llvm-project/clang/lib/Driver/ToolChain.cpp

1236 lines
41 KiB
C++

//===- ToolChain.cpp - Collections of tools for one platform --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/ToolChain.h"
#include "InputInfo.h"
#include "ToolChains/Arch/ARM.h"
#include "ToolChains/Clang.h"
#include "ToolChains/InterfaceStubs.h"
#include "ToolChains/Flang.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/VirtualFileSystem.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <string>
using namespace clang;
using namespace driver;
using namespace tools;
using namespace llvm;
using namespace llvm::opt;
static llvm::opt::Arg *GetRTTIArgument(const ArgList &Args) {
return Args.getLastArg(options::OPT_mkernel, options::OPT_fapple_kext,
options::OPT_fno_rtti, options::OPT_frtti);
}
static ToolChain::RTTIMode CalculateRTTIMode(const ArgList &Args,
const llvm::Triple &Triple,
const Arg *CachedRTTIArg) {
// Explicit rtti/no-rtti args
if (CachedRTTIArg) {
if (CachedRTTIArg->getOption().matches(options::OPT_frtti))
return ToolChain::RM_Enabled;
else
return ToolChain::RM_Disabled;
}
// -frtti is default, except for the PS4 CPU.
return (Triple.isPS4CPU()) ? ToolChain::RM_Disabled : ToolChain::RM_Enabled;
}
ToolChain::ToolChain(const Driver &D, const llvm::Triple &T,
const ArgList &Args)
: D(D), Triple(T), Args(Args), CachedRTTIArg(GetRTTIArgument(Args)),
CachedRTTIMode(CalculateRTTIMode(Args, Triple, CachedRTTIArg)) {
if (D.CCCIsCXX()) {
if (auto CXXStdlibPath = getCXXStdlibPath())
getFilePaths().push_back(*CXXStdlibPath);
}
if (auto RuntimePath = getRuntimePath())
getLibraryPaths().push_back(*RuntimePath);
std::string CandidateLibPath = getArchSpecificLibPath();
if (getVFS().exists(CandidateLibPath))
getFilePaths().push_back(CandidateLibPath);
}
void ToolChain::setTripleEnvironment(llvm::Triple::EnvironmentType Env) {
Triple.setEnvironment(Env);
if (EffectiveTriple != llvm::Triple())
EffectiveTriple.setEnvironment(Env);
}
ToolChain::~ToolChain() = default;
llvm::vfs::FileSystem &ToolChain::getVFS() const {
return getDriver().getVFS();
}
bool ToolChain::useIntegratedAs() const {
return Args.hasFlag(options::OPT_fintegrated_as,
options::OPT_fno_integrated_as,
IsIntegratedAssemblerDefault());
}
bool ToolChain::useRelaxRelocations() const {
return ENABLE_X86_RELAX_RELOCATIONS;
}
bool ToolChain::isNoExecStackDefault() const {
return false;
}
const SanitizerArgs& ToolChain::getSanitizerArgs() const {
if (!SanitizerArguments.get())
SanitizerArguments.reset(new SanitizerArgs(*this, Args));
return *SanitizerArguments.get();
}
const XRayArgs& ToolChain::getXRayArgs() const {
if (!XRayArguments.get())
XRayArguments.reset(new XRayArgs(*this, Args));
return *XRayArguments.get();
}
namespace {
struct DriverSuffix {
const char *Suffix;
const char *ModeFlag;
};
} // namespace
static const DriverSuffix *FindDriverSuffix(StringRef ProgName, size_t &Pos) {
// A list of known driver suffixes. Suffixes are compared against the
// program name in order. If there is a match, the frontend type is updated as
// necessary by applying the ModeFlag.
static const DriverSuffix DriverSuffixes[] = {
{"clang", nullptr},
{"clang++", "--driver-mode=g++"},
{"clang-c++", "--driver-mode=g++"},
{"clang-cc", nullptr},
{"clang-cpp", "--driver-mode=cpp"},
{"clang-g++", "--driver-mode=g++"},
{"clang-gcc", nullptr},
{"clang-cl", "--driver-mode=cl"},
{"cc", nullptr},
{"cpp", "--driver-mode=cpp"},
{"cl", "--driver-mode=cl"},
{"++", "--driver-mode=g++"},
{"flang", "--driver-mode=flang"},
};
for (size_t i = 0; i < llvm::array_lengthof(DriverSuffixes); ++i) {
StringRef Suffix(DriverSuffixes[i].Suffix);
if (ProgName.endswith(Suffix)) {
Pos = ProgName.size() - Suffix.size();
return &DriverSuffixes[i];
}
}
return nullptr;
}
/// Normalize the program name from argv[0] by stripping the file extension if
/// present and lower-casing the string on Windows.
static std::string normalizeProgramName(llvm::StringRef Argv0) {
std::string ProgName = std::string(llvm::sys::path::stem(Argv0));
#ifdef _WIN32
// Transform to lowercase for case insensitive file systems.
std::transform(ProgName.begin(), ProgName.end(), ProgName.begin(), ::tolower);
#endif
return ProgName;
}
static const DriverSuffix *parseDriverSuffix(StringRef ProgName, size_t &Pos) {
// Try to infer frontend type and default target from the program name by
// comparing it against DriverSuffixes in order.
