forked from OSchip/llvm-project
1345 lines
51 KiB
C++
1345 lines
51 KiB
C++
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include <cstdarg>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using llvm::Value;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Scalar Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct BinOpInfo {
|
|
Value *LHS;
|
|
Value *RHS;
|
|
QualType Ty; // Computation Type.
|
|
const BinaryOperator *E;
|
|
};
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ScalarExprEmitter
|
|
: public StmtVisitor<ScalarExprEmitter, Value*> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
|
|
public:
|
|
|
|
ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
|
|
Builder(CGF.Builder) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
|
|
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
|
|
|
|
Value *EmitLoadOfLValue(LValue LV, QualType T) {
|
|
return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression with complex type that represents a
|
|
/// value l-value, this method emits the address of the l-value, then loads
|
|
/// and returns the result.
|
|
Value *EmitLoadOfLValue(const Expr *E) {
|
|
// FIXME: Volatile
|
|
return EmitLoadOfLValue(EmitLValue(E), E->getType());
|
|
}
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *EmitConversionToBool(Value *Src, QualType DstTy);
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination
|
|
/// type is an LLVM scalar type.
|
|
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
|
|
QualType SrcTy, QualType DstTy);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
Value *VisitStmt(Stmt *S) {
|
|
S->dump(CGF.getContext().getSourceManager());
|
|
assert(0 && "Stmt can't have complex result type!");
|
|
return 0;
|
|
}
|
|
Value *VisitExpr(Expr *S);
|
|
Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
|
|
|
|
// Leaves.
|
|
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return llvm::ConstantInt::get(E->getValue());
|
|
}
|
|
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
return llvm::ConstantFP::get(E->getValue());
|
|
}
|
|
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
|
|
return llvm::Constant::getNullValue(ConvertType(E->getType()));
|
|
}
|
|
Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()),
|
|
CGF.getContext().typesAreCompatible(
|
|
E->getArgType1(), E->getArgType2()));
|
|
}
|
|
Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
|
|
Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
|
|
llvm::Value *V =
|
|
llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
CGF.GetIDForAddrOfLabel(E->getLabel()));
|
|
|
|
return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
|
|
}
|
|
|
|
// l-values.
|
|
Value *VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
|
|
return llvm::ConstantInt::get(EC->getInitVal());
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
|
|
return CGF.EmitObjCSelectorExpr(E);
|
|
}
|
|
Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
|
|
return CGF.EmitObjCProtocolExpr(E);
|
|
}
|
|
Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
return CGF.EmitObjCMessageExpr(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
|
|
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
|
|
Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
|
|
Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
|
|
|
|
Value *VisitInitListExpr(InitListExpr *E) {
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
const llvm::VectorType *VType =
|
|
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
|
|
|
|
// We have a scalar in braces. Just use the first element.
|
|
if (!VType)
|
|
return Visit(E->getInit(0));
|
|
|
|
if (E->hadDesignators()) {
|
|
CGF.ErrorUnsupported(E, "initializer list with designators");
|
|
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
}
|
|
|
|
unsigned NumVectorElements = VType->getNumElements();
|
|
const llvm::Type *ElementType = VType->getElementType();
|
|
|
|
// Emit individual vector element stores.
|
|
llvm::Value *V = llvm::UndefValue::get(VType);
|
|
|
|
// Emit initializers
|
|
unsigned i;
|
|
for (i = 0; i < NumInitElements; ++i) {
|
|
Value *NewV = Visit(E->getInit(i));
|
|
Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
|
|
V = Builder.CreateInsertElement(V, NewV, Idx);
|
|
}
|
|
|
|
// Emit remaining default initializers
|
|
for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
|
|
Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
|
|
llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
|
|
V = Builder.CreateInsertElement(V, NewV, Idx);
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
|
|
Value *VisitCastExpr(const CastExpr *E) {
|
|
return EmitCastExpr(E->getSubExpr(), E->getType());
|
|
}
|
|
Value *EmitCastExpr(const Expr *E, QualType T);
|
|
|
|
Value *VisitCallExpr(const CallExpr *E) {
|
|
return CGF.EmitCallExpr(E).getScalarVal();
|
|
}
|
|
|
|
Value *VisitStmtExpr(const StmtExpr *E);
|
|
|
|
// Unary Operators.
