llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_allocator_local_c...

309 lines
11 KiB
C++

//===-- sanitizer_allocator_local_cache.h -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
// Objects of this type should be used as local caches for SizeClassAllocator64
// or SizeClassAllocator32. Since the typical use of this class is to have one
// object per thread in TLS, is has to be POD.
template<class SizeClassAllocator>
struct SizeClassAllocatorLocalCache
: SizeClassAllocator::AllocatorCache {
};
// Cache used by SizeClassAllocator64.
template <class SizeClassAllocator>
struct SizeClassAllocator64LocalCache {
typedef SizeClassAllocator Allocator;
typedef typename Allocator::TransferBatch TransferBatch;
static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
void Init(AllocatorGlobalStats *s) {
stats_.Init();
if (s)
s->Register(&stats_);
}
void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
Drain(allocator);
if (s)
s->Unregister(&stats_);
}
void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
CHECK_NE(class_id, 0UL);
CHECK_LT(class_id, kNumClasses);
stats_.Add(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
PerClass *c = &per_class_[class_id];
if (UNLIKELY(c->count == 0))
Refill(allocator, class_id);
void *res = c->batch[--c->count];
PREFETCH(c->batch[c->count - 1]);
return res;
}
void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
CHECK_NE(class_id, 0UL);
CHECK_LT(class_id, kNumClasses);
// If the first allocator call on a new thread is a deallocation, then
// max_count will be zero, leading to check failure.
InitCache();
stats_.Sub(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
PerClass *c = &per_class_[class_id];
CHECK_NE(c->max_count, 0UL);
if (UNLIKELY(c->count == c->max_count))
Drain(allocator, class_id);
c->batch[c->count++] = p;
}
void Drain(SizeClassAllocator *allocator) {
for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
PerClass *c = &per_class_[class_id];
while (c->count > 0)
Drain(allocator, class_id);
}
}
// private:
typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
struct PerClass {
uptr count;
uptr max_count;
void *batch[2 * TransferBatch::kMaxNumCached];
};
PerClass per_class_[kNumClasses];
AllocatorStats stats_;
void InitCache() {
if (per_class_[1].max_count)
return;
for (uptr i = 0; i < kNumClasses; i++) {
PerClass *c = &per_class_[i];
c->max_count = 2 * TransferBatch::MaxCached(i);
}
}
// TransferBatch class is declared in SizeClassAllocator.
// We transfer chunks between central and thread-local free lists in batches.
// For small size classes we allocate batches separately.
// For large size classes we may use one of the chunks to store the batch.
// sizeof(TransferBatch) must be a power of 2 for more efficient allocation.
// If kUseSeparateSizeClassForBatch is true,
// all TransferBatch objects are allocated from kBatchClassID
// size class (except for those that are needed for kBatchClassID itself).
// The goal is to have TransferBatches in a totally different region of RAM
// to improve security and allow more efficient RAM reclamation.
// This is experimental and may currently increase memory usage by up to 3%
// in extreme cases.
static const bool kUseSeparateSizeClassForBatch = false;
static uptr SizeClassForTransferBatch(uptr class_id) {
if (kUseSeparateSizeClassForBatch)
return class_id == SizeClassMap::kBatchClassID
? 0
: SizeClassMap::kBatchClassID;
if (Allocator::ClassIdToSize(class_id) <
TransferBatch::AllocationSizeRequiredForNElements(
TransferBatch::MaxCached(class_id)))
return SizeClassMap::ClassID(sizeof(TransferBatch));
return 0;
}
// Returns a TransferBatch suitable for class_id.
// For small size classes allocates the batch from the allocator.
// For large size classes simply returns b.
TransferBatch *CreateBatch(uptr class_id, SizeClassAllocator *allocator,
TransferBatch *b) {
if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
return (TransferBatch*)Allocate(allocator, batch_class_id);
return b;
}
// Destroys TransferBatch b.
// For small size classes deallocates b to the allocator.
// Does notthing for large size classes.
void DestroyBatch(uptr class_id, SizeClassAllocator *allocator,
TransferBatch *b) {
if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
Deallocate(allocator, batch_class_id, b);
}
NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
InitCache();
PerClass *c = &per_class_[class_id];
TransferBatch *b = allocator->AllocateBatch(&stats_, this, class_id);
CHECK_GT(b->Count(), 0);
b->CopyToArray(c->batch);
c->count = b->Count();
DestroyBatch(class_id, allocator, b);
}
NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
InitCache();
PerClass *c = &per_class_[class_id];
uptr cnt = Min(c->max_count / 2, c->count);
uptr first_idx_to_drain = c->count - cnt;
TransferBatch *b = CreateBatch(
class_id, allocator, (TransferBatch *)c->batch[first_idx_to_drain]);
b->SetFromArray(allocator->GetRegionBeginBySizeClass(class_id),
&c->batch[first_idx_to_drain], cnt);
c->count -= cnt;
allocator->DeallocateBatch(&stats_, class_id, b);
}
};
// Cache used by SizeClassAllocator32.
