue = "3" in
|
|
def K : BinaryRRFa<mnemonic#"k", opcode2, null_frag, cls1, cls1, cls2>,
|
|
Requires<[FeatureDistinctOps]>;
|
|
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
|
|
def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
|
|
}
|
|
}
|
|
|
|
class BinaryRRFb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2,
|
|
RegisterOperand cls3>
|
|
: InstRRFb<opcode, (outs cls1:$R1), (ins cls2:$R2, cls3:$R3),
|
|
mnemonic#"\t$R1, $R3, $R2",
|
|
[(set cls1:$R1, (operator cls2:$R2, cls3:$R3))]> {
|
|
let M4 = 0;
|
|
}
|
|
|
|
class BinaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
|
|
RegisterOperand cls2>
|
|
: InstRRFe<opcode, (outs cls1:$R1), (ins imm32zx4:$M3, cls2:$R2),
|
|
mnemonic#"\t$R1, $M3, $R2", []> {
|
|
let M4 = 0;
|
|
}
|
|
|
|
class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
|
|
mnemonic#"\t$R1, $R3, $I2",
|
|
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
|
|
|
|
multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm> {
|
|
let NumOpsKey = mnemonic in {
|
|
let NumOpsValue = "3" in
|
|
def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
|
|
Requires<[FeatureDistinctOps]>;
|
|
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
|
|
def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
|
|
}
|
|
}
|
|
|
|
class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRILa<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls>
|
|
: InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
|
|
mnemonic#"\t$R1, $BD2",
|
|
[(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
|
|
let R3 = 0;
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls>
|
|
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2",
|
|
[(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
|
|
|
|
multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
|
|
SDPatternOperator operator, RegisterOperand cls> {
|
|
let NumOpsKey = mnemonic in {
|
|
let NumOpsValue = "3" in
|
|
def K : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
|
|
Requires<[FeatureDistinctOps]>;
|
|
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
|
|
def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
|
|
}
|
|
}
|
|
|
|
class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: InstRXa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
|
|
: InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator cls:$R1src,
|
|
(load bdxaddr12only:$XBD2)))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let M3 = 0;
|
|
}
|
|
|
|
class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: InstRXYa<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
SDPatternOperator load, bits<5> bytes> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
|
|
bdxaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
|
|
bdxaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
Operand imm, AddressingMode mode = bdaddr12only>
|
|
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
Operand imm, AddressingMode mode = bdaddr20only>
|
|
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
|
|
bits<16> siyOpcode, SDPatternOperator operator,
|
|
Operand imm> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class BinaryVRIb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<4> type>
|
|
: InstVRIb<opcode, (outs tr.op:$V1), (ins imm32zx8:$I2, imm32zx8:$I3),
|
|
mnemonic#"\t$V1, $I2, $I3",
|
|
[(set tr.op:$V1, (tr.vt (operator imm32zx8:$I2, imm32zx8:$I3)))]> {
|
|
let M4 = type;
|
|
}
|
|
|
|
class BinaryVRIbGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRIb<opcode, (outs VR128:$V1),
|
|
(ins imm32zx8:$I2, imm32zx8:$I3, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $I2, $I3, $M4", []>;
|
|
|
|
class BinaryVRIc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type>
|
|
: InstVRIc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, imm32zx16:$I2),
|
|
mnemonic#"\t$V1, $V3, $I2",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V3),
|
|
imm32zx16:$I2)))]> {
|
|
let M4 = type;
|
|
}
|
|
|
|
class BinaryVRIcGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRIc<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V3, imm32zx16:$I2, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V3, $I2, $M4", []>;
|
|
|
|
class BinaryVRIe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m5>
|
|
: InstVRIe<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx12:$I3),
|
|
mnemonic#"\t$V1, $V2, $I3",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
imm32zx12:$I3)))]> {
|
|
let M4 = type;
|
|
let M5 = m5;
|
|
}
|
|
|
|
class BinaryVRIeFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRIe<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $I3, $M4, $M5", []>;
|
|
|
|
class BinaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m4 = 0>
|
|
: InstVRRa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M5",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
imm32zx12:$M5)))]> {
|
|
let M3 = type;
|
|
let M4 = m4;
|
|
}
|
|
|
|
class BinaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRa<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;
|
|
|
|
class BinaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type = 0,
|
|
bits<4> modifier = 0>
|
|
: InstVRRb<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
|
|
mnemonic#"\t$V1, $V2, $V3",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3))))]> {
|
|
let M4 = type;
|
|
let M5 = modifier;
|
|
}
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M5.
|
|
multiclass BinaryVRRbSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc, TypedReg tr1,
|
|
TypedReg tr2, bits<4> type, bits<4> modifier = 0> {
|
|
def "" : BinaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
|
|
!and (modifier, 14)>;
|
|
let Defs = [CC] in
|
|
def S : BinaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
|
|
!add (!and (modifier, 14), 1)>;
|
|
}
|
|
|
|
class BinaryVRRbSPairGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRb<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M5.
