forked from OSchip/llvm-project
1077 lines
39 KiB
C++
1077 lines
39 KiB
C++
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This coordinates the per-module state used while generating code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGDebugInfo.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCall.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
|
|
CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO,
|
|
llvm::Module &M, const llvm::TargetData &TD,
|
|
Diagnostic &diags, bool GenerateDebugInfo)
|
|
: Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags),
|
|
Types(C, M, TD), Runtime(0), MemCpyFn(0), MemMoveFn(0), MemSetFn(0),
|
|
CFConstantStringClassRef(0) {
|
|
|
|
if (Features.ObjC1) {
|
|
if (Features.NeXTRuntime) {
|
|
Runtime = CreateMacObjCRuntime(*this);
|
|
} else {
|
|
Runtime = CreateGNUObjCRuntime(*this);
|
|
}
|
|
}
|
|
|
|
// If debug info generation is enabled, create the CGDebugInfo object.
|
|
DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0;
|
|
}
|
|
|
|
CodeGenModule::~CodeGenModule() {
|
|
delete Runtime;
|
|
delete DebugInfo;
|
|
}
|
|
|
|
void CodeGenModule::Release() {
|
|
EmitStatics();
|
|
EmitAliases();
|
|
if (Runtime)
|
|
if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
|
|
AddGlobalCtor(ObjCInitFunction);
|
|
EmitCtorList(GlobalCtors, "llvm.global_ctors");
|
|
EmitCtorList(GlobalDtors, "llvm.global_dtors");
|
|
EmitAnnotations();
|
|
BindRuntimeFunctions();
|
|
}
|
|
|
|
void CodeGenModule::BindRuntimeFunctions() {
|
|
// Deal with protecting runtime function names.
|
|
for (unsigned i = 0, e = RuntimeFunctions.size(); i < e; ++i) {
|
|
llvm::Function *Fn = RuntimeFunctions[i].first;
|
|
const std::string &Name = RuntimeFunctions[i].second;
|
|
|
|
// Discard unused runtime functions.
|
|
if (Fn->use_empty()) {
|
|
Fn->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// See if there is a conflict against a function.
|
|
llvm::Function *Conflict = TheModule.getFunction(Name);
|
|
if (Conflict) {
|
|
// Decide which version to take. If the conflict is a definition
|
|
// we are forced to take that, otherwise assume the runtime
|
|
// knows best.
|
|
if (!Conflict->isDeclaration()) {
|
|
llvm::Value *Casted =
|
|
llvm::ConstantExpr::getBitCast(Conflict, Fn->getType());
|
|
Fn->replaceAllUsesWith(Casted);
|
|
Fn->eraseFromParent();
|
|
} else {
|
|
Fn->takeName(Conflict);
|
|
llvm::Value *Casted =
|
|
llvm::ConstantExpr::getBitCast(Fn, Conflict->getType());
|
|
Conflict->replaceAllUsesWith(Casted);
|
|
Conflict->eraseFromParent();
|
|
}
|
|
} else {
|
|
// FIXME: There still may be conflicts with aliases and
|
|
// variables.
|
|
Fn->setName(Name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
|
|
"cannot codegen this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
|
|
<< Msg << S->getSourceRange();
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified decl yet.
|
|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
|
|
"cannot codegen this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
|
|
}
|
|
|
|
/// setGlobalVisibility - Set the visibility for the given LLVM
|
|
/// GlobalValue according to the given clang AST visibility value.
|
|
static void setGlobalVisibility(llvm::GlobalValue *GV,
|
|
VisibilityAttr::VisibilityTypes Vis) {
|
|
switch (Vis) {
|
|
default: assert(0 && "Unknown visibility!");
|
|
case VisibilityAttr::DefaultVisibility:
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
break;
|
|
case VisibilityAttr::HiddenVisibility:
|
|
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
break;
|
|
case VisibilityAttr::ProtectedVisibility:
|
|
GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// AddGlobalCtor - Add a function to the list that will be called before
|
|
/// main() runs.
|
|
void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
|
|
// TODO: Type coercion of void()* types.
|
|
GlobalCtors.push_back(std::make_pair(Ctor, Priority));
|
|
}
|
|
|
|
/// AddGlobalDtor - Add a function to the list that will be called
|
|
/// when the module is unloaded.
|
|
void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
|
|
// TODO: Type coercion of void()* types.
|
|
GlobalDtors.push_back(std::make_pair(Dtor, Priority));
|
|
}
|
|
|
|
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
|
|
// Ctor function type is void()*.