template <class SizeClassAllocator>
struct SizeClassAllocator32LocalCache {
typedef SizeClassAllocator Allocator;
typedef typename Allocator::TransferBatch TransferBatch;
static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
void Init(AllocatorGlobalStats *s) {
stats_.Init();
if (s)
s->Register(&stats_);
}
void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
Drain(allocator);
if (s)
s->Unregister(&stats_);
}
void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
CHECK_NE(class_id, 0UL);
CHECK_LT(class_id, kNumClasses);
stats_.Add(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
PerClass *c = &per_class_[class_id];
if (UNLIKELY(c->count == 0))
Refill(allocator, class_id);
void *res = c->batch[--c->count];
PREFETCH(c->batch[c->count - 1]);
return res;
}
void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
CHECK_NE(class_id, 0UL);
CHECK_LT(class_id, kNumClasses);
// If the first allocator call on a new thread is a deallocation, then
// max_count will be zero, leading to check failure.
InitCache();
stats_.Sub(AllocatorStatAllocated, Allocator::ClassIdToSize(class_id));
PerClass *c = &per_class_[class_id];
CHECK_NE(c->max_count, 0UL);
if (UNLIKELY(c->count == c->max_count))
Drain(allocator, class_id);
c->batch[c->count++] = p;
}
void Drain(SizeClassAllocator *allocator) {
for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
PerClass *c = &per_class_[class_id];
while (c->count > 0)
Drain(allocator, class_id);
}
}
// private:
typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
struct PerClass {
uptr count;
uptr max_count;
void *batch[2 * TransferBatch::kMaxNumCached];
};
PerClass per_class_[kNumClasses];
AllocatorStats stats_;
void InitCache() {
if (per_class_[1].max_count)
return;
for (uptr i = 0; i < kNumClasses; i++) {
PerClass *c = &per_class_[i];
c->max_count = 2 * TransferBatch::MaxCached(i);
}
}
// TransferBatch class is declared in SizeClassAllocator.
// We transfer chunks between central and thread-local free lists in batches.
// For small size classes we allocate batches separately.
// For large size classes we may use one of the chunks to store the batch.
// sizeof(TransferBatch) must be a power of 2 for more efficient allocation.
// If kUseSeparateSizeClassForBatch is true,
// all TransferBatch objects are allocated from kBatchClassID
// size class (except for those that are needed for kBatchClassID itself).
// The goal is to have TransferBatches in a totally different region of RAM
// to improve security and allow more efficient RAM reclamation.
// This is experimental and may currently increase memory usage by up to 3%
// in extreme cases.
static const bool kUseSeparateSizeClassForBatch = false;
static uptr SizeClassForTransferBatch(uptr class_id) {
if (kUseSeparateSizeClassForBatch)
return class_id == SizeClassMap::kBatchClassID
? 0
: SizeClassMap::kBatchClassID;
if (Allocator::ClassIdToSize(class_id) <
TransferBatch::AllocationSizeRequiredForNElements(
TransferBatch::MaxCached(class_id)))
return SizeClassMap::ClassID(sizeof(TransferBatch));
return 0;
}
// Returns a TransferBatch suitable for class_id.
// For small size classes allocates the batch from the allocator.
// For large size classes simply returns b.
TransferBatch *CreateBatch(uptr class_id, SizeClassAllocator *allocator,
TransferBatch *b) {
if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
return (TransferBatch*)Allocate(allocator, batch_class_id);
return b;
}
// Destroys TransferBatch b.
// For small size classes deallocates b to the allocator.
// Does notthing for large size classes.
void DestroyBatch(uptr class_id, SizeClassAllocator *allocator,
TransferBatch *b) {
if (uptr batch_class_id = SizeClassForTransferBatch(class_id))
Deallocate(allocator, batch_class_id, b);
}
NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
InitCache();
PerClass *c = &per_class_[class_id];
TransferBatch *b = allocator->AllocateBatch(&stats_, this, class_id);
CHECK_GT(b->Count(), 0);
b->CopyToArray(c->batch);
c->count = b->Count();
DestroyBatch(class_id, allocator, b);
}
NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
InitCache();
PerClass *c = &per_class_[class_id];
uptr cnt = Min(c->max_count / 2, c->count);
uptr first_idx_to_drain = c->count - cnt;
TransferBatch *b = CreateBatch(
class_id, allocator, (TransferBatch *)c->batch[first_idx_to_drain]);
b->SetFromArray(allocator->GetRegionBeginBySizeClass(class_id),
&c->batch[first_idx_to_drain], cnt);
c->count -= cnt;
allocator->DeallocateBatch(&stats_, class_id, b);
}
};