// If there is a match, the function tries to identify a target as prefix.
// E.g. "x86_64-linux-clang" as interpreted as suffix "clang" with target
// prefix "x86_64-linux". If such a target prefix is found, it may be
// added via -target as implicit first argument.
const DriverSuffix *DS = FindDriverSuffix(ProgName, Pos);
if (!DS) {
// Try again after stripping any trailing version number:
// clang++3.5 -> clang++
ProgName = ProgName.rtrim("0123456789.");
DS = FindDriverSuffix(ProgName, Pos);
}
if (!DS) {
// Try again after stripping trailing -component.
// clang++-tot -> clang++
ProgName = ProgName.slice(0, ProgName.rfind('-'));
DS = FindDriverSuffix(ProgName, Pos);
}
return DS;
}
ParsedClangName
ToolChain::getTargetAndModeFromProgramName(StringRef PN) {
std::string ProgName = normalizeProgramName(PN);
size_t SuffixPos;
const DriverSuffix *DS = parseDriverSuffix(ProgName, SuffixPos);
if (!DS)
return {};
size_t SuffixEnd = SuffixPos + strlen(DS->Suffix);
size_t LastComponent = ProgName.rfind('-', SuffixPos);
if (LastComponent == std::string::npos)
return ParsedClangName(ProgName.substr(0, SuffixEnd), DS->ModeFlag);
std::string ModeSuffix = ProgName.substr(LastComponent + 1,
SuffixEnd - LastComponent - 1);
// Infer target from the prefix.
StringRef Prefix(ProgName);
Prefix = Prefix.slice(0, LastComponent);
std::string IgnoredError;
bool IsRegistered =
llvm::TargetRegistry::lookupTarget(std::string(Prefix), IgnoredError);
return ParsedClangName{std::string(Prefix), ModeSuffix, DS->ModeFlag,
IsRegistered};
}
StringRef ToolChain::getDefaultUniversalArchName() const {
// In universal driver terms, the arch name accepted by -arch isn't exactly
// the same as the ones that appear in the triple. Roughly speaking, this is
// an inverse of the darwin::getArchTypeForDarwinArchName() function.
switch (Triple.getArch()) {
case llvm::Triple::aarch64: {
if (getTriple().isArm64e())
return "arm64e";
return "arm64";
}
case llvm::Triple::aarch64_32:
return "arm64_32";
case llvm::Triple::ppc:
return "ppc";
case llvm::Triple::ppcle:
return "ppcle";
case llvm::Triple::ppc64:
return "ppc64";
case llvm::Triple::ppc64le:
return "ppc64le";
default:
return Triple.getArchName();
}
}
std::string ToolChain::getInputFilename(const InputInfo &Input) const {
return Input.getFilename();
}
bool ToolChain::IsUnwindTablesDefault(const ArgList &Args) const {
return false;
}
Tool *ToolChain::getClang() const {
if (!Clang)
Clang.reset(new tools::Clang(*this));
return Clang.get();
}
Tool *ToolChain::getFlang() const {
if (!Flang)
Flang.reset(new tools::Flang(*this));
return Flang.get();
}
Tool *ToolChain::buildAssembler() const {
return new tools::ClangAs(*this);
}
Tool *ToolChain::buildLinker() const {
llvm_unreachable("Linking is not supported by this toolchain");
}
Tool *ToolChain::buildStaticLibTool() const {
llvm_unreachable("Creating static lib is not supported by this toolchain");
}
Tool *ToolChain::getAssemble() const {
if (!Assemble)
Assemble.reset(buildAssembler());
return Assemble.get();
}
Tool *ToolChain::getClangAs() const {
if (!Assemble)
Assemble.reset(new tools::ClangAs(*this));
return Assemble.get();
}
Tool *ToolChain::getLink() const {
if (!Link)
Link.reset(buildLinker());
return Link.get();
}
Tool *ToolChain::getStaticLibTool() const {
if (!StaticLibTool)
StaticLibTool.reset(buildStaticLibTool());
return StaticLibTool.get();
}
Tool *ToolChain::getIfsMerge() const {
if (!IfsMerge)
IfsMerge.reset(new tools::ifstool::Merger(*this));
return IfsMerge.get();
}
Tool *ToolChain::getOffloadBundler() const {
if (!OffloadBundler)
OffloadBundler.reset(new tools::OffloadBundler(*this));
return OffloadBundler.get();
}
Tool *ToolChain::getOffloadWrapper() const {
if (!OffloadWrapper)
OffloadWrapper.reset(new tools::OffloadWrapper(*this));
return OffloadWrapper.get();
}
Tool *ToolChain::getTool(Action::ActionClass AC) const {
switch (AC) {
case Action::AssembleJobClass:
return getAssemble();
case Action::IfsMergeJobClass:
return getIfsMerge();
case Action::LinkJobClass:
return getLink();
case Action::StaticLibJobClass:
return getStaticLibTool();
case Action::InputClass:
case Action::BindArchClass:
case Action::OffloadClass:
case Action::LipoJobClass:
case Action::DsymutilJobClass:
case Action::VerifyDebugInfoJobClass:
llvm_unreachable("Invalid tool kind.");
case Action::CompileJobClass:
case Action::PrecompileJobClass:
case Action::HeaderModulePrecompileJobClass:
case Action::PreprocessJobClass:
case Action::AnalyzeJobClass:
case Action::MigrateJobClass:
case Action::VerifyPCHJobClass:
case Action::BackendJobClass:
return getClang();
case Action::OffloadBundlingJobClass:
case Action::OffloadUnbundlingJobClass:
return getOffloadBundler();
case Action::OffloadWrapperJobClass:
return getOffloadWrapper();
}
llvm_unreachable("Invalid tool kind.");
}
static StringRef getArchNameForCompilerRTLib(const ToolChain &TC,
const ArgList &Args) {
const llvm::Triple &Triple = TC.getTriple();
bool IsWindows = Triple.isOSWindows();
if (TC.getArch() == llvm::Triple::arm || TC.getArch() == llvm::Triple::armeb)
return (arm::getARMFloatABI(TC, Args) == arm::FloatABI::Hard && !IsWindows)
? "armhf"
: "arm";
// For historic reasons, Android library is using i686 instead of i386.
