forked from OSchip/llvm-project
6872 lines
246 KiB
C++
6872 lines
246 KiB
C++
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes wrap the information about a call or function
|
|
// definition used to handle ABI compliancy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TargetInfo.h"
|
|
#include "ABIInfo.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/CodeGen/CGFunctionInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <algorithm> // std::sort
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
|
|
llvm::Value *Array,
|
|
llvm::Value *Value,
|
|
unsigned FirstIndex,
|
|
unsigned LastIndex) {
|
|
// Alternatively, we could emit this as a loop in the source.
|
|
for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
|
|
llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
|
|
Builder.CreateStore(Value, Cell);
|
|
}
|
|
}
|
|
|
|
static bool isAggregateTypeForABI(QualType T) {
|
|
return !CodeGenFunction::hasScalarEvaluationKind(T) ||
|
|
T->isMemberFunctionPointerType();
|
|
}
|
|
|
|
ABIInfo::~ABIInfo() {}
|
|
|
|
static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
|
|
CGCXXABI &CXXABI) {
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD)
|
|
return CGCXXABI::RAA_Default;
|
|
return CXXABI.getRecordArgABI(RD);
|
|
}
|
|
|
|
static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
|
|
CGCXXABI &CXXABI) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return CGCXXABI::RAA_Default;
|
|
return getRecordArgABI(RT, CXXABI);
|
|
}
|
|
|
|
CGCXXABI &ABIInfo::getCXXABI() const {
|
|
return CGT.getCXXABI();
|
|
}
|
|
|
|
ASTContext &ABIInfo::getContext() const {
|
|
return CGT.getContext();
|
|
}
|
|
|
|
llvm::LLVMContext &ABIInfo::getVMContext() const {
|
|
return CGT.getLLVMContext();
|
|
}
|
|
|
|
const llvm::DataLayout &ABIInfo::getDataLayout() const {
|
|
return CGT.getDataLayout();
|
|
}
|
|
|
|
const TargetInfo &ABIInfo::getTarget() const {
|
|
return CGT.getTarget();
|
|
}
|
|
|
|
void ABIArgInfo::dump() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
OS << "(ABIArgInfo Kind=";
|
|
switch (TheKind) {
|
|
case Direct:
|
|
OS << "Direct Type=";
|
|
if (llvm::Type *Ty = getCoerceToType())
|
|
Ty->print(OS);
|
|
else
|
|
OS << "null";
|
|
break;
|
|
case Extend:
|
|
OS << "Extend";
|
|
break;
|
|
case Ignore:
|
|
OS << "Ignore";
|
|
break;
|
|
case InAlloca:
|
|
OS << "InAlloca Offset=" << getInAllocaFieldIndex();
|
|
break;
|
|
case Indirect:
|
|
OS << "Indirect Align=" << getIndirectAlign()
|
|
<< " ByVal=" << getIndirectByVal()
|
|
<< " Realign=" << getIndirectRealign();
|
|
break;
|
|
case Expand:
|
|
OS << "Expand";
|
|
break;
|
|
}
|
|
OS << ")\n";
|
|
}
|
|
|
|
TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
|
|
|
|
// If someone can figure out a general rule for this, that would be great.
|
|
// It's probably just doomed to be platform-dependent, though.
|
|
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
|
|
// Verified for:
|
|
// x86-64 FreeBSD, Linux, Darwin
|
|
// x86-32 FreeBSD, Linux, Darwin
|
|
// PowerPC Linux, Darwin
|
|
// ARM Darwin (*not* EABI)
|
|
// AArch64 Linux
|
|
return 32;
|
|
}
|
|
|
|
bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
|
|
const FunctionNoProtoType *fnType) const {
|
|
// The following conventions are known to require this to be false:
|
|
// x86_stdcall
|
|
// MIPS
|
|
// For everything else, we just prefer false unless we opt out.
|
|
return false;
|
|
}
|
|
|
|
void
|
|
TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const {
|
|
// This assumes the user is passing a library name like "rt" instead of a
|
|
// filename like "librt.a/so", and that they don't care whether it's static or
|
|
// dynamic.
|
|
Opt = "-l";
|
|
Opt += Lib;
|
|
}
|
|
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
|
|
|
|
/// isEmptyField - Return true iff a the field is "empty", that is it
|
|
/// is an unnamed bit-field or an (array of) empty record(s).
|
|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
|
|
bool AllowArrays) {
|
|
if (FD->isUnnamedBitfield())
|
|
return true;
|
|
|
|
QualType FT = FD->getType();
|
|
|
|
// Constant arrays of empty records count as empty, strip them off.
|
|
// Constant arrays of zero length always count as empty.
|
|
if (AllowArrays)
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
if (AT->getSize() == 0)
|
|
return true;
|
|
FT = AT->getElementType();
|
|
}
|
|
|
|
const RecordType *RT = FT->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
// C++ record fields are never empty, at least in the Itanium ABI.
|
|
//
|
|
// FIXME: We should use a predicate for whether this behavior is true in the
|
|
// current ABI.
|
|
if (isa<CXXRecordDecl>(RT->getDecl()))
|
|
return false;
|
|
|
|
return isEmptyRecord(Context, FT, AllowArrays);
|
|
}
|
|
|
|
/// isEmptyRecord - Return true iff a structure contains only empty
|
|
/// fields. Note that a structure with a flexible array member is not
|
|
/// considered empty.
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return 0;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases())
|
|
if (!isEmptyRecord(Context, I.getType(), true))
|
|
return false;
|
|
|
|
for (const auto *I : RD->fields())
|
|
if (!isEmptyField(Context, I, AllowArrays))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isSingleElementStruct - Determine if a structure is a "single
|
|
/// element struct", i.e. it has exactly one non-empty field or
|
|
/// exactly one field which is itself a single element
|
|
/// struct. Structures with flexible array members are never
|
|
/// considered single element structs.
|
|
///
|
|
/// \return The field declaration for the single non-empty field, if
|
|
/// it exists.
|
|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
|
|
const RecordType *RT = T->getAsStructureType();
|
|
if (!RT)
|
|
return nullptr;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return nullptr;
|
|
|
|
const Type *Found = nullptr;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(Context, I.getType(), true))
|
|
continue;
|
|
|
|
// If we already found an element then this isn't a single-element struct.
|
|
if (Found)
|
|
return nullptr;
|
|
|
|
// If this is non-empty and not a single element struct, the composite
|
|
// cannot be a single element struct.
|
|
Found = isSingleElementStruct(I.getType(), Context);
|
|
if (!Found)
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Check for single element.
|
|
for (const auto *FD : RD->fields()) {
|
|
QualType FT = FD->getType();
|
|
|
|
// Ignore empty fields.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// If we already found an element then this isn't a single-element
|
|
// struct.
|
|
if (Found)
|
|
return nullptr;
|
|
|
|
// Treat single element arrays as the element.
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
if (AT->getSize().getZExtValue() != 1)
|
|
break;
|
|
FT = AT->getElementType();
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(FT)) {
|
|
Found = FT.getTypePtr();
|
|
} else {
|
|
Found = isSingleElementStruct(FT, Context);
|
|
if (!Found)
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// We don't consider a struct a single-element struct if it has
|
|
// padding beyond the element type.
|
|
if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
|
|
return nullptr;
|
|
|
|
return Found;
|
|
}
|
|
|
|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
|
// Treat complex types as the element type.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
// Check for a type which we know has a simple scalar argument-passing
|
|
// convention without any padding. (We're specifically looking for 32
|
|
// and 64-bit integer and integer-equivalents, float, and double.)
|
|
if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
|
|
!Ty->isEnumeralType() && !Ty->isBlockPointerType())
|
|
return false;
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
return Size == 32 || Size == 64;
|
|
}
|
|
|
|
/// canExpandIndirectArgument - Test whether an argument type which is to be
|
|
/// passed indirectly (on the stack) would have the equivalent layout if it was
|
|
/// expanded into separate arguments. If so, we prefer to do the latter to avoid
|
|
/// inhibiting optimizations.
|
|
///
|
|
// FIXME: This predicate is missing many cases, currently it just follows
|
|
// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
|
|
// should probably make this smarter, or better yet make the LLVM backend
|
|
// capable of handling it.
|
|
static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
|
|
// We can only expand structure types.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
// We can only expand (C) structures.
|
|
//
|
|
// FIXME: This needs to be generalized to handle classes as well.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
|
|
return false;
|
|
|
|
uint64_t Size = 0;
|
|
|
|
for (const auto *FD : RD->fields()) {
|
|
if (!is32Or64BitBasicType(FD->getType(), Context))
|
|
return false;
|
|
|
|
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
|
// how to expand them yet, and the predicate for telling if a bitfield still
|
|
// counts as "basic" is more complicated than what we were doing previously.
|
|
if (FD->isBitField())
|
|
return false;
|
|
|
|
Size += Context.getTypeSize(FD->getType());
|
|
}
|
|
|
|
// Make sure there are not any holes in the struct.
|
|
if (Size != Context.getTypeSize(Ty))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// DefaultABIInfo - The default implementation for ABI specific
|
|
/// details. This implementation provides information which results in
|
|
/// self-consistent and sensible LLVM IR generation, but does not
|
|
/// conform to any particular ABI.
|
|
class DefaultABIInfo : public ABIInfo {
|
|
public:
|
|
DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
|
};
|
|
|
|
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
return nullptr;
|
|
}
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (isAggregateTypeForABI(Ty))
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy))
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// le32/PNaCl bitcode ABI Implementation
|
|
//
|
|
// This is a simplified version of the x86_32 ABI. Arguments and return values
|
|
// are always passed on the stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class PNaClABIInfo : public ABIInfo {
|
|
public:
|
|
PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
|
|
};
|
|
|
|
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief Classify argument of given type \p Ty.
|
|
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
|
|
// Treat an enum type as its underlying type.
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
} else if (Ty->isFloatingType()) {
|
|
// Floating-point types don't go inreg.
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// In the PNaCl ABI we always return records/structures on the stack.
|
|
if (isAggregateTypeForABI(RetTy))
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
/// IsX86_MMXType - Return true if this is an MMX type.
|
|
bool IsX86_MMXType(llvm::Type *IRType) {
|
|
// Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
|
|
return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
|
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
|
|
IRType->getScalarSizeInBits() != 64;
|
|
}
|
|
|
|
static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) {
|
|
if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
|
|
if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
|
|
// Invalid MMX constraint
|
|
return nullptr;
|
|
}
|
|
|
|
return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
|
|
}
|
|
|
|
// No operation needed
|
|
return Ty;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-32 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Similar to llvm::CCState, but for Clang.
|
|
struct CCState {
|
|
CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
|
|
|
|
unsigned CC;
|
|
unsigned FreeRegs;
|
|
unsigned StackOffset;
|
|
bool UseInAlloca;
|
|
};
|
|
|
|
/// X86_32ABIInfo - The X86-32 ABI information.
|
|
class X86_32ABIInfo : public ABIInfo {
|
|
enum Class {
|
|
Integer,
|
|
Float
|
|
};
|
|
|
|
static const unsigned MinABIStackAlignInBytes = 4;
|
|
|
|
bool IsDarwinVectorABI;
|
|
bool IsSmallStructInRegABI;
|
|
bool IsWin32StructABI;
|
|
unsigned DefaultNumRegisterParameters;
|
|
|
|
static bool isRegisterSize(unsigned Size) {
|
|
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
|
}
|
|
|
|
bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be passed in memory.
|
|
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
|
|
|
|
ABIArgInfo getIndirectReturnResult(CCState &State) const;
|
|
|
|
/// \brief Return the alignment to use for the given type on the stack.
|
|
unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
|
|
|
|
Class classify(QualType Ty) const;
|
|
ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
|
|
bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
|
|
|
|
/// \brief Rewrite the function info so that all memory arguments use
|
|
/// inalloca.
|
|
void rewriteWithInAlloca(CGFunctionInfo &FI) const;
|
|
|
|
void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
|
unsigned &StackOffset, ABIArgInfo &Info,
|
|
QualType Type) const;
|
|
|
|
public:
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
|
|
X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
|
|
unsigned r)
|
|
: ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
|
|
IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
|
|
};
|
|
|
|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
|
bool d, bool p, bool w, unsigned r)
|
|
:TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
|
|
|
|
static bool isStructReturnInRegABI(
|
|
const llvm::Triple &Triple, const CodeGenOptions &Opts);
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
// Darwin uses different dwarf register numbers for EH.
|
|
if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
|
|
return 4;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) const override {
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
}
|
|
|
|
llvm::Constant *
|
|
getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
|
|
unsigned Sig = (0xeb << 0) | // jmp rel8
|
|
(0x06 << 8) | // .+0x08
|
|
('F' << 16) |
|
|
('T' << 24);
|
|
return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
/// shouldReturnTypeInRegister - Determine if the given type should be
|
|
/// passed in a register (for the Darwin ABI).
|
|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
|
ASTContext &Context) const {
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// Type must be register sized.
|
|
if (!isRegisterSize(Size))
|
|
return false;
|
|
|
|
if (Ty->isVectorType()) {
|
|
// 64- and 128- bit vectors inside structures are not returned in
|
|
// registers.
|
|
if (Size == 64 || Size == 128)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If this is a builtin, pointer, enum, complex type, member pointer, or
|
|
// member function pointer it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
|
|
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
|
Ty->isBlockPointerType() || Ty->isMemberPointerType())
|
|
return true;
|
|
|
|
// Arrays are treated like records.
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
|
return shouldReturnTypeInRegister(AT->getElementType(), Context);
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// FIXME: Traverse bases here too.
|
|
|
|
// Structure types are passed in register if all fields would be
|
|
// passed in a register.
|
|
for (const auto *FD : RT->getDecl()->fields()) {
|
|
// Empty fields are ignored.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// Check fields recursively.
|
|
if (!shouldReturnTypeInRegister(FD->getType(), Context))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
// integer register.
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs;
|
|
return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
|
|
}
|
|
return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
|
// On Darwin, some vectors are returned in registers.
|
|
if (IsDarwinVectorABI) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
// 128-bit vectors are a special case; they are returned in
|
|
// registers and we need to make sure to pick a type the LLVM
|
|
// backend will like.
|
|
if (Size == 128)
|
|
return ABIArgInfo::getDirect(llvm::VectorType::get(
|
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
|
|
|
// Always return in register if it fits in a general purpose
|
|
// register, or if it is 64 bits and has a single element.
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
(Size == 64 && VT->getNumElements() == 1))
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
|
|
return getIndirectReturnResult(State);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectReturnResult(State);
|
|
}
|
|
|
|
// If specified, structs and unions are always indirect.
|
|
if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
|
|
return getIndirectReturnResult(State);
|
|
|
|
// Small structures which are register sized are generally returned
|
|
// in a register.
|
|
if (shouldReturnTypeInRegister(RetTy, getContext())) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
// As a special-case, if the struct is a "single-element" struct, and
|
|
// the field is of type "float" or "double", return it in a
|
|
// floating-point register. (MSVC does not apply this special case.)
|
|
// We apply a similar transformation for pointer types to improve the
|
|
// quality of the generated IR.
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
|
if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
|
|
|| SeltTy->hasPointerRepresentation())
|
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
|
|
|
// FIXME: We should be able to narrow this integer in cases with dead
|
|
// padding.
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
|
|
}
|
|
|
|
return getIndirectReturnResult(State);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
|
|
return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
|
|
}
|
|
|
|
static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT)
|
|
return 0;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases())
|
|
if (!isRecordWithSSEVectorType(Context, I.getType()))
|
|
return false;
|
|
|
|
for (const auto *i : RD->fields()) {
|
|
QualType FT = i->getType();
|
|
|
|
if (isSSEVectorType(Context, FT))
|
|
return true;
|
|
|
|
if (isRecordWithSSEVectorType(Context, FT))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
|
|
unsigned Align) const {
|
|
// Otherwise, if the alignment is less than or equal to the minimum ABI
|
|
// alignment, just use the default; the backend will handle this.
|
|
if (Align <= MinABIStackAlignInBytes)
|
|
return 0; // Use default alignment.
|
|
|
|
// On non-Darwin, the stack type alignment is always 4.
|
|
if (!IsDarwinVectorABI) {
|
|
// Set explicit alignment, since we may need to realign the top.
|
|
return MinABIStackAlignInBytes;
|
|
}
|
|
|
|
// Otherwise, if the type contains an SSE vector type, the alignment is 16.
|
|
if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
|
|
isRecordWithSSEVectorType(getContext(), Ty)))
|
|
return 16;
|
|
|
|
return MinABIStackAlignInBytes;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
|
|
CCState &State) const {
|
|
if (!ByVal) {
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs; // Non-byval indirects just use one pointer.
|
|
return ABIArgInfo::getIndirectInReg(0, false);
|
|
}
|
|
return ABIArgInfo::getIndirect(0, false);
|
|
}
|
|
|
|
// Compute the byval alignment.
|
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
|
|
if (StackAlign == 0)
|
|
return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
|
|
|
|
// If the stack alignment is less than the type alignment, realign the
|
|
// argument.
|
|
bool Realign = TypeAlign > StackAlign;
|
|
return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
|
|
}
|
|
|
|
X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
|
|
const Type *T = isSingleElementStruct(Ty, getContext());
|
|
if (!T)
|
|
T = Ty.getTypePtr();
|
|
|
|
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
|
|
BuiltinType::Kind K = BT->getKind();
|
|
if (K == BuiltinType::Float || K == BuiltinType::Double)
|
|
return Float;
|
|
}
|
|
return Integer;
|
|
}
|
|
|
|
bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
|
|
bool &NeedsPadding) const {
|
|
NeedsPadding = false;
|
|
Class C = classify(Ty);
|
|
if (C == Float)
|
|
return false;
|
|
|
|
unsigned Size = getContext().getTypeSize(Ty);
|
|
unsigned SizeInRegs = (Size + 31) / 32;
|
|
|
|
if (SizeInRegs == 0)
|
|
return false;
|
|
|
|
if (SizeInRegs > State.FreeRegs) {
|
|
State.FreeRegs = 0;
|
|
return false;
|
|
}
|
|
|
|
State.FreeRegs -= SizeInRegs;
|
|
|
|
if (State.CC == llvm::CallingConv::X86_FastCall) {
|
|
if (Size > 32)
|
|
return false;
|
|
|
|
if (Ty->isIntegralOrEnumerationType())
|
|
return true;
|
|
|
|
if (Ty->isPointerType())
|
|
return true;
|
|
|
|
if (Ty->isReferenceType())
|
|
return true;
|
|
|
|
if (State.FreeRegs)
|
|
NeedsPadding = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
|
|
CCState &State) const {
|
|
// FIXME: Set alignment on indirect arguments.