|
|
// The form that does not set CC has an extra operand to optionally allow
|
|
// specifying arbitrary M5 values in assembler.
|
|
multiclass BinaryExtraVRRbSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type> {
|
|
let M4 = type in
|
|
def "" : InstVRRb<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M5", []>;
|
|
def : Pat<(tr1.vt (operator (tr2.vt tr2.op:$V2), (tr2.vt tr2.op:$V3))),
|
|
(!cast<Instruction>(NAME) tr2.op:$V2, tr2.op:$V3, 0)>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
|
|
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
|
|
tr2.op:$V3, 0)>;
|
|
let Defs = [CC] in
|
|
def S : BinaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type, 1>;
|
|
}
|
|
|
|
multiclass BinaryExtraVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
|
|
def "" : InstVRRb<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
|
|
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
|
|
imm32zx4:$M4, 0)>;
|
|
}
|
|
|
|
class BinaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type = 0, bits<4> m5 = 0,
|
|
bits<4> m6 = 0>
|
|
: InstVRRc<opcode, (outs tr1.op:$V1), (ins tr2.op:$V2, tr2.op:$V3),
|
|
mnemonic#"\t$V1, $V2, $V3",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3))))]> {
|
|
let M4 = type;
|
|
let M5 = m5;
|
|
let M6 = m6;
|
|
}
|
|
|
|
class BinaryVRRcGeneric<string mnemonic, bits<16> opcode, bits<4> m5 = 0,
|
|
bits<4> m6 = 0>
|
|
: InstVRRc<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4", []> {
|
|
let M5 = m5;
|
|
let M6 = m6;
|
|
}
|
|
|
|
class BinaryVRRcFloatGeneric<string mnemonic, bits<16> opcode, bits<4> m6 = 0>
|
|
: InstVRRc<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []> {
|
|
let M6 = m6;
|
|
}
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M5.
|
|
multiclass BinaryVRRcSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc, TypedReg tr1,
|
|
TypedReg tr2, bits<4> type, bits<4> m5,
|
|
bits<4> modifier = 0> {
|
|
def "" : BinaryVRRc<mnemonic, opcode, operator, tr1, tr2, type,
|
|
m5, !and (modifier, 14)>;
|
|
let Defs = [CC] in
|
|
def S : BinaryVRRc<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
|
|
m5, !add (!and (modifier, 14), 1)>;
|
|
}
|
|
|
|
class BinaryVRRcSPairFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRc<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
|
|
imm32zx4:$M6),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4, $M5, $M6", []>;
|
|
|
|
class BinaryVRRf<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr>
|
|
: InstVRRf<opcode, (outs tr.op:$V1), (ins GR64:$R2, GR64:$R3),
|
|
mnemonic#"\t$V1, $R2, $R3",
|
|
[(set tr.op:$V1, (tr.vt (operator GR64:$R2, GR64:$R3)))]>;
|
|
|
|
class BinaryVRSa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type>
|
|
: InstVRSa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V3, shift12only:$BD2),
|
|
mnemonic#"\t$V1, $V3, $BD2",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V3),
|
|
shift12only:$BD2)))]> {
|
|
let M4 = type;
|
|
}
|
|
|
|
class BinaryVRSaGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRSa<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V3, shift12only:$BD2, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V3, $BD2, $M4", []>;
|
|
|
|
class BinaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
bits<5> bytes>
|
|
: InstVRSb<opcode, (outs VR128:$V1), (ins GR32:$R3, bdaddr12only:$BD2),
|
|
mnemonic#"\t$V1, $R3, $BD2",
|
|
[(set VR128:$V1, (operator GR32:$R3, bdaddr12only:$BD2))]> {
|
|
let M4 = 0;
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class BinaryVRSc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<4> type>
|
|
: InstVRSc<opcode, (outs GR64:$R1), (ins tr.op:$V3, shift12only:$BD2),
|
|
mnemonic#"\t$R1, $V3, $BD2",
|
|
[(set GR64:$R1, (operator (tr.vt tr.op:$V3), shift12only:$BD2))]> {
|
|
let M4 = type;
|
|
}
|
|
|
|
class BinaryVRScGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRSc<opcode, (outs GR64:$R1),
|
|
(ins VR128:$V3, shift12only:$BD2, imm32zx4: $M4),
|
|
mnemonic#"\t$R1, $V3, $BD2, $M4", []>;
|
|
|
|
class BinaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<5> bytes>
|
|
: InstVRX<opcode, (outs VR128:$V1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
|
|
mnemonic#"\t$V1, $XBD2, $M3",
|
|
[(set tr.op:$V1, (tr.vt (operator bdxaddr12only:$XBD2,
|
|
imm32zx4:$M3)))]> {
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class StoreBinaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