if (TC.getArch() == llvm::Triple::x86 && Triple.isAndroid())
return "i686";
return llvm::Triple::getArchTypeName(TC.getArch());
}
StringRef ToolChain::getOSLibName() const {
switch (Triple.getOS()) {
case llvm::Triple::FreeBSD:
return "freebsd";
case llvm::Triple::NetBSD:
return "netbsd";
case llvm::Triple::OpenBSD:
return "openbsd";
case llvm::Triple::Solaris:
return "sunos";
case llvm::Triple::AIX:
return "aix";
default:
return getOS();
}
}
std::string ToolChain::getCompilerRTPath() const {
SmallString<128> Path(getDriver().ResourceDir);
if (Triple.isOSUnknown()) {
llvm::sys::path::append(Path, "lib");
} else {
llvm::sys::path::append(Path, "lib", getOSLibName());
}
return std::string(Path.str());
}
std::string ToolChain::getCompilerRTBasename(const ArgList &Args,
StringRef Component,
FileType Type) const {
std::string CRTAbsolutePath = getCompilerRT(Args, Component, Type);
return llvm::sys::path::filename(CRTAbsolutePath).str();
}
std::string ToolChain::buildCompilerRTBasename(const llvm::opt::ArgList &Args,
StringRef Component,
FileType Type,
bool AddArch) const {
const llvm::Triple &TT = getTriple();
bool IsITANMSVCWindows =
TT.isWindowsMSVCEnvironment() || TT.isWindowsItaniumEnvironment();
const char *Prefix =
IsITANMSVCWindows || Type == ToolChain::FT_Object ? "" : "lib";
const char *Suffix;
switch (Type) {
case ToolChain::FT_Object:
Suffix = IsITANMSVCWindows ? ".obj" : ".o";
break;
case ToolChain::FT_Static:
Suffix = IsITANMSVCWindows ? ".lib" : ".a";
break;
case ToolChain::FT_Shared:
Suffix = TT.isOSWindows()
? (TT.isWindowsGNUEnvironment() ? ".dll.a" : ".lib")
: ".so";
break;
}
std::string ArchAndEnv;
if (AddArch) {
StringRef Arch = getArchNameForCompilerRTLib(*this, Args);
const char *Env = TT.isAndroid() ? "-android" : "";
ArchAndEnv = ("-" + Arch + Env).str();
}
return (Prefix + Twine("clang_rt.") + Component + ArchAndEnv + Suffix).str();
}
std::string ToolChain::getCompilerRT(const ArgList &Args, StringRef Component,
FileType Type) const {
// Check for runtime files in the new layout without the architecture first.
std::string CRTBasename =
buildCompilerRTBasename(Args, Component, Type, /*AddArch=*/false);
for (const auto &LibPath : getLibraryPaths()) {
SmallString<128> P(LibPath);
llvm::sys::path::append(P, CRTBasename);
if (getVFS().exists(P))
return std::string(P.str());
}
// Fall back to the old expected compiler-rt name if the new one does not
// exist.
CRTBasename =
buildCompilerRTBasename(Args, Component, Type, /*AddArch=*/true);
SmallString<128> Path(getCompilerRTPath());
llvm::sys::path::append(Path, CRTBasename);
return std::string(Path.str());
}
const char *ToolChain::getCompilerRTArgString(const llvm::opt::ArgList &Args,
StringRef Component,
FileType Type) const {
return Args.MakeArgString(getCompilerRT(Args, Component, Type));
}
Optional<std::string> ToolChain::getRuntimePath() const {
SmallString<128> P;
// First try the triple passed to driver as --target=<triple>.