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
// Check with the C++ ABI first.
|
|
CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
|
if (RAA == CGCXXABI::RAA_Indirect) {
|
|
return getIndirectResult(Ty, false, State);
|
|
} else if (RAA == CGCXXABI::RAA_DirectInMemory) {
|
|
// The field index doesn't matter, we'll fix it up later.
|
|
return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
|
|
}
|
|
|
|
// Structs are always byval on win32, regardless of what they contain.
|
|
if (IsWin32StructABI)
|
|
return getIndirectResult(Ty, true, State);
|
|
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return getIndirectResult(Ty, true, State);
|
|
}
|
|
|
|
// Ignore empty structs/unions.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
|
llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
|
bool NeedsPadding;
|
|
if (shouldUseInReg(Ty, State, NeedsPadding)) {
|
|
unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
|
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
|
return ABIArgInfo::getDirectInReg(Result);
|
|
}
|
|
llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
|
|
|
|
// Expand small (<= 128-bit) record types when we know that the stack layout
|
|
// of those arguments will match the struct. This is important because the
|
|
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
|
// optimizations.
|
|
if (getContext().getTypeSize(Ty) <= 4*32 &&
|
|
canExpandIndirectArgument(Ty, getContext()))
|
|
return ABIArgInfo::getExpandWithPadding(
|
|
State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
|
|
|
|
return getIndirectResult(Ty, true, State);
|
|
}
|
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// On Darwin, some vectors are passed in memory, we handle this by passing
|
|
// it as an i8/i16/i32/i64.
|
|
if (IsDarwinVectorABI) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
(Size == 64 && VT->getNumElements() == 1))
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
}
|
|
|
|
if (IsX86_MMXType(CGT.ConvertType(Ty)))
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
bool NeedsPadding;
|
|
bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
|
|
|
|
if (Ty->isPromotableIntegerType()) {
|
|
if (InReg)
|
|
return ABIArgInfo::getExtendInReg();
|
|
return ABIArgInfo::getExtend();
|
|
}
|
|
if (InReg)
|
|
return ABIArgInfo::getDirectInReg();
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
CCState State(FI.getCallingConvention());
|
|
if (State.CC == llvm::CallingConv::X86_FastCall)
|
|
State.FreeRegs = 2;
|
|
else if (FI.getHasRegParm())
|
|
State.FreeRegs = FI.getRegParm();
|
|
else
|
|
State.FreeRegs = DefaultNumRegisterParameters;
|
|
|
|
if (!getCXXABI().classifyReturnType(FI)) {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
|
|
} else if (FI.getReturnInfo().isIndirect()) {
|
|
// The C++ ABI is not aware of register usage, so we have to check if the
|
|
// return value was sret and put it in a register ourselves if appropriate.
|
|
if (State.FreeRegs) {
|
|
--State.FreeRegs; // The sret parameter consumes a register.
|
|
FI.getReturnInfo().setInReg(true);
|
|
}
|
|
}
|
|
|
|
bool UsedInAlloca = false;
|
|
for (auto &I : FI.arguments()) {
|
|
I.info = classifyArgumentType(I.type, State);
|
|
UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
|
|
}
|
|
|
|
// If we needed to use inalloca for any argument, do a second pass and rewrite
|
|
// all the memory arguments to use inalloca.
|
|
if (UsedInAlloca)
|
|
rewriteWithInAlloca(FI);
|
|
}
|
|
|
|
void
|
|
X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
|
unsigned &StackOffset,
|
|
ABIArgInfo &Info, QualType Type) const {
|
|
assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
|
|
Info = ABIArgInfo::getInAlloca(FrameFields.size());
|
|
FrameFields.push_back(CGT.ConvertTypeForMem(Type));
|
|
StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
|
|
|
|
// Insert padding bytes to respect alignment. For x86_32, each argument is 4
|
|
// byte aligned.
|
|
if (StackOffset % 4U) {
|
|
unsigned OldOffset = StackOffset;
|
|
StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
|
|
unsigned NumBytes = StackOffset - OldOffset;
|
|
assert(NumBytes);
|
|
llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
|
|
Ty = llvm::ArrayType::get(Ty, NumBytes);
|
|
FrameFields.push_back(Ty);
|
|
}
|
|
}
|
|
|
|
static bool isArgInAlloca(const ABIArgInfo &Info) {
|
|
// Leave ignored and inreg arguments alone.
|
|
switch (Info.getKind()) {
|
|
case ABIArgInfo::InAlloca:
|
|
return true;
|
|
case ABIArgInfo::Indirect:
|
|
assert(Info.getIndirectByVal());
|
|
return true;
|
|
case ABIArgInfo::Ignore:
|
|
return false;
|
|
case ABIArgInfo::Direct:
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Expand:
|
|
if (Info.getInReg())
|
|
return false;
|
|
return true;
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
|
|
assert(IsWin32StructABI && "inalloca only supported on win32");
|
|
|
|
// Build a packed struct type for all of the arguments in memory.
|
|
SmallVector<llvm::Type *, 6> FrameFields;
|
|
|
|
unsigned StackOffset = 0;
|
|
CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
|
|
|
|
// Put 'this' into the struct before 'sret', if necessary.
|
|
bool IsThisCall =
|
|
FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
|
|
ABIArgInfo &Ret = FI.getReturnInfo();
|
|
if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
|
|
isArgInAlloca(I->info)) {
|
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
|
++I;
|
|
}
|
|
|
|
// Put the sret parameter into the inalloca struct if it's in memory.
|
|
if (Ret.isIndirect() && !Ret.getInReg()) {
|
|
CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
|
|
addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
|
|
// On Windows, the hidden sret parameter is always returned in eax.
|
|
Ret.setInAllocaSRet(IsWin32StructABI);
|
|
}
|
|
|
|
// Skip the 'this' parameter in ecx.
|
|
if (IsThisCall)
|
|
++I;
|
|
|
|
// Put arguments passed in memory into the struct.
|
|
for (; I != E; ++I) {
|
|
if (isArgInAlloca(I->info))
|
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
|
}
|
|
|
|
FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
|
|
/*isPacked=*/true));
|
|
}
|
|
|
|
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
"ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
// Compute if the address needs to be aligned
|
|
unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
|
|
Align = getTypeStackAlignInBytes(Ty, Align);
|
|
Align = std::max(Align, 4U);
|
|
if (Align > 4) {
|
|
// addr = (addr + align - 1) & -align;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
|
|
Addr = CGF.Builder.CreateGEP(Addr, Offset);
|
|
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
|
|
CGF.Int32Ty);
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
|
|
Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
|
Addr->getType(),
|
|
"ap.cur.aligned");
|
|
}
|
|
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
|
|
const llvm::Triple &Triple, const CodeGenOptions &Opts) {
|
|
assert(Triple.getArch() == llvm::Triple::x86);
|
|
|
|
switch (Opts.getStructReturnConvention()) {
|
|
case CodeGenOptions::SRCK_Default:
|
|
break;
|
|
case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
|
|
return false;
|
|
case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
|
|
return true;
|
|
}
|
|
|
|
if (Triple.isOSDarwin())
|
|
return true;
|
|
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::AuroraUX:
|
|
case llvm::Triple::DragonFly:
|
|
case llvm::Triple::FreeBSD:
|
|
case llvm::Triple::OpenBSD:
|
|
case llvm::Triple::Bitrig:
|
|
return true;
|
|
case llvm::Triple::Win32:
|
|
switch (Triple.getEnvironment()) {
|
|
case llvm::Triple::UnknownEnvironment:
|
|
case llvm::Triple::Cygnus:
|
|
case llvm::Triple::GNU:
|
|
case llvm::Triple::MSVC:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
|
// Get the LLVM function.
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
|
|
// Now add the 'alignstack' attribute with a value of 16.
|
|
llvm::AttrBuilder B;
|
|
B.addStackAlignmentAttr(16);
|
|
Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(CGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
B));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-7 are the eight integer registers; the order is different
|
|
// on Darwin (for EH), but the range is the same.
|
|
// 8 is %eip.
|
|
AssignToArrayRange(Builder, Address, Four8, 0, 8);
|
|
|
|
if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
|
|
// 12-16 are st(0..4). Not sure why we stop at 4.
|
|
// These have size 16, which is sizeof(long double) on
|
|
// platforms with 8-byte alignment for that type.
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
|
|
|
|
} else {
|
|
// 9 is %eflags, which doesn't get a size on Darwin for some
|
|
// reason.
|
|
Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
|
|
|
|
// 11-16 are st(0..5). Not sure why we stop at 5.
|
|
// These have size 12, which is sizeof(long double) on
|
|
// platforms with 4-byte alignment for that type.
|
|
llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
|
|
AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-64 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
namespace {
|
|
/// X86_64ABIInfo - The X86_64 ABI information.
|
|
class X86_64ABIInfo : public ABIInfo {
|
|
enum Class {
|
|
Integer = 0,
|
|
SSE,
|
|
SSEUp,
|
|
X87,
|
|
X87Up,
|
|
ComplexX87,
|
|
NoClass,
|
|
Memory
|
|
};
|
|
|
|
/// merge - Implement the X86_64 ABI merging algorithm.
|
|
///
|
|
/// Merge an accumulating classification \arg Accum with a field
|
|
/// classification \arg Field.
|
|
///
|
|
/// \param Accum - The accumulating classification. This should
|
|
/// always be either NoClass or the result of a previous merge
|
|
/// call. In addition, this should never be Memory (the caller
|
|
/// should just return Memory for the aggregate).
|
|
static Class merge(Class Accum, Class Field);
|
|
|
|
/// postMerge - Implement the X86_64 ABI post merging algorithm.
|
|
///
|
|
/// Post merger cleanup, reduces a malformed Hi and Lo pair to
|
|
/// final MEMORY or SSE classes when necessary.
|
|
///
|
|
/// \param AggregateSize - The size of the current aggregate in
|
|
/// the classification process.
|
|
///
|
|
/// \param Lo - The classification for the parts of the type
|
|
/// residing in the low word of the containing object.
|
|
///
|
|
/// \param Hi - The classification for the parts of the type
|
|
/// residing in the higher words of the containing object.
|
|
///
|
|
void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
|
|
|
|
/// classify - Determine the x86_64 register classes in which the
|
|
/// given type T should be passed.
|
|
///
|
|
/// \param Lo - The classification for the parts of the type
|
|
/// residing in the low word of the containing object.
|
|
///
|
|
/// \param Hi - The classification for the parts of the type
|
|
/// residing in the high word of the containing object.
|
|
///
|
|
/// \param OffsetBase - The bit offset of this type in the
|
|
/// containing object. Some parameters are classified different
|
|
/// depending on whether they straddle an eightbyte boundary.
|
|
///
|
|
/// \param isNamedArg - Whether the argument in question is a "named"
|
|
/// argument, as used in AMD64-ABI 3.5.7.
|
|
///
|
|
/// If a word is unused its result will be NoClass; if a type should
|
|
/// be passed in Memory then at least the classification of \arg Lo
|
|
/// will be Memory.
|
|
///
|
|
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
|
///
|
|
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
|
/// also be ComplexX87.
|
|
void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
|
|
bool isNamedArg) const;
|
|
|
|
llvm::Type *GetByteVectorType(QualType Ty) const;
|
|
llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
|
|
unsigned IROffset, QualType SourceTy,
|
|
unsigned SourceOffset) const;
|
|
llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
|
|
unsigned IROffset, QualType SourceTy,
|
|
unsigned SourceOffset) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be returned in memory.
|
|
ABIArgInfo getIndirectReturnResult(QualType Ty) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be passed in memory.
|
|
///
|
|
/// \param freeIntRegs - The number of free integer registers remaining
|
|
/// available.
|
|
ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty,
|
|
unsigned freeIntRegs,
|
|
unsigned &neededInt,
|
|
unsigned &neededSSE,
|
|
bool isNamedArg) const;
|
|
|
|
bool IsIllegalVectorType(QualType Ty) const;
|
|
|
|
/// The 0.98 ABI revision clarified a lot of ambiguities,
|
|
/// unfortunately in ways that were not always consistent with
|
|
/// certain previous compilers. In particular, platforms which
|
|
/// required strict binary compatibility with older versions of GCC
|
|
/// may need to exempt themselves.
|
|
bool honorsRevision0_98() const {
|
|
return !getTarget().getTriple().isOSDarwin();
|
|
}
|
|
|
|
bool HasAVX;
|
|
// Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
|
|
// 64-bit hardware.
|
|
bool Has64BitPointers;
|
|
|
|
public:
|
|
X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
|
|
ABIInfo(CGT), HasAVX(hasavx),
|
|
Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
|
|
}
|
|
|
|
bool isPassedUsingAVXType(QualType type) const {
|
|
unsigned neededInt, neededSSE;
|
|
// The freeIntRegs argument doesn't matter here.
|
|
ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
|
|
/*isNamedArg*/true);
|
|
if (info.isDirect()) {
|
|
llvm::Type *ty = info.getCoerceToType();
|
|
if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
|
|
return (vectorTy->getBitWidth() > 128);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
|
|
class WinX86_64ABIInfo : public ABIInfo {
|
|
|
|
ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
|
|
|
|
public:
|
|
WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
|
|
: TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
|
|
|
|
const X86_64ABIInfo &getABIInfo() const {
|
|
return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 7;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
// 16 is %rip.
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
|
return false;
|
|
}
|
|
|
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
|
StringRef Constraint,
|
|
llvm::Type* Ty) const override {
|
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
|
}
|
|
|
|
bool isNoProtoCallVariadic(const CallArgList &args,
|
|
const FunctionNoProtoType *fnType) const override {
|
|
// The default CC on x86-64 sets %al to the number of SSA
|
|
// registers used, and GCC sets this when calling an unprototyped
|
|
// function, so we override the default behavior. However, don't do
|
|
// that when AVX types are involved: the ABI explicitly states it is
|
|
// undefined, and it doesn't work in practice because of how the ABI
|
|
// defines varargs anyway.
|
|
if (fnType->getCallConv() == CC_C) {
|
|
bool HasAVXType = false;
|
|
for (CallArgList::const_iterator
|
|
it = args.begin(), ie = args.end(); it != ie; ++it) {
|
|
if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
|
|
HasAVXType = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!HasAVXType)
|
|
return true;
|
|
}
|
|
|
|
return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
|
|
}
|
|
|
|
llvm::Constant *
|
|
getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
|
|
unsigned Sig = (0xeb << 0) | // jmp rel8
|
|
(0x0a << 8) | // .+0x0c
|
|
('F' << 16) |
|
|
('T' << 24);
|
|
return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
|
|
}
|
|
|
|
};
|
|
|
|
static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
|
|
// If the argument does not end in .lib, automatically add the suffix. This
|
|
// matches the behavior of MSVC.
|
|
std::string ArgStr = Lib;
|
|
if (!Lib.endswith_lower(".lib"))
|
|
ArgStr += ".lib";
|
|
return ArgStr;
|
|
}
|
|
|
|
class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
|
|
public:
|
|
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
|
bool d, bool p, bool w, unsigned RegParms)
|
|
: X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:";
|
|
Opt += qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name,
|
|
llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 7;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
// 16 is %rip.
|
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
|
return false;
|
|
}
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:";
|
|
Opt += qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name,
|
|
llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
|
|
Class &Hi) const {
|
|
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
|
//
|
|
// (a) If one of the classes is Memory, the whole argument is passed in
|
|
// memory.
|
|
//
|
|
// (b) If X87UP is not preceded by X87, the whole argument is passed in
|
|
// memory.
|
|
//
|
|
// (c) If the size of the aggregate exceeds two eightbytes and the first
|
|
// eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
|
|
// argument is passed in memory. NOTE: This is necessary to keep the
|
|
// ABI working for processors that don't support the __m256 type.
|
|
//
|
|
// (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
|
|
//
|
|
// Some of these are enforced by the merging logic. Others can arise
|
|
// only with unions; for example:
|
|
// union { _Complex double; unsigned; }
|
|
//
|
|
// Note that clauses (b) and (c) were added in 0.98.
|
|
//
|
|
if (Hi == Memory)
|
|
Lo = Memory;
|
|
if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
|
|
Lo = Memory;
|
|
if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
|
|
Lo = Memory;
|
|
if (Hi == SSEUp && Lo != SSE)
|
|
Hi = SSE;
|
|
}
|
|
|
|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
|
|
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
|
// classified recursively so that always two fields are
|
|
// considered. The resulting class is calculated according to
|
|
// the classes of the fields in the eightbyte:
|
|
//
|
|
// (a) If both classes are equal, this is the resulting class.
|
|
//
|
|
// (b) If one of the classes is NO_CLASS, the resulting class is
|
|
// the other class.
|
|
//
|
|
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
|
// class.
|
|
//
|
|
// (d) If one of the classes is INTEGER, the result is the
|
|
// INTEGER.
|
|
//
|
|
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
|
// MEMORY is used as class.
|
|
//
|
|
// (f) Otherwise class SSE is used.
|
|
|
|
// Accum should never be memory (we should have returned) or
|
|
// ComplexX87 (because this cannot be passed in a structure).
|
|
assert((Accum != Memory && Accum != ComplexX87) &&
|
|
"Invalid accumulated classification during merge.");
|
|
if (Accum == Field || Field == NoClass)
|
|
return Accum;
|
|
if (Field == Memory)
|
|
return Memory;
|
|
if (Accum == NoClass)
|
|
return Field;
|
|
if (Accum == Integer || Field == Integer)
|
|
return Integer;
|
|
if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
|
Accum == X87 || Accum == X87Up)
|
|
return Memory;
|
|
return SSE;
|
|
}
|
|
|
|
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
|
|
Class &Lo, Class &Hi, bool isNamedArg) const {
|
|
// FIXME: This code can be simplified by introducing a simple value class for
|
|
// Class pairs with appropriate constructor methods for the various
|
|
// situations.
|
|
|
|
// FIXME: Some of the split computations are wrong; unaligned vectors
|
|
// shouldn't be passed in registers for example, so there is no chance they
|
|
// can straddle an eightbyte. Verify & simplify.
|
|
|
|
Lo = Hi = NoClass;
|
|
|
|
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
|
Current = Memory;
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
BuiltinType::Kind k = BT->getKind();
|
|
|
|
if (k == BuiltinType::Void) {
|
|
Current = NoClass;
|
|
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
|
Lo = Integer;
|
|
Hi = Integer;
|
|
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
|
Current = Integer;
|
|
} else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
|
|
(k == BuiltinType::LongDouble &&
|
|
getTarget().getTriple().isOSNaCl())) {
|
|
Current = SSE;
|
|
} else if (k == BuiltinType::LongDouble) {
|
|
Lo = X87;
|
|
Hi = X87Up;
|
|
}
|
|
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
|
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
|
return;
|
|
}
|
|
|
|
if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
|
// Classify the underlying integer type.
|
|
classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
|
|
return;
|
|
}
|
|
|
|
if (Ty->hasPointerRepresentation()) {
|
|
Current = Integer;
|
|
return;
|
|
}
|
|
|
|
if (Ty->isMemberPointerType()) {
|
|
if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
|
|
Lo = Hi = Integer;
|
|
else
|
|
Current = Integer;
|
|
return;
|
|
}
|
|
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
if (Size == 32) {
|
|
// gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
|
|
// float> as integer.
|
|
Current = Integer;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
|
|
if (EB_Real != EB_Imag)
|
|
Hi = Lo;
|
|
} else if (Size == 64) {
|
|
// gcc passes <1 x double> in memory. :(
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
|
|
return;
|
|
|
|
// gcc passes <1 x long long> as INTEGER.
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
|
|
VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
|
|
Current = Integer;
|
|
else
|
|
Current = SSE;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
if (OffsetBase && OffsetBase != 64)
|
|
Hi = Lo;
|
|
} else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
|
|
// Arguments of 256-bits are split into four eightbyte chunks. The
|
|
// least significant one belongs to class SSE and all the others to class
|
|
// SSEUP. The original Lo and Hi design considers that types can't be
|
|
// greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
|
|
// This design isn't correct for 256-bits, but since there're no cases
|
|
// where the upper parts would need to be inspected, avoid adding
|
|
// complexity and just consider Hi to match the 64-256 part.
|
|
//
|
|
// Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
|
|
// registers if they are "named", i.e. not part of the "..." of a
|
|
// variadic function.
|
|
Lo = SSE;
|
|
Hi = SSEUp;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (ET->isIntegralOrEnumerationType()) {
|
|
if (Size <= 64)
|
|
Current = Integer;
|
|
else if (Size <= 128)
|
|
Lo = Hi = Integer;
|
|
} else if (ET == getContext().FloatTy)
|
|
Current = SSE;
|
|
else if (ET == getContext().DoubleTy ||
|
|
(ET == getContext().LongDoubleTy &&
|
|
getTarget().getTriple().isOSNaCl()))
|
|
Lo = Hi = SSE;
|
|
else if (ET == getContext().LongDoubleTy)
|
|
Current = ComplexX87;
|
|
|
|
// If this complex type crosses an eightbyte boundary then it
|
|
// should be split.
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
|
|
if (Hi == NoClass && EB_Real != EB_Imag)
|
|
Hi = Lo;
|
|
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
// Arrays are treated like structures.
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than four eightbytes, ..., it has class MEMORY.
|
|
if (Size > 256)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
|
// fields, it has class MEMORY.
|
|
//
|
|
// Only need to check alignment of array base.
|
|
if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
|
|
return;
|
|
|
|
// Otherwise implement simplified merge. We could be smarter about
|
|
// this, but it isn't worth it and would be harder to verify.
|
|
Current = NoClass;
|
|
uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
|
|
uint64_t ArraySize = AT->getSize().getZExtValue();
|
|
|
|
// The only case a 256-bit wide vector could be used is when the array
|
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
|
// to work for sizes wider than 128, early check and fallback to memory.
|
|
if (Size > 128 && EltSize != 256)
|
|
return;
|
|
|
|
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
|
Class FieldLo, FieldHi;
|
|
classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
postMerge(Size, Lo, Hi);
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
|
return;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than four eightbytes, ..., it has class MEMORY.
|
|
if (Size > 256)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
|
// copy constructor or a non-trivial destructor, it is passed by invisible
|
|
// reference.
|
|
if (getRecordArgABI(RT, getCXXABI()))
|
|
return;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// Assume variable sized types are passed in memory.
|
|
if (RD->hasFlexibleArrayMember())
|
|
return;
|
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
|
|
// Reset Lo class, this will be recomputed.
|
|
Current = NoClass;
|
|
|
|
// If this is a C++ record, classify the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
|
"Unexpected base class!");
|
|
const CXXRecordDecl *Base =
|
|
cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
|
// single eightbyte, each is classified separately. Each eightbyte gets
|
|
// initialized to class NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
uint64_t Offset =
|
|
OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
|
|
classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Classify the fields one at a time, merging the results.
