forked from OSchip/llvm-project
6113 lines
225 KiB
C++
6113 lines
225 KiB
C++
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements extra semantic analysis beyond what is enforced
|
|
// by the C type system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Analysis/Analyses/FormatString.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "clang/Basic/TargetBuiltins.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/ConvertUTF.h"
|
|
#include <limits>
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
|
|
unsigned ByteNo) const {
|
|
return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
|
|
PP.getLangOpts(), PP.getTargetInfo());
|
|
}
|
|
|
|
/// Checks that a call expression's argument count is the desired number.
|
|
/// This is useful when doing custom type-checking. Returns true on error.
|
|
static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
|
|
unsigned argCount = call->getNumArgs();
|
|
if (argCount == desiredArgCount) return false;
|
|
|
|
if (argCount < desiredArgCount)
|
|
return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/ << desiredArgCount << argCount
|
|
<< call->getSourceRange();
|
|
|
|
// Highlight all the excess arguments.
|
|
SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
|
|
call->getArg(argCount - 1)->getLocEnd());
|
|
|
|
return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << desiredArgCount << argCount
|
|
<< call->getArg(1)->getSourceRange();
|
|
}
|
|
|
|
/// Check that the first argument to __builtin_annotation is an integer
|
|
/// and the second argument is a non-wide string literal.
|
|
static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
|
|
if (checkArgCount(S, TheCall, 2))
|
|
return true;
|
|
|
|
// First argument should be an integer.
|
|
Expr *ValArg = TheCall->getArg(0);
|
|
QualType Ty = ValArg->getType();
|
|
if (!Ty->isIntegerType()) {
|
|
S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
|
|
<< ValArg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Second argument should be a constant string.
|
|
Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
|
|
if (!Literal || !Literal->isAscii()) {
|
|
S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
|
|
<< StrArg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
TheCall->setType(Ty);
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
|
|
ExprResult TheCallResult(Owned(TheCall));
|
|
|
|
// Find out if any arguments are required to be integer constant expressions.
|
|
unsigned ICEArguments = 0;
|
|
ASTContext::GetBuiltinTypeError Error;
|
|
Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
|
|
if (Error != ASTContext::GE_None)
|
|
ICEArguments = 0; // Don't diagnose previously diagnosed errors.
|
|
|
|
// If any arguments are required to be ICE's, check and diagnose.
|
|
for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
|
|
// Skip arguments not required to be ICE's.
|
|
if ((ICEArguments & (1 << ArgNo)) == 0) continue;
|
|
|
|
llvm::APSInt Result;
|
|
if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
|
|
return true;
|
|
ICEArguments &= ~(1 << ArgNo);
|
|
}
|
|
|
|
switch (BuiltinID) {
|
|
case Builtin::BI__builtin___CFStringMakeConstantString:
|
|
assert(TheCall->getNumArgs() == 1 &&
|
|
"Wrong # arguments to builtin CFStringMakeConstantString");
|
|
if (CheckObjCString(TheCall->getArg(0)))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_stdarg_start:
|
|
case Builtin::BI__builtin_va_start:
|
|
if (SemaBuiltinVAStart(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isgreater:
|
|
case Builtin::BI__builtin_isgreaterequal:
|
|
case Builtin::BI__builtin_isless:
|
|
case Builtin::BI__builtin_islessequal:
|
|
case Builtin::BI__builtin_islessgreater:
|
|
case Builtin::BI__builtin_isunordered:
|
|
if (SemaBuiltinUnorderedCompare(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_fpclassify:
|
|
if (SemaBuiltinFPClassification(TheCall, 6))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isfinite:
|
|
case Builtin::BI__builtin_isinf:
|
|
case Builtin::BI__builtin_isinf_sign:
|
|
case Builtin::BI__builtin_isnan:
|
|
case Builtin::BI__builtin_isnormal:
|
|
if (SemaBuiltinFPClassification(TheCall, 1))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_shufflevector:
|
|
return SemaBuiltinShuffleVector(TheCall);
|
|
// TheCall will be freed by the smart pointer here, but that's fine, since
|
|
// SemaBuiltinShuffleVector guts it, but then doesn't release it.