|
|
llvm::FunctionType* CtorFTy =
|
|
llvm::FunctionType::get(llvm::Type::VoidTy,
|
|
std::vector<const llvm::Type*>(),
|
|
false);
|
|
llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
|
|
|
|
// Get the type of a ctor entry, { i32, void ()* }.
|
|
llvm::StructType* CtorStructTy =
|
|
llvm::StructType::get(llvm::Type::Int32Ty,
|
|
llvm::PointerType::getUnqual(CtorFTy), NULL);
|
|
|
|
// Construct the constructor and destructor arrays.
|
|
std::vector<llvm::Constant*> Ctors;
|
|
for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
std::vector<llvm::Constant*> S;
|
|
S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
|
|
S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
|
|
Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
|
|
}
|
|
|
|
if (!Ctors.empty()) {
|
|
llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
|
|
new llvm::GlobalVariable(AT, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(AT, Ctors),
|
|
GlobalName,
|
|
&TheModule);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitAnnotations() {
|
|
if (Annotations.empty())
|
|
return;
|
|
|
|
// Create a new global variable for the ConstantStruct in the Module.
|
|
llvm::Constant *Array =
|
|
llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
|
|
Annotations.size()),
|
|
Annotations);
|
|
llvm::GlobalValue *gv =
|
|
new llvm::GlobalVariable(Array->getType(), false,
|
|
llvm::GlobalValue::AppendingLinkage, Array,
|
|
"llvm.global.annotations", &TheModule);
|
|
gv->setSection("llvm.metadata");
|
|
}
|
|
|
|
static void SetGlobalValueAttributes(const Decl *D,
|
|
bool IsInternal,
|
|
bool IsInline,
|
|
llvm::GlobalValue *GV,
|
|
bool ForDefinition) {
|
|
// TODO: Set up linkage and many other things. Note, this is a simple
|
|
// approximation of what we really want.
|
|
if (!ForDefinition) {
|
|
// Only a few attributes are set on declarations.
|
|
if (D->getAttr<DLLImportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLImportLinkage);
|
|
} else {
|
|
if (IsInternal) {
|
|
GV->setLinkage(llvm::Function::InternalLinkage);
|
|
} else {
|
|
if (D->getAttr<DLLImportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLImportLinkage);
|
|
else if (D->getAttr<DLLExportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLExportLinkage);
|
|
else if (D->getAttr<WeakAttr>() || IsInline)
|
|
GV->setLinkage(llvm::Function::WeakLinkage);
|
|
}
|
|
}
|
|
|
|
if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
|
|
setGlobalVisibility(GV, attr->getVisibility());
|
|
// FIXME: else handle -fvisibility
|
|
|
|
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
|
// Prefaced with special LLVM marker to indicate that the name
|
|
// should not be munged.
|
|
GV->setName("\01" + ALA->getLabel());
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::SetFunctionAttributes(const Decl *D,
|
|
const CGFunctionInfo &Info,
|
|
llvm::Function *F) {
|
|
AttributeListType AttributeList;
|
|
ConstructAttributeList(D, Info.argtypes_begin(), Info.argtypes_end(),
|
|
AttributeList);
|
|
|
|
F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
|
|
AttributeList.size()));
|
|
|
|
// Set the appropriate calling convention for the Function.
|
|
if (D->getAttr<FastCallAttr>())
|
|
F->setCallingConv(llvm::CallingConv::X86_FastCall);
|
|
|
|
if (D->getAttr<StdCallAttr>())
|
|
F->setCallingConv(llvm::CallingConv::X86_StdCall);
|
|
}
|
|
|
|
/// SetFunctionAttributesForDefinition - Set function attributes
|
|
/// specific to a function definition.
|
|
void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
|
|
llvm::Function *F) {
|
|
if (isa<ObjCMethodDecl>(D)) {
|
|
SetGlobalValueAttributes(D, true, false, F, true);
|
|
} else {
|
|
const FunctionDecl *FD = cast<FunctionDecl>(D);
|
|
SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
|
|
FD->isInline(), F, true);
|
|
}
|
|
|
|
if (!Features.Exceptions)
|
|
F->addFnAttr(llvm::Attribute::NoUnwind);
|
|
|
|
if (D->getAttr<AlwaysInlineAttr>())
|
|
F->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
|
|
void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
|
|
llvm::Function *F) {
|
|
SetFunctionAttributes(MD, CGFunctionInfo(MD, Context), F);
|
|
|
|
SetFunctionAttributesForDefinition(MD, F);
|
|
}
|
|
|
|
void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
|
|
llvm::Function *F) {
|
|
SetFunctionAttributes(FD, CGFunctionInfo(FD), F);
|
|
|
|
SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
|
|
FD->isInline(), F, false);
|
|
}
|
|
|
|
|
|
void CodeGenModule::EmitAliases() {
|
|
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
|
|
const FunctionDecl *D = Aliases[i];
|
|
const AliasAttr *AA = D->getAttr<AliasAttr>();
|
|
|
|
// This is something of a hack, if the FunctionDecl got overridden
|
|
// then its attributes will be moved to the new declaration. In
|
|
// this case the current decl has no alias attribute, but we will
|
|
// eventually see it.