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
bool BitField = i->isBitField();
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
|
|
// four eightbytes, or it contains unaligned fields, it has class MEMORY.
|
|
//
|
|
// The only case a 256-bit wide vector could be used is when the struct
|
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
|
// to work for sizes wider than 128, early check and fallback to memory.
|
|
//
|
|
if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
|
|
Lo = Memory;
|
|
return;
|
|
}
|
|
// Note, skip this test for bit-fields, see below.
|
|
if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
|
|
Lo = Memory;
|
|
return;
|
|
}
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
|
// exceeds a single eightbyte, each is classified
|
|
// separately. Each eightbyte gets initialized to class
|
|
// NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
|
|
// Bit-fields require special handling, they do not force the
|
|
// structure to be passed in memory even if unaligned, and
|
|
// therefore they can straddle an eightbyte.
|
|
if (BitField) {
|
|
// Ignore padding bit-fields.
|
|
if (i->isUnnamedBitfield())
|
|
continue;
|
|
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
uint64_t Size = i->getBitWidthValue(getContext());
|
|
|
|
uint64_t EB_Lo = Offset / 64;
|
|
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
|
|
|
if (EB_Lo) {
|
|
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
|
FieldLo = NoClass;
|
|
FieldHi = Integer;
|
|
} else {
|
|
FieldLo = Integer;
|
|
FieldHi = EB_Hi ? Integer : NoClass;
|
|
}
|
|
} else
|
|
classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
postMerge(Size, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
// place naturally.
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = getContext().getTypeSize(VecTy);
|
|
unsigned LargestVector = HasAVX ? 256 : 128;
|
|
if (Size <= 64 || Size > LargestVector)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
|
|
unsigned freeIntRegs) const {
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
// place naturally.
|
|
//
|
|
// This assumption is optimistic, as there could be free registers available
|
|
// when we need to pass this argument in memory, and LLVM could try to pass
|
|
// the argument in the free register. This does not seem to happen currently,
|
|
// but this code would be much safer if we could mark the argument with
|
|
// 'onstack'. See PR12193.
|
|
if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Compute the byval alignment. We specify the alignment of the byval in all
|
|
// cases so that the mid-level optimizer knows the alignment of the byval.
|
|
unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
|
|
|
|
// Attempt to avoid passing indirect results using byval when possible. This
|
|
// is important for good codegen.
|
|
//
|
|
// We do this by coercing the value into a scalar type which the backend can
|
|
// handle naturally (i.e., without using byval).
|
|
//
|
|
// For simplicity, we currently only do this when we have exhausted all of the
|
|
// free integer registers. Doing this when there are free integer registers
|
|
// would require more care, as we would have to ensure that the coerced value
|
|
// did not claim the unused register. That would require either reording the
|
|
// arguments to the function (so that any subsequent inreg values came first),
|
|
// or only doing this optimization when there were no following arguments that
|
|
// might be inreg.
|
|
//
|
|
// We currently expect it to be rare (particularly in well written code) for
|
|
// arguments to be passed on the stack when there are still free integer
|
|
// registers available (this would typically imply large structs being passed
|
|
// by value), so this seems like a fair tradeoff for now.
|
|
//
|
|
// We can revisit this if the backend grows support for 'onstack' parameter
|
|
// attributes. See PR12193.
|
|
if (freeIntRegs == 0) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// If this type fits in an eightbyte, coerce it into the matching integral
|
|
// type, which will end up on the stack (with alignment 8).
|
|
if (Align == 8 && Size <= 64)
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(Align);
|
|
}
|
|
|
|
/// GetByteVectorType - The ABI specifies that a value should be passed in an
|
|
/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
|
|
/// vector register.
|
|
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
|
|
|
// Wrapper structs that just contain vectors are passed just like vectors,
|
|
// strip them off if present.
|
|
llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
|
|
while (STy && STy->getNumElements() == 1) {
|
|
IRType = STy->getElementType(0);
|
|
STy = dyn_cast<llvm::StructType>(IRType);
|
|
}
|
|
|
|
// If the preferred type is a 16-byte vector, prefer to pass it.
|
|
if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
|
|
llvm::Type *EltTy = VT->getElementType();
|
|
unsigned BitWidth = VT->getBitWidth();
|
|
if ((BitWidth >= 128 && BitWidth <= 256) &&
|
|
(EltTy->isFloatTy() || EltTy->isDoubleTy() ||
|
|
EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
|
|
EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
|
|
EltTy->isIntegerTy(128)))
|
|
return VT;
|
|
}
|
|
|
|
return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
|
|
}
|
|
|
|
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
|
|
/// is known to either be off the end of the specified type or being in
|
|
/// alignment padding. The user type specified is known to be at most 128 bits
|
|
/// in size, and have passed through X86_64ABIInfo::classify with a successful
|
|
/// classification that put one of the two halves in the INTEGER class.
|
|
///
|
|
/// It is conservatively correct to return false.
|
|
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
|
|
unsigned EndBit, ASTContext &Context) {
|
|
// If the bytes being queried are off the end of the type, there is no user
|
|
// data hiding here. This handles analysis of builtins, vectors and other
|
|
// types that don't contain interesting padding.
|
|
unsigned TySize = (unsigned)Context.getTypeSize(Ty);
|
|
if (TySize <= StartBit)
|
|
return true;
|
|
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
|
|
unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
|
|
|
|
// Check each element to see if the element overlaps with the queried range.
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// If the element is after the span we care about, then we're done..
|
|
unsigned EltOffset = i*EltSize;
|
|
if (EltOffset >= EndBit) break;
|
|
|
|
unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
|
|
if (!BitsContainNoUserData(AT->getElementType(), EltStart,
|
|
EndBit-EltOffset, Context))
|
|
return false;
|
|
}
|
|
// If it overlaps no elements, then it is safe to process as padding.
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
|
"Unexpected base class!");
|
|
const CXXRecordDecl *Base =
|
|
cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// If the base is after the span we care about, ignore it.
|
|
unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
|
|
if (BaseOffset >= EndBit) continue;
|
|
|
|
unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
|
|
if (!BitsContainNoUserData(I.getType(), BaseStart,
|
|
EndBit-BaseOffset, Context))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Verify that no field has data that overlaps the region of interest. Yes
|
|
// this could be sped up a lot by being smarter about queried fields,
|
|
// however we're only looking at structs up to 16 bytes, so we don't care
|
|
// much.
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
|
|
|
|
// If we found a field after the region we care about, then we're done.
|
|
if (FieldOffset >= EndBit) break;
|
|
|
|
unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
|
|
if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
|
|
Context))
|
|
return false;
|
|
}
|
|
|
|
// If nothing in this record overlapped the area of interest, then we're
|
|
// clean.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
|
|
/// float member at the specified offset. For example, {int,{float}} has a
|
|
/// float at offset 4. It is conservatively correct for this routine to return
|
|
/// false.
|
|
static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
const llvm::DataLayout &TD) {
|
|
// Base case if we find a float.
|
|
if (IROffset == 0 && IRType->isFloatTy())
|
|
return true;
|
|
|
|
// If this is a struct, recurse into the field at the specified offset.
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
|
const llvm::StructLayout *SL = TD.getStructLayout(STy);
|
|
unsigned Elt = SL->getElementContainingOffset(IROffset);
|
|
IROffset -= SL->getElementOffset(Elt);
|
|
return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
|
|
}
|
|
|
|
// If this is an array, recurse into the field at the specified offset.
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
|
llvm::Type *EltTy = ATy->getElementType();
|
|
unsigned EltSize = TD.getTypeAllocSize(EltTy);
|
|
IROffset -= IROffset/EltSize*EltSize;
|
|
return ContainsFloatAtOffset(EltTy, IROffset, TD);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
|
|
/// low 8 bytes of an XMM register, corresponding to the SSE class.
|
|
llvm::Type *X86_64ABIInfo::
|
|
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
|
// The only three choices we have are either double, <2 x float>, or float. We
|
|
// pass as float if the last 4 bytes is just padding. This happens for
|
|
// structs that contain 3 floats.
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
|
|
SourceOffset*8+64, getContext()))
|
|
return llvm::Type::getFloatTy(getVMContext());
|
|
|
|
// We want to pass as <2 x float> if the LLVM IR type contains a float at
|
|
// offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
|
|
// case.
|
|
if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
|
|
ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
|
|
return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
|
|
|
|
return llvm::Type::getDoubleTy(getVMContext());
|
|
}
|
|
|
|
|
|
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
|
|
/// an 8-byte GPR. This means that we either have a scalar or we are talking
|
|
/// about the high or low part of an up-to-16-byte struct. This routine picks
|
|
/// the best LLVM IR type to represent this, which may be i64 or may be anything
|
|
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
|
|
/// etc).
|
|
///
|
|
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
|
|
/// the source type. IROffset is an offset in bytes into the LLVM IR type that
|
|
/// the 8-byte value references. PrefType may be null.
|
|
///
|
|
/// SourceTy is the source-level type for the entire argument. SourceOffset is
|
|
/// an offset into this that we're processing (which is always either 0 or 8).
|
|
///
|
|
llvm::Type *X86_64ABIInfo::
|
|
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
|
QualType SourceTy, unsigned SourceOffset) const {
|
|
// If we're dealing with an un-offset LLVM IR type, then it means that we're
|
|
// returning an 8-byte unit starting with it. See if we can safely use it.
|
|
if (IROffset == 0) {
|
|
// Pointers and int64's always fill the 8-byte unit.
|
|
if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
|
|
IRType->isIntegerTy(64))
|
|
return IRType;
|
|
|
|
// If we have a 1/2/4-byte integer, we can use it only if the rest of the
|
|
// goodness in the source type is just tail padding. This is allowed to
|
|
// kick in for struct {double,int} on the int, but not on
|
|
// struct{double,int,int} because we wouldn't return the second int. We
|
|
// have to do this analysis on the source type because we can't depend on
|
|
// unions being lowered a specific way etc.
|
|
if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
|
|
IRType->isIntegerTy(32) ||
|
|
(isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
|
|
unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
|
|
cast<llvm::IntegerType>(IRType)->getBitWidth();
|
|
|
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
|
|
SourceOffset*8+64, getContext()))
|
|
return IRType;
|
|
}
|
|
}
|
|
|
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
|
// If this is a struct, recurse into the field at the specified offset.
|
|
const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
|
|
if (IROffset < SL->getSizeInBytes()) {
|
|
unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
|
|
IROffset -= SL->getElementOffset(FieldIdx);
|
|
|
|
return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
|
|
SourceTy, SourceOffset);
|
|
}
|
|
}
|
|
|
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
|
llvm::Type *EltTy = ATy->getElementType();
|
|
unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
|
|
unsigned EltOffset = IROffset/EltSize*EltSize;
|
|
return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
|
|
SourceOffset);
|
|
}
|
|
|
|
// Okay, we don't have any better idea of what to pass, so we pass this in an
|
|
// integer register that isn't too big to fit the rest of the struct.
|
|
unsigned TySizeInBytes =
|
|
(unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
|
|
|
|
assert(TySizeInBytes != SourceOffset && "Empty field?");
|
|
|
|
// It is always safe to classify this as an integer type up to i64 that
|
|
// isn't larger than the structure.
|
|
return llvm::IntegerType::get(getVMContext(),
|
|
std::min(TySizeInBytes-SourceOffset, 8U)*8);
|
|
}
|
|
|
|
|
|
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
|
|
/// be used as elements of a two register pair to pass or return, return a
|
|
/// first class aggregate to represent them. For example, if the low part of
|
|
/// a by-value argument should be passed as i32* and the high part as float,
|
|
/// return {i32*, float}.
|
|
static llvm::Type *
|
|
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
|
|
const llvm::DataLayout &TD) {
|
|
// In order to correctly satisfy the ABI, we need to the high part to start
|
|
// at offset 8. If the high and low parts we inferred are both 4-byte types
|
|
// (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
|
|
// the second element at offset 8. Check for this:
|
|
unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
|
|
unsigned HiAlign = TD.getABITypeAlignment(Hi);
|
|
unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
|
|
assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
|
|
|
|
// To handle this, we have to increase the size of the low part so that the
|
|
// second element will start at an 8 byte offset. We can't increase the size
|
|
// of the second element because it might make us access off the end of the
|
|
// struct.
|
|
if (HiStart != 8) {
|
|
// There are only two sorts of types the ABI generation code can produce for
|
|
// the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
|
|
// Promote these to a larger type.
|
|
if (Lo->isFloatTy())
|
|
Lo = llvm::Type::getDoubleTy(Lo->getContext());
|
|
else {
|
|
assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
|
|
Lo = llvm::Type::getInt64Ty(Lo->getContext());
|
|
}
|
|
}
|
|
|
|
llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
|
|
|
|
|
|
// Verify that the second element is at an 8-byte offset.
|
|
assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
|
|
"Invalid x86-64 argument pair!");
|
|
return Result;
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::
|
|
classifyReturnType(QualType RetTy) const {
|
|
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
|
// classification algorithm.
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
|
|
|
|
// Check some invariants.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
llvm::Type *ResType = nullptr;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
if (Hi == NoClass)
|
|
return ABIArgInfo::getIgnore();
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
// null.
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
"Unknown missing lo part");
|
|
break;
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
llvm_unreachable("Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
|
// hidden argument.
|
|
case Memory:
|
|
return getIndirectReturnResult(RetTy);
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
|
// available register of the sequence %rax, %rdx is used.
|
|
case Integer:
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (RetTy->isIntegralOrEnumerationType() &&
|
|
RetTy->isPromotableIntegerType())
|
|
return ABIArgInfo::getExtend();
|
|
}
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
|
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
|
case SSE:
|
|
ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
|
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
|
case X87:
|
|
ResType = llvm::Type::getX86_FP80Ty(getVMContext());
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
|
// part of the value is returned in %st0 and the imaginary part in
|
|
// %st1.
|
|
case ComplexX87:
|
|
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
|
ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
|
|
llvm::Type::getX86_FP80Ty(getVMContext()),
|
|
NULL);
|
|
break;
|
|
}
|
|
|
|
llvm::Type *HighPart = nullptr;
|
|
switch (Hi) {
|
|
// Memory was handled previously and X87 should
|
|
// never occur as a hi class.
|
|
case Memory:
|
|
case X87:
|
|
llvm_unreachable("Invalid classification for hi word.");
|
|
|
|
case ComplexX87: // Previously handled.
|
|
case NoClass:
|
|
break;
|
|
|
|
case Integer:
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
case SSE:
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
|
// is passed in the next available eightbyte chunk if the last used
|
|
// vector register.
|
|
//
|
|
// SSEUP should always be preceded by SSE, just widen.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
|
ResType = GetByteVectorType(RetTy);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
|
// returned together with the previous X87 value in %st0.
|
|
case X87Up:
|
|
// If X87Up is preceded by X87, we don't need to do
|
|
// anything. However, in some cases with unions it may not be
|
|
// preceded by X87. In such situations we follow gcc and pass the
|
|
// extra bits in an SSE reg.
|
|
if (Lo != X87) {
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
// first class struct aggregate with the high and low part: {low, high}
|
|
if (HighPart)
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
|
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(
|
|
QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
|
|
bool isNamedArg)
|
|
const
|
|
{
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(Ty, 0, Lo, Hi, isNamedArg);
|
|
|
|
// Check some invariants.
|
|
// FIXME: Enforce these by construction.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
neededInt = 0;
|
|
neededSSE = 0;
|
|
llvm::Type *ResType = nullptr;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
if (Hi == NoClass)
|
|
return ABIArgInfo::getIgnore();
|
|
// If the low part is just padding, it takes no register, leave ResType
|
|
// null.
|
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
|
"Unknown missing lo part");
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
|
// on the stack.
|
|
case Memory:
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
|
// COMPLEX_X87, it is passed in memory.
|
|
case X87:
|
|
case ComplexX87:
|
|
if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
|
|
++neededInt;
|
|
return getIndirectResult(Ty, freeIntRegs);
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
llvm_unreachable("Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
|
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
|
// and %r9 is used.
|
|
case Integer:
|
|
++neededInt;
|
|
|
|
// Pick an 8-byte type based on the preferred type.
|
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
|
|
|
|
// If we have a sign or zero extended integer, make sure to return Extend
|
|
// so that the parameter gets the right LLVM IR attributes.
|
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Ty->isIntegralOrEnumerationType() &&
|
|
Ty->isPromotableIntegerType())
|
|
return ABIArgInfo::getExtend();
|
|
}
|
|
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
|
// available SSE register is used, the registers are taken in the
|
|
// order from %xmm0 to %xmm7.
|
|
case SSE: {
|
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
|
ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
|
|
++neededSSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::Type *HighPart = nullptr;
|
|
switch (Hi) {
|
|
// Memory was handled previously, ComplexX87 and X87 should
|
|
// never occur as hi classes, and X87Up must be preceded by X87,
|
|
// which is passed in memory.
|
|
case Memory:
|
|
case X87:
|
|
case ComplexX87:
|
|
llvm_unreachable("Invalid classification for hi word.");
|
|
|
|
case NoClass: break;
|
|
|
|
case Integer:
|
|
++neededInt;
|
|
// Pick an 8-byte type based on the preferred type.
|
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
break;
|
|
|
|
// X87Up generally doesn't occur here (long double is passed in
|
|
// memory), except in situations involving unions.
|
|
case X87Up:
|
|
case SSE:
|
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
|
|
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
|
return ABIArgInfo::getDirect(HighPart, 8);
|
|
|
|
++neededSSE;
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
|
// eightbyte is passed in the upper half of the last used SSE
|
|
// register. This only happens when 128-bit vectors are passed.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification");
|
|
ResType = GetByteVectorType(Ty);
|
|
break;
|
|
}
|
|
|
|
// If a high part was specified, merge it together with the low part. It is
|
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
|
// first class struct aggregate with the high and low part: {low, high}
|
|
if (HighPart)
|
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
|
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
|
|
// Keep track of the number of assigned registers.
|
|
unsigned freeIntRegs = 6, freeSSERegs = 8;
|
|
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
// integer register.
|
|
if (FI.getReturnInfo().isIndirect())
|
|
--freeIntRegs;
|
|
|
|
bool isVariadic = FI.isVariadic();
|
|
unsigned numRequiredArgs = 0;
|
|
if (isVariadic)
|
|
numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
|
|
|
|
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
|
// get assigned (in left-to-right order) for passing as follows...
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it) {
|
|
bool isNamedArg = true;
|
|
if (isVariadic)
|
|
isNamedArg = (it - FI.arg_begin()) <
|
|
static_cast<signed>(numRequiredArgs);
|
|
|
|
unsigned neededInt, neededSSE;
|
|
it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
|
|
neededSSE, isNamedArg);
|
|
|
|
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
|
// eightbyte of an argument, the whole argument is passed on the
|
|
// stack. If registers have already been assigned for some
|
|
// eightbytes of such an argument, the assignments get reverted.
|
|
if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
|
|
freeIntRegs -= neededInt;
|
|
freeSSERegs -= neededSSE;
|
|
} else {
|
|
it->info = getIndirectResult(it->type, freeIntRegs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
|
|
QualType Ty,
|
|
CodeGenFunction &CGF) {
|
|
llvm::Value *overflow_arg_area_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
|
llvm::Value *overflow_arg_area =
|
|
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
|
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
|
// It isn't stated explicitly in the standard, but in practice we use
|
|
// alignment greater than 16 where necessary.
|
|
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
if (Align > 8) {
|
|
// overflow_arg_area = (overflow_arg_area + align - 1) & -align;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
|
|
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
|
|
CGF.Int64Ty);
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
|
|
overflow_arg_area =
|
|
CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
|
overflow_arg_area->getType(),
|
|
"overflow_arg_area.align");
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *Res =
|
|
CGF.Builder.CreateBitCast(overflow_arg_area,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
|
// l->overflow_arg_area + sizeof(type).
|
|
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
|
// an 8 byte boundary.
|
|
|
|
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
|
|
"overflow_arg_area.next");
|
|
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
|
return Res;
|
|
}
|
|
|
|
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
// struct {
|
|
// i32 gp_offset;
|
|
// i32 fp_offset;
|
|
// i8* overflow_arg_area;
|
|
// i8* reg_save_area;
|
|
// };
|
|
unsigned neededInt, neededSSE;
|
|
|
|
Ty = CGF.getContext().getCanonicalType(Ty);
|
|
ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
|
|
/*isNamedArg*/false);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
|
// in the registers. If not go to step 7.
|
|
if (!neededInt && !neededSSE)
|
|
return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
|
// general purpose registers needed to pass type and num_fp to hold
|
|
// the number of floating point registers needed.