|
|
case Builtin::BI__builtin_prefetch:
|
|
if (SemaBuiltinPrefetch(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_object_size:
|
|
if (SemaBuiltinObjectSize(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_longjmp:
|
|
if (SemaBuiltinLongjmp(TheCall))
|
|
return ExprError();
|
|
break;
|
|
|
|
case Builtin::BI__builtin_classify_type:
|
|
if (checkArgCount(*this, TheCall, 1)) return true;
|
|
TheCall->setType(Context.IntTy);
|
|
break;
|
|
case Builtin::BI__builtin_constant_p:
|
|
if (checkArgCount(*this, TheCall, 1)) return true;
|
|
TheCall->setType(Context.IntTy);
|
|
break;
|
|
case Builtin::BI__sync_fetch_and_add:
|
|
case Builtin::BI__sync_fetch_and_add_1:
|
|
case Builtin::BI__sync_fetch_and_add_2:
|
|
case Builtin::BI__sync_fetch_and_add_4:
|
|
case Builtin::BI__sync_fetch_and_add_8:
|
|
case Builtin::BI__sync_fetch_and_add_16:
|
|
case Builtin::BI__sync_fetch_and_sub:
|
|
case Builtin::BI__sync_fetch_and_sub_1:
|
|
case Builtin::BI__sync_fetch_and_sub_2:
|
|
case Builtin::BI__sync_fetch_and_sub_4:
|
|
case Builtin::BI__sync_fetch_and_sub_8:
|
|
case Builtin::BI__sync_fetch_and_sub_16:
|
|
case Builtin::BI__sync_fetch_and_or:
|
|
case Builtin::BI__sync_fetch_and_or_1:
|
|
case Builtin::BI__sync_fetch_and_or_2:
|
|
case Builtin::BI__sync_fetch_and_or_4:
|
|
case Builtin::BI__sync_fetch_and_or_8:
|
|
case Builtin::BI__sync_fetch_and_or_16:
|
|
case Builtin::BI__sync_fetch_and_and:
|
|
case Builtin::BI__sync_fetch_and_and_1:
|
|
case Builtin::BI__sync_fetch_and_and_2:
|
|
case Builtin::BI__sync_fetch_and_and_4:
|
|
case Builtin::BI__sync_fetch_and_and_8:
|
|
case Builtin::BI__sync_fetch_and_and_16:
|
|
case Builtin::BI__sync_fetch_and_xor:
|
|
case Builtin::BI__sync_fetch_and_xor_1:
|
|
case Builtin::BI__sync_fetch_and_xor_2:
|
|
case Builtin::BI__sync_fetch_and_xor_4:
|
|
case Builtin::BI__sync_fetch_and_xor_8:
|
|
case Builtin::BI__sync_fetch_and_xor_16:
|
|
case Builtin::BI__sync_add_and_fetch:
|
|
case Builtin::BI__sync_add_and_fetch_1:
|
|
case Builtin::BI__sync_add_and_fetch_2:
|
|
case Builtin::BI__sync_add_and_fetch_4:
|
|
case Builtin::BI__sync_add_and_fetch_8:
|
|
case Builtin::BI__sync_add_and_fetch_16:
|
|
case Builtin::BI__sync_sub_and_fetch:
|
|
case Builtin::BI__sync_sub_and_fetch_1:
|
|
case Builtin::BI__sync_sub_and_fetch_2:
|
|
case Builtin::BI__sync_sub_and_fetch_4:
|
|
case Builtin::BI__sync_sub_and_fetch_8:
|
|
case Builtin::BI__sync_sub_and_fetch_16:
|
|
case Builtin::BI__sync_and_and_fetch:
|
|
case Builtin::BI__sync_and_and_fetch_1:
|
|
case Builtin::BI__sync_and_and_fetch_2:
|
|
case Builtin::BI__sync_and_and_fetch_4:
|
|
case Builtin::BI__sync_and_and_fetch_8:
|
|
case Builtin::BI__sync_and_and_fetch_16:
|
|
case Builtin::BI__sync_or_and_fetch:
|
|
case Builtin::BI__sync_or_and_fetch_1:
|
|
case Builtin::BI__sync_or_and_fetch_2:
|
|
case Builtin::BI__sync_or_and_fetch_4:
|
|
case Builtin::BI__sync_or_and_fetch_8:
|
|
case Builtin::BI__sync_or_and_fetch_16:
|
|
case Builtin::BI__sync_xor_and_fetch:
|
|
case Builtin::BI__sync_xor_and_fetch_1:
|
|
case Builtin::BI__sync_xor_and_fetch_2:
|
|
case Builtin::BI__sync_xor_and_fetch_4:
|
|
case Builtin::BI__sync_xor_and_fetch_8:
|
|
case Builtin::BI__sync_xor_and_fetch_16:
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