|
|
if (!AA)
|
|
continue;
|
|
|
|
const std::string& aliaseeName = AA->getAliasee();
|
|
llvm::Function *aliasee = getModule().getFunction(aliaseeName);
|
|
if (!aliasee) {
|
|
// FIXME: This isn't unsupported, this is just an error, which
|
|
// sema should catch, but...
|
|
ErrorUnsupported(D, "alias referencing a missing function");
|
|
continue;
|
|
}
|
|
|
|
llvm::GlobalValue *GA =
|
|
new llvm::GlobalAlias(aliasee->getType(),
|
|
llvm::Function::ExternalLinkage,
|
|
D->getNameAsString(), aliasee, &getModule());
|
|
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()];
|
|
if (Entry) {
|
|
// If we created a dummy function for this then replace it.
|
|
GA->takeName(Entry);
|
|
|
|
llvm::Value *Casted =
|
|
llvm::ConstantExpr::getBitCast(GA, Entry->getType());
|
|
Entry->replaceAllUsesWith(Casted);
|
|
Entry->eraseFromParent();
|
|
|
|
Entry = GA;
|
|
}
|
|
|
|
// Alias should never be internal or inline.
|
|
SetGlobalValueAttributes(D, false, false, GA, true);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitStatics() {
|
|
// Emit code for each used static decl encountered. Since a previously unused
|
|
// static decl may become used during the generation of code for a static
|
|
// function, iterate until no changes are made.
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
for (unsigned i = 0, e = StaticDecls.size(); i != e; ++i) {
|
|
const ValueDecl *D = StaticDecls[i];
|
|
|
|
// Check if we have used a decl with the same name
|
|
// FIXME: The AST should have some sort of aggregate decls or
|
|
// global symbol map.
|
|
// FIXME: This is missing some important cases. For example, we
|
|
// need to check for uses in an alias and in a constructor.
|
|
if (!GlobalDeclMap.count(D->getIdentifier()))
|
|
continue;
|
|
|
|
// Emit the definition.
|
|
EmitGlobalDefinition(D);
|
|
|
|
// Erase the used decl from the list.
|
|
StaticDecls[i] = StaticDecls.back();
|
|
StaticDecls.pop_back();
|
|
--i;
|
|
--e;
|
|
|
|
// Remember that we made a change.
|
|
Changed = true;
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
|
|
/// annotation information for a given GlobalValue. The annotation struct is
|
|
/// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the
|
|
/// GlobalValue being annotated. The second field is the constant string
|
|
/// created from the AnnotateAttr's annotation. The third field is a constant
|
|
/// string containing the name of the translation unit. The fourth field is
|
|
/// the line number in the file of the annotated value declaration.
|
|
///
|
|
/// FIXME: this does not unique the annotation string constants, as llvm-gcc
|
|
/// appears to.
|
|
///
|
|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
|
|
const AnnotateAttr *AA,
|
|
unsigned LineNo) {
|
|
llvm::Module *M = &getModule();
|
|
|
|
// get [N x i8] constants for the annotation string, and the filename string
|
|
// which are the 2nd and 3rd elements of the global annotation structure.
|
|
const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
|
|
llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
|
|
llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
|
|
true);
|
|
|
|
// Get the two global values corresponding to the ConstantArrays we just
|
|
// created to hold the bytes of the strings.
|
|
llvm::GlobalValue *annoGV =
|
|
new llvm::GlobalVariable(anno->getType(), false,
|
|
llvm::GlobalValue::InternalLinkage, anno,
|
|
GV->getName() + ".str", M);
|
|
// translation unit name string, emitted into the llvm.metadata section.
|
|
llvm::GlobalValue *unitGV =
|
|
new llvm::GlobalVariable(unit->getType(), false,
|
|
llvm::GlobalValue::InternalLinkage, unit, ".str", M);
|
|
|
|
// Create the ConstantStruct that is the global annotion.