|
|
Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
|
|
Value *VisitUnaryPostDec(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, false, false);
|
|
}
|
|
Value *VisitUnaryPostInc(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, true, false);
|
|
}
|
|
Value *VisitUnaryPreDec(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, false, true);
|
|
}
|
|
Value *VisitUnaryPreInc(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, true, true);
|
|
}
|
|
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
return EmitLValue(E->getSubExpr()).getAddress();
|
|
}
|
|
Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
Value *VisitUnaryPlus(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
Value *VisitUnaryMinus (const UnaryOperator *E);
|
|
Value *VisitUnaryNot (const UnaryOperator *E);
|
|
Value *VisitUnaryLNot (const UnaryOperator *E);
|
|
Value *VisitUnaryReal (const UnaryOperator *E);
|
|
Value *VisitUnaryImag (const UnaryOperator *E);
|
|
Value *VisitUnaryExtension(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
Value *VisitUnaryOffsetOf(const UnaryOperator *E);
|
|
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
return Visit(DAE->getExpr());
|
|
}
|
|
|
|
// Binary Operators.
|
|
Value *EmitMul(const BinOpInfo &Ops) {
|
|
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
|
|
}
|
|
Value *EmitDiv(const BinOpInfo &Ops);
|
|
Value *EmitRem(const BinOpInfo &Ops);
|
|
Value *EmitAdd(const BinOpInfo &Ops);
|
|
Value *EmitSub(const BinOpInfo &Ops);
|
|
Value *EmitShl(const BinOpInfo &Ops);
|
|
Value *EmitShr(const BinOpInfo &Ops);
|
|
Value *EmitAnd(const BinOpInfo &Ops) {
|
|
return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
|
|
}
|
|
Value *EmitXor(const BinOpInfo &Ops) {
|
|
return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
|
|
}
|
|
Value *EmitOr (const BinOpInfo &Ops) {
|
|
return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
|
|
}
|
|
|
|
BinOpInfo EmitBinOps(const BinaryOperator *E);
|
|
Value *EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
|
|
|
|
// Binary operators and binary compound assignment operators.
|
|
#define HANDLEBINOP(OP) \
|
|
Value *VisitBin ## OP(const BinaryOperator *E) { \
|
|
return Emit ## OP(EmitBinOps(E)); \
|
|
} \
|
|
Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
|
|
return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
|
|
}
|
|
HANDLEBINOP(Mul);
|
|
HANDLEBINOP(Div);
|
|
HANDLEBINOP(Rem);
|
|
HANDLEBINOP(Add);
|
|
HANDLEBINOP(Sub);
|
|
HANDLEBINOP(Shl);
|
|
HANDLEBINOP(Shr);
|
|
HANDLEBINOP(And);
|
|
HANDLEBINOP(Xor);
|
|
HANDLEBINOP(Or);
|
|
#undef HANDLEBINOP
|
|
|
|
// Comparisons.
|
|
Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
|
|
unsigned SICmpOpc, unsigned FCmpOpc);
|
|
#define VISITCOMP(CODE, UI, SI, FP) \
|
|
Value *VisitBin##CODE(const BinaryOperator *E) { \
|
|
return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
|
|
llvm::FCmpInst::FP); }
|
|
VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
|
|
VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
|
|
VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
|
|
VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
|
|
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
|
|
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
|
|
#undef VISITCOMP
|
|
|
|
Value *VisitBinAssign (const BinaryOperator *E);
|
|
|
|
Value *VisitBinLAnd (const BinaryOperator *E);
|
|
Value *VisitBinLOr (const BinaryOperator *E);
|
|
Value *VisitBinComma (const BinaryOperator *E);
|
|
|
|
// Other Operators.
|
|
Value *VisitConditionalOperator(const ConditionalOperator *CO);
|
|
Value *VisitChooseExpr(ChooseExpr *CE);
|
|
Value *VisitOverloadExpr(OverloadExpr *OE);
|
|
Value *VisitVAArgExpr(VAArgExpr *VE);
|
|
Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
|
|
return CGF.EmitObjCStringLiteral(E);
|
|
}
|
|
Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitConversionToBool - Convert the specified expression value to a
|
|
/// boolean (i1) truth value. This is equivalent to "Val != 0".
|
|
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
|
|
assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
|
|
}
|
|
|
|
assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
// Because of the type rules of C, we often end up computing a logical value,
|
|
// then zero extending it to int, then wanting it as a logical value again.
|
|
// Optimize this common case.
|
|
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
|
|
if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
|
|
Value *Result = ZI->getOperand(0);
|
|
// If there aren't any more uses, zap the instruction to save space.
|
|
// Note that there can be more uses, for example if this
|
|
// is the result of an assignment.