|
|
Immediate index>
|
|
: InstVRV<opcode, (outs), (ins VR128:$V1, bdvaddr12only:$VBD2, index:$M3),
|
|
mnemonic#"\t$V1, $VBD2, $M3", []> {
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class StoreBinaryVRX<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, TypedReg tr, bits<5> bytes,
|
|
Immediate index>
|
|
: InstVRX<opcode, (outs), (ins tr.op:$V1, bdxaddr12only:$XBD2, index:$M3),
|
|
mnemonic#"\t$V1, $XBD2, $M3",
|
|
[(operator (tr.vt tr.op:$V1), bdxaddr12only:$XBD2, index:$M3)]> {
|
|
let mayStore = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class MemoryBinarySSd<string mnemonic, bits<8> opcode,
|
|
RegisterOperand cls>
|
|
: InstSSd<opcode, (outs),
|
|
(ins bdraddr12only:$RBD1, bdaddr12only:$BD2, cls:$R3),
|
|
mnemonic#"\t$RBD1, $BD2, $R3", []>;
|
|
|
|
class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(operator cls1:$R1, cls2:$R2)]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
let isCompare = 1;
|
|
}
|
|
|
|
class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
|
|
mnemonic#"\t$R1, $R2",
|
|
[(operator cls1:$R1, cls2:$R2)]> {
|
|
let OpKey = mnemonic#cls1;
|
|
let OpType = "reg";
|
|
let isCompare = 1;
|
|
}
|
|
|
|
class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRIa<opcode, (outs), (ins cls:$R1, imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(operator cls:$R1, imm:$I2)]> {
|
|
let isCompare = 1;
|
|
}
|
|
|
|
class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm>
|
|
: InstRILa<opcode, (outs), (ins cls:$R1, imm:$I2),
|
|
mnemonic#"\t$R1, $I2",
|
|
[(operator cls:$R1, imm:$I2)]> {
|
|
let isCompare = 1;
|
|
}
|
|
|
|
class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load>
|
|
: InstRILb<opcode, (outs), (ins cls:$R1, pcrel32:$RI2),
|
|
mnemonic#"\t$R1, $RI2",
|
|
[(operator cls:$R1, (load pcrel32:$RI2))]> {
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: InstRXa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, (load mode:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
|
|
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
let M3 = 0;
|
|
}
|
|
|
|
class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: InstRXYa<opcode, (outs), (ins cls:$R1, mode:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, (load mode:$XBD2))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
|
|
SDPatternOperator operator, RegisterOperand cls,
|
|
SDPatternOperator load, bits<5> bytes> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
|
|
load, bytes, bdxaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
|
|
load, bytes, bdxaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
SDPatternOperator load, Immediate imm,
|
|
AddressingMode mode = bdaddr12only>
|
|
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator (load mode:$BD1), imm:$I2)]> {
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
SDPatternOperator load, Immediate imm>
|
|
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator (load bdaddr12only:$BD1), imm:$I2)]> {
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
SDPatternOperator load, Immediate imm,
|
|
AddressingMode mode = bdaddr20only>
|
|
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
|
|
mnemonic#"\t$BD1, $I2",
|
|
[(operator (load mode:$BD1), imm:$I2)]> {
|
|
let isCompare = 1;
|
|
let mayLoad = 1;
|
|
}
|
|
|
|
multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
|
|
SDPatternOperator operator, SDPatternOperator load,
|
|
Immediate imm> {
|
|
let DispKey = mnemonic in {
|
|
let DispSize = "12" in
|
|
def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
|
|
bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class CompareVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr, bits<4> type>
|
|
: InstVRRa<opcode, (outs), (ins tr.op:$V1, tr.op:$V2),
|
|
mnemonic#"\t$V1, $V2",
|
|
[(operator (tr.vt tr.op:$V1), (tr.vt tr.op:$V2))]> {
|
|
let isCompare = 1;
|
|
let M3 = type;
|
|
let M4 = 0;
|
|
let M5 = 0;
|
|
}
|
|
|
|
class CompareVRRaGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRa<opcode, (outs), (ins VR128:$V1, VR128:$V2, imm32zx4:$M3),
|
|
mnemonic#"\t$V1, $V2, $M3", []> {
|
|
let isCompare = 1;
|
|
let M4 = 0;
|
|
let M5 = 0;
|
|
}
|
|
|
|
class CompareVRRaFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRa<opcode, (outs),
|
|
(ins VR64:$V1, VR64:$V2, imm32zx4:$M3, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V2, $M3, $M4", []> {