|
|
llvm::Constant *Fields[4] = {
|
|
llvm::ConstantExpr::getBitCast(GV, SBP),
|
|
llvm::ConstantExpr::getBitCast(annoGV, SBP),
|
|
llvm::ConstantExpr::getBitCast(unitGV, SBP),
|
|
llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
|
|
};
|
|
return llvm::ConstantStruct::get(Fields, 4, false);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
|
|
bool isDef, isStatic;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
|
|
// Aliases are deferred until code for everything else has been
|
|
// emitted.
|
|
if (FD->getAttr<AliasAttr>()) {
|
|
assert(!FD->isThisDeclarationADefinition() &&
|
|
"Function alias cannot have a definition!");
|
|
Aliases.push_back(FD);
|
|
return;
|
|
}
|
|
|
|
isDef = FD->isThisDeclarationADefinition();
|
|
isStatic = FD->getStorageClass() == FunctionDecl::Static;
|
|
} else if (const VarDecl *VD = cast<VarDecl>(Global)) {
|
|
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
|
|
|
|
isDef = !(VD->getStorageClass() == VarDecl::Extern && VD->getInit() == 0);
|
|
isStatic = VD->getStorageClass() == VarDecl::Static;
|
|
} else {
|
|
assert(0 && "Invalid argument to EmitGlobal");
|
|
return;
|
|
}
|
|
|
|
// Forward declarations are emitted lazily on first use.
|
|
if (!isDef)
|
|
return;
|
|
|
|
// If the global is a static, defer code generation until later so
|
|
// we can easily omit unused statics.
|
|
if (isStatic) {
|
|
StaticDecls.push_back(Global);
|
|
return;
|
|
}
|
|
|
|
// Otherwise emit the definition.
|
|
EmitGlobalDefinition(Global);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
EmitGlobalFunctionDefinition(FD);
|
|
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
EmitGlobalVarDefinition(VD);
|
|
} else {
|
|
assert(0 && "Invalid argument to EmitGlobalDefinition()");
|
|
}
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) {
|
|
assert(D->hasGlobalStorage() && "Not a global variable");
|
|
|
|
QualType ASTTy = D->getType();
|
|
const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
|
|
const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
|
|
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()];
|
|
if (!Entry)
|
|
Entry = new llvm::GlobalVariable(Ty, false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
0, D->getNameAsString(), &getModule(), 0,
|
|
ASTTy.getAddressSpace());
|
|
|
|
// Make sure the result is of the correct type.
|
|
return llvm::ConstantExpr::getBitCast(Entry, PTy);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
|
|
llvm::Constant *Init = 0;
|
|
QualType ASTTy = D->getType();
|
|
const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy);
|
|
|
|
if (D->getInit() == 0) {
|
|
// This is a tentative definition; tentative definitions are
|
|
// implicitly initialized with { 0 }
|
|
const llvm::Type* InitTy;
|
|
if (ASTTy->isIncompleteArrayType()) {
|
|
// An incomplete array is normally [ TYPE x 0 ], but we need
|
|
// to fix it to [ TYPE x 1 ].
|
|
const llvm::ArrayType* ATy = cast<llvm::ArrayType>(VarTy);
|
|
InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
|
|
} else {
|
|
InitTy = VarTy;
|
|
}
|
|
Init = llvm::Constant::getNullValue(InitTy);
|
|
} else {
|
|
Init = EmitConstantExpr(D->getInit());
|
|
}
|
|
const llvm::Type* InitType = Init->getType();
|
|
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()];
|
|
llvm::GlobalVariable *GV = cast_or_null<llvm::GlobalVariable>(Entry);
|
|
|
|
if (!GV) {
|
|
GV = new llvm::GlobalVariable(InitType, false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
0, D->getNameAsString(), &getModule(), 0,
|
|
ASTTy.getAddressSpace());
|
|
} else if (GV->getType() !=
|
|
llvm::PointerType::get(InitType, ASTTy.getAddressSpace())) {
|
|
// We have a definition after a prototype with the wrong type.
|
|
// We must make a new GlobalVariable* and update everything that used OldGV
|
|
// (a declaration or tentative definition) with the new GlobalVariable*
|
|
// (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a global (e.g. "extern int x[];")
|
|
// and then a definition of a different type (e.g. "int x[10];"). This also
|
|
// happens when an initializer has a different type from the type of the
|
|
// global (this happens with unions).
|
|
//
|
|
// FIXME: This also ends up happening if there's a definition followed by
|
|
// a tentative definition! (Although Sema rejects that construct
|
|
// at the moment.)