P.assign(D.ResourceDir);
llvm::sys::path::append(P, "lib", D.getTargetTriple());
if (getVFS().exists(P))
return llvm::Optional<std::string>(std::string(P.str()));
// Second try the normalized triple.
P.assign(D.ResourceDir);
llvm::sys::path::append(P, "lib", Triple.str());
if (getVFS().exists(P))
return llvm::Optional<std::string>(std::string(P.str()));
return None;
}
Optional<std::string> ToolChain::getCXXStdlibPath() const {
SmallString<128> P;
// First try the triple passed to driver as --target=<triple>.
P.assign(D.Dir);
llvm::sys::path::append(P, "..", "lib", D.getTargetTriple(), "c++");
if (getVFS().exists(P))
return llvm::Optional<std::string>(std::string(P.str()));
// Second try the normalized triple.
P.assign(D.Dir);
llvm::sys::path::append(P, "..", "lib", Triple.str(), "c++");
if (getVFS().exists(P))
return llvm::Optional<std::string>(std::string(P.str()));
return None;
}
std::string ToolChain::getArchSpecificLibPath() const {
SmallString<128> Path(getDriver().ResourceDir);
llvm::sys::path::append(Path, "lib", getOSLibName(),
llvm::Triple::getArchTypeName(getArch()));
return std::string(Path.str());
}
bool ToolChain::needsProfileRT(const ArgList &Args) {
if (Args.hasArg(options::OPT_noprofilelib))
return false;
return Args.hasArg(options::OPT_fprofile_generate) ||
Args.hasArg(options::OPT_fprofile_generate_EQ) ||
Args.hasArg(options::OPT_fcs_profile_generate) ||
Args.hasArg(options::OPT_fcs_profile_generate_EQ) ||
Args.hasArg(options::OPT_fprofile_instr_generate) ||
Args.hasArg(options::OPT_fprofile_instr_generate_EQ) ||
Args.hasArg(options::OPT_fcreate_profile) ||
Args.hasArg(options::OPT_forder_file_instrumentation);
}
bool ToolChain::needsGCovInstrumentation(const llvm::opt::ArgList &Args) {
return Args.hasArg(options::OPT_coverage) ||
Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
false);
}
Tool *ToolChain::SelectTool(const JobAction &JA) const {
if (D.IsFlangMode() && getDriver().ShouldUseFlangCompiler(JA)) return getFlang();
if (getDriver().ShouldUseClangCompiler(JA)) return getClang();
Action::ActionClass AC = JA.getKind();
if (AC == Action::AssembleJobClass && useIntegratedAs())
return getClangAs();
return getTool(AC);
}
std::string ToolChain::GetFilePath(const char *Name) const {
return D.GetFilePath(Name, *this);
}
std::string ToolChain::GetProgramPath(const char *Name) const {
return D.GetProgramPath(Name, *this);
}
std::string ToolChain::GetLinkerPath(bool *LinkerIsLLD,
bool *LinkerIsLLDDarwinNew) const {
if (LinkerIsLLD)
*LinkerIsLLD = false;
if (LinkerIsLLDDarwinNew)
*LinkerIsLLDDarwinNew = false;
// Get -fuse-ld= first to prevent -Wunused-command-line-argument. -fuse-ld= is
// considered as the linker flavor, e.g. "bfd", "gold", or "lld".
const Arg* A = Args.getLastArg(options::OPT_fuse_ld_EQ);
StringRef UseLinker = A ? A->getValue() : CLANG_DEFAULT_LINKER;
// --ld-path= takes precedence over -fuse-ld= and specifies the executable
// name. -B, COMPILER_PATH and PATH and consulted if the value does not
// contain a path component separator.
if (const Arg *A = Args.getLastArg(options::OPT_ld_path_EQ)) {
std::string Path(A->getValue());
if (!Path.empty()) {
if (llvm::sys::path::parent_path(Path).empty())
Path = GetProgramPath(A->getValue());
if (llvm::sys::fs::can_execute(Path))
return std::string(Path);
}
getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args);
return GetProgramPath(getDefaultLinker());
}
// If we're passed -fuse-ld= with no argument, or with the argument ld,
// then use whatever the default system linker is.
if (UseLinker.empty() || UseLinker == "ld") {
const char *DefaultLinker = getDefaultLinker();
if (llvm::sys::path::is_absolute(DefaultLinker))
return std::string(DefaultLinker);
else
return GetProgramPath(DefaultLinker);
}
// Extending -fuse-ld= to an absolute or relative path is unexpected. Checking
// for the linker flavor is brittle. In addition, prepending "ld." or "ld64."