|
|
let isCompare = 1;
|
|
let M5 = 0;
|
|
}
|
|
|
|
class TestRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls>
|
|
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $XBD2",
|
|
[(operator cls:$R1, bdxaddr12only:$XBD2)]> {
|
|
let M3 = 0;
|
|
}
|
|
|
|
class SideEffectTernaryRRFc<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls1, RegisterOperand cls2,
|
|
Immediate imm>
|
|
: InstRRFc<opcode, (outs), (ins cls1:$R1, cls2:$R2, imm:$M3),
|
|
mnemonic#"\t$R1, $R2, $M3", []> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class SideEffectTernarySSF<string mnemonic, bits<12> opcode,
|
|
RegisterOperand cls>
|
|
: InstSSF<opcode, (outs),
|
|
(ins bdaddr12only:$BD1, bdaddr12only:$BD2, cls:$R3),
|
|
mnemonic#"\t$BD1, $BD2, $R3", []> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
class TernaryRRFe<string mnemonic, bits<16> opcode, RegisterOperand cls1,
|
|
RegisterOperand cls2>
|
|
: InstRRFe<opcode, (outs cls1:$R1),
|
|
(ins imm32zx4:$M3, cls2:$R2, imm32zx4:$M4),
|
|
mnemonic#"\t$R1, $M3, $R2, $M4", []>;
|
|
|
|
class TernaryRRD<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, RegisterOperand cls>
|
|
: InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
|
|
mnemonic#"\t$R1, $R3, $R2",
|
|
[(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
|
|
let OpKey = mnemonic#cls;
|
|
let OpType = "reg";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class TernaryRS<string mnemonic, bits<8> opcode, RegisterOperand cls,
|
|
bits<5> bytes, AddressingMode mode = bdaddr12only>
|
|
: InstRSb<opcode, (outs cls:$R1),
|
|
(ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
|
|
mnemonic#"\t$R1, $M3, $BD2", []> {
|
|
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class TernaryRSY<string mnemonic, bits<16> opcode, RegisterOperand cls,
|
|
bits<5> bytes, AddressingMode mode = bdaddr20only>
|
|
: InstRSYb<opcode, (outs cls:$R1),
|
|
(ins cls:$R1src, imm32zx4:$M3, mode:$BD2),
|
|
mnemonic#"\t$R1, $M3, $BD2", []> {
|
|
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
multiclass TernaryRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
|
|
RegisterOperand cls, bits<5> bytes> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : TernaryRS<mnemonic, rsOpcode, cls, bytes, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : TernaryRSY<mnemonic#"y", rsyOpcode, cls, bytes, bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
|
|
: InstRXF<opcode, (outs cls:$R1),
|
|
(ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
|
|
mnemonic#"\t$R1, $R3, $XBD2",
|
|
[(set cls:$R1, (operator cls:$R1src, cls:$R3,
|
|
(load bdxaddr12only:$XBD2)))]> {
|
|
let OpKey = mnemonic#"r"#cls;
|
|
let OpType = "mem";
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class TernaryVRIa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, Immediate imm, Immediate index>
|
|
: InstVRIa<opcode, (outs tr1.op:$V1), (ins tr2.op:$V1src, imm:$I2, index:$M3),
|
|
mnemonic#"\t$V1, $I2, $M3",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
|
|
imm:$I2, index:$M3)))]> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
}
|
|
|
|
class TernaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type>
|
|
: InstVRId<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
|
|
mnemonic#"\t$V1, $V2, $V3, $I4",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
imm32zx8:$I4)))]> {
|
|
let M5 = type;
|
|
}
|
|
|
|
class TernaryVRRa<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type, bits<4> m4or>
|
|
: InstVRRa<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M4, $M5",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
imm32zx4:$M4,
|
|
imm32zx4:$M5)))],
|
|
m4or> {
|
|
let M3 = type;
|
|
}
|
|
|
|
class TernaryVRRaFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRa<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, imm32zx4:$M3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $M3, $M4, $M5", []>;
|
|
|
|
class TernaryVRRb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type,
|
|
SDPatternOperator m5mask, bits<4> m5or>
|
|
: InstVRRb<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, m5mask:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M5",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
m5mask:$M5)))],
|
|
m5or> {
|
|
let M4 = type;
|
|
}
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M5.
|
|
// Also create aliases to make use of M5 operand optional in assembler.