|
|
|
|
// Save the old global
|
|
llvm::GlobalVariable *OldGV = GV;
|
|
|
|
// Make a new global with the correct type
|
|
GV = new llvm::GlobalVariable(InitType, false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
0, D->getNameAsString(), &getModule(), 0,
|
|
ASTTy.getAddressSpace());
|
|
// Steal the name of the old global
|
|
GV->takeName(OldGV);
|
|
|
|
// Replace all uses of the old global with the new global
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
|
|
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Erase the old global, since it is no longer used.
|
|
OldGV->eraseFromParent();
|
|
}
|
|
|
|
Entry = GV;
|
|
|
|
if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
|
|
SourceManager &SM = Context.getSourceManager();
|
|
AddAnnotation(EmitAnnotateAttr(GV, AA,
|
|
SM.getLogicalLineNumber(D->getLocation())));
|
|
}
|
|
|
|
GV->setInitializer(Init);
|
|
GV->setConstant(D->getType().isConstant(Context));
|
|
|
|
// FIXME: This is silly; getTypeAlign should just work for incomplete arrays
|
|
unsigned Align;
|
|
if (const IncompleteArrayType* IAT =
|
|
Context.getAsIncompleteArrayType(D->getType()))
|
|
Align = Context.getTypeAlign(IAT->getElementType());
|
|
else
|
|
Align = Context.getTypeAlign(D->getType());
|
|
if (const AlignedAttr* AA = D->getAttr<AlignedAttr>()) {
|
|
Align = std::max(Align, AA->getAlignment());
|
|
}
|
|
GV->setAlignment(Align / 8);
|
|
|
|
if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
|
|
setGlobalVisibility(GV, attr->getVisibility());
|
|
// FIXME: else handle -fvisibility
|
|
|
|
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
|
// Prefaced with special LLVM marker to indicate that the name
|
|
// should not be munged.
|
|
GV->setName("\01" + ALA->getLabel());
|
|
}
|
|
|
|
// Set the llvm linkage type as appropriate.
|
|
if (D->getStorageClass() == VarDecl::Static)
|
|
GV->setLinkage(llvm::Function::InternalLinkage);
|
|
else if (D->getAttr<DLLImportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLImportLinkage);
|
|
else if (D->getAttr<DLLExportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLExportLinkage);
|
|
else if (D->getAttr<WeakAttr>())
|
|
GV->setLinkage(llvm::GlobalVariable::WeakLinkage);
|
|
else {
|
|
// FIXME: This isn't right. This should handle common linkage and other
|
|
// stuff.
|
|
switch (D->getStorageClass()) {
|
|
case VarDecl::Static: assert(0 && "This case handled above");
|
|
case VarDecl::Auto:
|
|
case VarDecl::Register:
|
|
assert(0 && "Can't have auto or register globals");
|
|
case VarDecl::None:
|
|
if (!D->getInit())
|
|
GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
|
|
else
|
|
GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
|
|
break;
|
|
case VarDecl::Extern:
|
|
case VarDecl::PrivateExtern:
|
|
// todo: common
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit global variable debug information.
|
|
CGDebugInfo *DI = getDebugInfo();
|
|
if(DI) {
|
|
DI->setLocation(D->getLocation());
|
|
DI->EmitGlobalVariable(GV, D);
|
|
}
|
|
}
|
|
|
|
llvm::GlobalValue *
|
|
CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D) {
|
|
const llvm::Type *Ty = getTypes().ConvertType(D->getType());
|
|
llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
|
|
llvm::Function::ExternalLinkage,
|
|
D->getNameAsString(),&getModule());
|
|
SetFunctionAttributes(D, F);
|
|
return F;
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) {
|
|
QualType ASTTy = D->getType();
|
|
const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
|
|
const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
|
|
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()];
|
|
if (!Entry)
|
|
Entry = EmitForwardFunctionDefinition(D);
|
|
|
|
return llvm::ConstantExpr::getBitCast(Entry, PTy);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()];
|
|
if (!Entry) {
|
|
Entry = EmitForwardFunctionDefinition(D);
|
|
} else {
|
|
// If the types mismatch then we have to rewrite the definition.
|
|
const llvm::Type *Ty = getTypes().ConvertType(D->getType());
|
|
if (Entry->getType() != llvm::PointerType::getUnqual(Ty)) {
|
|
// Otherwise, we have a definition after a prototype with the wrong type.
|
|
// F is the Function* for the one with the wrong type, we must make a new
|
|
// Function* and update everything that used F (a declaration) with the new
|
|
// Function* (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a function (e.g. "int f()") and
|
|
// then a definition of a different type (e.g. "int f(int x)"). Start by
|
|
// making a new function of the correct type, RAUW, then steal the name.
|
|
llvm::GlobalValue *NewFn = EmitForwardFunctionDefinition(D);
|
|
NewFn->takeName(Entry);
|
|
|
|
// Replace uses of F with the Function we will endow with a body.