|
|
if (ZI->use_empty())
|
|
ZI->eraseFromParent();
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Compare against an integer or pointer null.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return Builder.CreateICmpNE(Src, Zero, "tobool");
|
|
}
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
|
|
QualType DstType) {
|
|
SrcType = CGF.getContext().getCanonicalType(SrcType);
|
|
DstType = CGF.getContext().getCanonicalType(DstType);
|
|
if (SrcType == DstType) return Src;
|
|
|
|
if (DstType->isVoidType()) return 0;
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
const llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (Src->getType() == DstTy)
|
|
return Src;
|
|
|
|
// Handle pointer conversions next: pointers can only be converted
|
|
// to/from other pointers and integers. Check for pointer types in
|
|
// terms of LLVM, as some native types (like Obj-C id) may map to a
|
|
// pointer type.
|
|
if (isa<llvm::PointerType>(DstTy)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(Src->getType()))
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
|
|
return Builder.CreateIntToPtr(Src, DstTy, "conv");
|
|
}
|
|
|
|
if (isa<llvm::PointerType>(Src->getType())) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return Builder.CreatePtrToInt(Src, DstTy, "conv");
|
|
}
|
|
|
|
// A scalar can be splatted to an extended vector of the same element type
|
|
if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
|
|
cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
|
|
return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
|
|
true);
|
|
|
|
// Allow bitcast from vector to integer/fp of the same size.
|
|
if (isa<llvm::VectorType>(Src->getType()) ||
|
|
isa<llvm::VectorType>(DstTy))
|
|
return Builder.CreateBitCast(Src, DstTy, "conv");
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
if (isa<llvm::IntegerType>(Src->getType())) {
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
if (isa<llvm::IntegerType>(DstTy))
|
|
return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
|
|
else if (InputSigned)
|
|
return Builder.CreateSIToFP(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateUIToFP(Src, DstTy, "conv");
|
|
}
|
|
|
|
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
|
|
if (isa<llvm::IntegerType>(DstTy)) {
|
|
if (DstType->isSignedIntegerType())
|
|
return Builder.CreateFPToSI(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateFPToUI(Src, DstTy, "conv");
|
|
}
|
|
|
|
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
|
|
if (DstTy->getTypeID() < Src->getType()->getTypeID())
|
|
return Builder.CreateFPTrunc(Src, DstTy, "conv");
|
|
else
|
|
return Builder.CreateFPExt(Src, DstTy, "conv");
|
|
}
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination
|
|
/// type is an LLVM scalar type.
|
|
Value *ScalarExprEmitter::
|
|
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
|
|
QualType SrcTy, QualType DstTy) {
|
|
// Get the source element type.
|
|
SrcTy = SrcTy->getAsComplexType()->getElementType();
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstTy->isBooleanType()) {
|
|
// Complex != 0 -> (Real != 0) | (Imag != 0)
|
|
Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
|
|
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
|
|
return Builder.CreateOr(Src.first, Src.second, "tobool");
|
|
}
|
|
|
|
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
|
|
// the imaginary part of the complex value is discarded and the value of the
|
|
// real part is converted according to the conversion rules for the
|
|
// corresponding real type.
|
|
return EmitScalarConversion(Src.first, SrcTy, DstTy);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
|
|
CGF.ErrorUnsupported(E, "scalar expression");
|
|
if (E->getType()->isVoidType())
|
|
return 0;
|
|
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
|
|
llvm::SmallVector<llvm::Constant*, 32> indices;
|
|
for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
|
|
indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
|
|
}
|
|
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
|
|
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
|
|
Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
|
|
return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
// Emit subscript expressions in rvalue context's. For most cases, this just
|
|
// loads the lvalue formed by the subscript expr. However, we have to be
|
|
// careful, because the base of a vector subscript is occasionally an rvalue,
|
|
// so we can't get it as an lvalue.
|
|
if (!E->getBase()->getType()->isVectorType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
// Handle the vector case. The base must be a vector, the index must be an
|
|
// integer value.
|
|
Value *Base = Visit(E->getBase());
|
|
Value *Idx = Visit(E->getIdx());
|
|
|
|
// FIXME: Convert Idx to i32 type.
|
|
return Builder.CreateExtractElement(Base, Idx, "vecext");
|
|
}
|
|
|
|
/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
|
|
/// also handle things like function to pointer-to-function decay, and array to
|
|
/// pointer decay.
|
|
Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
|
|
const Expr *Op = E->getSubExpr();
|
|
|
|
// If this is due to array->pointer conversion, emit the array expression as
|
|
// an l-value.
|
|
if (Op->getType()->isArrayType()) {
|
|
// FIXME: For now we assume that all source arrays map to LLVM arrays. This
|
|
// will not true when we add support for VLAs.