// to a relative path is surprising. This is more complex due to priorities
// among -B, COMPILER_PATH and PATH. --ld-path= should be used instead.
if (UseLinker.find('/') != StringRef::npos)
getDriver().Diag(diag::warn_drv_fuse_ld_path);
if (llvm::sys::path::is_absolute(UseLinker)) {
// If we're passed what looks like an absolute path, don't attempt to
// second-guess that.
if (llvm::sys::fs::can_execute(UseLinker))
return std::string(UseLinker);
} else {
llvm::SmallString<8> LinkerName;
if (Triple.isOSDarwin())
LinkerName.append("ld64.");
else
LinkerName.append("ld.");
LinkerName.append(UseLinker);
std::string LinkerPath(GetProgramPath(LinkerName.c_str()));
if (llvm::sys::fs::can_execute(LinkerPath)) {
// FIXME: Remove LinkerIsLLDDarwinNew once there's only one MachO lld.
if (LinkerIsLLD)
*LinkerIsLLD = UseLinker == "lld" || UseLinker == "lld.darwinold";
if (LinkerIsLLDDarwinNew)
*LinkerIsLLDDarwinNew = UseLinker == "lld";
return LinkerPath;
}
}
if (A)
getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args);
return GetProgramPath(getDefaultLinker());
}
std::string ToolChain::GetStaticLibToolPath() const {
// TODO: Add support for static lib archiving on Windows
return GetProgramPath("llvm-ar");
}
types::ID ToolChain::LookupTypeForExtension(StringRef Ext) const {
types::ID id = types::lookupTypeForExtension(Ext);
// Flang always runs the preprocessor and has no notion of "preprocessed
// fortran". Here, TY_PP_Fortran is coerced to TY_Fortran to avoid treating
// them differently.
if (D.IsFlangMode() && id == types::TY_PP_Fortran)
id = types::TY_Fortran;
return id;
}
bool ToolChain::HasNativeLLVMSupport() const {
return false;
}
bool ToolChain::isCrossCompiling() const {
llvm::Triple HostTriple(LLVM_HOST_TRIPLE);
switch (HostTriple.getArch()) {
// The A32/T32/T16 instruction sets are not separate architectures in this
// context.
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return getArch() != llvm::Triple::arm && getArch() != llvm::Triple::thumb &&
getArch() != llvm::Triple::armeb && getArch() != llvm::Triple::thumbeb;
default:
return HostTriple.getArch() != getArch();
}
}
ObjCRuntime ToolChain::getDefaultObjCRuntime(bool isNonFragile) const {
return ObjCRuntime(isNonFragile ? ObjCRuntime::GNUstep : ObjCRuntime::GCC,
VersionTuple());
}
llvm::ExceptionHandling
ToolChain::GetExceptionModel(const llvm::opt::ArgList &Args) const {
return llvm::ExceptionHandling::None;
}
bool ToolChain::isThreadModelSupported(const StringRef Model) const {
if (Model == "single") {
// FIXME: 'single' is only supported on ARM and WebAssembly so far.
return Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::armeb ||
Triple.getArch() == llvm::Triple::thumb ||
Triple.getArch() == llvm::Triple::thumbeb || Triple.isWasm();
} else if (Model == "posix")
return true;
return false;
}
std::string ToolChain::ComputeLLVMTriple(const ArgList &Args,
types::ID InputType) const {
switch (getTriple().getArch()) {
default:
return getTripleString();
case llvm::Triple::x86_64: {
llvm::Triple Triple = getTriple();
if (!Triple.isOSBinFormatMachO())
return getTripleString();
if (Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
// x86_64h goes in the triple. Other -march options just use the
// vanilla triple we already have.
StringRef MArch = A->getValue();
if (MArch == "x86_64h")
Triple.setArchName(MArch);
}
return Triple.getTriple();
}
case llvm::Triple::aarch64: {
llvm::Triple Triple = getTriple();
if (!Triple.isOSBinFormatMachO())
return getTripleString();
if (Triple.isArm64e())
return getTripleString();
// FIXME: older versions of ld64 expect the "arm64" component in the actual
// triple string and query it to determine whether an LTO file can be
// handled. Remove this when we don't care any more.
Triple.setArchName("arm64");
return Triple.getTriple();
}
case llvm::Triple::aarch64_32:
return getTripleString();
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb: {
llvm::Triple Triple = getTriple();
tools::arm::setArchNameInTriple(getDriver(), Args, InputType, Triple);
tools::arm::setFloatABIInTriple(getDriver(), Args, Triple);
return Triple.getTriple();
}
}
}
std::string ToolChain::ComputeEffectiveClangTriple(const ArgList &Args,
types::ID InputType) const {
return ComputeLLVMTriple(Args, InputType);
}
std::string ToolChain::computeSysRoot() const {
return D.SysRoot;
}
void ToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
// Each toolchain should provide the appropriate include flags.