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
|
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
|
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
|
//
|
|
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
|
// register save space).
|
|
|
|
llvm::Value *InRegs = nullptr;
|
|
llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
|
|
llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
|
|
if (neededInt) {
|
|
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
|
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
|
InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
|
|
InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
|
|
}
|
|
|
|
if (neededSSE) {
|
|
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
|
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
|
llvm::Value *FitsInFP =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
|
|
FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
|
|
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
|
}
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
|
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
|
// copying to a temporary location in case the parameter is passed
|
|
// in different register classes or requires an alignment greater
|
|
// than 8 for general purpose registers and 16 for XMM registers.
|
|
//
|
|
// FIXME: This really results in shameful code when we end up needing to
|
|
// collect arguments from different places; often what should result in a
|
|
// simple assembling of a structure from scattered addresses has many more
|
|
// loads than necessary. Can we clean this up?
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *RegAddr =
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
|
|
"reg_save_area");
|
|
if (neededInt && neededSSE) {
|
|
// FIXME: Cleanup.
|
|
assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
|
|
llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
|
llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
|
|
Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
|
|
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
|
llvm::Type *TyLo = ST->getElementType(0);
|
|
llvm::Type *TyHi = ST->getElementType(1);
|
|
assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
|
|
"Unexpected ABI info for mixed regs");
|
|
llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
|
|
llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
|
|
llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
|
|
llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
|
|
llvm::Value *V =
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
} else if (neededInt) {
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
|
|
// Copy to a temporary if necessary to ensure the appropriate alignment.
|
|
std::pair<CharUnits, CharUnits> SizeAlign =
|
|
CGF.getContext().getTypeInfoInChars(Ty);
|
|
uint64_t TySize = SizeAlign.first.getQuantity();
|
|
unsigned TyAlign = SizeAlign.second.getQuantity();
|
|
if (TyAlign > 8) {
|
|
llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
|
|
CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
|
|
RegAddr = Tmp;
|
|
}
|
|
} else if (neededSSE == 1) {
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
} else {
|
|
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
|
// SSE registers are spaced 16 bytes apart in the register save
|
|
// area, we need to collect the two eightbytes together.
|
|
llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
|
|
llvm::Type *DoubleTy = CGF.DoubleTy;
|
|
llvm::Type *DblPtrTy =
|
|
llvm::PointerType::getUnqual(DoubleTy);
|
|
llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
|
|
llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
|
|
Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
|
|
DblPtrTy));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
|
|
DblPtrTy));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
|
// l->gp_offset = l->gp_offset + num_gp * 8
|
|
// l->fp_offset = l->fp_offset + num_fp * 16.
|
|
if (neededInt) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
|
gp_offset_p);
|
|
}
|
|
if (neededSSE) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
|
fp_offset_p);
|
|
}
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
|
|
CGF.EmitBlock(InMemBlock);
|
|
llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
// Return the appropriate result.
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
|
|
"vaarg.addr");
|
|
ResAddr->addIncoming(RegAddr, InRegBlock);
|
|
ResAddr->addIncoming(MemAddr, InMemBlock);
|
|
return ResAddr;
|
|
}
|
|
|
|
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
|
|
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (RT) {
|
|
if (!IsReturnType) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// FIXME: mingw-w64-gcc emits 128-bit struct as i128
|
|
if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
Size));
|
|
}
|
|
|
|
if (Ty->isMemberPointerType()) {
|
|
// If the member pointer is represented by an LLVM int or ptr, pass it
|
|
// directly.
|
|
llvm::Type *LLTy = CGT.ConvertType(Ty);
|
|
if (LLTy->isPointerTy() || LLTy->isIntegerTy())
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
if (RT || Ty->isMemberPointerType()) {
|
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
|
if (Size > 64 || !llvm::isPowerOf2_64(Size))
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// Otherwise, coerce it to a small integer.
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
if (Ty->isPromotableIntegerType())
|
|
return ABIArgInfo::getExtend();
|
|
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classify(FI.getReturnType(), true);
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classify(I.type, false);
|
|
}
|
|
|
|
llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
"ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class NaClX86_64ABIInfo : public ABIInfo {
|
|
public:
|
|
NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
|
|
: ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
private:
|
|
PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
|
|
X86_64ABIInfo NInfo; // Used for everything else.
|
|
};
|
|
|
|
class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
|
|
: TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
|
|
};
|
|
|
|
}
|
|
|
|
void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (FI.getASTCallingConvention() == CC_PnaclCall)
|
|
PInfo.computeInfo(FI);
|
|
else
|
|
NInfo.computeInfo(FI);
|
|
}
|
|
|
|
llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// Always use the native convention; calling pnacl-style varargs functions
|
|
// is unuspported.
|
|
return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
|
|
}
|
|
|
|
|
|
// PowerPC-32
|
|
|
|
namespace {
|
|
class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
public:
|
|
PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
|
|
}
|
|
|
|
bool
|
|
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
|
|
|
// 0-31: r0-31, the 4-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Four8, 0, 31);
|
|
|
|
// 32-63: fp0-31, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
|
|
|
// 64-76 are various 4-byte special-purpose registers:
|
|
// 64: mq
|
|
// 65: lr
|
|
// 66: ctr
|
|
// 67: ap
|
|
// 68-75 cr0-7
|
|
// 76: xer
|
|
AssignToArrayRange(Builder, Address, Four8, 64, 76);
|
|
|
|
// 77-108: v0-31, the 16-byte vector registers
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
|
|
|
// 109: vrsave
|
|
// 110: vscr
|
|
// 111: spe_acc
|
|
// 112: spefscr
|
|
// 113: sfp
|
|
AssignToArrayRange(Builder, Address, Four8, 109, 113);
|
|
|
|
return false;
|
|
}
|
|
|
|
// PowerPC-64
|
|
|
|
namespace {
|
|
/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
|
|
class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
ELFv1 = 0,
|
|
ELFv2
|
|
};
|
|
|
|
private:
|
|
static const unsigned GPRBits = 64;
|
|
ABIKind Kind;
|
|
|
|
public:
|
|
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
|
|
: DefaultABIInfo(CGT), Kind(Kind) {}
|
|
|
|
bool isPromotableTypeForABI(QualType Ty) const;
|
|
bool isAlignedParamType(QualType Ty) const;
|
|
bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
uint64_t &Members) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
// TODO: We can add more logic to computeInfo to improve performance.
|
|
// Example: For aggregate arguments that fit in a register, we could
|
|
// use getDirectInReg (as is done below for structs containing a single
|
|
// floating-point value) to avoid pushing them to memory on function
|
|
// entry. This would require changing the logic in PPCISelLowering
|
|
// when lowering the parameters in the caller and args in the callee.
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments()) {
|
|
// We rely on the default argument classification for the most part.
|
|
// One exception: An aggregate containing a single floating-point
|
|
// or vector item must be passed in a register if one is available.
|
|
const Type *T = isSingleElementStruct(I.type, getContext());
|
|
if (T) {
|
|
const BuiltinType *BT = T->getAs<BuiltinType>();
|
|
if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
|
|
(BT && BT->isFloatingPoint())) {
|
|
QualType QT(T, 0);
|
|
I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
|
|
continue;
|
|
}
|
|
}
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
}
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind)
|
|
: TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
|
|
class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
public:
|
|
PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
// This is recovered from gcc output.
|
|
return 1; // r1 is the dedicated stack pointer
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
|
|
}
|
|
|
|
// Return true if the ABI requires Ty to be passed sign- or zero-
|
|
// extended to 64 bits.
|
|
bool
|
|
PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Promotable integer types are required to be promoted by the ABI.
|
|
if (Ty->isPromotableIntegerType())
|
|
return true;
|
|
|
|
// In addition to the usual promotable integer types, we also need to
|
|
// extend all 32-bit types, since the ABI requires promotion to 64 bits.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isAlignedParamType - Determine whether a type requires 16-byte
|
|
/// alignment in the parameter area.
|
|
bool
|
|
PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
|
|
// Complex types are passed just like their elements.
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
|
Ty = CTy->getElementType();
|
|
|
|
// Only vector types of size 16 bytes need alignment (larger types are
|
|
// passed via reference, smaller types are not aligned).
|
|
if (Ty->isVectorType())
|
|
return getContext().getTypeSize(Ty) == 128;
|
|
|
|
// For single-element float/vector structs, we consider the whole type
|
|
// to have the same alignment requirements as its single element.
|
|
const Type *AlignAsType = nullptr;
|
|
const Type *EltType = isSingleElementStruct(Ty, getContext());
|
|
if (EltType) {
|
|
const BuiltinType *BT = EltType->getAs<BuiltinType>();
|
|
if ((EltType->isVectorType() &&
|
|
getContext().getTypeSize(EltType) == 128) ||
|
|
(BT && BT->isFloatingPoint()))
|
|
AlignAsType = EltType;
|
|
}
|
|
|
|
// Likewise for ELFv2 homogeneous aggregates.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (!AlignAsType && Kind == ELFv2 &&
|
|
isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
|
|
AlignAsType = Base;
|
|
|
|
// With special case aggregates, only vector base types need alignment.
|
|
if (AlignAsType)
|
|
return AlignAsType->isVectorType();
|
|
|
|
// Otherwise, we only need alignment for any aggregate type that
|
|
// has an alignment requirement of >= 16 bytes.
|
|
if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
|
|
/// aggregate. Base is set to the base element type, and Members is set
|
|
/// to the number of base elements.
|
|
bool
|
|
PPC64_SVR4_ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
uint64_t &Members) const {
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
uint64_t NElements = AT->getSize().getZExtValue();
|
|
if (NElements == 0)
|
|
return false;
|
|
if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
|
|
return false;
|
|
Members *= NElements;
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
Members = 0;
|
|
for (const auto *FD : RD->fields()) {
|
|
// Ignore (non-zero arrays of) empty records.
|
|
QualType FT = FD->getType();
|
|
while (const ConstantArrayType *AT =
|
|
getContext().getAsConstantArrayType(FT)) {
|
|
if (AT->getSize().getZExtValue() == 0)
|
|
return false;
|
|
FT = AT->getElementType();
|
|
}
|
|
if (isEmptyRecord(getContext(), FT, true))
|
|
continue;
|
|
|
|
// For compatibility with GCC, ignore empty bitfields in C++ mode.
|
|
if (getContext().getLangOpts().CPlusPlus &&
|
|
FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
|
|
continue;
|
|
|
|
uint64_t FldMembers;
|
|
if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
|
|
return false;
|
|
|
|
Members = (RD->isUnion() ?
|
|
std::max(Members, FldMembers) : Members + FldMembers);
|
|
}
|
|
|
|
if (!Base)
|
|
return false;
|
|
|
|
// Ensure there is no padding.
|
|
if (getContext().getTypeSize(Base) * Members !=
|
|
getContext().getTypeSize(Ty))
|
|
return false;
|
|
} else {
|
|
Members = 1;
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
Members = 2;
|
|
Ty = CT->getElementType();
|
|
}
|
|
|
|
// Homogeneous aggregates for ELFv2 must have base types of float,
|
|
// double, long double, or 128-bit vectors.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() != BuiltinType::Float &&
|
|
BT->getKind() != BuiltinType::Double &&
|
|
BT->getKind() != BuiltinType::LongDouble)
|
|
return false;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
if (getContext().getTypeSize(VT) != 128)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// The base type must be the same for all members. Types that
|
|
// agree in both total size and mode (float vs. vector) are
|
|
// treated as being equivalent here.
|
|
const Type *TyPtr = Ty.getTypePtr();
|
|
if (!Base)
|
|
Base = TyPtr;
|
|
|
|
if (Base->isVectorType() != TyPtr->isVectorType() ||
|
|
getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
|
|
return false;
|
|
}
|
|
|
|
// Vector types require one register, floating point types require one
|
|
// or two registers depending on their size.
|
|
uint32_t NumRegs = Base->isVectorType() ? 1 :
|
|
(getContext().getTypeSize(Base) + 63) / 64;
|
|
|
|
// Homogeneous Aggregates may occupy at most 8 registers.
|
|
return (Members > 0 && Members * NumRegs <= 8);
|
|
}
|
|
|
|
ABIArgInfo
|
|
PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
|
|
// or via reference (larger than 16 bytes).
|
|
if (Ty->isVectorType()) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size > 128)
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
else if (Size < 128) {
|
|
llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
}
|
|
|
|
if (isAggregateTypeForABI(Ty)) {
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
|
|
uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
|
|
|
|
// ELFv2 homogeneous aggregates are passed as array types.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (Kind == ELFv2 &&
|
|
isHomogeneousAggregate(Ty, Base, Members)) {
|
|
llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
|
|
llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// If an aggregate may end up fully in registers, we do not
|
|
// use the ByVal method, but pass the aggregate as array.
|
|
// This is usually beneficial since we avoid forcing the
|
|
// back-end to store the argument to memory.
|
|
uint64_t Bits = getContext().getTypeSize(Ty);
|
|
if (Bits > 0 && Bits <= 8 * GPRBits) {
|
|
llvm::Type *CoerceTy;
|
|
|
|
// Types up to 8 bytes are passed as integer type (which will be
|
|
// properly aligned in the argument save area doubleword).
|
|
if (Bits <= GPRBits)
|
|
CoerceTy = llvm::IntegerType::get(getVMContext(),
|
|
llvm::RoundUpToAlignment(Bits, 8));
|
|
// Larger types are passed as arrays, with the base type selected
|
|
// according to the required alignment in the save area.
|
|
else {
|
|
uint64_t RegBits = ABIAlign * 8;
|
|
uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
|
|
llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
|
|
CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// All other aggregates are passed ByVal.
|
|
return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
|
|
/*Realign=*/TyAlign > ABIAlign);
|
|
}
|
|
|
|
return (isPromotableTypeForABI(Ty) ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo
|
|
PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
|
|
// or via reference (larger than 16 bytes).
|
|
if (RetTy->isVectorType()) {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size > 128)
|
|
return ABIArgInfo::getIndirect(0);
|
|
else if (Size < 128) {
|
|
llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
}
|
|
|
|
if (isAggregateTypeForABI(RetTy)) {
|
|
// ELFv2 homogeneous aggregates are returned as array types.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (Kind == ELFv2 &&
|
|
isHomogeneousAggregate(RetTy, Base, Members)) {
|
|
llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
|
|
llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// ELFv2 small aggregates are returned in up to two registers.
|
|
uint64_t Bits = getContext().getTypeSize(RetTy);
|
|
if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
|
|
if (Bits == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
llvm::Type *CoerceTy;
|
|
if (Bits > GPRBits) {
|
|
CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
|
|
CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, NULL);
|
|
} else
|
|
CoerceTy = llvm::IntegerType::get(getVMContext(),
|
|
llvm::RoundUpToAlignment(Bits, 8));
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// All other aggregates are returned indirectly.
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
return (isPromotableTypeForABI(RetTy) ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
|
|
llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
|
|
QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
// Handle types that require 16-byte alignment in the parameter save area.
|
|
if (isAlignedParamType(Ty)) {
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
|
|
AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
|
|
}
|
|
|
|
// Update the va_list pointer. The pointer should be bumped by the
|
|
// size of the object. We can trust getTypeSize() except for a complex
|
|
// type whose base type is smaller than a doubleword. For these, the
|
|
// size of the object is 16 bytes; see below for further explanation.
|
|
unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
|
|
QualType BaseTy;
|
|
unsigned CplxBaseSize = 0;
|
|
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
|
|
BaseTy = CTy->getElementType();
|
|
CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
|
|
if (CplxBaseSize < 8)
|
|
SizeInBytes = 16;
|
|
}
|
|
|
|
unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
// If we have a complex type and the base type is smaller than 8 bytes,
|
|
// the ABI calls for the real and imaginary parts to be right-adjusted
|
|
// in separate doublewords. However, Clang expects us to produce a
|
|
// pointer to a structure with the two parts packed tightly. So generate
|
|
// loads of the real and imaginary parts relative to the va_list pointer,
|
|
// and store them to a temporary structure.
|
|
if (CplxBaseSize && CplxBaseSize < 8) {
|
|
llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
llvm::Value *ImagAddr = RealAddr;
|
|
if (CGF.CGM.getDataLayout().isBigEndian()) {
|
|
RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
|
|
ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
|
|
} else {
|
|
ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
|
|
}
|
|
llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
|
|
RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
|
|
ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
|
|
llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
|
|
llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
|
|
llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
|
|
"vacplx");
|
|
llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
|
|
llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
|
|
Builder.CreateStore(Real, RealPtr, false);
|
|
Builder.CreateStore(Imag, ImagPtr, false);
|
|
return Ptr;
|
|
}
|
|
|
|
// If the argument is smaller than 8 bytes, it is right-adjusted in
|
|
// its doubleword slot. Adjust the pointer to pick it up from the
|
|
// correct offset.
|
|
if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
|
|
}
|
|
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
return Builder.CreateBitCast(Addr, PTy);
|
|
}
|
|
|
|
static bool
|
|
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
|
|
|
|
// 0-31: r0-31, the 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
// 32-63: fp0-31, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 32, 63);
|
|
|
|
// 64-76 are various 4-byte special-purpose registers:
|
|
// 64: mq
|
|
// 65: lr
|
|
// 66: ctr
|
|
// 67: ap
|
|
// 68-75 cr0-7
|
|
// 76: xer
|
|
AssignToArrayRange(Builder, Address, Four8, 64, 76);
|
|
|
|
// 77-108: v0-31, the 16-byte vector registers
|
|
AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
|
|
|
|
// 109: vrsave
|
|
// 110: vscr
|
|
// 111: spe_acc
|
|
// 112: spefscr
|
|
// 113: sfp
|
|
AssignToArrayRange(Builder, Address, Four8, 109, 113);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
|
CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
|
|
return PPC64_initDwarfEHRegSizeTable(CGF, Address);
|
|
}
|
|
|
|
bool
|
|
PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
|
|
return PPC64_initDwarfEHRegSizeTable(CGF, Address);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AArch64ABIInfo : public ABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
AAPCS = 0,
|
|
DarwinPCS
|
|
};
|
|
|
|
private:
|
|
ABIKind Kind;
|
|
|
|
public:
|
|
AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
|
|
|
|
private:
|
|
ABIKind getABIKind() const { return Kind; }
|
|
bool isDarwinPCS() const { return Kind == DarwinPCS; }
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
|
|
bool &IsHA, unsigned &AllocatedGPR,
|
|
bool &IsSmallAggr, bool IsNamedArg) const;
|
|
bool isIllegalVectorType(QualType Ty) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI) const {
|
|
// To correctly handle Homogeneous Aggregate, we need to keep track of the
|
|
// number of SIMD and Floating-point registers allocated so far.
|
|
// If the argument is an HFA or an HVA and there are sufficient unallocated
|
|
// SIMD and Floating-point registers, then the argument is allocated to SIMD
|
|
// and Floating-point Registers (with one register per member of the HFA or
|
|
// HVA). Otherwise, the NSRN is set to 8.
|
|
unsigned AllocatedVFP = 0;
|
|
|
|
// To correctly handle small aggregates, we need to keep track of the number
|
|
// of GPRs allocated so far. If the small aggregate can't all fit into
|
|
// registers, it will be on stack. We don't allow the aggregate to be
|
|
// partially in registers.
|
|
unsigned AllocatedGPR = 0;
|
|
|
|
// Find the number of named arguments. Variadic arguments get special
|
|
// treatment with the Darwin ABI.
|
|
unsigned NumRequiredArgs = (FI.isVariadic() ?
|
|
FI.getRequiredArgs().getNumRequiredArgs() :
|
|
FI.arg_size());
|
|
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it) {
|
|
unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
|
|
bool IsHA = false, IsSmallAggr = false;
|
|
const unsigned NumVFPs = 8;
|
|
const unsigned NumGPRs = 8;
|
|
bool IsNamedArg = ((it - FI.arg_begin()) <
|
|
static_cast<signed>(NumRequiredArgs));
|
|
it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
|
|
AllocatedGPR, IsSmallAggr, IsNamedArg);
|
|
|
|
// Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
|
|
// as sequences of floats since they'll get "holes" inserted as
|
|
// padding by the back end.
|
|
if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
|
|
getContext().getTypeAlign(it->type) < 64) {
|
|
uint32_t NumStackSlots = getContext().getTypeSize(it->type);
|
|
NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
|
|
|
|
llvm::Type *CoerceTy = llvm::ArrayType::get(
|
|
llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
|
|
it->info = ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
// If we do not have enough VFP registers for the HA, any VFP registers
|
|
// that are unallocated are marked as unavailable. To achieve this, we add
|
|
// padding of (NumVFPs - PreAllocation) floats.
|
|
if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
|
|
llvm::Type *PaddingTy = llvm::ArrayType::get(
|
|
llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
|
|
it->info.setPaddingType(PaddingTy);
|
|
}
|
|
|
|
// If we do not have enough GPRs for the small aggregate, any GPR regs
|
|
// that are unallocated are marked as unavailable.
|
|
if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
|
|
llvm::Type *PaddingTy = llvm::ArrayType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
|
|
it->info =
|
|
ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
|
|
llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
|
|
: EmitAAPCSVAArg(VAListAddr, Ty, CGF);
|
|
}
|
|
};
|
|
|
|
class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
|
|
: TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const {
|
|
return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
|
|
|
|
virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
|
|
};
|
|
}
|
|
|
|
static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
ASTContext &Context,
|
|
uint64_t *HAMembers = nullptr);
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
|
|
unsigned &AllocatedVFP,
|
|
bool &IsHA,
|
|
unsigned &AllocatedGPR,
|
|
bool &IsSmallAggr,
|
|
bool IsNamedArg) const {
|
|
// Handle illegal vector types here.
|
|
if (isIllegalVectorType(Ty)) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 32) {
|
|
llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
|
|
AllocatedGPR++;
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 64) {
|
|
llvm::Type *ResType =
|
|
llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
|
|
AllocatedVFP++;
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 128) {
|
|
llvm::Type *ResType =
|
|
llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
AllocatedVFP++;
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
AllocatedGPR++;
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
}
|
|
if (Ty->isVectorType())
|
|
// Size of a legal vector should be either 64 or 128.
|
|
AllocatedVFP++;
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::Half ||
|
|
BT->getKind() == BuiltinType::Float ||
|
|
BT->getKind() == BuiltinType::Double ||
|
|
BT->getKind() == BuiltinType::LongDouble)
|
|
AllocatedVFP++;
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (!Ty->isFloatingType() && !Ty->isVectorType()) {
|
|
unsigned Alignment = getContext().getTypeAlign(Ty);
|
|
if (!isDarwinPCS() && Alignment > 64)
|
|
AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
|
|
|
|
int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
|
|
AllocatedGPR += RegsNeeded;
|
|
}
|
|
return (Ty->isPromotableIntegerType() && isDarwinPCS()
|
|
? ABIArgInfo::getExtend()
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
AllocatedGPR++;
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
|
|
CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Empty records are always ignored on Darwin, but actually passed in C++ mode
|
|
// elsewhere for GNU compatibility.