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Ok, delete the old function now, which is dead.
|
|
assert(Entry->isDeclaration() && "Shouldn't replace non-declaration");
|
|
Entry->eraseFromParent();
|
|
|
|
Entry = NewFn;
|
|
}
|
|
}
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(Entry);
|
|
CodeGenFunction(*this).GenerateCode(D, Fn);
|
|
|
|
SetFunctionAttributesForDefinition(D, Fn);
|
|
|
|
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) {
|
|
AddGlobalCtor(Fn, CA->getPriority());
|
|
} else if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) {
|
|
AddGlobalDtor(Fn, DA->getPriority());
|
|
}
|
|
}
|
|
|
|
llvm::Function *
|
|
CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
|
|
const std::string &Name) {
|
|
llvm::Function *Fn = llvm::Function::Create(FTy,
|
|
llvm::Function::ExternalLinkage,
|
|
"", &TheModule);
|
|
RuntimeFunctions.push_back(std::make_pair(Fn, Name));
|
|
return Fn;
|
|
}
|
|
|
|
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
|
|
// Make sure that this type is translated.
|
|
Types.UpdateCompletedType(TD);
|
|
}
|
|
|
|
|
|
/// getBuiltinLibFunction
|
|
llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
|
|
if (BuiltinID > BuiltinFunctions.size())
|
|
BuiltinFunctions.resize(BuiltinID);
|
|
|
|
// Cache looked up functions. Since builtin id #0 is invalid we don't reserve
|
|
// a slot for it.
|
|
assert(BuiltinID && "Invalid Builtin ID");
|
|
llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1];
|
|
if (FunctionSlot)
|
|
return FunctionSlot;
|
|
|
|
assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn");
|
|
|
|
// Get the name, skip over the __builtin_ prefix.
|
|
const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10;
|
|
|
|
// Get the type for the builtin.
|
|
QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context);
|
|
const llvm::FunctionType *Ty =
|
|
cast<llvm::FunctionType>(getTypes().ConvertType(Type));
|
|
|
|
// FIXME: This has a serious problem with code like this:
|
|
// void abs() {}
|
|
// ... __builtin_abs(x);
|
|
// The two versions of abs will collide. The fix is for the builtin to win,
|
|
// and for the existing one to be turned into a constantexpr cast of the
|
|
// builtin. In the case where the existing one is a static function, it
|
|
// should just be renamed.
|
|
if (llvm::Function *Existing = getModule().getFunction(Name)) {
|
|
if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage())
|
|
return FunctionSlot = Existing;
|
|
assert(Existing == 0 && "FIXME: Name collision");
|
|
}
|
|
|
|
// FIXME: param attributes for sext/zext etc.
|
|
return FunctionSlot =
|
|
llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name,
|
|
&getModule());
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
|
|
unsigned NumTys) {
|
|
return llvm::Intrinsic::getDeclaration(&getModule(),
|
|
(llvm::Intrinsic::ID)IID, Tys, NumTys);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemCpyFn() {
|
|
if (MemCpyFn) return MemCpyFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
|
|
return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemMoveFn() {
|
|
if (MemMoveFn) return MemMoveFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
|
|
return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemSetFn() {
|
|
if (MemSetFn) return MemSetFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
|
|
return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
|
|
}
|
|
|
|
static void appendFieldAndPadding(CodeGenModule &CGM,
|
|
std::vector<llvm::Constant*>& Fields,
|
|
int FieldNo, llvm::Constant* Field,
|
|
RecordDecl* RD, const llvm::StructType *STy)
|
|
{
|
|
// Append the field.
|
|
Fields.push_back(Field);
|
|
|
|
int StructFieldNo =
|
|
CGM.getTypes().getLLVMFieldNo(RD->getMember(FieldNo));
|
|
|
|
int NextStructFieldNo;
|
|
if (FieldNo + 1 == RD->getNumMembers()) {
|
|
NextStructFieldNo = STy->getNumElements();
|
|
} else {
|
|
NextStructFieldNo =
|
|
CGM.getTypes().getLLVMFieldNo(RD->getMember(FieldNo + 1));
|
|
}
|
|
|
|
// Append padding
|
|
for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
|
|
llvm::Constant *C =
|
|
llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
|
|
|
|
Fields.push_back(C);
|
|
}
|
|
}
|
|
|
|
// We still need to work out the details of handling UTF-16.