|
|
Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
|
|
|
|
if (!(isa<llvm::PointerType>(V->getType()) &&
|
|
isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
|
|
->getElementType()))) {
|
|
CGF.ErrorUnsupported(E, "variable-length array cast", true);
|
|
if (E->getType()->isVoidType())
|
|
return 0;
|
|
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
|
|
}
|
|
V = Builder.CreateStructGEP(V, 0, "arraydecay");
|
|
|
|
// The resultant pointer type can be implicitly casted to other pointer
|
|
// types as well (e.g. void*) and can be implicitly converted to integer.
|
|
const llvm::Type *DestTy = ConvertType(E->getType());
|
|
if (V->getType() != DestTy) {
|
|
if (isa<llvm::PointerType>(DestTy))
|
|
V = Builder.CreateBitCast(V, DestTy, "ptrconv");
|
|
else {
|
|
assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
|
|
V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
|
|
}
|
|
}
|
|
return V;
|
|
|
|
} else if (E->getType()->isReferenceType()) {
|
|
return EmitLValue(Op).getAddress();
|
|
}
|
|
|
|
return EmitCastExpr(Op, E->getType());
|
|
}
|
|
|
|
|
|
// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
|
|
// have to handle a more broad range of conversions than explicit casts, as they
|
|
// handle things like function to ptr-to-function decay etc.
|
|
Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
|
|
// Handle cases where the source is an non-complex type.
|
|
|
|
if (!CGF.hasAggregateLLVMType(E->getType())) {
|
|
Value *Src = Visit(const_cast<Expr*>(E));
|
|
|
|
// Use EmitScalarConversion to perform the conversion.
|
|
return EmitScalarConversion(Src, E->getType(), DestTy);
|
|
}
|
|
|
|
if (E->getType()->isAnyComplexType()) {
|
|
// Handle cases where the source is a complex type.
|
|
return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
|
|
DestTy);
|
|
}
|
|
|
|
// Okay, this is a cast from an aggregate. It must be a cast to void. Just
|
|
// evaluate the result and return.
|
|
CGF.EmitAggExpr(E, 0, false);
|
|
return 0;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
return CGF.EmitCompoundStmt(*E->getSubStmt(),
|
|
!E->getType()->isVoidType()).getScalarVal();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
|
|
bool isInc, bool isPre) {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
// FIXME: Handle volatile!
|
|
Value *InVal = CGF.EmitLoadOfLValue(LV, // false
|
|
E->getSubExpr()->getType()).getScalarVal();
|
|
|
|
int AmountVal = isInc ? 1 : -1;
|
|
|
|
Value *NextVal;
|
|
if (isa<llvm::PointerType>(InVal->getType())) {
|
|
// FIXME: This isn't right for VLAs.
|
|
NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
|
|
NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
|
|
} else {
|
|
// Add the inc/dec to the real part.
|
|
if (isa<llvm::IntegerType>(InVal->getType()))
|
|
NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
|
|
else if (InVal->getType() == llvm::Type::FloatTy)
|
|
NextVal =
|
|
llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
|
|
else if (InVal->getType() == llvm::Type::DoubleTy)
|
|
NextVal =
|
|
llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
|
|
else {
|
|
llvm::APFloat F(static_cast<float>(AmountVal));
|
|
bool ignored;
|
|
F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
|
|
&ignored);
|
|
NextVal = llvm::ConstantFP::get(F);
|
|
}
|
|
NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
// Store the updated result through the lvalue.
|
|
CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
|
|
E->getSubExpr()->getType());
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? NextVal : InVal;
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
|
|
Value *Op = Visit(E->getSubExpr());
|
|
return Builder.CreateNeg(Op, "neg");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
|
|
Value *Op = Visit(E->getSubExpr());
|
|
return Builder.CreateNot(Op, "neg");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
|
|
// Compare operand to zero.
|
|
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
|
|
|
|
// Invert value.
|
|
// TODO: Could dynamically modify easy computations here. For example, if
|
|
// the operand is an icmp ne, turn into icmp eq.
|
|
BoolVal = Builder.CreateNot(BoolVal, "lnot");
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
|
|
}
|
|
|
|
/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
|
|
/// argument of the sizeof expression as an integer.
|
|
Value *
|
|
ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
|
|
QualType RetType = E->getType();
|
|
assert(RetType->isIntegerType() && "Result type must be an integer!");
|
|
uint32_t ResultWidth =
|
|
static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
|
|
|
|
QualType TypeToSize = E->getTypeOfArgument();
|
|
// sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
|
|
// for function types.
|
|
// FIXME: what is alignof a function type in gcc?
|
|
if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
|
|
|
|
/// FIXME: This doesn't handle VLAs yet!
|
|
std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
|
|
|
|
uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
|
|
Val /= 8; // Return size in bytes, not bits.