}
void ToolChain::addClangTargetOptions(
const ArgList &DriverArgs, ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadKind) const {}
void ToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {}
void ToolChain::addProfileRTLibs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!needsProfileRT(Args) && !needsGCovInstrumentation(Args))
return;
CmdArgs.push_back(getCompilerRTArgString(Args, "profile"));
}
ToolChain::RuntimeLibType ToolChain::GetRuntimeLibType(
const ArgList &Args) const {
if (runtimeLibType)
return *runtimeLibType;
const Arg* A = Args.getLastArg(options::OPT_rtlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_RTLIB;
// Only use "platform" in tests to override CLANG_DEFAULT_RTLIB!
if (LibName == "compiler-rt")
runtimeLibType = ToolChain::RLT_CompilerRT;
else if (LibName == "libgcc")
runtimeLibType = ToolChain::RLT_Libgcc;
else if (LibName == "platform")
runtimeLibType = GetDefaultRuntimeLibType();
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_rtlib_name)
<< A->getAsString(Args);
runtimeLibType = GetDefaultRuntimeLibType();
}
return *runtimeLibType;
}
ToolChain::UnwindLibType ToolChain::GetUnwindLibType(
const ArgList &Args) const {
if (unwindLibType)
return *unwindLibType;
const Arg *A = Args.getLastArg(options::OPT_unwindlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_UNWINDLIB;
if (LibName == "none")
unwindLibType = ToolChain::UNW_None;
else if (LibName == "platform" || LibName == "") {
ToolChain::RuntimeLibType RtLibType = GetRuntimeLibType(Args);
if (RtLibType == ToolChain::RLT_CompilerRT) {
if (getTriple().isAndroid())
unwindLibType = ToolChain::UNW_CompilerRT;
else
unwindLibType = ToolChain::UNW_None;
} else if (RtLibType == ToolChain::RLT_Libgcc)
unwindLibType = ToolChain::UNW_Libgcc;
} else if (LibName == "libunwind") {
if (GetRuntimeLibType(Args) == RLT_Libgcc)
getDriver().Diag(diag::err_drv_incompatible_unwindlib);
unwindLibType = ToolChain::UNW_CompilerRT;
} else if (LibName == "libgcc")
unwindLibType = ToolChain::UNW_Libgcc;
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_unwindlib_name)
<< A->getAsString(Args);
unwindLibType = GetDefaultUnwindLibType();
}
return *unwindLibType;
}
ToolChain::CXXStdlibType ToolChain::GetCXXStdlibType(const ArgList &Args) const{
if (cxxStdlibType)
return *cxxStdlibType;
const Arg *A = Args.getLastArg(options::OPT_stdlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_CXX_STDLIB;
// Only use "platform" in tests to override CLANG_DEFAULT_CXX_STDLIB!
if (LibName == "libc++")
cxxStdlibType = ToolChain::CST_Libcxx;
else if (LibName == "libstdc++")
cxxStdlibType = ToolChain::CST_Libstdcxx;
else if (LibName == "platform")
cxxStdlibType = GetDefaultCXXStdlibType();
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_stdlib_name)
<< A->getAsString(Args);
cxxStdlibType = GetDefaultCXXStdlibType();
}
return *cxxStdlibType;
}
/// Utility function to add a system include directory to CC1 arguments.
/*static*/ void ToolChain::addSystemInclude(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
/// Utility function to add a system include directory with extern "C"
/// semantics to CC1 arguments.
///
/// Note that this should be used rarely, and only for directories that
/// historically and for legacy reasons are treated as having implicit extern
/// "C" semantics. These semantics are *ignored* by and large today, but its
/// important to preserve the preprocessor changes resulting from the
/// classification.
/*static*/ void ToolChain::addExternCSystemInclude(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
CC1Args.push_back("-internal-externc-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
void ToolChain::addExternCSystemIncludeIfExists(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
if (llvm::sys::fs::exists(Path))
addExternCSystemInclude(DriverArgs, CC1Args, Path);
}
/// Utility function to add a list of system include directories to CC1.
/*static*/ void ToolChain::addSystemIncludes(const ArgList &DriverArgs,
ArgStringList &CC1Args,
ArrayRef<StringRef> Paths) {
for (const auto &Path : Paths) {
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
}
void ToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
// Header search paths should be handled by each of the subclasses.
// Historically, they have not been, and instead have been handled inside of
// the CC1-layer frontend. As the logic is hoisted out, this generic function
// will slowly stop being called.
//
// While it is being called, replicate a bit of a hack to propagate the
// '-stdlib=' flag down to CC1 so that it can in turn customize the C++
// header search paths with it. Once all systems are overriding this
// function, the CC1 flag and this line can be removed.
DriverArgs.AddAllArgs(CC1Args, options::OPT_stdlib_EQ);
}
void ToolChain::AddClangCXXStdlibIsystemArgs(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
DriverArgs.ClaimAllArgs(options::OPT_stdlibxx_isystem);
if (!DriverArgs.hasArg(options::OPT_nostdincxx))
for (const auto &P :
DriverArgs.getAllArgValues(options::OPT_stdlibxx_isystem))
addSystemInclude(DriverArgs, CC1Args, P);
}
bool ToolChain::ShouldLinkCXXStdlib(const llvm::opt::ArgList &Args) const {
return getDriver().CCCIsCXX() &&
!Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs,
options::OPT_nostdlibxx);
}
void ToolChain::AddCXXStdlibLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
assert(!Args.hasArg(options::OPT_nostdlibxx) &&
"should not have called this");
CXXStdlibType Type = GetCXXStdlibType(Args);
switch (Type) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
break;
case ToolChain::CST_Libstdcxx:
CmdArgs.push_back("-lstdc++");
break;
}
}
void ToolChain::AddFilePathLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
for (const auto &LibPath : getFilePaths())
if(LibPath.length() > 0)
CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + LibPath));
}
void ToolChain::AddCCKextLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-lcc_kext");
}
bool ToolChain::isFastMathRuntimeAvailable(const ArgList &Args,
std::string &Path) const {
// Do not check for -fno-fast-math or -fno-unsafe-math when -Ofast passed
// (to keep the linker options consistent with gcc and clang itself).
if (!isOptimizationLevelFast(Args)) {
// Check if -ffast-math or -funsafe-math.