case Builtin::BI__sync_val_compare_and_swap_1:
|
|
case Builtin::BI__sync_val_compare_and_swap_2:
|
|
case Builtin::BI__sync_val_compare_and_swap_4:
|
|
case Builtin::BI__sync_val_compare_and_swap_8:
|
|
case Builtin::BI__sync_val_compare_and_swap_16:
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
case Builtin::BI__sync_bool_compare_and_swap_1:
|
|
case Builtin::BI__sync_bool_compare_and_swap_2:
|
|
case Builtin::BI__sync_bool_compare_and_swap_4:
|
|
case Builtin::BI__sync_bool_compare_and_swap_8:
|
|
case Builtin::BI__sync_bool_compare_and_swap_16:
|
|
case Builtin::BI__sync_lock_test_and_set:
|
|
case Builtin::BI__sync_lock_test_and_set_1:
|
|
case Builtin::BI__sync_lock_test_and_set_2:
|
|
case Builtin::BI__sync_lock_test_and_set_4:
|
|
case Builtin::BI__sync_lock_test_and_set_8:
|
|
case Builtin::BI__sync_lock_test_and_set_16:
|
|
case Builtin::BI__sync_lock_release:
|
|
case Builtin::BI__sync_lock_release_1:
|
|
case Builtin::BI__sync_lock_release_2:
|
|
case Builtin::BI__sync_lock_release_4:
|
|
case Builtin::BI__sync_lock_release_8:
|
|
case Builtin::BI__sync_lock_release_16:
|
|
case Builtin::BI__sync_swap:
|
|
case Builtin::BI__sync_swap_1:
|
|
case Builtin::BI__sync_swap_2:
|
|
case Builtin::BI__sync_swap_4:
|
|
case Builtin::BI__sync_swap_8:
|
|
case Builtin::BI__sync_swap_16:
|
|
return SemaBuiltinAtomicOverloaded(TheCallResult);
|
|
#define BUILTIN(ID, TYPE, ATTRS)
|
|
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
|
|
case Builtin::BI##ID: \
|
|
return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
|
|
#include "clang/Basic/Builtins.def"
|
|
case Builtin::BI__builtin_annotation:
|
|
if (SemaBuiltinAnnotation(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
|
|
// Since the target specific builtins for each arch overlap, only check those
|
|
// of the arch we are compiling for.
|
|
if (BuiltinID >= Builtin::FirstTSBuiltin) {
|
|
switch (Context.getTargetInfo().getTriple().getArch()) {
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::thumb:
|
|
if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
|
|
return ExprError();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TheCallResult;
|
|
}
|
|
|
|
// Get the valid immediate range for the specified NEON type code.
|
|
static unsigned RFT(unsigned t, bool shift = false) {
|
|
NeonTypeFlags Type(t);
|
|
int IsQuad = Type.isQuad();
|
|
switch (Type.getEltType()) {
|
|
case NeonTypeFlags::Int8:
|
|
case NeonTypeFlags::Poly8:
|
|
return shift ? 7 : (8 << IsQuad) - 1;
|
|
case NeonTypeFlags::Int16:
|
|
case NeonTypeFlags::Poly16:
|
|
return shift ? 15 : (4 << IsQuad) - 1;
|
|
case NeonTypeFlags::Int32:
|
|
return shift ? 31 : (2 << IsQuad) - 1;
|
|
case NeonTypeFlags::Int64:
|
|
return shift ? 63 : (1 << IsQuad) - 1;
|
|
case NeonTypeFlags::Float16:
|
|
assert(!shift && "cannot shift float types!");
|
|
return (4 << IsQuad) - 1;
|
|
case NeonTypeFlags::Float32:
|
|
assert(!shift && "cannot shift float types!");
|
|
return (2 << IsQuad) - 1;
|
|
}
|
|
llvm_unreachable("Invalid NeonTypeFlag!");
|
|
}
|
|
|
|
/// getNeonEltType - Return the QualType corresponding to the elements of
|
|
/// the vector type specified by the NeonTypeFlags. This is used to check
|
|
/// the pointer arguments for Neon load/store intrinsics.