|
|
// See: <rdr://2996215>
|
|
llvm::Constant *CodeGenModule::
|
|
GetAddrOfConstantCFString(const std::string &str) {
|
|
llvm::StringMapEntry<llvm::Constant *> &Entry =
|
|
CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
|
|
|
|
if (Entry.getValue())
|
|
return Entry.getValue();
|
|
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
|
|
if (!CFConstantStringClassRef) {
|
|
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
Ty = llvm::ArrayType::get(Ty, 0);
|
|
|
|
// FIXME: This is fairly broken if
|
|
// __CFConstantStringClassReference is already defined, in that it
|
|
// will get renamed and the user will most likely see an opaque
|
|
// error message. This is a general issue with relying on
|
|
// particular names.
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(Ty, false,
|
|
llvm::GlobalVariable::ExternalLinkage, 0,
|
|
"__CFConstantStringClassReference",
|
|
&getModule());
|
|
|
|
// Decay array -> ptr
|
|
CFConstantStringClassRef =
|
|
llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
|
|
}
|
|
|
|
QualType CFTy = getContext().getCFConstantStringType();
|
|
RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
|
|
|
|
const llvm::StructType *STy =
|
|
cast<llvm::StructType>(getTypes().ConvertType(CFTy));
|
|
|
|
std::vector<llvm::Constant*> Fields;
|
|
|
|
|
|
// Class pointer.
|
|
appendFieldAndPadding(*this, Fields, 0, CFConstantStringClassRef, CFRD, STy);
|
|
|
|
// Flags.
|
|
const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
appendFieldAndPadding(*this, Fields, 1, llvm::ConstantInt::get(Ty, 0x07C8),
|
|
CFRD, STy);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C = llvm::ConstantArray::get(str);
|
|
C = new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, ".str", &getModule());
|
|
appendFieldAndPadding(*this, Fields, 2,
|
|
llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2),
|
|
CFRD, STy);
|
|
|
|
// String length.
|
|
Ty = getTypes().ConvertType(getContext().LongTy);
|
|
appendFieldAndPadding(*this, Fields, 3, llvm::ConstantInt::get(Ty, str.length()),
|
|
CFRD, STy);
|
|
|
|
// The struct.
|
|
C = llvm::ConstantStruct::get(STy, Fields);
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalVariable::InternalLinkage,
|
|
C, "", &getModule());
|
|
|
|
GV->setSection("__DATA,__cfstring");
|
|
Entry.setValue(GV);
|
|
|
|
return GV;
|
|
}
|
|
|
|
/// GetStringForStringLiteral - Return the appropriate bytes for a
|
|
/// string literal, properly padded to match the literal type.
|
|
std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
|
|
if (E->isWide()) {
|
|
ErrorUnsupported(E, "wide string");
|
|
return "FIXME";
|
|
}
|
|
|
|
const char *StrData = E->getStrData();
|
|
unsigned Len = E->getByteLength();
|
|
|
|
const ConstantArrayType *CAT =
|
|
getContext().getAsConstantArrayType(E->getType());
|
|
assert(CAT && "String isn't pointer or array!");
|
|
|
|
// Resize the string to the right size
|
|
// FIXME: What about wchar_t strings?
|
|
std::string Str(StrData, StrData+Len);
|
|
uint64_t RealLen = CAT->getSize().getZExtValue();
|
|
Str.resize(RealLen, '\0');
|
|
|
|
return Str;
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
|
|
/// constant array for the given string literal.
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
|
|
// FIXME: This can be more efficient.
|
|
return GetAddrOfConstantString(GetStringForStringLiteral(S));
|
|
}
|
|
|
|
/// GenerateWritableString -- Creates storage for a string literal.
|
|
static llvm::Constant *GenerateStringLiteral(const std::string &str,
|
|
bool constant,
|
|
CodeGenModule &CGM,
|
|
const char *GlobalName) {
|
|
// Create Constant for this string literal. Don't add a '\0'.
|
|
llvm::Constant *C = llvm::ConstantArray::get(str, false);
|
|
|
|
// Create a global variable for this string
|
|
C = new llvm::GlobalVariable(C->getType(), constant,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C,
|
|
GlobalName ? GlobalName : ".str",
|
|
&CGM.getModule());
|
|
|
|
return C;
|
|
}
|
|
|
|
/// GetAddrOfConstantString - Returns a pointer to a character array
|
|
/// containing the literal. This contents are exactly that of the
|
|
/// given string, i.e. it will not be null terminated automatically;
|
|
/// see GetAddrOfConstantCString. Note that whether the result is
|
|
/// actually a pointer to an LLVM constant depends on
|
|
/// Feature.WriteableStrings.