|
|
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType())
|
|
return CGF.EmitComplexExpr(Op).first;
|
|
return Visit(Op);
|
|
}
|
|
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
|
|
Expr *Op = E->getSubExpr();
|
|
if (Op->getType()->isAnyComplexType())
|
|
return CGF.EmitComplexExpr(Op).second;
|
|
|
|
// __imag on a scalar returns zero. Emit it the subexpr to ensure side
|
|
// effects are evaluated.
|
|
CGF.EmitScalarExpr(Op);
|
|
return llvm::Constant::getNullValue(ConvertType(E->getType()));
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
|
|
{
|
|
int64_t Val = E->evaluateOffsetOf(CGF.getContext());
|
|
|
|
assert(E->getType()->isIntegerType() && "Result type must be an integer!");
|
|
|
|
uint32_t ResultWidth =
|
|
static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
|
|
BinOpInfo Result;
|
|
Result.LHS = Visit(E->getLHS());
|
|
Result.RHS = Visit(E->getRHS());
|
|
Result.Ty = E->getType();
|
|
Result.E = E;
|
|
return Result;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
|
|
QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
|
|
|
|
BinOpInfo OpInfo;
|
|
|
|
// Load the LHS and RHS operands.
|
|
LValue LHSLV = EmitLValue(E->getLHS());
|
|
OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
|
|
|
|
// Determine the computation type. If the RHS is complex, then this is one of
|
|
// the add/sub/mul/div operators. All of these operators can be computed in
|
|
// with just their real component even though the computation domain really is
|
|
// complex.
|
|
QualType ComputeType = E->getComputationType();
|
|
|
|
// If the computation type is complex, then the RHS is complex. Emit the RHS.
|
|
if (const ComplexType *CT = ComputeType->getAsComplexType()) {
|
|
ComputeType = CT->getElementType();
|
|
|
|
// Emit the RHS, only keeping the real component.
|
|
OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
|
|
RHSTy = RHSTy->getAsComplexType()->getElementType();
|
|
} else {
|
|
// Otherwise the RHS is a simple scalar value.
|
|
OpInfo.RHS = Visit(E->getRHS());
|
|
}
|
|
|
|
QualType LComputeTy, RComputeTy, ResultTy;
|
|
|
|
// Compound assignment does not contain enough information about all
|
|
// the types involved for pointer arithmetic cases. Figure it out
|
|
// here for now.
|
|
if (E->getLHS()->getType()->isPointerType()) {
|
|
// Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
|
|
assert((E->getOpcode() == BinaryOperator::AddAssign ||
|
|
E->getOpcode() == BinaryOperator::SubAssign) &&
|
|
"Invalid compound assignment operator on pointer type.");
|
|
LComputeTy = E->getLHS()->getType();
|
|
|
|
if (E->getRHS()->getType()->isPointerType()) {
|
|
// Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
|
|
// extension, the conversion from the pointer difference back to
|
|
// the LHS type is handled at the end.
|
|
assert(E->getOpcode() == BinaryOperator::SubAssign &&
|
|
"Invalid compound assignment operator on pointer type.");
|
|
RComputeTy = E->getLHS()->getType();
|
|
ResultTy = CGF.getContext().getPointerDiffType();
|
|
} else {
|
|
RComputeTy = E->getRHS()->getType();
|
|
ResultTy = LComputeTy;
|
|
}
|
|
} else if (E->getRHS()->getType()->isPointerType()) {
|
|
// Degenerate case of (int += ptr) allowed by GCC implicit cast
|
|
// extension.
|
|
assert(E->getOpcode() == BinaryOperator::AddAssign &&
|
|
"Invalid compound assignment operator on pointer type.");
|
|
LComputeTy = E->getLHS()->getType();
|
|
RComputeTy = E->getRHS()->getType();
|
|
ResultTy = RComputeTy;
|
|
} else {
|
|
LComputeTy = RComputeTy = ResultTy = ComputeType;
|
|
}
|
|
|
|
// Convert the LHS/RHS values to the computation type.
|
|
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
|
|
OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
|
|
OpInfo.Ty = ResultTy;
|
|
OpInfo.E = E;
|
|
|
|
// Expand the binary operator.
|
|
Value *Result = (this->*Func)(OpInfo);
|
|
|
|
// Convert the result back to the LHS type.
|
|
Result = EmitScalarConversion(Result, ResultTy, LHSTy);
|
|
|
|
// Store the result value into the LHS lvalue. Bit-fields are
|
|
// handled specially because the result is altered by the store,
|
|
// i.e., [C99 6.5.16p1] 'An assignment expression has the value of
|
|
// the left operand after the assignment...'.