|
|
multiclass TernaryOptVRRbSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type,
|
|
bits<4> modifier = 0> {
|
|
def "" : TernaryVRRb<mnemonic, opcode, operator, tr1, tr2, type,
|
|
imm32zx4even, !and (modifier, 14)>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3",
|
|
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
|
|
tr2.op:$V3, 0)>;
|
|
let Defs = [CC] in
|
|
def S : TernaryVRRb<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
|
|
imm32zx4even, !add(!and (modifier, 14), 1)>;
|
|
def : InstAlias<mnemonic#"s\t$V1, $V2, $V3",
|
|
(!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
|
|
tr2.op:$V3, 0)>;
|
|
}
|
|
|
|
multiclass TernaryOptVRRbSPairGeneric<string mnemonic, bits<16> opcode> {
|
|
def "" : InstVRRb<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, imm32zx4:$M4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4, $M5", []>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $M4",
|
|
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
|
|
imm32zx4:$M4, 0)>;
|
|
}
|
|
|
|
class TernaryVRRc<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2>
|
|
: InstVRRc<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $V2, $V3, $M4",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
imm32zx4:$M4)))]> {
|
|
let M5 = 0;
|
|
let M6 = 0;
|
|
}
|
|
|
|
class TernaryVRRd<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type = 0>
|
|
: InstVRRd<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
(tr1.vt tr1.op:$V4))))]> {
|
|
let M5 = type;
|
|
let M6 = 0;
|
|
}
|
|
|
|
class TernaryVRRdGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRd<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4, $M5", []> {
|
|
let M6 = 0;
|
|
}
|
|
|
|
class TernaryVRRe<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> m5 = 0, bits<4> type = 0>
|
|
: InstVRRe<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, tr1.op:$V4),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
(tr1.vt tr1.op:$V4))))]> {
|
|
let M5 = m5;
|
|
let M6 = type;
|
|
}
|
|
|
|
class TernaryVRReFloatGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRRe<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, VR128:$V4, imm32zx4:$M5, imm32zx4:$M6),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;
|
|
|
|
class TernaryVRSb<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, RegisterOperand cls, bits<4> type>
|
|
: InstVRSb<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V1src, cls:$R3, shift12only:$BD2),
|
|
mnemonic#"\t$V1, $R3, $BD2",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
|
|
cls:$R3,
|
|
shift12only:$BD2)))]> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
let M4 = type;
|
|
}
|
|
|
|
class TernaryVRSbGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRSb<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V1src, GR64:$R3, shift12only:$BD2, imm32zx4:$M4),
|
|
mnemonic#"\t$V1, $R3, $BD2, $M4", []> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
}
|
|
|
|
class TernaryVRV<string mnemonic, bits<16> opcode, bits<5> bytes,
|
|
Immediate index>
|
|
: InstVRV<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V1src, bdvaddr12only:$VBD2, index:$M3),
|
|
mnemonic#"\t$V1, $VBD2, $M3", []> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class TernaryVRX<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<5> bytes, Immediate index>
|
|
: InstVRX<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V1src, bdxaddr12only:$XBD2, index:$M3),
|
|
mnemonic#"\t$V1, $XBD2, $M3",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
|
|
bdxaddr12only:$XBD2,
|
|
index:$M3)))]> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
let mayLoad = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
class QuaternaryVRId<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type>
|
|
: InstVRId<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V1src, tr2.op:$V2, tr2.op:$V3, imm32zx8:$I4),
|
|
mnemonic#"\t$V1, $V2, $V3, $I4",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V1src),
|
|
(tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
imm32zx8:$I4)))]> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
let M5 = type;
|
|
}
|
|
|
|
class QuaternaryVRIdGeneric<string mnemonic, bits<16> opcode>
|
|
: InstVRId<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V1src, VR128:$V2, VR128:$V3,
|
|
imm32zx8:$I4, imm32zx4:$M5),
|
|
mnemonic#"\t$V1, $V2, $V3, $I4, $M5", []> {
|
|
let Constraints = "$V1 = $V1src";
|
|
let DisableEncoding = "$V1src";
|
|
}
|
|
|
|
class QuaternaryVRRd<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator, TypedReg tr1, TypedReg tr2,
|
|
bits<4> type, SDPatternOperator m6mask, bits<4> m6or>
|
|
: InstVRRd<opcode, (outs tr1.op:$V1),
|
|
(ins tr2.op:$V2, tr2.op:$V3, tr2.op:$V4, m6mask:$M6),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4, $M6",
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2),
|
|
(tr2.vt tr2.op:$V3),
|
|
(tr2.vt tr2.op:$V4),
|
|
m6mask:$M6)))],
|
|
m6or> {
|
|
let M5 = type;
|
|
}
|
|
|
|
// Declare a pair of instructions, one which sets CC and one which doesn't.
|
|
// The CC-setting form ends with "S" and sets the low bit of M6.
|
|
// Also create aliases to make use of M6 operand optional in assembler.