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
++AllocatedGPR;
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
}
|
|
|
|
// Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
|
|
IsHA = true;
|
|
if (!IsNamedArg && isDarwinPCS()) {
|
|
// With the Darwin ABI, variadic arguments are always passed on the stack
|
|
// and should not be expanded. Treat variadic HFAs as arrays of doubles.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
|
|
}
|
|
AllocatedVFP += Members;
|
|
return ABIArgInfo::getExpand();
|
|
}
|
|
|
|
// Aggregates <= 16 bytes are passed directly in registers or on the stack.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 128) {
|
|
unsigned Alignment = getContext().getTypeAlign(Ty);
|
|
if (!isDarwinPCS() && Alignment > 64)
|
|
AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
|
|
|
|
Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
|
|
AllocatedGPR += Size / 64;
|
|
IsSmallAggr = true;
|
|
// We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
|
|
// For aggregates with 16-byte alignment, we use i128.
|
|
if (Alignment < 128 && Size == 128) {
|
|
llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
|
|
}
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
AllocatedGPR++;
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Large vector types should be returned via memory.
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() && isDarwinPCS()
|
|
? ABIArgInfo::getExtend()
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
const Type *Base = nullptr;
|
|
if (isHomogeneousAggregate(RetTy, Base, getContext()))
|
|
// Homogeneous Floating-point Aggregates (HFAs) are returned directly.
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Aggregates <= 16 bytes are returned directly in registers or on the stack.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 128) {
|
|
Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
/// isIllegalVectorType - check whether the vector type is legal for AArch64.
|
|
bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// NumElements should be power of 2 between 1 and 16.
|
|
if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
|
|
return true;
|
|
return Size != 64 && (Size != 128 || NumElements == 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
int AllocatedGPR, int AllocatedVFP,
|
|
bool IsIndirect, CodeGenFunction &CGF) {
|
|
// The AArch64 va_list type and handling is specified in the Procedure Call
|
|
// Standard, section B.4:
|
|
//
|
|
// struct {
|
|
// void *__stack;
|
|
// void *__gr_top;
|
|
// void *__vr_top;
|
|
// int __gr_offs;
|
|
// int __vr_offs;
|
|
// };
|
|
|
|
llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
auto &Ctx = CGF.getContext();
|
|
|
|
llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
|
|
int reg_top_index;
|
|
int RegSize;
|
|
if (AllocatedGPR) {
|
|
assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
|
|
// 3 is the field number of __gr_offs
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
|
|
reg_top_index = 1; // field number for __gr_top
|
|
RegSize = 8 * AllocatedGPR;
|
|
} else {
|
|
assert(!AllocatedGPR && "Argument must go in VFP or int regs");
|
|
// 4 is the field number of __vr_offs.
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
|
|
reg_top_index = 2; // field number for __vr_top
|
|
RegSize = 16 * AllocatedVFP;
|
|
}
|
|
|
|
//=======================================
|
|
// Find out where argument was passed
|
|
//=======================================
|
|
|
|
// If reg_offs >= 0 we're already using the stack for this type of
|
|
// argument. We don't want to keep updating reg_offs (in case it overflows,
|
|
// though anyone passing 2GB of arguments, each at most 16 bytes, deserves
|
|
// whatever they get).
|
|
llvm::Value *UsingStack = nullptr;
|
|
UsingStack = CGF.Builder.CreateICmpSGE(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
|
|
|
|
// Otherwise, at least some kind of argument could go in these registers, the
|
|
// question is whether this particular type is too big.
|
|
CGF.EmitBlock(MaybeRegBlock);
|
|
|
|
// Integer arguments may need to correct register alignment (for example a
|
|
// "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
|
|
// align __gr_offs to calculate the potential address.
|
|
if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
|
|
int Align = Ctx.getTypeAlign(Ty) / 8;
|
|
|
|
reg_offs = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
|
|
"align_regoffs");
|
|
reg_offs = CGF.Builder.CreateAnd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
|
|
"aligned_regoffs");
|
|
}
|
|
|
|
// Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
|
|
llvm::Value *NewOffset = nullptr;
|
|
NewOffset = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
|
|
CGF.Builder.CreateStore(NewOffset, reg_offs_p);
|
|
|
|
// Now we're in a position to decide whether this argument really was in
|
|
// registers or not.
|
|
llvm::Value *InRegs = nullptr;
|
|
InRegs = CGF.Builder.CreateICmpSLE(
|
|
NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
|
|
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
|
|
|
|
//=======================================
|
|
// Argument was in registers
|
|
//=======================================
|
|
|
|
// Now we emit the code for if the argument was originally passed in
|
|
// registers. First start the appropriate block:
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
|
|
reg_top_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
|
|
reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
|
|
llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
|
|
llvm::Value *RegAddr = nullptr;
|
|
llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
|
|
|
|
if (IsIndirect) {
|
|
// If it's been passed indirectly (actually a struct), whatever we find from
|
|
// stored registers or on the stack will actually be a struct **.
|
|
MemTy = llvm::PointerType::getUnqual(MemTy);
|
|
}
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t NumMembers;
|
|
bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
|
|
if (IsHFA && NumMembers > 1) {
|
|
// Homogeneous aggregates passed in registers will have their elements split
|
|
// and stored 16-bytes apart regardless of size (they're notionally in qN,
|
|
// qN+1, ...). We reload and store into a temporary local variable
|
|
// contiguously.
|
|
assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
|
|
llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
|
|
llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
|
|
int Offset = 0;
|
|
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
|
|
Offset = 16 - Ctx.getTypeSize(Base) / 8;
|
|
for (unsigned i = 0; i < NumMembers; ++i) {
|
|
llvm::Value *BaseOffset =
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
|
|
llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
|
|
LoadAddr = CGF.Builder.CreateBitCast(
|
|
LoadAddr, llvm::PointerType::getUnqual(BaseTy));
|
|
llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
|
|
|
|
llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
|
|
CGF.Builder.CreateStore(Elem, StoreAddr);
|
|
}
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
|
|
} else {
|
|
// Otherwise the object is contiguous in memory
|
|
unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
|
|
if (CGF.CGM.getDataLayout().isBigEndian() &&
|
|
(IsHFA || !isAggregateTypeForABI(Ty)) &&
|
|
Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
|
|
int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
|
|
BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
|
|
|
|
BaseAddr = CGF.Builder.CreateAdd(
|
|
BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
|
|
|
|
BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
|
|
}
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
|
|
}
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Argument was on the stack
|
|
//=======================================
|
|
CGF.EmitBlock(OnStackBlock);
|
|
|
|
llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
|
|
stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
|
|
OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
|
|
|
|
// Again, stack arguments may need realigmnent. In this case both integer and
|
|
// floating-point ones might be affected.
|
|
if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
|
|
int Align = Ctx.getTypeAlign(Ty) / 8;
|
|
|
|
OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
|
|
|
|
OnStackAddr = CGF.Builder.CreateAdd(
|
|
OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
|
|
"align_stack");
|
|
OnStackAddr = CGF.Builder.CreateAnd(
|
|
OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
|
|
"align_stack");
|
|
|
|
OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
|
|
}
|
|
|
|
uint64_t StackSize;
|
|
if (IsIndirect)
|
|
StackSize = 8;
|
|
else
|
|
StackSize = Ctx.getTypeSize(Ty) / 8;
|
|
|
|
// All stack slots are 8 bytes
|
|
StackSize = llvm::RoundUpToAlignment(StackSize, 8);
|
|
|
|
llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
|
|
llvm::Value *NewStack =
|
|
CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
|
|
|
|
// Write the new value of __stack for the next call to va_arg
|
|
CGF.Builder.CreateStore(NewStack, stack_p);
|
|
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
|
|
Ctx.getTypeSize(Ty) < 64) {
|
|
int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
|
|
OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
|
|
|
|
OnStackAddr = CGF.Builder.CreateAdd(
|
|
OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
|
|
|
|
OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
|
|
}
|
|
|
|
OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Tidy up
|
|
//=======================================
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
|
|
ResAddr->addIncoming(RegAddr, InRegBlock);
|
|
ResAddr->addIncoming(OnStackAddr, OnStackBlock);
|
|
|
|
if (IsIndirect)
|
|
return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
|
|
|
|
return ResAddr;
|
|
}
|
|
|
|
llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
|
|
unsigned AllocatedGPR = 0, AllocatedVFP = 0;
|
|
bool IsHA = false, IsSmallAggr = false;
|
|
ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
|
|
IsSmallAggr, false /*IsNamedArg*/);
|
|
|
|
return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
|
|
AI.isIndirect(), CGF);
|
|
}
|
|
|
|
llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// We do not support va_arg for aggregates or illegal vector types.
|
|
// Lower VAArg here for these cases and use the LLVM va_arg instruction for
|
|
// other cases.
|
|
if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
|
|
return nullptr;
|
|
|
|
uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
|
|
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
|
|
const Type *Base = nullptr;
|
|
bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
|
|
|
|
bool isIndirect = false;
|
|
// Arguments bigger than 16 bytes which aren't homogeneous aggregates should
|
|
// be passed indirectly.
|
|
if (Size > 16 && !isHA) {
|
|
isIndirect = true;
|
|
Size = 8;
|
|
Align = 8;
|
|
}
|
|
|
|
llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
|
llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
// These are ignored for parameter passing purposes.
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
return Builder.CreateBitCast(Addr, PTy);
|
|
}
|
|
|
|
const uint64_t MinABIAlign = 8;
|
|
if (Align > MinABIAlign) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
|
|
Addr = Builder.CreateGEP(Addr, Offset);
|
|
llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
|
|
llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
|
|
llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
|
|
Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
|
|
}
|
|
|
|
uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
|
|
llvm::Value *NextAddr = Builder.CreateGEP(
|
|
Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
if (isIndirect)
|
|
Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class ARMABIInfo : public ABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
APCS = 0,
|
|
AAPCS = 1,
|
|
AAPCS_VFP
|
|
};
|
|
|
|
private:
|
|
ABIKind Kind;
|
|
mutable int VFPRegs[16];
|
|
const unsigned NumVFPs;
|
|
const unsigned NumGPRs;
|
|
mutable unsigned AllocatedGPRs;
|
|
mutable unsigned AllocatedVFPs;
|
|
|
|
public:
|
|
ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
|
|
NumVFPs(16), NumGPRs(4) {
|
|
setRuntimeCC();
|
|
resetAllocatedRegs();
|
|
}
|
|
|
|
bool isEABI() const {
|
|
switch (getTarget().getTriple().getEnvironment()) {
|
|
case llvm::Triple::Android:
|
|
case llvm::Triple::EABI:
|
|
case llvm::Triple::EABIHF:
|
|
case llvm::Triple::GNUEABI:
|
|
case llvm::Triple::GNUEABIHF:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool isEABIHF() const {
|
|
switch (getTarget().getTriple().getEnvironment()) {
|
|
case llvm::Triple::EABIHF:
|
|
case llvm::Triple::GNUEABIHF:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ABIKind getABIKind() const { return Kind; }
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
|
|
bool &IsCPRC) const;
|
|
bool isIllegalVectorType(QualType Ty) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
|
|
llvm::CallingConv::ID getLLVMDefaultCC() const;
|
|
llvm::CallingConv::ID getABIDefaultCC() const;
|
|
void setRuntimeCC();
|
|
|
|
void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
|
|
void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
|
|
void resetAllocatedRegs(void) const;
|
|
};
|
|
|
|
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
|
|
:TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
|
|
|
|
const ARMABIInfo &getABIInfo() const {
|
|
return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 13;
|
|
}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
|
return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-15 are the 16 integer registers.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
|
|
return false;
|
|
}
|
|
|
|
unsigned getSizeOfUnwindException() const override {
|
|
if (getABIInfo().isEABI()) return 88;
|
|
return TargetCodeGenInfo::getSizeOfUnwindException();
|
|
}
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
|
|
const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
|
|
if (!Attr)
|
|
return;
|
|
|
|
const char *Kind;
|
|
switch (Attr->getInterrupt()) {
|
|
case ARMInterruptAttr::Generic: Kind = ""; break;
|
|
case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
|
|
case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
|
|
case ARMInterruptAttr::SWI: Kind = "SWI"; break;
|
|
case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
|
|
case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
|
|
}
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
|
|
Fn->addFnAttr("interrupt", Kind);
|
|
|
|
if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
|
|
return;
|
|
|
|
// AAPCS guarantees that sp will be 8-byte aligned on any public interface,
|
|
// however this is not necessarily true on taking any interrupt. Instruct
|
|
// the backend to perform a realignment as part of the function prologue.
|
|
llvm::AttrBuilder B;
|
|
B.addStackAlignmentAttr(8);
|
|
Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(CGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
B));
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
// To correctly handle Homogeneous Aggregate, we need to keep track of the
|
|
// VFP registers allocated so far.
|
|
// C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
|
|
// VFP registers of the appropriate type unallocated then the argument is
|
|
// allocated to the lowest-numbered sequence of such registers.
|
|
// C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
|
|
// unallocated are marked as unavailable.
|
|
resetAllocatedRegs();
|
|
|
|
if (getCXXABI().classifyReturnType(FI)) {
|
|
if (FI.getReturnInfo().isIndirect())
|
|
markAllocatedGPRs(1, 1);
|
|
} else {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
|
|
}
|
|
for (auto &I : FI.arguments()) {
|
|
unsigned PreAllocationVFPs = AllocatedVFPs;
|
|
unsigned PreAllocationGPRs = AllocatedGPRs;
|
|
bool IsCPRC = false;
|
|
// 6.1.2.3 There is one VFP co-processor register class using registers
|
|
// s0-s15 (d0-d7) for passing arguments.
|
|
I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
|
|
|
|
// If we have allocated some arguments onto the stack (due to running
|
|
// out of VFP registers), we cannot split an argument between GPRs and
|
|
// the stack. If this situation occurs, we add padding to prevent the
|
|
// GPRs from being used. In this situation, the current argument could
|
|
// only be allocated by rule C.8, so rule C.6 would mark these GPRs as
|
|
// unusable anyway.
|
|
// We do not have to do this if the argument is being passed ByVal, as the
|
|
// backend can handle that situation correctly.
|
|
const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
|
|
const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
|
|
if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
|
|
StackUsed && !IsByVal) {
|
|
llvm::Type *PaddingTy = llvm::ArrayType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
|
|
if (I.info.canHaveCoerceToType()) {
|
|
I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
|
|
PaddingTy);
|
|
} else {
|
|
I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
|
|
PaddingTy);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Always honor user-specified calling convention.
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
return;
|
|
|
|
llvm::CallingConv::ID cc = getRuntimeCC();
|
|
if (cc != llvm::CallingConv::C)
|
|
FI.setEffectiveCallingConvention(cc);
|
|
}
|
|
|
|
/// Return the default calling convention that LLVM will use.
|
|
llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
|
|
// The default calling convention that LLVM will infer.
|
|
if (isEABIHF())
|
|
return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
else if (isEABI())
|
|
return llvm::CallingConv::ARM_AAPCS;
|
|
else
|
|
return llvm::CallingConv::ARM_APCS;
|
|
}
|
|
|
|
/// Return the calling convention that our ABI would like us to use
|
|
/// as the C calling convention.
|
|
llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
|
|
switch (getABIKind()) {
|
|
case APCS: return llvm::CallingConv::ARM_APCS;
|
|
case AAPCS: return llvm::CallingConv::ARM_AAPCS;
|
|
case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
}
|
|
llvm_unreachable("bad ABI kind");
|
|
}
|
|
|
|
void ARMABIInfo::setRuntimeCC() {
|
|
assert(getRuntimeCC() == llvm::CallingConv::C);
|
|
|
|
// Don't muddy up the IR with a ton of explicit annotations if
|
|
// they'd just match what LLVM will infer from the triple.
|
|
llvm::CallingConv::ID abiCC = getABIDefaultCC();
|
|
if (abiCC != getLLVMDefaultCC())
|
|
RuntimeCC = abiCC;
|
|
}
|
|
|
|
/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
|
|
/// aggregate. If HAMembers is non-null, the number of base elements
|
|
/// contained in the type is returned through it; this is used for the
|
|
/// recursive calls that check aggregate component types.
|
|
static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
|
|
ASTContext &Context, uint64_t *HAMembers) {
|
|
uint64_t Members = 0;
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
|
|
return false;
|
|
Members *= AT->getSize().getZExtValue();
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
Members = 0;
|
|
for (const auto *FD : RD->fields()) {
|
|
uint64_t FldMembers;
|
|
if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
|
|
return false;
|
|
|
|
Members = (RD->isUnion() ?
|
|
std::max(Members, FldMembers) : Members + FldMembers);
|
|
}
|
|
} else {
|
|
Members = 1;
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
Members = 2;
|
|
Ty = CT->getElementType();
|
|
}
|
|
|
|
// Homogeneous aggregates for AAPCS-VFP must have base types of float,
|
|
// double, or 64-bit or 128-bit vectors.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() != BuiltinType::Float &&
|
|
BT->getKind() != BuiltinType::Double &&
|
|
BT->getKind() != BuiltinType::LongDouble)
|
|
return false;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
unsigned VecSize = Context.getTypeSize(VT);
|
|
if (VecSize != 64 && VecSize != 128)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// The base type must be the same for all members. Vector types of the
|
|
// same total size are treated as being equivalent here.
|
|
const Type *TyPtr = Ty.getTypePtr();
|
|
if (!Base)
|
|
Base = TyPtr;
|
|
|
|
if (Base != TyPtr) {
|
|
// Homogeneous aggregates are defined as containing members with the
|
|
// same machine type. There are two cases in which two members have
|
|
// different TypePtrs but the same machine type:
|
|
|
|
// 1) Vectors of the same length, regardless of the type and number
|
|
// of their members.
|
|
const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
|
|
&& (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
|
|
|
|
// 2) In the 32-bit AAPCS, `double' and `long double' have the same
|
|
// machine type. This is not the case for the 64-bit AAPCS.
|
|
const bool SameSizeDoubles =
|
|
( ( Base->isSpecificBuiltinType(BuiltinType::Double)
|
|
&& TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
|
|
|| ( Base->isSpecificBuiltinType(BuiltinType::LongDouble)
|
|
&& TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
|
|
&& (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
|
|
|
|
if (!SameLengthVectors && !SameSizeDoubles)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Homogeneous Aggregates can have at most 4 members of the base type.
|
|
if (HAMembers)
|
|
*HAMembers = Members;
|
|
|
|
return (Members > 0 && Members <= 4);
|
|
}
|
|
|
|
/// markAllocatedVFPs - update VFPRegs according to the alignment and
|
|
/// number of VFP registers (unit is S register) requested.
|
|
void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
|
|
unsigned NumRequired) const {
|
|
// Early Exit.
|
|
if (AllocatedVFPs >= 16) {
|
|
// We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
|
|
// the stack.
|
|
AllocatedVFPs = 17;
|
|
return;
|
|
}
|
|
// C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
|
|
// VFP registers of the appropriate type unallocated then the argument is
|
|
// allocated to the lowest-numbered sequence of such registers.
|
|
for (unsigned I = 0; I < 16; I += Alignment) {
|
|
bool FoundSlot = true;
|
|
for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
|
|
if (J >= 16 || VFPRegs[J]) {
|
|
FoundSlot = false;
|
|
break;
|
|
}
|
|
if (FoundSlot) {
|
|
for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
|
|
VFPRegs[J] = 1;
|
|
AllocatedVFPs += NumRequired;
|
|
return;
|
|
}
|
|
}
|
|
// C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
|
|
// unallocated are marked as unavailable.
|
|
for (unsigned I = 0; I < 16; I++)
|
|
VFPRegs[I] = 1;
|
|
AllocatedVFPs = 17; // We do not have enough VFP registers.
|
|
}
|
|
|
|
/// Update AllocatedGPRs to record the number of general purpose registers
|
|
/// which have been allocated. It is valid for AllocatedGPRs to go above 4,
|
|
/// this represents arguments being stored on the stack.
|
|
void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
|
|
unsigned NumRequired) const {
|
|
assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
|
|
|
|
if (Alignment == 2 && AllocatedGPRs & 0x1)
|
|
AllocatedGPRs += 1;
|
|
|
|
AllocatedGPRs += NumRequired;
|
|
}
|
|
|
|
void ARMABIInfo::resetAllocatedRegs(void) const {
|
|
AllocatedGPRs = 0;
|
|
AllocatedVFPs = 0;
|
|
for (unsigned i = 0; i < NumVFPs; ++i)
|
|
VFPRegs[i] = 0;
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
|
|
bool &IsCPRC) const {
|
|
// We update number of allocated VFPs according to
|
|
// 6.1.2.1 The following argument types are VFP CPRCs:
|
|
// A single-precision floating-point type (including promoted
|
|
// half-precision types); A double-precision floating-point type;
|
|
// A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
|
|
// with a Base Type of a single- or double-precision floating-point type,
|
|
// 64-bit containerized vectors or 128-bit containerized vectors with one
|
|
// to four Elements.
|
|
|
|
// Handle illegal vector types here.
|
|
if (isIllegalVectorType(Ty)) {
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size <= 32) {
|
|
llvm::Type *ResType =
|
|
llvm::Type::getInt32Ty(getVMContext());
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 64) {
|
|
llvm::Type *ResType = llvm::VectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), 2);
|
|
if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
|
|
markAllocatedGPRs(2, 2);
|
|
} else {
|
|
markAllocatedVFPs(2, 2);
|
|
IsCPRC = true;
|
|
}
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 128) {
|
|
llvm::Type *ResType = llvm::VectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
|
|
markAllocatedGPRs(2, 4);
|
|
} else {
|
|
markAllocatedVFPs(4, 4);
|
|
IsCPRC = true;
|
|
}
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
}
|
|
// Update VFPRegs for legal vector types.