|
|
static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
|
|
switch (Flags.getEltType()) {
|
|
case NeonTypeFlags::Int8:
|
|
return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
|
|
case NeonTypeFlags::Int16:
|
|
return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
|
|
case NeonTypeFlags::Int32:
|
|
return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
|
|
case NeonTypeFlags::Int64:
|
|
return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
|
|
case NeonTypeFlags::Poly8:
|
|
return Context.SignedCharTy;
|
|
case NeonTypeFlags::Poly16:
|
|
return Context.ShortTy;
|
|
case NeonTypeFlags::Float16:
|
|
return Context.UnsignedShortTy;
|
|
case NeonTypeFlags::Float32:
|
|
return Context.FloatTy;
|
|
}
|
|
llvm_unreachable("Invalid NeonTypeFlag!");
|
|
}
|
|
|
|
bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
|
|
llvm::APSInt Result;
|
|
|
|
uint64_t mask = 0;
|
|
unsigned TV = 0;
|
|
int PtrArgNum = -1;
|
|
bool HasConstPtr = false;
|
|
switch (BuiltinID) {
|
|
#define GET_NEON_OVERLOAD_CHECK
|
|
#include "clang/Basic/arm_neon.inc"
|
|
#undef GET_NEON_OVERLOAD_CHECK
|
|
}
|
|
|
|
// For NEON intrinsics which are overloaded on vector element type, validate
|
|
// the immediate which specifies which variant to emit.
|
|
unsigned ImmArg = TheCall->getNumArgs()-1;
|
|
if (mask) {
|
|
if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
|
|
return true;
|
|
|
|
TV = Result.getLimitedValue(64);
|
|
if ((TV > 63) || (mask & (1ULL << TV)) == 0)
|
|
return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
|
|
<< TheCall->getArg(ImmArg)->getSourceRange();
|
|
}
|
|
|
|
if (PtrArgNum >= 0) {
|
|
// Check that pointer arguments have the specified type.
|
|
Expr *Arg = TheCall->getArg(PtrArgNum);
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = ICE->getSubExpr();
|
|
ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
|
|
QualType RHSTy = RHS.get()->getType();
|
|
QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
|
|
if (HasConstPtr)
|
|
EltTy = EltTy.withConst();
|
|
QualType LHSTy = Context.getPointerType(EltTy);
|
|
AssignConvertType ConvTy;
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
|
|
if (RHS.isInvalid())
|
|
return true;
|
|
if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
|
|
RHS.get(), AA_Assigning))
|
|
return true;
|
|
}
|
|
|
|
// For NEON intrinsics which take an immediate value as part of the
|
|
// instruction, range check them here.
|
|
unsigned i = 0, l = 0, u = 0;
|
|
switch (BuiltinID) {
|
|
default: return false;
|
|
case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
|
|
case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
|
|
case ARM::BI__builtin_arm_vcvtr_f:
|
|
case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
|
|
#define GET_NEON_IMMEDIATE_CHECK
|
|
#include "clang/Basic/arm_neon.inc"
|
|
#undef GET_NEON_IMMEDIATE_CHECK
|
|
};
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (TheCall->getArg(i)->isTypeDependent() ||
|
|
TheCall->getArg(i)->isValueDependent())
|
|
return false;
|
|
|
|
// Check that the immediate argument is actually a constant.
|
|
if (SemaBuiltinConstantArg(TheCall, i, Result))
|
|
return true;
|
|
|
|
// Range check against the upper/lower values for this isntruction.
|
|
unsigned Val = Result.getZExtValue();
|
|
if (Val < l || Val > (u + l))
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< l << u+l << TheCall->getArg(i)->getSourceRange();
|
|
|
|
// FIXME: VFP Intrinsics should error if VFP not present.
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
|
|
unsigned i = 0, l = 0, u = 0;
|
|
switch (BuiltinID) {
|
|
default: return false;
|
|
case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
|
|
case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
|
|
case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
|
|
case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
|
|
case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
|
|
case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
|
|
case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
|
|
};
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (TheCall->getArg(i)->isTypeDependent() ||
|
|
TheCall->getArg(i)->isValueDependent())
|
|
return false;
|
|
|
|
// Check that the immediate argument is actually a constant.
|
|
llvm::APSInt Result;
|
|
if (SemaBuiltinConstantArg(TheCall, i, Result))
|
|
return true;
|
|
|
|
// Range check against the upper/lower values for this instruction.
|
|
unsigned Val = Result.getZExtValue();
|
|
if (Val < l || Val > u)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< l << u << TheCall->getArg(i)->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
|
|
/// parameter with the FormatAttr's correct format_idx and firstDataArg.
|
|
/// Returns true when the format fits the function and the FormatStringInfo has
|
|
/// been populated.