|
|
multiclass QuaternaryOptVRRdSPair<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator,
|
|
SDPatternOperator operator_cc,
|
|
TypedReg tr1, TypedReg tr2, bits<4> type,
|
|
bits<4> modifier = 0> {
|
|
def "" : QuaternaryVRRd<mnemonic, opcode, operator, tr1, tr2, type,
|
|
imm32zx4even, !and (modifier, 14)>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4",
|
|
(!cast<Instruction>(NAME) tr1.op:$V1, tr2.op:$V2,
|
|
tr2.op:$V3, tr2.op:$V4, 0)>;
|
|
let Defs = [CC] in
|
|
def S : QuaternaryVRRd<mnemonic##"s", opcode, operator_cc, tr1, tr2, type,
|
|
imm32zx4even, !add (!and (modifier, 14), 1)>;
|
|
def : InstAlias<mnemonic#"s\t$V1, $V2, $V3, $V4",
|
|
(!cast<Instruction>(NAME#"S") tr1.op:$V1, tr2.op:$V2,
|
|
tr2.op:$V3, tr2.op:$V4, 0)>;
|
|
}
|
|
|
|
multiclass QuaternaryOptVRRdSPairGeneric<string mnemonic, bits<16> opcode> {
|
|
def "" : InstVRRd<opcode, (outs VR128:$V1),
|
|
(ins VR128:$V2, VR128:$V3, VR128:$V4,
|
|
imm32zx4:$M5, imm32zx4:$M6),
|
|
mnemonic#"\t$V1, $V2, $V3, $V4, $M5, $M6", []>;
|
|
def : InstAlias<mnemonic#"\t$V1, $V2, $V3, $V4, $M5",
|
|
(!cast<Instruction>(NAME) VR128:$V1, VR128:$V2, VR128:$V3,
|
|
VR128:$V4, imm32zx4:$M5, 0)>;
|
|
}
|
|
|
|
class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, AddressingMode mode = bdaddr20only>
|
|
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2",
|
|
[(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, AddressingMode mode = bdaddr12only>
|
|
: InstRSa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2",
|
|
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
|
|
RegisterOperand cls, AddressingMode mode = bdaddr20only>
|
|
: InstRSYa<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
|
|
mnemonic#"\t$R1, $R3, $BD2",
|
|
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
}
|
|
|
|
multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
|
|
SDPatternOperator operator, RegisterOperand cls> {
|
|
let DispKey = mnemonic ## #cls in {
|
|
let DispSize = "12" in
|
|
def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
|
|
let DispSize = "20" in
|
|
def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
|
|
}
|
|
}
|
|
|
|
class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
|
|
RegisterOperand cls2>
|
|
: InstRIEf<opcode, (outs cls1:$R1),
|
|
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
|
|
imm32zx6:$I5),
|
|
mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
|
|
: InstRXYb<opcode, (outs), (ins imm32zx4:$M1, bdxaddr20only:$XBD2),
|
|
mnemonic##"\t$M1, $XBD2",
|
|
[(operator imm32zx4:$M1, bdxaddr20only:$XBD2)]>;
|
|
|
|
class PrefetchRILPC<string mnemonic, bits<12> opcode,
|
|
SDPatternOperator operator>
|
|
: InstRILc<opcode, (outs), (ins imm32zx4:$M1, pcrel32:$RI2),
|
|
mnemonic##"\t$M1, $RI2",
|
|
[(operator imm32zx4:$M1, pcrel32:$RI2)]> {
|
|
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
|
|
// However, BDXs have two extra operands and are therefore 6 units more
|
|
// complex.
|
|
let AddedComplexity = 7;
|
|
}
|
|
|
|
// A floating-point load-and test operation. Create both a normal unary
|
|
// operation and one that acts as a comparison against zero.
|
|
// Note that the comparison against zero operation is not available if we
|
|
// have vector support, since load-and-test instructions will partially
|
|
// clobber the target (vector) register.
|
|
multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
|
|
RegisterOperand cls> {
|
|
def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
|
|
let isCodeGenOnly = 1, Predicates = [FeatureNoVector] in
|
|
def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pseudo instructions
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Convenience instructions that get lowered to real instructions
|
|
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
|
|
// or SystemZInstrInfo::expandPostRAPseudo().
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class Pseudo<dag outs, dag ins, list<dag> pattern>
|
|
: InstSystemZ<0, outs, ins, "", pattern> {
|
|
let isPseudo = 1;
|
|
let isCodeGenOnly = 1;
|
|
}
|
|
|
|
// Like SideEffectBinarySIL, but expanded later.
|
|
class SideEffectBinarySILPseudo<SDPatternOperator operator, Immediate imm>
|
|
: Pseudo<(outs), (ins bdaddr12only:$BD1, imm:$I2),
|
|
[(operator bdaddr12only:$BD1, imm:$I2)]> {
|
|
let hasSideEffects = 1;
|
|
}
|
|
|
|
// Like UnaryRI, but expanded after RA depending on the choice of register.
|
|
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Pseudo<(outs cls:$R1), (ins imm:$I2),
|
|
[(set cls:$R1, (operator imm:$I2))]>;
|
|
|
|
// Like UnaryRXY, but expanded after RA depending on the choice of register.
|
|
class UnaryRXYPseudo<string key, SDPatternOperator operator,
|
|
RegisterOperand cls, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: Pseudo<(outs cls:$R1), (ins mode:$XBD2),
|
|
[(set cls:$R1, (operator mode:$XBD2))]> {
|
|
let OpKey = key#"r"#cls;
|
|
let OpType = "mem";
|
|
let mayLoad = 1;
|
|
let Has20BitOffset = 1;
|
|
let HasIndex = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
// Like UnaryRR, but expanded after RA depending on the choice of registers.
|
|
class UnaryRRPseudo<string key, SDPatternOperator operator,
|
|
RegisterOperand cls1, RegisterOperand cls2>
|
|
: Pseudo<(outs cls1:$R1), (ins cls2:$R2),
|
|
[(set cls1:$R1, (operator cls2:$R2))]> {
|
|
let OpKey = key#cls1;
|
|
let OpType = "reg";
|
|
}
|
|
|
|
// Like BinaryRI, but expanded after RA depending on the choice of register.