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// Size of a legal vector should be power of 2 and above 64.
|
|
markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
|
|
IsCPRC = true;
|
|
}
|
|
}
|
|
// Update VFPRegs for floating point types.
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::Half ||
|
|
BT->getKind() == BuiltinType::Float) {
|
|
markAllocatedVFPs(1, 1);
|
|
IsCPRC = true;
|
|
}
|
|
if (BT->getKind() == BuiltinType::Double ||
|
|
BT->getKind() == BuiltinType::LongDouble) {
|
|
markAllocatedVFPs(2, 2);
|
|
IsCPRC = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
}
|
|
|
|
unsigned Size = getContext().getTypeSize(Ty);
|
|
if (!IsCPRC)
|
|
markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
|
|
// Homogeneous Aggregates need to be expanded when we can fit the aggregate
|
|
// into VFP registers.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
|
|
assert(Base && "Base class should be set for homogeneous aggregate");
|
|
// Base can be a floating-point or a vector.
|
|
if (Base->isVectorType()) {
|
|
// ElementSize is in number of floats.
|
|
unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
|
|
markAllocatedVFPs(ElementSize,
|
|
Members * ElementSize);
|
|
} else if (Base->isSpecificBuiltinType(BuiltinType::Float))
|
|
markAllocatedVFPs(1, Members);
|
|
else {
|
|
assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
|
|
Base->isSpecificBuiltinType(BuiltinType::LongDouble));
|
|
markAllocatedVFPs(2, Members * 2);
|
|
}
|
|
IsCPRC = true;
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
// Support byval for ARM.
|
|
// The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
|
|
// most 8-byte. We realign the indirect argument if type alignment is bigger
|
|
// than ABI alignment.
|
|
uint64_t ABIAlign = 4;
|
|
uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
|
|
getABIKind() == ARMABIInfo::AAPCS)
|
|
ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
|
|
if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
|
|
// Update Allocated GPRs. Since this is only used when the size of the
|
|
// argument is greater than 64 bytes, this will always use up any available
|
|
// registers (of which there are 4). We also don't care about getting the
|
|
// alignment right, because general-purpose registers cannot be back-filled.
|
|
markAllocatedGPRs(1, 4);
|
|
return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
|
|
/*Realign=*/TyAlign > ABIAlign);
|
|
}
|
|
|
|
// Otherwise, pass by coercing to a structure of the appropriate size.
|
|
llvm::Type* ElemTy;
|
|
unsigned SizeRegs;
|
|
// FIXME: Try to match the types of the arguments more accurately where
|
|
// we can.
|
|
if (getContext().getTypeAlign(Ty) <= 32) {
|
|
ElemTy = llvm::Type::getInt32Ty(getVMContext());
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
|
|
markAllocatedGPRs(1, SizeRegs);
|
|
} else {
|
|
ElemTy = llvm::Type::getInt64Ty(getVMContext());
|
|
SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
|
|
markAllocatedGPRs(2, SizeRegs * 2);
|
|
}
|
|
|
|
llvm::Type *STy =
|
|
llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
|
|
return ABIArgInfo::getDirect(STy);
|
|
}
|
|
|
|
static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) {
|
|
// APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
|
|
// is called integer-like if its size is less than or equal to one word, and
|
|
// the offset of each of its addressable sub-fields is zero.
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// Check that the type fits in a word.
|
|
if (Size > 32)
|
|
return false;
|
|
|
|
// FIXME: Handle vector types!
|
|
if (Ty->isVectorType())
|
|
return false;
|
|
|
|
// Float types are never treated as "integer like".
|
|
if (Ty->isRealFloatingType())
|
|
return false;
|
|
|
|
// If this is a builtin or pointer type then it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
|
|
return true;
|
|
|
|
// Small complex integer types are "integer like".
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>())
|
|
return isIntegerLikeType(CT->getElementType(), Context, VMContext);
|
|
|
|
// Single element and zero sized arrays should be allowed, by the definition
|
|
// above, but they are not.
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// Ignore records with flexible arrays.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
// Check that all sub-fields are at offset 0, and are themselves "integer
|
|
// like".
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
bool HadField = false;
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
// Bit-fields are not addressable, we only need to verify they are "integer
|
|
// like". We still have to disallow a subsequent non-bitfield, for example:
|
|
// struct { int : 0; int x }
|
|
// is non-integer like according to gcc.
|
|
if (FD->isBitField()) {
|
|
if (!RD->isUnion())
|
|
HadField = true;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check if this field is at offset 0.
|
|
if (Layout.getFieldOffset(idx) != 0)
|
|
return false;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
// Only allow at most one field in a structure. This doesn't match the
|
|
// wording above, but follows gcc in situations with a field following an
|
|
// empty structure.
|
|
if (!RD->isUnion()) {
|
|
if (HadField)
|
|
return false;
|
|
|
|
HadField = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
|
|
bool isVariadic) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Large vector types should be returned via memory.
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Are we following APCS?
|
|
if (getABIKind() == APCS) {
|
|
if (isEmptyRecord(getContext(), RetTy, false))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Complex types are all returned as packed integers.
|
|
//
|
|
// FIXME: Consider using 2 x vector types if the back end handles them
|
|
// correctly.
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
|
getContext().getTypeSize(RetTy)));
|
|
|
|
// Integer like structures are returned in r0.
|
|
if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
|
|
// Return in the smallest viable integer type.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
}
|
|
|
|
// Otherwise return in memory.
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
// Otherwise this is an AAPCS variant.
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Check for homogeneous aggregates with AAPCS-VFP.
|
|
if (getABIKind() == AAPCS_VFP && !isVariadic) {
|
|
const Type *Base = nullptr;
|
|
if (isHomogeneousAggregate(RetTy, Base, getContext())) {
|
|
assert(Base && "Base class should be set for homogeneous aggregate");
|
|
// Homogeneous Aggregates are returned directly.
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
// Aggregates <= 4 bytes are returned in r0; other aggregates
|
|
// are returned indirectly.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 32) {
|
|
if (getDataLayout().isBigEndian())
|
|
// Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
|
|
// Return in the smallest viable integer type.
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
}
|
|
|
|
markAllocatedGPRs(1, 1);
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
/// isIllegalVector - check whether Ty is an illegal vector type.
|
|
bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// NumElements should be power of 2.
|
|
if ((NumElements & (NumElements - 1)) != 0)
|
|
return true;
|
|
// Size should be greater than 32 bits.
|
|
return Size <= 32;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
|
|
if (isEmptyRecord(getContext(), Ty, true)) {
|
|
// These are ignored for parameter passing purposes.
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
return Builder.CreateBitCast(Addr, PTy);
|
|
}
|
|
|
|
uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
|
|
uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
bool IsIndirect = false;
|
|
|
|
// The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
|
|
// APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
|
|
if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
|
|
getABIKind() == ARMABIInfo::AAPCS)
|
|
TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
|
|
else
|
|
TyAlign = 4;
|
|
// Use indirect if size of the illegal vector is bigger than 16 bytes.
|
|
if (isIllegalVectorType(Ty) && Size > 16) {
|
|
IsIndirect = true;
|
|
Size = 4;
|
|
TyAlign = 4;
|
|
}
|
|
|
|
// Handle address alignment for ABI alignment > 4 bytes.
|
|
if (TyAlign > 4) {
|
|
assert((TyAlign & (TyAlign - 1)) == 0 &&
|
|
"Alignment is not power of 2!");
|
|
llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
|
|
AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
|
|
AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
|
|
Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
|
|
}
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(Size, 4);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
if (IsIndirect)
|
|
Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
|
|
else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
|
|
// We can't directly cast ap.cur to pointer to a vector type, since ap.cur
|
|
// may not be correctly aligned for the vector type. We create an aligned
|
|
// temporary space and copy the content over from ap.cur to the temporary
|
|
// space. This is necessary if the natural alignment of the type is greater
|
|
// than the ABI alignment.
|
|
llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
|
|
CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
|
|
llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
|
|
"var.align");
|
|
llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
|
|
llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
|
|
Builder.CreateMemCpy(Dst, Src,
|
|
llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
|
|
TyAlign, false);
|
|
Addr = AlignedTemp; //The content is in aligned location.
|
|
}
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class NaClARMABIInfo : public ABIInfo {
|
|
public:
|
|
NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
|
|
: ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
private:
|
|
PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
|
|
ARMABIInfo NInfo; // Used for everything else.
|
|
};
|
|
|
|
class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
|
|
: TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
|
|
};
|
|
|
|
}
|
|
|
|
void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (FI.getASTCallingConvention() == CC_PnaclCall)
|
|
PInfo.computeInfo(FI);
|
|
else
|
|
static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
|
|
}
|
|
|
|
llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// Always use the native convention; calling pnacl-style varargs functions
|
|
// is unsupported.
|
|
return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class NVPTXABIInfo : public ABIInfo {
|
|
public:
|
|
NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType Ty) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CFG) const override;
|
|
};
|
|
|
|
class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
private:
|
|
// Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
|
|
// resulting MDNode to the nvvm.annotations MDNode.
|
|
static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
|
|
};
|
|
|
|
ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// note: this is different from default ABI
|
|
if (!RetTy->isScalarType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
|
|
// Always honor user-specified calling convention.
|
|
if (FI.getCallingConvention() != llvm::CallingConv::C)
|
|
return;
|
|
|
|
FI.setEffectiveCallingConvention(getRuntimeCC());
|
|
}
|
|
|
|
llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CFG) const {
|
|
llvm_unreachable("NVPTX does not support varargs");
|
|
}
|
|
|
|
void NVPTXTargetCodeGenInfo::
|
|
SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const{
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
// Perform special handling in OpenCL mode
|
|
if (M.getLangOpts().OpenCL) {
|
|
// Use OpenCL function attributes to check for kernel functions
|
|
// By default, all functions are device functions
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
// OpenCL __kernel functions get kernel metadata
|
|
// Create !{<func-ref>, metadata !"kernel", i32 1} node
|
|
addNVVMMetadata(F, "kernel", 1);
|
|
// And kernel functions are not subject to inlining
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
}
|
|
}
|
|
|
|
// Perform special handling in CUDA mode.
|
|
if (M.getLangOpts().CUDA) {
|
|
// CUDA __global__ functions get a kernel metadata entry. Since
|
|
// __global__ functions cannot be called from the device, we do not
|
|
// need to set the noinline attribute.
|
|
if (FD->hasAttr<CUDAGlobalAttr>()) {
|
|
// Create !{<func-ref>, metadata !"kernel", i32 1} node
|
|
addNVVMMetadata(F, "kernel", 1);
|
|
}
|
|
if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
|
|
// Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
|
|
addNVVMMetadata(F, "maxntidx",
|
|
FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
|
|
// min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
|
|
// zero value from getMinBlocks either means it was not specified in
|
|
// __launch_bounds__ or the user specified a 0 value. In both cases, we
|
|
// don't have to add a PTX directive.
|
|
int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
|
|
if (MinCTASM > 0) {
|
|
// Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
|
|
addNVVMMetadata(F, "minctasm", MinCTASM);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
|
|
int Operand) {
|
|
llvm::Module *M = F->getParent();
|
|
llvm::LLVMContext &Ctx = M->getContext();
|
|
|
|
// Get "nvvm.annotations" metadata node
|
|
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
|
|
|
|
llvm::Value *MDVals[] = {
|
|
F, llvm::MDString::get(Ctx, Name),
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
|
|
// Append metadata to nvvm.annotations
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SystemZ ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class SystemZABIInfo : public ABIInfo {
|
|
public:
|
|
SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
bool isPromotableIntegerType(QualType Ty) const;
|
|
bool isCompoundType(QualType Ty) const;
|
|
bool isFPArgumentType(QualType Ty) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType ArgTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
|
|
};
|
|
|
|
}
|
|
|
|
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Promotable integer types are required to be promoted by the ABI.
|
|
if (Ty->isPromotableIntegerType())
|
|
return true;
|
|
|
|
// 32-bit values must also be promoted.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
|
|
return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
|
|
}
|
|
|
|
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Float:
|
|
case BuiltinType::Double:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAsStructureType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
bool Found = false;
|
|
|
|
// If this is a C++ record, check the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
for (const auto &I : CXXRD->bases()) {
|
|
QualType Base = I.getType();
|
|
|
|
// Empty bases don't affect things either way.
|
|
if (isEmptyRecord(getContext(), Base, true))
|
|
continue;
|
|
|
|
if (Found)
|
|
return false;
|
|
Found = isFPArgumentType(Base);
|
|
if (!Found)
|
|
return false;
|
|
}
|
|
|
|
// Check the fields.
|
|
for (const auto *FD : RD->fields()) {
|
|
// Empty bitfields don't affect things either way.
|
|
// Unlike isSingleElementStruct(), empty structure and array fields
|
|
// do count. So do anonymous bitfields that aren't zero-sized.
|
|
if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
|
|
return true;
|
|
|
|
// Unlike isSingleElementStruct(), arrays do not count.
|
|
// Nested isFPArgumentType structures still do though.
|
|
if (Found)
|
|
return false;
|
|
Found = isFPArgumentType(FD->getType());
|
|
if (!Found)
|
|
return false;
|
|
}
|
|
|
|
// Unlike isSingleElementStruct(), trailing padding is allowed.
|
|
// An 8-byte aligned struct s { float f; } is passed as a double.
|
|
return Found;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
// struct {
|
|
// i64 __gpr;
|
|
// i64 __fpr;
|
|
// i8 *__overflow_arg_area;
|
|
// i8 *__reg_save_area;
|
|
// };
|
|
|
|
// Every argument occupies 8 bytes and is passed by preference in either
|
|
// GPRs or FPRs.
|
|
Ty = CGF.getContext().getCanonicalType(Ty);
|
|
ABIArgInfo AI = classifyArgumentType(Ty);
|
|
bool InFPRs = isFPArgumentType(Ty);
|
|
|
|
llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
|
|
bool IsIndirect = AI.isIndirect();
|
|
unsigned UnpaddedBitSize;
|
|
if (IsIndirect) {
|
|
APTy = llvm::PointerType::getUnqual(APTy);
|
|
UnpaddedBitSize = 64;
|
|
} else
|
|
UnpaddedBitSize = getContext().getTypeSize(Ty);
|
|
unsigned PaddedBitSize = 64;
|
|
assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
|
|
|
|
unsigned PaddedSize = PaddedBitSize / 8;
|
|
unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
|
|
|
|
unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
|
|
if (InFPRs) {
|
|
MaxRegs = 4; // Maximum of 4 FPR arguments
|
|
RegCountField = 1; // __fpr
|
|
RegSaveIndex = 16; // save offset for f0
|
|
RegPadding = 0; // floats are passed in the high bits of an FPR
|
|
} else {
|
|
MaxRegs = 5; // Maximum of 5 GPR arguments
|
|
RegCountField = 0; // __gpr
|
|
RegSaveIndex = 2; // save offset for r2
|
|
RegPadding = Padding; // values are passed in the low bits of a GPR
|
|
}
|
|
|
|
llvm::Value *RegCountPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
|
|
llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
|
|
llvm::Type *IndexTy = RegCount->getType();
|
|
llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
|
|
llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
|
|
"fits_in_regs");
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
// Work out the address of an argument register.
|
|
llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
|
|
llvm::Value *ScaledRegCount =
|
|
CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
|
|
llvm::Value *RegBase =
|
|
llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
|
|
llvm::Value *RegOffset =
|
|
CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
|
|
llvm::Value *RegSaveAreaPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
|
|
llvm::Value *RegSaveArea =
|
|
CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
|
|
llvm::Value *RawRegAddr =
|
|
CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
|
|
llvm::Value *RegAddr =
|
|
CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
|
|
|
|
// Update the register count
|
|
llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
|
|
llvm::Value *NewRegCount =
|
|
CGF.Builder.CreateAdd(RegCount, One, "reg_count");
|
|
CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
CGF.EmitBlock(InMemBlock);
|
|
|
|
// Work out the address of a stack argument.
|
|
llvm::Value *OverflowArgAreaPtr =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
|
|
llvm::Value *OverflowArgArea =
|
|
CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
|
|
llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
|
|
llvm::Value *RawMemAddr =
|
|
CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
|
|
llvm::Value *MemAddr =
|
|
CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
|
|
|
|
// Update overflow_arg_area_ptr pointer
|
|
llvm::Value *NewOverflowArgArea =
|
|
CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
|
|
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Return the appropriate result.
|
|
CGF.EmitBlock(ContBlock);
|
|
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
|
|
ResAddr->addIncoming(RegAddr, InRegBlock);
|
|
ResAddr->addIncoming(MemAddr, InMemBlock);
|
|
|
|
if (IsIndirect)
|
|
return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
|
|
|
|
return ResAddr;
|
|
}
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
|
|
return ABIArgInfo::getIndirect(0);
|
|
return (isPromotableIntegerType(RetTy) ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
|
|
// Handle the generic C++ ABI.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// Integers and enums are extended to full register width.
|
|
if (isPromotableIntegerType(Ty))
|
|
return ABIArgInfo::getExtend();
|
|
|
|
// Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// Handle small structures.
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
// Structures with flexible arrays have variable length, so really
|
|
// fail the size test above.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// The structure is passed as an unextended integer, a float, or a double.
|
|
llvm::Type *PassTy;
|
|
if (isFPArgumentType(Ty)) {
|
|
assert(Size == 32 || Size == 64);
|
|
if (Size == 32)
|
|
PassTy = llvm::Type::getFloatTy(getVMContext());
|
|
else
|
|
PassTy = llvm::Type::getDoubleTy(getVMContext());
|
|
} else
|
|
PassTy = llvm::IntegerType::get(getVMContext(), Size);
|
|
return ABIArgInfo::getDirect(PassTy);
|
|
}
|
|
|
|
// Non-structure compounds are passed indirectly.
|
|
if (isCompoundType(Ty))
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
return ABIArgInfo::getDirect(nullptr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MSP430 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
};
|
|
|
|
}
|
|
|
|
void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
|
|
// Handle 'interrupt' attribute:
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
// Step 1: Set ISR calling convention.
|
|
F->setCallingConv(llvm::CallingConv::MSP430_INTR);
|
|
|
|
// Step 2: Add attributes goodness.