|
|
if (LHSLV.isBitfield())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
|
|
&Result);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
|
|
if (Ops.LHS->getType()->isFPOrFPVector())
|
|
return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
|
|
else if (Ops.Ty->isUnsignedIntegerType())
|
|
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
|
|
else
|
|
return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
|
|
// Rem in C can't be a floating point type: C99 6.5.5p2.
|
|
if (Ops.Ty->isUnsignedIntegerType())
|
|
return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
|
|
else
|
|
return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
|
|
if (!Ops.Ty->isPointerType())
|
|
return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
|
|
|
|
// FIXME: What about a pointer to a VLA?
|
|
Value *Ptr, *Idx;
|
|
Expr *IdxExp;
|
|
if (isa<llvm::PointerType>(Ops.LHS->getType())) { // pointer + int
|
|
Ptr = Ops.LHS;
|
|
Idx = Ops.RHS;
|
|
IdxExp = Ops.E->getRHS();
|
|
} else { // int + pointer
|
|
Ptr = Ops.RHS;
|
|
Idx = Ops.LHS;
|
|
IdxExp = Ops.E->getLHS();
|
|
}
|
|
|
|
unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
|
|
if (Width < CGF.LLVMPointerWidth) {
|
|
// Zero or sign extend the pointer value based on whether the index is
|
|
// signed or not.
|
|
const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
|
|
if (IdxExp->getType()->isSignedIntegerType())
|
|
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
|
|
else
|
|
Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
|
|
}
|
|
|
|
return Builder.CreateGEP(Ptr, Idx, "add.ptr");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
|
|
if (!isa<llvm::PointerType>(Ops.LHS->getType()))
|
|
return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
|
|
|
|
if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
|
|
// pointer - int
|
|
Value *Idx = Ops.RHS;
|
|
unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
|
|
if (Width < CGF.LLVMPointerWidth) {
|
|
// Zero or sign extend the pointer value based on whether the index is
|
|
// signed or not.
|
|
const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
|
|
if (Ops.E->getRHS()->getType()->isSignedIntegerType())
|
|
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
|
|
else
|
|
Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
|
|
}
|
|
Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
|
|
|
|
// FIXME: The pointer could point to a VLA.
|
|
// The GNU void* - int case is automatically handled here because
|
|
// our LLVM type for void* is i8*.
|
|
return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
|
|
} else {
|
|
// pointer - pointer
|
|
Value *LHS = Ops.LHS;
|
|
Value *RHS = Ops.RHS;
|
|
|
|
const QualType LHSType = Ops.E->getLHS()->getType();
|
|
const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
|
|
uint64_t ElementSize;
|
|
|
|
// Handle GCC extension for pointer arithmetic on void* types.
|
|
if (LHSElementType->isVoidType()) {
|
|
ElementSize = 1;
|
|
} else {
|
|
ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
|
|
}
|
|
|
|
const llvm::Type *ResultType = ConvertType(Ops.Ty);
|
|
LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
|
|
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
|
|
Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
|
|
|
|
// HACK: LLVM doesn't have an divide instruction that 'knows' there is no
|
|
// remainder. As such, we handle common power-of-two cases here to generate
|
|
// better code. See PR2247.
|
|
if (llvm::isPowerOf2_64(ElementSize)) {
|
|
Value *ShAmt =
|
|
llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
|
|
return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
|
|
}
|
|
|
|
// Otherwise, do a full sdiv.
|
|
Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
|
|
return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
|
|
}
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
return Builder.CreateShl(Ops.LHS, RHS, "shl");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
Value *RHS = Ops.RHS;
|
|
if (Ops.LHS->getType() != RHS->getType())
|
|
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
|
|
|
|
if (Ops.Ty->isUnsignedIntegerType())
|
|
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
|
|
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
|
|
unsigned SICmpOpc, unsigned FCmpOpc) {
|
|
Value *Result;
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
|
|
Value *LHS = Visit(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
|
|
if (LHS->getType()->isFloatingPoint()) {
|
|
Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else if (LHSTy->isSignedIntegerType()) {
|
|
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else {
|
|
// Unsigned integers and pointers.
|
|
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
}
|
|
} else if (LHSTy->isVectorType()) {
|
|
Value *LHS = Visit(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
|
|
if (LHS->getType()->isFPOrFPVector()) {
|
|
Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else if (LHSTy->isUnsignedIntegerType()) {
|
|
Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
} else {
|
|
// Signed integers and pointers.
|
|
Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
|
|
LHS, RHS, "cmp");
|
|
}
|
|
return Result;
|
|
} else {
|
|
// Complex Comparison: can only be an equality comparison.