Arg *A =
Args.getLastArg(options::OPT_ffast_math, options::OPT_fno_fast_math,
options::OPT_funsafe_math_optimizations,
options::OPT_fno_unsafe_math_optimizations);
if (!A || A->getOption().getID() == options::OPT_fno_fast_math ||
A->getOption().getID() == options::OPT_fno_unsafe_math_optimizations)
return false;
}
// If crtfastmath.o exists add it to the arguments.
Path = GetFilePath("crtfastmath.o");
return (Path != "crtfastmath.o"); // Not found.
}
bool ToolChain::addFastMathRuntimeIfAvailable(const ArgList &Args,
ArgStringList &CmdArgs) const {
std::string Path;
if (isFastMathRuntimeAvailable(Args, Path)) {
CmdArgs.push_back(Args.MakeArgString(Path));
return true;
}
return false;
}
SanitizerMask ToolChain::getSupportedSanitizers() const {
// Return sanitizers which don't require runtime support and are not
// platform dependent.
SanitizerMask Res =
(SanitizerKind::Undefined & ~SanitizerKind::Vptr &
~SanitizerKind::Function) |
(SanitizerKind::CFI & ~SanitizerKind::CFIICall) |
SanitizerKind::CFICastStrict | SanitizerKind::FloatDivideByZero |
SanitizerKind::UnsignedIntegerOverflow |
SanitizerKind::UnsignedShiftBase | SanitizerKind::ImplicitConversion |
SanitizerKind::Nullability | SanitizerKind::LocalBounds;
if (getTriple().getArch() == llvm::Triple::x86 ||
getTriple().getArch() == llvm::Triple::x86_64 ||
getTriple().getArch() == llvm::Triple::arm || getTriple().isWasm() ||
getTriple().isAArch64())
Res |= SanitizerKind::CFIICall;
if (getTriple().getArch() == llvm::Triple::x86_64 ||
getTriple().isAArch64(64) || getTriple().isRISCV())
Res |= SanitizerKind::ShadowCallStack;
if (getTriple().isAArch64(64))
Res |= SanitizerKind::MemTag;
return Res;
}
void ToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
void ToolChain::AddHIPIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
llvm::SmallVector<std::string, 12>
ToolChain::getHIPDeviceLibs(const ArgList &DriverArgs) const {
return {};
}
void ToolChain::AddIAMCUIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
static VersionTuple separateMSVCFullVersion(unsigned Version) {
if (Version < 100)
return VersionTuple(Version);
if (Version < 10000)
return VersionTuple(Version / 100, Version % 100);
unsigned Build = 0, Factor = 1;
for (; Version > 10000; Version = Version / 10, Factor = Factor * 10)
Build = Build + (Version % 10) * Factor;
return VersionTuple(Version / 100, Version % 100, Build);
}
VersionTuple
ToolChain::computeMSVCVersion(const Driver *D,
const llvm::opt::ArgList &Args) const {
const Arg *MSCVersion = Args.getLastArg(options::OPT_fmsc_version);
const Arg *MSCompatibilityVersion =
Args.getLastArg(options::OPT_fms_compatibility_version);
if (MSCVersion && MSCompatibilityVersion) {
if (D)
D->Diag(diag::err_drv_argument_not_allowed_with)
<< MSCVersion->getAsString(Args)
<< MSCompatibilityVersion->getAsString(Args);
return VersionTuple();
}
if (MSCompatibilityVersion) {
VersionTuple MSVT;
if (MSVT.tryParse(MSCompatibilityVersion->getValue())) {
if (D)
D->Diag(diag::err_drv_invalid_value)
<< MSCompatibilityVersion->getAsString(Args)
<< MSCompatibilityVersion->getValue();
} else {
return MSVT;
}
}
if (MSCVersion) {
unsigned Version = 0;
if (StringRef(MSCVersion->getValue()).getAsInteger(10, Version)) {
if (D)
D->Diag(diag::err_drv_invalid_value)
<< MSCVersion->getAsString(Args) << MSCVersion->getValue();
} else {
return separateMSVCFullVersion(Version);
}
}
return VersionTuple();
}
llvm::opt::DerivedArgList *ToolChain::TranslateOpenMPTargetArgs(
const llvm::opt::DerivedArgList &Args, bool SameTripleAsHost,
SmallVectorImpl<llvm::opt::Arg *> &AllocatedArgs) const {
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
const OptTable &Opts = getDriver().getOpts();
bool Modified = false;
// Handle -Xopenmp-target flags
for (auto *A : Args) {
// Exclude flags which may only apply to the host toolchain.