|
|
bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
|
|
FormatStringInfo *FSI) {
|
|
FSI->HasVAListArg = Format->getFirstArg() == 0;
|
|
FSI->FormatIdx = Format->getFormatIdx() - 1;
|
|
FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
|
|
|
|
// The way the format attribute works in GCC, the implicit this argument
|
|
// of member functions is counted. However, it doesn't appear in our own
|
|
// lists, so decrement format_idx in that case.
|
|
if (IsCXXMember) {
|
|
if(FSI->FormatIdx == 0)
|
|
return false;
|
|
--FSI->FormatIdx;
|
|
if (FSI->FirstDataArg != 0)
|
|
--FSI->FirstDataArg;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Handles the checks for format strings, non-POD arguments to vararg
|
|
/// functions, and NULL arguments passed to non-NULL parameters.
|
|
void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
|
|
unsigned NumArgs,
|
|
unsigned NumProtoArgs,
|
|
bool IsMemberFunction,
|
|
SourceLocation Loc,
|
|
SourceRange Range,
|
|
VariadicCallType CallType) {
|
|
// FIXME: This mechanism should be abstracted to be less fragile and
|
|
// more efficient. For example, just map function ids to custom
|
|
// handlers.
|
|
|
|
// Printf and scanf checking.
|
|
bool HandledFormatString = false;
|
|
for (specific_attr_iterator<FormatAttr>
|
|
I = FDecl->specific_attr_begin<FormatAttr>(),
|
|
E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
|
|
if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
|
|
Loc, Range))
|
|
HandledFormatString = true;
|
|
|
|
// Refuse POD arguments that weren't caught by the format string
|
|
// checks above.
|
|
if (!HandledFormatString && CallType != VariadicDoesNotApply)
|
|
for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx)
|
|
variadicArgumentPODCheck(Args[ArgIdx], CallType);
|
|
|
|
for (specific_attr_iterator<NonNullAttr>
|
|
I = FDecl->specific_attr_begin<NonNullAttr>(),
|
|
E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
|
|
CheckNonNullArguments(*I, Args, Loc);
|
|
|
|
// Type safety checking.
|
|
for (specific_attr_iterator<ArgumentWithTypeTagAttr>
|
|
i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
|
|
e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
|
|
CheckArgumentWithTypeTag(*i, Args);
|
|
}
|
|
}
|
|
|
|
/// CheckConstructorCall - Check a constructor call for correctness and safety
|
|
/// properties not enforced by the C type system.
|
|
void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
|
|
unsigned NumArgs,
|
|
const FunctionProtoType *Proto,
|
|
SourceLocation Loc) {
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
|
|
checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
|
|
/*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
|
|
}
|
|
|
|
/// CheckFunctionCall - Check a direct function call for various correctness
|
|
/// and safety properties not strictly enforced by the C type system.
|
|
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto) {
|
|
bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall);
|
|
VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
|
|
TheCall->getCallee());
|
|
unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
|
|
checkCall(FDecl, TheCall->getArgs(), TheCall->getNumArgs(), NumProtoArgs,
|
|
IsMemberFunction, TheCall->getRParenLoc(),
|
|
TheCall->getCallee()->getSourceRange(), CallType);
|
|
|
|
IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
// None of the checks below are needed for functions that don't have
|
|
// simple names (e.g., C++ conversion functions).
|
|
if (!FnInfo)
|
|
return false;
|
|
|
|
unsigned CMId = FDecl->getMemoryFunctionKind();
|
|
if (CMId == 0)
|
|
return false;
|
|
|
|
// Handle memory setting and copying functions.