|
|
class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
}
|
|
|
|
// Like BinaryRIE, but expanded after RA depending on the choice of register.
|
|
class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
|
|
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
|
|
|
|
// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
|
|
multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
|
|
RegisterOperand cls, Immediate imm> {
|
|
let NumOpsKey = key in {
|
|
let NumOpsValue = "3" in
|
|
def K : BinaryRIEPseudo<null_frag, cls, imm>,
|
|
Requires<[FeatureHighWord, FeatureDistinctOps]>;
|
|
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
|
|
def "" : BinaryRIPseudo<operator, cls, imm>,
|
|
Requires<[FeatureHighWord]>;
|
|
}
|
|
}
|
|
|
|
// Like CompareRI, but expanded after RA depending on the choice of register.
|
|
class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
|
|
|
|
// Like CompareRXY, but expanded after RA depending on the choice of register.
|
|
class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
SDPatternOperator load, bits<5> bytes,
|
|
AddressingMode mode = bdxaddr20only>
|
|
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
|
|
[(operator cls:$R1, (load mode:$XBD2))]> {
|
|
let mayLoad = 1;
|
|
let Has20BitOffset = 1;
|
|
let HasIndex = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
// Like StoreRXY, but expanded after RA depending on the choice of register.
|
|
class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
|
|
bits<5> bytes, AddressingMode mode = bdxaddr20only>
|
|
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
|
|
[(operator cls:$R1, mode:$XBD2)]> {
|
|
let mayStore = 1;
|
|
let Has20BitOffset = 1;
|
|
let HasIndex = 1;
|
|
let AccessBytes = bytes;
|
|
}
|
|
|
|
// Like RotateSelectRIEf, but expanded after RA depending on the choice
|
|
// of registers.
|
|
class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
|
|
: Pseudo<(outs cls1:$R1),
|
|
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
|
|
imm32zx6:$I5),
|
|
[]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
let DisableEncoding = "$R1src";
|
|
}
|
|
|
|
// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
|
|
// the value of the PSW's 2-bit condition code field.
|
|
class SelectWrapper<RegisterOperand cls>
|
|
: Pseudo<(outs cls:$dst),
|
|
(ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
|
|
[(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
|
|
imm32zx4:$valid, imm32zx4:$cc))]> {
|
|
let usesCustomInserter = 1;
|
|
// Although the instructions used by these nodes do not in themselves
|
|
// change CC, the insertion requires new blocks, and CC cannot be live
|
|
// across them.
|
|
let Defs = [CC];
|
|
let Uses = [CC];
|
|
}
|
|
|
|
// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
|
|
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
|
|
SDPatternOperator load, AddressingMode mode> {
|
|
let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
|
|
def "" : Pseudo<(outs),
|
|
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
|
|
[(store (z_select_ccmask cls:$new, (load mode:$addr),
|
|
imm32zx4:$valid, imm32zx4:$cc),
|
|
mode:$addr)]>;
|
|
def Inv : Pseudo<(outs),
|
|
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
|
|
[(store (z_select_ccmask (load mode:$addr), cls:$new,
|
|
imm32zx4:$valid, imm32zx4:$cc),
|
|
mode:$addr)]>;
|
|
}
|
|
}
|
|
|
|
// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
|
|
// describe the second (non-memory) operand.
|
|
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
|
|
dag pat, DAGOperand operand>
|
|
: Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
|
|
[(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
|
|
let Defs = [CC];
|
|
let Has20BitOffset = 1;
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
let usesCustomInserter = 1;
|
|
let hasNoSchedulingInfo = 1;
|
|
}
|
|
|
|
// Specializations of AtomicLoadWBinary.
|
|
class AtomicLoadBinaryReg32<SDPatternOperator operator>
|
|
: AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
|
|
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
|
|
: AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
|
|
class AtomicLoadBinaryReg64<SDPatternOperator operator>
|
|
: AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
|
|
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
|
|
: AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
|
|
|
|
// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
|
|
// describe the second (non-memory) operand.
|
|
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
|
|
DAGOperand operand>
|
|
: Pseudo<(outs GR32:$dst),
|
|
(ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
|
|
ADDR32:$negbitshift, uimm32:$bitsize),
|
|
[(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
|
|
ADDR32:$negbitshift, uimm32:$bitsize))]> {
|
|
let Defs = [CC];
|
|
let Has20BitOffset = 1;
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
let usesCustomInserter = 1;
|
|
let hasNoSchedulingInfo = 1;
|
|
}
|
|
|
|
// Specializations of AtomicLoadWBinary.
|
|
class AtomicLoadWBinaryReg<SDPatternOperator operator>
|
|
: AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
|
|
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
|
|
: AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
|
|
|
|
// Define an instruction that operates on two fixed-length blocks of memory,
|
|
// and associated pseudo instructions for operating on blocks of any size.