|
|
CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
|
|
CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
|
|
|
|
QualType CETy = LHSTy->getAsComplexType()->getElementType();
|
|
|
|
Value *ResultR, *ResultI;
|
|
if (CETy->isRealFloatingType()) {
|
|
ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
|
|
LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
|
|
LHS.second, RHS.second, "cmp.i");
|
|
} else {
|
|
// Complex comparisons can only be equality comparisons. As such, signed
|
|
// and unsigned opcodes are the same.
|
|
ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS.first, RHS.first, "cmp.r");
|
|
ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
|
|
LHS.second, RHS.second, "cmp.i");
|
|
}
|
|
|
|
if (E->getOpcode() == BinaryOperator::EQ) {
|
|
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
|
|
} else {
|
|
assert(E->getOpcode() == BinaryOperator::NE &&
|
|
"Complex comparison other than == or != ?");
|
|
Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
|
|
}
|
|
}
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
LValue LHS = EmitLValue(E->getLHS());
|
|
Value *RHS = Visit(E->getRHS());
|
|
|
|
// Store the value into the LHS. Bit-fields are handled specially
|
|
// because the result is altered by the store, i.e., [C99 6.5.16p1]
|
|
// 'An assignment expression has the value of the left operand after
|
|
// the assignment...'.
|
|
// FIXME: Volatility!
|
|
if (LHS.isBitfield())
|
|
CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
|
|
&RHS);
|
|
else
|
|
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
|
|
|
|
// Return the RHS.
|
|
return RHS;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
|
|
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
|
|
// If we have 1 && X, just emit X without inserting the control flow.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
|
|
if (Cond == 1) { // If we have 1 && X, just emit X.
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
|
|
}
|
|
|
|
// 0 && RHS: If it is safe, just elide the RHS, and return 0.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::Constant::getNullValue(CGF.LLVMIntTy);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
|
|
|
|
// Branch on the LHS first. If it is false, go to the failure (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be false. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
|
|
PN->reserveOperandSpace(2); // Normal case, two inputs.
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
|
|
|
|
CGF.EmitBlock(RHSBlock);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// Emit an unconditional branch from this block to ContBlock. Insert an entry
|
|
// into the phi node for the edge with the value of RHSCond.
|
|
CGF.EmitBlock(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
|
|
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
|
|
// If we have 0 || X, just emit X without inserting the control flow.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
|
|
if (Cond == -1) { // If we have 0 || X, just emit X.
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
|
|
}
|
|
|
|
// 1 || RHS: If it is safe, just elide the RHS, and return 1.
|
|
if (!CGF.ContainsLabel(E->getRHS()))
|
|
return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
|
|
}
|
|
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
|
|
|
|
// Branch on the LHS first. If it is true, go to the success (cont) block.
|
|
CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
|
|
|
|
// Any edges into the ContBlock are now from an (indeterminate number of)
|
|
// edges from this first condition. All of these values will be true. Start
|
|
// setting up the PHI node in the Cont Block for this.
|
|
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
|
|
PN->reserveOperandSpace(2); // Normal case, two inputs.
|
|
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
|
|
PI != PE; ++PI)
|
|
PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
|
|
|
|
// Emit the RHS condition as a bool value.
|
|
CGF.EmitBlock(RHSBlock);
|
|
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
|
|
|
|
// Reaquire the RHS block, as there may be subblocks inserted.
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
|
|
// Emit an unconditional branch from this block to ContBlock. Insert an entry
|
|
// into the phi node for the edge with the value of RHSCond.
|
|
CGF.EmitBlock(ContBlock);
|
|
PN->addIncoming(RHSCond, RHSBlock);
|
|
|
|
// ZExt result to int.
|
|
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitStmt(E->getLHS());
|
|
CGF.EnsureInsertPoint();
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
|
|
/// expression is cheap enough and side-effect-free enough to evaluate
|
|
/// unconditionally instead of conditionally. This is used to convert control
|
|
/// flow into selects in some cases.
|
|
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
|
|
return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
|
|
|
|
// TODO: Allow anything we can constant fold to an integer or fp constant.
|
|
if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
|
|
isa<FloatingLiteral>(E))
|
|
return true;
|
|
|
|
// Non-volatile automatic variables too, to get "cond ? X : Y" where
|
|
// X and Y are local variables.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
Value *ScalarExprEmitter::
|
|
VisitConditionalOperator(const ConditionalOperator *E) {
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm.
|
|
if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
|
|
Expr *Live = E->getLHS(), *Dead = E->getRHS();
|
|
if (Cond == -1)
|
|
std::swap(Live, Dead);
|
|
|
|
// If the dead side doesn't have labels we need, and if the Live side isn't
|
|
// the gnu missing ?: extension (which we could handle, but don't bother
|
|
// to), just emit the Live part.
|
|
if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
|
|
Live) // Live part isn't missing.