|
|
///
|
|
/// The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
|
|
const char *GlobalName) {
|
|
// Don't share any string literals if writable-strings is turned on.
|
|
if (Features.WritableStrings)
|
|
return GenerateStringLiteral(str, false, *this, GlobalName);
|
|
|
|
llvm::StringMapEntry<llvm::Constant *> &Entry =
|
|
ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
|
|
|
|
if (Entry.getValue())
|
|
return Entry.getValue();
|
|
|
|
// Create a global variable for this.
|
|
llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
|
|
Entry.setValue(C);
|
|
return C;
|
|
}
|
|
|
|
/// GetAddrOfConstantCString - Returns a pointer to a character
|
|
/// array containing the literal and a terminating '\-'
|
|
/// character. The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
|
|
const char *GlobalName){
|
|
return GetAddrOfConstantString(str + "\0", GlobalName);
|
|
}
|
|
|
|
/// EmitObjCPropertyImplementations - Emit information for synthesized
|
|
/// properties for an implementation.
|
|
void CodeGenModule::EmitObjCPropertyImplementations(const
|
|
ObjCImplementationDecl *D) {
|
|
for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
|
|
e = D->propimpl_end(); i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
|
|
// Dynamic is just for type-checking.
|
|
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
|
|
ObjCPropertyDecl *PD = PID->getPropertyDecl();
|
|
|
|
// Determine which methods need to be implemented, some may have
|
|
// been overridden. Note that ::isSynthesized is not the method
|
|
// we want, that just indicates if the decl came from a
|
|
// property. What we want to know is if the method is defined in
|
|
// this implementation.
|
|
if (!D->getInstanceMethod(PD->getGetterName()))
|
|
CodeGenFunction(*this).GenerateObjCGetter(PID);
|
|
if (!PD->isReadOnly() &&
|
|
!D->getInstanceMethod(PD->getSetterName()))
|
|
CodeGenFunction(*this).GenerateObjCSetter(PID);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
|
|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
|
|
// If an error has occurred, stop code generation, but continue
|
|
// parsing and semantic analysis (to ensure all warnings and errors
|
|
// are emitted).
|
|
if (Diags.hasErrorOccurred())
|
|
return;
|
|
|
|
switch (D->getKind()) {
|
|
case Decl::Function:
|
|
case Decl::Var:
|
|
EmitGlobal(cast<ValueDecl>(D));
|
|
break;
|
|
|
|
case Decl::Namespace:
|
|
ErrorUnsupported(D, "namespace");
|
|
break;
|
|
|
|
// Objective-C Decls
|
|
|
|
// Forward declarations, no (immediate) code generation.
|
|
case Decl::ObjCClass:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCForwardProtocol:
|
|
case Decl::ObjCInterface:
|
|
break;
|
|
|
|
case Decl::ObjCProtocol:
|
|
Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCCategoryImpl:
|
|
// Categories have properties but don't support synthesize so we
|
|
// can ignore them here.
|
|
|
|
Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCImplementation: {
|
|
ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
|
|
EmitObjCPropertyImplementations(OMD);
|
|
Runtime->GenerateClass(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCMethod: {
|
|
ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
|
|
// If this is not a prototype, emit the body.
|
|
if (OMD->getBody())
|
|
CodeGenFunction(*this).GenerateObjCMethod(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCCompatibleAlias:
|
|
ErrorUnsupported(D, "Objective-C compatible alias");
|
|
break;
|
|
|
|
case Decl::LinkageSpec: {
|
|
LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D);
|
|
if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx)
|
|
ErrorUnsupported(LSD, "linkage spec");
|
|
// FIXME: implement C++ linkage, C linkage works mostly by C
|
|
// language reuse already.
|
|
break;
|
|
}
|
|
|
|
case Decl::FileScopeAsm: {
|
|
FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
|
|
std::string AsmString(AD->getAsmString()->getStrData(),
|
|
AD->getAsmString()->getByteLength());
|
|
|
|
const std::string &S = getModule().getModuleInlineAsm();
|
|
if (S.empty())
|
|
getModule().setModuleInlineAsm(AsmString);
|
|
else
|
|
getModule().setModuleInlineAsm(S + '\n' + AsmString);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Make sure we handled everything we should, every other kind is
|
|
// a non-top-level decl. FIXME: Would be nice to have an
|
|
// isTopLevelDeclKind function. Need to recode Decl::Kind to do
|
|
// that easily.
|
|
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
|
|
}
|
|
}
|
|
|