// Do not exclude flags when the host triple (AuxTriple)
// matches the current toolchain triple. If it is not present
// at all, target and host share a toolchain.
if (A->getOption().matches(options::OPT_m_Group)) {
if (SameTripleAsHost)
DAL->append(A);
else
Modified = true;
continue;
}
unsigned Index;
unsigned Prev;
bool XOpenMPTargetNoTriple =
A->getOption().matches(options::OPT_Xopenmp_target);
if (A->getOption().matches(options::OPT_Xopenmp_target_EQ)) {
// Passing device args: -Xopenmp-target=<triple> -opt=val.
if (A->getValue(0) == getTripleString())
Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
else
continue;
} else if (XOpenMPTargetNoTriple) {
// Passing device args: -Xopenmp-target -opt=val.
Index = Args.getBaseArgs().MakeIndex(A->getValue(0));
} else {
DAL->append(A);
continue;
}
// Parse the argument to -Xopenmp-target.
Prev = Index;
std::unique_ptr<Arg> XOpenMPTargetArg(Opts.ParseOneArg(Args, Index));
if (!XOpenMPTargetArg || Index > Prev + 1) {
getDriver().Diag(diag::err_drv_invalid_Xopenmp_target_with_args)
<< A->getAsString(Args);
continue;
}
if (XOpenMPTargetNoTriple && XOpenMPTargetArg &&
Args.getAllArgValues(options::OPT_fopenmp_targets_EQ).size() != 1) {
getDriver().Diag(diag::err_drv_Xopenmp_target_missing_triple);
continue;
}
XOpenMPTargetArg->setBaseArg(A);
A = XOpenMPTargetArg.release();
AllocatedArgs.push_back(A);
DAL->append(A);
Modified = true;
}
if (Modified)
return DAL;
delete DAL;
return nullptr;
}
// TODO: Currently argument values separated by space e.g.
// -Xclang -mframe-pointer=no cannot be passed by -Xarch_. This should be
// fixed.
void ToolChain::TranslateXarchArgs(
const llvm::opt::DerivedArgList &Args, llvm::opt::Arg *&A,
llvm::opt::DerivedArgList *DAL,
SmallVectorImpl<llvm::opt::Arg *> *AllocatedArgs) const {
const OptTable &Opts = getDriver().getOpts();
unsigned ValuePos = 1;
if (A->getOption().matches(options::OPT_Xarch_device) ||
A->getOption().matches(options::OPT_Xarch_host))
ValuePos = 0;
unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(ValuePos));
unsigned Prev = Index;
std::unique_ptr<llvm::opt::Arg> XarchArg(Opts.ParseOneArg(Args, Index));
// If the argument parsing failed or more than one argument was
// consumed, the -Xarch_ argument's parameter tried to consume
// extra arguments. Emit an error and ignore.
//
// We also want to disallow any options which would alter the
// driver behavior; that isn't going to work in our model. We
// use options::NoXarchOption to control this.
if (!XarchArg || Index > Prev + 1) {
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
<< A->getAsString(Args);
return;
} else if (XarchArg->getOption().hasFlag(options::NoXarchOption)) {
auto &Diags = getDriver().getDiags();
unsigned DiagID =
Diags.getCustomDiagID(DiagnosticsEngine::Error,
"invalid Xarch argument: '%0', not all driver "
"options can be forwared via Xarch argument");
Diags.Report(DiagID) << A->getAsString(Args);
return;
}
XarchArg->setBaseArg(A);
A = XarchArg.release();
if (!AllocatedArgs)
DAL->AddSynthesizedArg(A);
else
AllocatedArgs->push_back(A);
}
llvm::opt::DerivedArgList *ToolChain::TranslateXarchArgs(
const llvm::opt::DerivedArgList &Args, StringRef BoundArch,
Action::OffloadKind OFK,
SmallVectorImpl<llvm::opt::Arg *> *AllocatedArgs) const {
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
bool Modified = false;
bool IsGPU = OFK == Action::OFK_Cuda || OFK == Action::OFK_HIP;
for (Arg *A : Args) {
bool NeedTrans = false;
bool Skip = false;
if (A->getOption().matches(options::OPT_Xarch_device)) {
NeedTrans = IsGPU;
Skip = !IsGPU;
} else if (A->getOption().matches(options::OPT_Xarch_host)) {
NeedTrans = !IsGPU;
Skip = IsGPU;
} else if (A->getOption().matches(options::OPT_Xarch__) && IsGPU) {
// Do not translate -Xarch_ options for non CUDA/HIP toolchain since
// they may need special translation.
// Skip this argument unless the architecture matches BoundArch
if (BoundArch.empty() || A->getValue(0) != BoundArch)
Skip = true;
else
NeedTrans = true;
}
if (NeedTrans || Skip)
Modified = true;
if (NeedTrans)
TranslateXarchArgs(Args, A, DAL, AllocatedArgs);
if (!Skip)
DAL->append(A);
}
if (Modified)
return DAL;
delete DAL;
return nullptr;
}