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
// Step 3: Emit ISR vector alias.
|
|
unsigned Num = attr->getNumber() / 2;
|
|
llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
|
|
"__isr_" + Twine(Num), F);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MIPS ABI Implementation. This works for both little-endian and
|
|
// big-endian variants.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class MipsABIInfo : public ABIInfo {
|
|
bool IsO32;
|
|
unsigned MinABIStackAlignInBytes, StackAlignInBytes;
|
|
void CoerceToIntArgs(uint64_t TySize,
|
|
SmallVectorImpl<llvm::Type *> &ArgList) const;
|
|
llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
|
|
llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
|
|
llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
|
|
public:
|
|
MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
|
|
ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
|
|
StackAlignInBytes(IsO32 ? 8 : 16) {}
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
unsigned SizeOfUnwindException;
|
|
public:
|
|
MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
|
|
: TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
|
|
SizeOfUnwindException(IsO32 ? 24 : 32) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
|
return 29;
|
|
}
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
|
if (FD->hasAttr<Mips16Attr>()) {
|
|
Fn->addFnAttr("mips16");
|
|
}
|
|
else if (FD->hasAttr<NoMips16Attr>()) {
|
|
Fn->addFnAttr("nomips16");
|
|
}
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
unsigned getSizeOfUnwindException() const override {
|
|
return SizeOfUnwindException;
|
|
}
|
|
};
|
|
}
|
|
|
|
void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
|
|
SmallVectorImpl<llvm::Type *> &ArgList) const {
|
|
llvm::IntegerType *IntTy =
|
|
llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
|
|
|
|
// Add (TySize / MinABIStackAlignInBytes) args of IntTy.
|
|
for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
|
|
ArgList.push_back(IntTy);
|
|
|
|
// If necessary, add one more integer type to ArgList.
|
|
unsigned R = TySize % (MinABIStackAlignInBytes * 8);
|
|
|
|
if (R)
|
|
ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
|
|
}
|
|
|
|
// In N32/64, an aligned double precision floating point field is passed in
|
|
// a register.
|
|
llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
|
|
SmallVector<llvm::Type*, 8> ArgList, IntArgList;
|
|
|
|
if (IsO32) {
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
if (Ty->isComplexType())
|
|
return CGT.ConvertType(Ty);
|
|
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
|
|
// Unions/vectors are passed in integer registers.
|
|
if (!RT || !RT->isStructureOrClassType()) {
|
|
CoerceToIntArgs(TySize, ArgList);
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
|
|
|
|
uint64_t LastOffset = 0;
|
|
unsigned idx = 0;
|
|
llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
|
|
|
|
// Iterate over fields in the struct/class and check if there are any aligned
|
|
// double fields.
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
const QualType Ty = i->getType();
|
|
const BuiltinType *BT = Ty->getAs<BuiltinType>();
|
|
|
|
if (!BT || BT->getKind() != BuiltinType::Double)
|
|
continue;
|
|
|
|
uint64_t Offset = Layout.getFieldOffset(idx);
|
|
if (Offset % 64) // Ignore doubles that are not aligned.
|
|
continue;
|
|
|
|
// Add ((Offset - LastOffset) / 64) args of type i64.
|
|
for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
|
|
ArgList.push_back(I64);
|
|
|
|
// Add double type.
|
|
ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
|
|
LastOffset = Offset + 64;
|
|
}
|
|
|
|
CoerceToIntArgs(TySize - LastOffset, IntArgList);
|
|
ArgList.append(IntArgList.begin(), IntArgList.end());
|
|
|
|
return llvm::StructType::get(getVMContext(), ArgList);
|
|
}
|
|
|
|
llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
|
|
uint64_t Offset) const {
|
|
if (OrigOffset + MinABIStackAlignInBytes > Offset)
|
|
return nullptr;
|
|
|
|
return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
|
|
}
|
|
|
|
ABIArgInfo
|
|
MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
|
|
uint64_t OrigOffset = Offset;
|
|
uint64_t TySize = getContext().getTypeSize(Ty);
|
|
uint64_t Align = getContext().getTypeAlign(Ty) / 8;
|
|
|
|
Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
|
|
(uint64_t)StackAlignInBytes);
|
|
unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
|
|
Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
|
|
|
|
if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
|
|
// Ignore empty aggregates.
|
|
if (TySize == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
Offset = OrigOffset + MinABIStackAlignInBytes;
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// If we have reached here, aggregates are passed directly by coercing to
|
|
// another structure type. Padding is inserted if the offset of the
|
|
// aggregate is unaligned.
|
|
return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
|
|
getPaddingType(OrigOffset, CurrOffset));
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Ty->isPromotableIntegerType())
|
|
return ABIArgInfo::getExtend();
|
|
|
|
return ABIArgInfo::getDirect(
|
|
nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
|
|
}
|
|
|
|
llvm::Type*
|
|
MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
|
|
const RecordType *RT = RetTy->getAs<RecordType>();
|
|
SmallVector<llvm::Type*, 8> RTList;
|
|
|
|
if (RT && RT->isStructureOrClassType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
unsigned FieldCnt = Layout.getFieldCount();
|
|
|
|
// N32/64 returns struct/classes in floating point registers if the
|
|
// following conditions are met:
|
|
// 1. The size of the struct/class is no larger than 128-bit.
|
|
// 2. The struct/class has one or two fields all of which are floating
|
|
// point types.
|
|
// 3. The offset of the first field is zero (this follows what gcc does).
|
|
//
|
|
// Any other composite results are returned in integer registers.
|
|
//
|
|
if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
|
|
RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
|
|
for (; b != e; ++b) {
|
|
const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
|
|
|
|
if (!BT || !BT->isFloatingPoint())
|
|
break;
|
|
|
|
RTList.push_back(CGT.ConvertType(b->getType()));
|
|
}
|
|
|
|
if (b == e)
|
|
return llvm::StructType::get(getVMContext(), RTList,
|
|
RD->hasAttr<PackedAttr>());
|
|
|
|
RTList.clear();
|
|
}
|
|
}
|
|
|
|
CoerceToIntArgs(Size, RTList);
|
|
return llvm::StructType::get(getVMContext(), RTList);
|
|
}
|
|
|
|
ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
|
|
if (RetTy->isVoidType() || Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
|
|
if (Size <= 128) {
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// O32 returns integer vectors in registers.
|
|
if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
|
|
return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
|
|
|
|
if (!IsO32)
|
|
return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
ABIArgInfo &RetInfo = FI.getReturnInfo();
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
RetInfo = classifyReturnType(FI.getReturnType());
|
|
|
|
// Check if a pointer to an aggregate is passed as a hidden argument.
|
|
uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
|
|
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type, Offset);
|
|
}
|
|
|
|
llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::Type *BP = CGF.Int8PtrTy;
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped;
|
|
unsigned PtrWidth = getTarget().getPointerWidth(0);
|
|
llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
|
|
|
|
if (TypeAlign > MinABIStackAlignInBytes) {
|
|
llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
|
|
llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
|
|
llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
|
|
llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
|
|
llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
|
|
AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
|
|
}
|
|
else
|
|
AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
|
|
TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
bool
|
|
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This information comes from gcc's implementation, which seems to
|
|
// as canonical as it gets.
|
|
|
|
// Everything on MIPS is 4 bytes. Double-precision FP registers
|
|
// are aliased to pairs of single-precision FP registers.
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
|
|
|
// 0-31 are the general purpose registers, $0 - $31.
|
|
// 32-63 are the floating-point registers, $f0 - $f31.
|
|
// 64 and 65 are the multiply/divide registers, $hi and $lo.
|
|
// 66 is the (notional, I think) register for signal-handler return.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
|
|
|
|
// 67-74 are the floating-point status registers, $fcc0 - $fcc7.
|
|
// They are one bit wide and ignored here.
|
|
|
|
// 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
|
|
// (coprocessor 1 is the FP unit)
|
|
// 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
|
|
// 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
|
|
// 176-181 are the DSP accumulator registers.
|
|
AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
|
|
// Currently subclassed only to implement custom OpenCL C function attribute
|
|
// handling.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
|
|
public:
|
|
TCETargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: DefaultTargetCodeGenInfo(CGT) {}
|
|
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
};
|
|
|
|
void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const {
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD) return;
|
|
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
if (M.getLangOpts().OpenCL) {
|
|
if (FD->hasAttr<OpenCLKernelAttr>()) {
|
|
// OpenCL C Kernel functions are not subject to inlining
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
|
|
if (Attr) {
|
|
// Convert the reqd_work_group_size() attributes to metadata.
|
|
llvm::LLVMContext &Context = F->getContext();
|
|
llvm::NamedMDNode *OpenCLMetadata =
|
|
M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
|
|
|
|
SmallVector<llvm::Value*, 5> Operands;
|
|
Operands.push_back(F);
|
|
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
llvm::APInt(32, Attr->getXDim())));
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
llvm::APInt(32, Attr->getYDim())));
|
|
Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
|
|
llvm::APInt(32, Attr->getZDim())));
|
|
|
|
// Add a boolean constant operand for "required" (true) or "hint" (false)
|
|
// for implementing the work_group_size_hint attr later. Currently
|
|
// always true as the hint is not yet implemented.
|
|
Operands.push_back(llvm::ConstantInt::getTrue(Context));
|
|
OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hexagon ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class HexagonABIInfo : public ABIInfo {
|
|
|
|
|
|
public:
|
|
HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
private:
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
:TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 29;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
if (!getCXXABI().classifyReturnType(FI))
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyArgumentType(I.type);
|
|
}
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
if (Size > 64)
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
|
|
// Pass in the smallest viable integer type.
|
|
else if (Size > 32)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
|
|
else if (Size > 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
else if (Size > 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
else
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
}
|
|
|
|
ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Large vector types should be returned via memory.
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
if (isEmptyRecord(getContext(), RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Aggregates <= 8 bytes are returned in r0; other aggregates
|
|
// are returned indirectly.
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (Size <= 64) {
|
|
// Return in the smallest viable integer type.
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
|
|
if (Size <= 32)
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
|
|
}
|
|
|
|
llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// FIXME: Need to handle alignment
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
"ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v9 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Function arguments a mapped to a nominal "parameter array" and promoted to
|
|
// registers depending on their type. Each argument occupies 8 or 16 bytes in
|
|
// the array, structs larger than 16 bytes are passed indirectly.
|
|
//
|
|
// One case requires special care:
|
|
//
|
|
// struct mixed {
|
|
// int i;
|
|
// float f;
|
|
// };
|
|
//
|
|
// When a struct mixed is passed by value, it only occupies 8 bytes in the
|
|
// parameter array, but the int is passed in an integer register, and the float
|
|
// is passed in a floating point register. This is represented as two arguments
|
|
// with the LLVM IR inreg attribute:
|
|
//
|
|
// declare void f(i32 inreg %i, float inreg %f)
|
|
//
|
|
// The code generator will only allocate 4 bytes from the parameter array for
|
|
// the inreg arguments. All other arguments are allocated a multiple of 8
|
|
// bytes.
|
|
//
|
|
namespace {
|
|
class SparcV9ABIInfo : public ABIInfo {
|
|
public:
|
|
SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
|
|
// Coercion type builder for structs passed in registers. The coercion type
|
|
// serves two purposes:
|
|
//
|
|
// 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
|
|
// in registers.
|
|
// 2. Expose aligned floating point elements as first-level elements, so the
|
|
// code generator knows to pass them in floating point registers.
|
|
//
|
|
// We also compute the InReg flag which indicates that the struct contains
|
|
// aligned 32-bit floats.
|
|
//
|
|
struct CoerceBuilder {
|
|
llvm::LLVMContext &Context;
|
|
const llvm::DataLayout &DL;
|
|
SmallVector<llvm::Type*, 8> Elems;
|
|
uint64_t Size;
|
|
bool InReg;
|
|
|
|
CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
|
|
: Context(c), DL(dl), Size(0), InReg(false) {}
|
|
|
|
// Pad Elems with integers until Size is ToSize.
|
|
void pad(uint64_t ToSize) {
|
|
assert(ToSize >= Size && "Cannot remove elements");
|
|
if (ToSize == Size)
|
|
return;
|
|
|
|
// Finish the current 64-bit word.
|
|
uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
|
|
if (Aligned > Size && Aligned <= ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
|
|
Size = Aligned;
|
|
}
|
|
|
|
// Add whole 64-bit words.
|
|
while (Size + 64 <= ToSize) {
|
|
Elems.push_back(llvm::Type::getInt64Ty(Context));
|
|
Size += 64;
|
|
}
|
|
|
|
// Final in-word padding.
|
|
if (Size < ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
|
|
Size = ToSize;
|
|
}
|
|
}
|
|
|
|
// Add a floating point element at Offset.
|
|
void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
|
|
// Unaligned floats are treated as integers.
|
|
if (Offset % Bits)
|
|
return;
|
|
// The InReg flag is only required if there are any floats < 64 bits.
|
|
if (Bits < 64)
|
|
InReg = true;
|
|
pad(Offset);
|
|
Elems.push_back(Ty);
|
|
Size = Offset + Bits;
|
|
}
|
|
|
|
// Add a struct type to the coercion type, starting at Offset (in bits).
|
|
void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
|
|
const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
|
|
for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
|
|
llvm::Type *ElemTy = StrTy->getElementType(i);
|
|
uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
|
|
switch (ElemTy->getTypeID()) {
|
|
case llvm::Type::StructTyID:
|
|
addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
|
|
break;
|
|
case llvm::Type::FloatTyID:
|
|
addFloat(ElemOffset, ElemTy, 32);
|
|
break;
|
|
case llvm::Type::DoubleTyID:
|
|
addFloat(ElemOffset, ElemTy, 64);
|
|
break;
|
|
case llvm::Type::FP128TyID:
|
|
addFloat(ElemOffset, ElemTy, 128);
|
|
break;
|
|
case llvm::Type::PointerTyID:
|
|
if (ElemOffset % 64 == 0) {
|
|
pad(ElemOffset);
|
|
Elems.push_back(ElemTy);
|
|
Size += 64;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if Ty is a usable substitute for the coercion type.
|
|
bool isUsableType(llvm::StructType *Ty) const {
|
|
if (Ty->getNumElements() != Elems.size())
|
|
return false;
|
|
for (unsigned i = 0, e = Elems.size(); i != e; ++i)
|
|
if (Elems[i] != Ty->getElementType(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Get the coercion type as a literal struct type.
|
|
llvm::Type *getType() const {
|
|
if (Elems.size() == 1)
|
|
return Elems.front();
|
|
else
|
|
return llvm::StructType::get(Context, Elems);
|
|
}
|
|
};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ABIArgInfo
|
|
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// Anything too big to fit in registers is passed with an explicit indirect
|
|
// pointer / sret pointer.
|
|
if (Size > SizeLimit)
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Integer types smaller than a register are extended.
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend();
|
|
|
|
// Other non-aggregates go in registers.
|
|
if (!isAggregateTypeForABI(Ty))
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// If a C++ object has either a non-trivial copy constructor or a non-trivial
|
|
// destructor, it is passed with an explicit indirect pointer / sret pointer.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// This is a small aggregate type that should be passed in registers.
|
|
// Build a coercion type from the LLVM struct type.
|
|
llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
|
|
if (!StrTy)
|
|
return ABIArgInfo::getDirect();
|
|
|
|
CoerceBuilder CB(getVMContext(), getDataLayout());
|
|
CB.addStruct(0, StrTy);
|
|
CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
|
|
|
|
// Try to use the original type for coercion.
|
|
llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
|
|
|
|
if (CB.InReg)
|
|
return ABIArgInfo::getDirectInReg(CoerceTy);
|
|
else
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
ABIArgInfo AI = classifyType(Ty, 16 * 8);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
|
|
llvm::Type *BPP = CGF.Int8PtrPtrTy;
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
|
|
llvm::Value *ArgAddr;
|
|
unsigned Stride;
|
|
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
|
|
case ABIArgInfo::Extend:
|
|
Stride = 8;
|
|
ArgAddr = Builder
|
|
.CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
|
|
"extend");
|
|
break;
|
|
|
|
case ABIArgInfo::Direct:
|
|
Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
|
|
ArgAddr = Addr;
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect:
|
|
Stride = 8;
|
|
ArgAddr = Builder.CreateBitCast(Addr,
|
|
llvm::PointerType::getUnqual(ArgPtrTy),
|
|
"indirect");
|
|
ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
return llvm::UndefValue::get(ArgPtrTy);
|
|
}
|
|
|
|
// Update VAList.
|
|
Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
|
|
Builder.CreateStore(Addr, VAListAddrAsBPP);
|
|
|
|
return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
|
|
}
|
|
|
|
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyType(I.type, 16 * 8);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 14;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool
|
|
SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
// 0-31: the 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
// 32-63: f0-31, the 4-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Four8, 32, 63);
|
|
|
|
// Y = 64
|
|
// PSR = 65
|
|
// WIM = 66
|
|
// TBR = 67
|
|
// PC = 68
|
|
// NPC = 69
|
|
// FSR = 70
|
|
// CSR = 71
|
|
AssignToArrayRange(Builder, Address, Eight8, 64, 71);
|
|
|
|
// 72-87: d0-15, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 72, 87);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// XCore ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A SmallStringEnc instance is used to build up the TypeString by passing
|
|
/// it by reference between functions that append to it.
|
|
typedef llvm::SmallString<128> SmallStringEnc;
|
|
|
|
/// TypeStringCache caches the meta encodings of Types.
|
|
///
|
|
/// The reason for caching TypeStrings is two fold:
|
|
/// 1. To cache a type's encoding for later uses;
|
|
/// 2. As a means to break recursive member type inclusion.
|
|
///
|
|
/// A cache Entry can have a Status of:
|
|
/// NonRecursive: The type encoding is not recursive;
|
|
/// Recursive: The type encoding is recursive;
|
|
/// Incomplete: An incomplete TypeString;
|
|
/// IncompleteUsed: An incomplete TypeString that has been used in a
|
|
/// Recursive type encoding.
|
|
///
|
|
/// A NonRecursive entry will have all of its sub-members expanded as fully
|
|
/// as possible. Whilst it may contain types which are recursive, the type
|
|
/// itself is not recursive and thus its encoding may be safely used whenever
|
|
/// the type is encountered.
|
|
///
|
|
/// A Recursive entry will have all of its sub-members expanded as fully as
|
|
/// possible. The type itself is recursive and it may contain other types which
|
|
/// are recursive. The Recursive encoding must not be used during the expansion
|
|
/// of a recursive type's recursive branch. For simplicity the code uses
|
|
/// IncompleteCount to reject all usage of Recursive encodings for member types.
|
|
///
|
|
/// An Incomplete entry is always a RecordType and only encodes its
|
|
/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
|
|
/// are placed into the cache during type expansion as a means to identify and
|
|
/// handle recursive inclusion of types as sub-members. If there is recursion
|
|
/// the entry becomes IncompleteUsed.
|
|
///
|
|
/// During the expansion of a RecordType's members:
|
|
///
|
|
/// If the cache contains a NonRecursive encoding for the member type, the
|
|
/// cached encoding is used;
|
|
///
|
|
/// If the cache contains a Recursive encoding for the member type, the
|
|
/// cached encoding is 'Swapped' out, as it may be incorrect, and...
|
|
///
|
|
/// If the member is a RecordType, an Incomplete encoding is placed into the
|
|
/// cache to break potential recursive inclusion of itself as a sub-member;
|
|
///
|
|
/// Once a member RecordType has been expanded, its temporary incomplete
|
|
/// entry is removed from the cache. If a Recursive encoding was swapped out
|
|
/// it is swapped back in;
|
|
///
|
|
/// If an incomplete entry is used to expand a sub-member, the incomplete
|
|
/// entry is marked as IncompleteUsed. The cache keeps count of how many
|
|
/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
|
|
///
|
|
/// If a member's encoding is found to be a NonRecursive or Recursive viz:
|
|
/// IncompleteUsedCount==0, the member's encoding is added to the cache.
|
|
/// Else the member is part of a recursive type and thus the recursion has
|
|
/// been exited too soon for the encoding to be correct for the member.
|
|
///
|
|
class TypeStringCache {
|
|
enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
|
|
struct Entry {
|
|
std::string Str; // The encoded TypeString for the type.
|
|
enum Status State; // Information about the encoding in 'Str'.
|
|
std::string Swapped; // A temporary place holder for a Recursive encoding
|
|
// during the expansion of RecordType's members.
|
|
};
|
|
std::map<const IdentifierInfo *, struct Entry> Map;
|
|
unsigned IncompleteCount; // Number of Incomplete entries in the Map.
|
|
unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
|
|
public:
|
|
TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
|
|
void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
|
|
bool removeIncomplete(const IdentifierInfo *ID);
|
|
void addIfComplete(const IdentifierInfo *ID, StringRef Str,
|
|
bool IsRecursive);
|
|
StringRef lookupStr(const IdentifierInfo *ID);
|
|
};
|
|
|
|
/// TypeString encodings for enum & union fields must be order.
|
|
/// FieldEncoding is a helper for this ordering process.
|
|
class FieldEncoding {
|
|
bool HasName;
|
|
std::string Enc;
|
|
public:
|
|
FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
|
|
StringRef str() {return Enc.c_str();};
|
|
bool operator<(const FieldEncoding &rhs) const {
|
|
if (HasName != rhs.HasName) return HasName;
|
|
return Enc < rhs.Enc;
|
|
}
|
|
};
|
|
|
|
class XCoreABIInfo : public DefaultABIInfo {
|
|
public:
|
|
XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const override;
|
|
};
|
|
|
|
class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
mutable TypeStringCache TSC;
|
|
public:
|
|
XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
|
|
:TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
|
|
void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const override;
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// Get the VAList.