|
|
return Visit(Live);
|
|
}
|
|
|
|
|
|
// If this is a really simple expression (like x ? 4 : 5), emit this as a
|
|
// select instead of as control flow. We can only do this if it is cheap and
|
|
// safe to evaluate the LHS and RHS unconditionally.
|
|
if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
|
|
isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
|
|
llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
|
|
llvm::Value *LHS = Visit(E->getLHS());
|
|
llvm::Value *RHS = Visit(E->getRHS());
|
|
return Builder.CreateSelect(CondV, LHS, RHS, "cond");
|
|
}
|
|
|
|
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
Value *CondVal = 0;
|
|
|
|
// If we have the GNU missing condition extension, evaluate the conditional
|
|
// and then convert it to bool the hard way. We do this explicitly
|
|
// because we need the unconverted value for the missing middle value of
|
|
// the ?:.
|
|
if (E->getLHS() == 0) {
|
|
CondVal = CGF.EmitScalarExpr(E->getCond());
|
|
Value *CondBoolVal =
|
|
CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
|
|
CGF.getContext().BoolTy);
|
|
Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
|
|
} else {
|
|
// Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
|
|
// the branch on bool.
|
|
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
|
|
}
|
|
|
|
CGF.EmitBlock(LHSBlock);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
Value *LHS;
|
|
if (E->getLHS())
|
|
LHS = Visit(E->getLHS());
|
|
else // Perform promotions, to handle cases like "short ?: int"
|
|
LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
|
|
|
|
LHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(RHSBlock);
|
|
|
|
Value *RHS = Visit(E->getRHS());
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
if (!LHS || !RHS) {
|
|
assert(E->getType()->isVoidType() && "Non-void value should have a value");
|
|
return 0;
|
|
}
|
|
|
|
// Create a PHI node for the real part.
|
|
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
|
|
PN->reserveOperandSpace(2);
|
|
PN->addIncoming(LHS, LHSBlock);
|
|
PN->addIncoming(RHS, RHSBlock);
|
|
return PN;
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
|
|
// Emit the LHS or RHS as appropriate.
|
|
return
|
|
Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
|
|
return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
|
|
E->arg_end(CGF.getContext())).getScalarVal();
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
|
llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
|
|
|
|
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
|
|
|
|
// If EmitVAArg fails, we fall back to the LLVM instruction.
|
|
if (!ArgPtr)
|
|
return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
|
|
|
|
// FIXME: volatile?
|
|
return Builder.CreateLoad(ArgPtr);
|
|
}
|
|
|
|
Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
|
|
std::string str;
|
|
CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
|
|
|
|
llvm::Constant *C = llvm::ConstantArray::get(str);
|
|
C = new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, ".str", &CGF.CGM.getModule());
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
|
|
|
|
return C;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Point into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitComplexExpr - Emit the computation of the specified expression of
|
|
/// complex type, ignoring the result.
|
|
Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
|
|
assert(E && !hasAggregateLLVMType(E->getType()) &&
|
|
"Invalid scalar expression to emit");
|
|
|
|
return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
|
|
QualType DstTy) {
|
|
assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
|
|
"Invalid scalar expression to emit");
|
|
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
|
|
}
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination
|
|
/// type is an LLVM scalar type.
|
|
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
|
|
QualType SrcTy,
|
|
QualType DstTy) {
|
|
assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
|
|
"Invalid complex -> scalar conversion");
|
|
return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
|
|
DstTy);
|
|
}
|
|
|
|
Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
|
|
assert(V1->getType() == V2->getType() &&
|
|
"Vector operands must be of the same type");
|
|
unsigned NumElements =
|
|
cast<llvm::VectorType>(V1->getType())->getNumElements();
|
|
|
|
va_list va;
|
|
va_start(va, V2);
|
|
|
|
llvm::SmallVector<llvm::Constant*, 16> Args;
|
|
for (unsigned i = 0; i < NumElements; i++) {
|
|
int n = va_arg(va, int);
|
|
assert(n >= 0 && n < (int)NumElements * 2 &&
|
|
"Vector shuffle index out of bounds!");
|
|
Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
|
|
}
|
|
|
|
const char *Name = va_arg(va, const char *);
|
|
va_end(va);
|
|
|
|
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
|
|
|
|
return Builder.CreateShuffleVector(V1, V2, Mask, Name);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
|
|
unsigned NumVals, bool isSplat) {
|
|
llvm::Value *Vec
|
|
= llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
|
|
|
|
for (unsigned i = 0, e = NumVals; i != e; ++i) {
|
|
llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
|
|
llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
|
|
Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
|
|
}
|
|
|
|
return Vec;
|
|
}
|