|
|
// The Sequence form uses a straight-line sequence of instructions and
|
|
// the Loop form uses a loop of length-256 instructions followed by
|
|
// another instruction to handle the excess.
|
|
multiclass MemorySS<string mnemonic, bits<8> opcode,
|
|
SDPatternOperator sequence, SDPatternOperator loop> {
|
|
def "" : InstSSa<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
|
|
bdaddr12only:$BD2),
|
|
mnemonic##"\t$BDL1, $BD2", []>;
|
|
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
|
|
def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
|
|
imm64:$length),
|
|
[(sequence bdaddr12only:$dest, bdaddr12only:$src,
|
|
imm64:$length)]>;
|
|
def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
|
|
imm64:$length, GR64:$count256),
|
|
[(loop bdaddr12only:$dest, bdaddr12only:$src,
|
|
imm64:$length, GR64:$count256)]>;
|
|
}
|
|
}
|
|
|
|
// Define an instruction that operates on two strings, both terminated
|
|
// by the character in R0. The instruction processes a CPU-determinated
|
|
// number of bytes at a time and sets CC to 3 if the instruction needs
|
|
// to be repeated. Also define a pseudo instruction that represents
|
|
// the full loop (the main instruction plus the branch on CC==3).
|
|
multiclass StringRRE<string mnemonic, bits<16> opcode,
|
|
SDPatternOperator operator> {
|
|
def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
|
|
(ins GR64:$R1src, GR64:$R2src),
|
|
mnemonic#"\t$R1, $R2", []> {
|
|
let Uses = [R0L];
|
|
let Constraints = "$R1 = $R1src, $R2 = $R2src";
|
|
let DisableEncoding = "$R1src, $R2src";
|
|
}
|
|
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
|
|
def Loop : Pseudo<(outs GR64:$end),
|
|
(ins GR64:$start1, GR64:$start2, GR32:$char),
|
|
[(set GR64:$end, (operator GR64:$start1, GR64:$start2,
|
|
GR32:$char))]>;
|
|
}
|
|
|
|
// A pseudo instruction that is a direct alias of a real instruction.
|
|
// These aliases are used in cases where a particular register operand is
|
|
// fixed or where the same instruction is used with different register sizes.
|
|
// The size parameter is the size in bytes of the associated real instruction.
|
|
class Alias<int size, dag outs, dag ins, list<dag> pattern>
|
|
: InstSystemZ<size, outs, ins, "", pattern> {
|
|
let isPseudo = 1;
|
|
let isCodeGenOnly = 1;
|
|
}
|
|
|
|
class UnaryAliasVRS<RegisterOperand cls1, RegisterOperand cls2>
|
|
: Alias<6, (outs cls1:$src1), (ins cls2:$src2), []>;
|
|
|
|
// An alias of a UnaryVRR*, but with different register sizes.
|
|
class UnaryAliasVRR<SDPatternOperator operator, TypedReg tr1, TypedReg tr2>
|
|
: Alias<6, (outs tr1.op:$V1), (ins tr2.op:$V2),
|
|
[(set tr1.op:$V1, (tr1.vt (operator (tr2.vt tr2.op:$V2))))]>;
|
|
|
|
// An alias of a UnaryVRX, but with different register sizes.
|
|
class UnaryAliasVRX<SDPatternOperator operator, TypedReg tr,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: Alias<6, (outs tr.op:$V1), (ins mode:$XBD2),
|
|
[(set tr.op:$V1, (tr.vt (operator mode:$XBD2)))]>;
|
|
|
|
// An alias of a StoreVRX, but with different register sizes.
|
|
class StoreAliasVRX<SDPatternOperator operator, TypedReg tr,
|
|
AddressingMode mode = bdxaddr12only>
|
|
: Alias<6, (outs), (ins tr.op:$V1, mode:$XBD2),
|
|
[(operator (tr.vt tr.op:$V1), mode:$XBD2)]>;
|
|
|
|
// An alias of a BinaryRI, but with different register sizes.
|
|
class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
}
|
|
|
|
// An alias of a BinaryRIL, but with different register sizes.
|
|
class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
|
|
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
|
|
let Constraints = "$R1 = $R1src";
|
|
}
|
|
|
|
// An alias of a BinaryVRRf, but with different register sizes.
|
|
class BinaryAliasVRRf<RegisterOperand cls>
|
|
: Alias<6, (outs VR128:$V1), (ins cls:$R2, cls:$R3), []>;
|
|
|
|
// An alias of a CompareRI, but with different register sizes.
|
|
class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
|
|
Immediate imm>
|
|
: Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
|
|
let isCompare = 1;
|
|
}
|
|
|
|
// An alias of a RotateSelectRIEf, but with different register sizes.
|
|
class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
|
|
: Alias<6, (outs cls1:$R1),
|
|
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
|
|
imm32zx6:$I5), []> {
|
|
let Constraints = "$R1 = $R1src";
|
|
}
|