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
|
|
CGF.Int8PtrPtrTy);
|
|
llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
|
|
|
|
// Handle the argument.
|
|
ABIArgInfo AI = classifyArgumentType(Ty);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
|
|
llvm::Value *Val;
|
|
uint64_t ArgSize = 0;
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
case ABIArgInfo::Ignore:
|
|
Val = llvm::UndefValue::get(ArgPtrTy);
|
|
ArgSize = 0;
|
|
break;
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
Val = Builder.CreatePointerCast(AP, ArgPtrTy);
|
|
ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
|
|
if (ArgSize < 4)
|
|
ArgSize = 4;
|
|
break;
|
|
case ABIArgInfo::Indirect:
|
|
llvm::Value *ArgAddr;
|
|
ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
|
|
ArgAddr = Builder.CreateLoad(ArgAddr);
|
|
Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
|
|
ArgSize = 4;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList.
|
|
if (ArgSize) {
|
|
llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
|
|
Builder.CreateStore(APN, VAListAddrAsBPP);
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
/// During the expansion of a RecordType, an incomplete TypeString is placed
|
|
/// into the cache as a means to identify and break recursion.
|
|
/// If there is a Recursive encoding in the cache, it is swapped out and will
|
|
/// be reinserted by removeIncomplete().
|
|
/// All other types of encoding should have been used rather than arriving here.
|
|
void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
|
|
std::string StubEnc) {
|
|
if (!ID)
|
|
return;
|
|
Entry &E = Map[ID];
|
|
assert( (E.Str.empty() || E.State == Recursive) &&
|
|
"Incorrectly use of addIncomplete");
|
|
assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
|
|
E.Swapped.swap(E.Str); // swap out the Recursive
|
|
E.Str.swap(StubEnc);
|
|
E.State = Incomplete;
|
|
++IncompleteCount;
|
|
}
|
|
|
|
/// Once the RecordType has been expanded, the temporary incomplete TypeString
|
|
/// must be removed from the cache.
|
|
/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
|
|
/// Returns true if the RecordType was defined recursively.
|
|
bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
|
|
if (!ID)
|
|
return false;
|
|
auto I = Map.find(ID);
|
|
assert(I != Map.end() && "Entry not present");
|
|
Entry &E = I->second;
|
|
assert( (E.State == Incomplete ||
|
|
E.State == IncompleteUsed) &&
|
|
"Entry must be an incomplete type");
|
|
bool IsRecursive = false;
|
|
if (E.State == IncompleteUsed) {
|
|
// We made use of our Incomplete encoding, thus we are recursive.
|
|
IsRecursive = true;
|
|
--IncompleteUsedCount;
|
|
}
|
|
if (E.Swapped.empty())
|
|
Map.erase(I);
|
|
else {
|
|
// Swap the Recursive back.
|
|
E.Swapped.swap(E.Str);
|
|
E.Swapped.clear();
|
|
E.State = Recursive;
|
|
}
|
|
--IncompleteCount;
|
|
return IsRecursive;
|
|
}
|
|
|
|
/// Add the encoded TypeString to the cache only if it is NonRecursive or
|
|
/// Recursive (viz: all sub-members were expanded as fully as possible).
|
|
void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
|
|
bool IsRecursive) {
|
|
if (!ID || IncompleteUsedCount)
|
|
return; // No key or it is is an incomplete sub-type so don't add.
|
|
Entry &E = Map[ID];
|
|
if (IsRecursive && !E.Str.empty()) {
|
|
assert(E.State==Recursive && E.Str.size() == Str.size() &&
|
|
"This is not the same Recursive entry");
|
|
// The parent container was not recursive after all, so we could have used
|
|
// this Recursive sub-member entry after all, but we assumed the worse when
|
|
// we started viz: IncompleteCount!=0.
|
|
return;
|
|
}
|
|
assert(E.Str.empty() && "Entry already present");
|
|
E.Str = Str.str();
|
|
E.State = IsRecursive? Recursive : NonRecursive;
|
|
}
|
|
|
|
/// Return a cached TypeString encoding for the ID. If there isn't one, or we
|
|
/// are recursively expanding a type (IncompleteCount != 0) and the cached
|
|
/// encoding is Recursive, return an empty StringRef.
|
|
StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
|
|
if (!ID)
|
|
return StringRef(); // We have no key.
|
|
auto I = Map.find(ID);
|
|
if (I == Map.end())
|
|
return StringRef(); // We have no encoding.
|
|
Entry &E = I->second;
|
|
if (E.State == Recursive && IncompleteCount)
|
|
return StringRef(); // We don't use Recursive encodings for member types.
|
|
|
|
if (E.State == Incomplete) {
|
|
// The incomplete type is being used to break out of recursion.
|
|
E.State = IncompleteUsed;
|
|
++IncompleteUsedCount;
|
|
}
|
|
return E.Str.c_str();
|
|
}
|
|
|
|
/// The XCore ABI includes a type information section that communicates symbol
|
|
/// type information to the linker. The linker uses this information to verify
|
|
/// safety/correctness of things such as array bound and pointers et al.
|
|
/// The ABI only requires C (and XC) language modules to emit TypeStrings.
|
|
/// This type information (TypeString) is emitted into meta data for all global
|
|
/// symbols: definitions, declarations, functions & variables.
|
|
///
|
|
/// The TypeString carries type, qualifier, name, size & value details.
|
|
/// Please see 'Tools Development Guide' section 2.16.2 for format details:
|
|
/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
|
|
/// The output is tested by test/CodeGen/xcore-stringtype.c.
|
|
///
|
|
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
|
|
CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
|
|
|
|
/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
|
|
void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const {
|
|
SmallStringEnc Enc;
|
|
if (getTypeString(Enc, D, CGM, TSC)) {
|
|
llvm::LLVMContext &Ctx = CGM.getModule().getContext();
|
|
llvm::SmallVector<llvm::Value *, 2> MDVals;
|
|
MDVals.push_back(GV);
|
|
MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
|
|
llvm::NamedMDNode *MD =
|
|
CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
}
|
|
}
|
|
|
|
static bool appendType(SmallStringEnc &Enc, QualType QType,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC);
|
|
|
|
/// Helper function for appendRecordType().
|
|
/// Builds a SmallVector containing the encoded field types in declaration order.
|
|
static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
|
|
const RecordDecl *RD,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I) {
|
|
SmallStringEnc Enc;
|
|
Enc += "m(";
|
|
Enc += I->getName();
|
|
Enc += "){";
|
|
if (I->isBitField()) {
|
|
Enc += "b(";
|
|
llvm::raw_svector_ostream OS(Enc);
|
|
OS.resync();
|
|
OS << I->getBitWidthValue(CGM.getContext());
|
|
OS.flush();
|
|
Enc += ':';
|
|
}
|
|
if (!appendType(Enc, I->getType(), CGM, TSC))
|
|
return false;
|
|
if (I->isBitField())
|
|
Enc += ')';
|
|
Enc += '}';
|
|
FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Appends structure and union types to Enc and adds encoding to cache.
|
|
/// Recursively calls appendType (via extractFieldType) for each field.
|
|
/// Union types have their fields ordered according to the ABI.
|
|
static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC, const IdentifierInfo *ID) {
|
|
// Append the cached TypeString if we have one.
|
|
StringRef TypeString = TSC.lookupStr(ID);
|
|
if (!TypeString.empty()) {
|
|
Enc += TypeString;
|
|
return true;
|
|
}
|
|
|
|
// Start to emit an incomplete TypeString.
|
|
size_t Start = Enc.size();
|
|
Enc += (RT->isUnionType()? 'u' : 's');
|
|
Enc += '(';
|
|
if (ID)
|
|
Enc += ID->getName();
|
|
Enc += "){";
|
|
|
|
// We collect all encoded fields and order as necessary.
|
|
bool IsRecursive = false;
|
|
const RecordDecl *RD = RT->getDecl()->getDefinition();
|
|
if (RD && !RD->field_empty()) {
|
|
// An incomplete TypeString stub is placed in the cache for this RecordType
|
|
// so that recursive calls to this RecordType will use it whilst building a
|
|
// complete TypeString for this RecordType.
|
|
SmallVector<FieldEncoding, 16> FE;
|
|
std::string StubEnc(Enc.substr(Start).str());
|
|
StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
|
|
TSC.addIncomplete(ID, std::move(StubEnc));
|
|
if (!extractFieldType(FE, RD, CGM, TSC)) {
|
|
(void) TSC.removeIncomplete(ID);
|
|
return false;
|
|
}
|
|
IsRecursive = TSC.removeIncomplete(ID);
|
|
// The ABI requires unions to be sorted but not structures.
|
|
// See FieldEncoding::operator< for sort algorithm.
|
|
if (RT->isUnionType())
|
|
std::sort(FE.begin(), FE.end());
|
|
// We can now complete the TypeString.
|
|
unsigned E = FE.size();
|
|
for (unsigned I = 0; I != E; ++I) {
|
|
if (I)
|
|
Enc += ',';
|
|
Enc += FE[I].str();
|
|
}
|
|
}
|
|
Enc += '}';
|
|
TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
|
|
return true;
|
|
}
|
|
|
|
/// Appends enum types to Enc and adds the encoding to the cache.
|
|
static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
|
|
TypeStringCache &TSC,
|
|
const IdentifierInfo *ID) {
|
|
// Append the cached TypeString if we have one.
|
|
StringRef TypeString = TSC.lookupStr(ID);
|
|
if (!TypeString.empty()) {
|
|
Enc += TypeString;
|
|
return true;
|
|
}
|
|
|
|
size_t Start = Enc.size();
|
|
Enc += "e(";
|
|
if (ID)
|
|
Enc += ID->getName();
|
|
Enc += "){";
|
|
|
|
// We collect all encoded enumerations and order them alphanumerically.
|
|
if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
|
|
SmallVector<FieldEncoding, 16> FE;
|
|
for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
|
|
++I) {
|
|
SmallStringEnc EnumEnc;
|
|
EnumEnc += "m(";
|
|
EnumEnc += I->getName();
|
|
EnumEnc += "){";
|
|
I->getInitVal().toString(EnumEnc);
|
|
EnumEnc += '}';
|
|
FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
|
|
}
|
|
std::sort(FE.begin(), FE.end());
|
|
unsigned E = FE.size();
|
|
for (unsigned I = 0; I != E; ++I) {
|
|
if (I)
|
|
Enc += ',';
|
|
Enc += FE[I].str();
|
|
}
|
|
}
|
|
Enc += '}';
|
|
TSC.addIfComplete(ID, Enc.substr(Start), false);
|
|
return true;
|
|
}
|
|
|
|
/// Appends type's qualifier to Enc.
|
|
/// This is done prior to appending the type's encoding.
|
|
static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
|
|
// Qualifiers are emitted in alphabetical order.
|
|
static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
|
|
int Lookup = 0;
|
|
if (QT.isConstQualified())
|
|
Lookup += 1<<0;
|
|
if (QT.isRestrictQualified())
|
|
Lookup += 1<<1;
|
|
if (QT.isVolatileQualified())
|
|
Lookup += 1<<2;
|
|
Enc += Table[Lookup];
|
|
}
|
|
|
|
/// Appends built-in types to Enc.
|
|
static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
|
|
const char *EncType;
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Void:
|
|
EncType = "0";
|
|
break;
|
|
case BuiltinType::Bool:
|
|
EncType = "b";
|
|
break;
|
|
case BuiltinType::Char_U:
|
|
EncType = "uc";
|
|
break;
|
|
case BuiltinType::UChar:
|
|
EncType = "uc";
|
|
break;
|
|
case BuiltinType::SChar:
|
|
EncType = "sc";
|
|
break;
|
|
case BuiltinType::UShort:
|
|
EncType = "us";
|
|
break;
|
|
case BuiltinType::Short:
|
|
EncType = "ss";
|
|
break;
|
|
case BuiltinType::UInt:
|
|
EncType = "ui";
|
|
break;
|
|
case BuiltinType::Int:
|
|
EncType = "si";
|
|
break;
|
|
case BuiltinType::ULong:
|
|
EncType = "ul";
|
|
break;
|
|
case BuiltinType::Long:
|
|
EncType = "sl";
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
EncType = "ull";
|
|
break;
|
|
case BuiltinType::LongLong:
|
|
EncType = "sll";
|
|
break;
|
|
case BuiltinType::Float:
|
|
EncType = "ft";
|
|
break;
|
|
case BuiltinType::Double:
|
|
EncType = "d";
|
|
break;
|
|
case BuiltinType::LongDouble:
|
|
EncType = "ld";
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
Enc += EncType;
|
|
return true;
|
|
}
|
|
|
|
/// Appends a pointer encoding to Enc before calling appendType for the pointee.
|
|
static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
Enc += "p(";
|
|
if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
|
|
return false;
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Appends array encoding to Enc before calling appendType for the element.
|
|
static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
|
|
const ArrayType *AT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC, StringRef NoSizeEnc) {
|
|
if (AT->getSizeModifier() != ArrayType::Normal)
|
|
return false;
|
|
Enc += "a(";
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
CAT->getSize().toStringUnsigned(Enc);
|
|
else
|
|
Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
|
|
Enc += ':';
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
appendQualifier(Enc, QT);
|
|
if (!appendType(Enc, AT->getElementType(), CGM, TSC))
|
|
return false;
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Appends a function encoding to Enc, calling appendType for the return type
|
|
/// and the arguments.
|
|
static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
Enc += "f{";
|
|
if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
|
|
return false;
|
|
Enc += "}(";
|
|
if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
|
|
// N.B. we are only interested in the adjusted param types.
|
|
auto I = FPT->param_type_begin();
|
|
auto E = FPT->param_type_end();
|
|
if (I != E) {
|
|
do {
|
|
if (!appendType(Enc, *I, CGM, TSC))
|
|
return false;
|
|
++I;
|
|
if (I != E)
|
|
Enc += ',';
|
|
} while (I != E);
|
|
if (FPT->isVariadic())
|
|
Enc += ",va";
|
|
} else {
|
|
if (FPT->isVariadic())
|
|
Enc += "va";
|
|
else
|
|
Enc += '0';
|
|
}
|
|
}
|
|
Enc += ')';
|
|
return true;
|
|
}
|
|
|
|
/// Handles the type's qualifier before dispatching a call to handle specific
|
|
/// type encodings.
|
|
static bool appendType(SmallStringEnc &Enc, QualType QType,
|
|
const CodeGen::CodeGenModule &CGM,
|
|
TypeStringCache &TSC) {
|
|
|
|
QualType QT = QType.getCanonicalType();
|
|
|
|
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
// Thus we don't call appendQualifier() here.
|
|
return appendArrayType(Enc, QT, AT, CGM, TSC, "");
|
|
|
|
appendQualifier(Enc, QT);
|
|
|
|
if (const BuiltinType *BT = QT->getAs<BuiltinType>())
|
|
return appendBuiltinType(Enc, BT);
|
|
|
|
if (const PointerType *PT = QT->getAs<PointerType>())
|
|
return appendPointerType(Enc, PT, CGM, TSC);
|
|
|
|
if (const EnumType *ET = QT->getAs<EnumType>())
|
|
return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const RecordType *RT = QT->getAsStructureType())
|
|
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const RecordType *RT = QT->getAsUnionType())
|
|
return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
|
|
|
|
if (const FunctionType *FT = QT->getAs<FunctionType>())
|
|
return appendFunctionType(Enc, FT, CGM, TSC);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
|
|
CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
|
|
if (!D)
|
|
return false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->getLanguageLinkage() != CLanguageLinkage)
|
|
return false;
|
|
return appendType(Enc, FD->getType(), CGM, TSC);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->getLanguageLinkage() != CLanguageLinkage)
|
|
return false;
|
|
QualType QT = VD->getType().getCanonicalType();
|
|
if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
|
|
// Global ArrayTypes are given a size of '*' if the size is unknown.
|
|
// The Qualifiers should be attached to the type rather than the array.
|
|
// Thus we don't call appendQualifier() here.
|
|
return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
|
|
}
|
|
return appendType(Enc, QT, CGM, TSC);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Driver code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
|
|
if (TheTargetCodeGenInfo)
|
|
return *TheTargetCodeGenInfo;
|
|
|
|
const llvm::Triple &Triple = getTarget().getTriple();
|
|
switch (Triple.getArch()) {
|
|
default:
|
|
return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::le32:
|
|
return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
|
|
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
|
|
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::aarch64_be: {
|
|
AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
|
|
if (getTarget().getABI() == "darwinpcs")
|
|
Kind = AArch64ABIInfo::DarwinPCS;
|
|
|
|
return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
|
|
}
|
|
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::armeb:
|
|
case llvm::Triple::thumb:
|
|
case llvm::Triple::thumbeb:
|
|
{
|
|
ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
|
|
if (getTarget().getABI() == "apcs-gnu")
|
|
Kind = ARMABIInfo::APCS;
|
|
else if (CodeGenOpts.FloatABI == "hard" ||
|
|
(CodeGenOpts.FloatABI != "soft" &&
|
|
Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
|
|
Kind = ARMABIInfo::AAPCS_VFP;
|
|
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::NaCl:
|
|
return *(TheTargetCodeGenInfo =
|
|
new NaClARMTargetCodeGenInfo(Types, Kind));
|
|
default:
|
|
return *(TheTargetCodeGenInfo =
|
|
new ARMTargetCodeGenInfo(Types, Kind));
|
|
}
|
|
}
|
|
|
|
case llvm::Triple::ppc:
|
|
return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
|
|
case llvm::Triple::ppc64:
|
|
if (Triple.isOSBinFormatELF()) {
|
|
// FIXME: Should be switchable via command-line option.
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
|
|
return *(TheTargetCodeGenInfo =
|
|
new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
|
|
} else
|
|
return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
|
|
case llvm::Triple::ppc64le: {
|
|
assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
|
|
// FIXME: Should be switchable via command-line option.
|
|
PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
|
|
return *(TheTargetCodeGenInfo =
|
|
new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
|
|
}
|
|
|
|
case llvm::Triple::nvptx:
|
|
case llvm::Triple::nvptx64:
|
|
return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::msp430:
|
|
return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::systemz:
|
|
return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::tce:
|
|
return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
|
|
|
|
case llvm::Triple::x86: {
|
|
bool IsDarwinVectorABI = Triple.isOSDarwin();
|
|
bool IsSmallStructInRegABI =
|
|
X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
|
|
bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
|
|
|
|
if (Triple.getOS() == llvm::Triple::Win32) {
|
|
return *(TheTargetCodeGenInfo =
|
|
new WinX86_32TargetCodeGenInfo(Types,
|
|
IsDarwinVectorABI, IsSmallStructInRegABI,
|
|
IsWin32FloatStructABI,
|
|
CodeGenOpts.NumRegisterParameters));
|
|
} else {
|
|
return *(TheTargetCodeGenInfo =
|
|
new X86_32TargetCodeGenInfo(Types,
|
|
IsDarwinVectorABI, IsSmallStructInRegABI,
|
|
IsWin32FloatStructABI,
|
|
CodeGenOpts.NumRegisterParameters));
|
|
}
|
|
}
|
|
|
|
case llvm::Triple::x86_64: {
|
|
bool HasAVX = getTarget().getABI() == "avx";
|
|
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::Win32:
|
|
return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
|
|
case llvm::Triple::NaCl:
|
|
return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
|
|
HasAVX));
|
|
default:
|
|
return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
|
|
HasAVX));
|
|
}
|
|
}
|
|
case llvm::Triple::hexagon:
|
|
return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
|
|
case llvm::Triple::sparcv9:
|
|
return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
|
|
case llvm::Triple::xcore:
|
|
return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
|
|
}
|
|
}
|