|
|
if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
|
|
CheckStrlcpycatArguments(TheCall, FnInfo);
|
|
else if (CMId == Builtin::BIstrncat)
|
|
CheckStrncatArguments(TheCall, FnInfo);
|
|
else
|
|
CheckMemaccessArguments(TheCall, CMId, FnInfo);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
|
|
Expr **Args, unsigned NumArgs) {
|
|
VariadicCallType CallType =
|
|
Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
|
|
|
|
checkCall(Method, Args, NumArgs, Method->param_size(),
|
|
/*IsMemberFunction=*/false,
|
|
lbrac, Method->getSourceRange(), CallType);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto) {
|
|
const VarDecl *V = dyn_cast<VarDecl>(NDecl);
|
|
if (!V)
|
|
return false;
|
|
|
|
QualType Ty = V->getType();
|
|
if (!Ty->isBlockPointerType())
|
|
return false;
|
|
|
|
VariadicCallType CallType =
|
|
Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
|
|
unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
|
|
|
|
checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
|
|
NumProtoArgs, /*IsMemberFunction=*/false,
|
|
TheCall->getRParenLoc(),
|
|
TheCall->getCallee()->getSourceRange(), CallType);
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
|
|
AtomicExpr::AtomicOp Op) {
|
|
CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
|
|
// All these operations take one of the following forms:
|
|
enum {
|
|
// C __c11_atomic_init(A *, C)
|
|
Init,
|
|
// C __c11_atomic_load(A *, int)
|
|
Load,
|
|
// void __atomic_load(A *, CP, int)
|
|
Copy,
|
|
// C __c11_atomic_add(A *, M, int)
|
|
Arithmetic,
|
|
// C __atomic_exchange_n(A *, CP, int)
|
|
Xchg,
|
|
// void __atomic_exchange(A *, C *, CP, int)
|
|
GNUXchg,
|
|
// bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
|
|
C11CmpXchg,
|
|
// bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
|
|
GNUCmpXchg
|
|
} Form = Init;
|
|
const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
|
|
const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
|
|
// where:
|
|
// C is an appropriate type,
|
|
// A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
|
|
// CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
|
|
// M is C if C is an integer, and ptrdiff_t if C is a pointer, and
|
|
// the int parameters are for orderings.
|
|
|
|
assert(AtomicExpr::AO__c11_atomic_init == 0 &&
|
|
AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
|
|
&& "need to update code for modified C11 atomics");
|
|
bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
|
|
Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
|
|
bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
|
|
Op == AtomicExpr::AO__atomic_store_n ||
|
|
Op == AtomicExpr::AO__atomic_exchange_n ||
|
|
Op == AtomicExpr::AO__atomic_compare_exchange_n;
|
|
bool IsAddSub = false;
|
|
|
|
switch (Op) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
Form = Init;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
Form = Load;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__atomic_load:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
Form = Copy;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
IsAddSub = true;
|
|
// Fall through.
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
Form = Arithmetic;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
Form = Xchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
Form = GNUXchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
Form = C11CmpXchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n:
|
|
Form = GNUCmpXchg;
|
|
break;
|
|
}
|
|
|
|
// Check we have the right number of arguments.
|
|
if (TheCall->getNumArgs() < NumArgs[Form]) {
|
|
Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << NumArgs[Form] << TheCall->getNumArgs()
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
return ExprError();
|
|
} else if (TheCall->getNumArgs() > NumArgs[Form]) {
|
|
Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 << NumArgs[Form] << TheCall->getNumArgs()
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Inspect the first argument of the atomic operation.
|
|
Expr *Ptr = TheCall->getArg(0);
|
|
Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
|
|
const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// For a __c11 builtin, this should be a pointer to an _Atomic type.
|
|
QualType AtomTy = pointerType->getPointeeType(); // 'A'
|
|
QualType ValType = AtomTy; // 'C'
|
|
if (IsC11) {
|
|
if (!AtomTy->isAtomicType()) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
ValType = AtomTy->getAs<AtomicType>()->getValueType();
|
|
}
|
|
|
|
// For an arithmetic operation, the implied arithmetic must be well-formed.
|
|
if (Form == Arithmetic) {
|
|
// gcc does not enforce these rules for GNU atomics, but we do so for sanity.
|
|
if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
|
|
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
if (!IsAddSub && !ValType->isIntegerType()) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
|
|
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
} else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
|
|
// For __atomic_*_n operations, the value type must be a scalar integral or
|
|
// pointer type which is 1, 2, 4, 8 or 16 bytes in length.
|
|
Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
|
|
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
|
|
// For GNU atomics, require a trivially-copyable type. This is not part of
|
|
// the GNU atomics specification, but we enforce it for sanity.
|
|
Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// FIXME: For any builtin other than a load, the ValType must not be
|
|
// const-qualified.
|
|
|
|
switch (ValType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// okay
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
// FIXME: Can this happen? By this point, ValType should be known
|
|
// to be trivially copyable.
|
|
Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
|
|
<< ValType << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
QualType ResultType = ValType;
|
|
if (Form == Copy || Form == GNUXchg || Form == Init)
|
|
ResultType = Context.VoidTy;
|
|
else if (Form == C11CmpXchg || Form == GNUCmpXchg)
|
|
ResultType = Context.BoolTy;
|
|
|
|
// The type of a parameter passed 'by value'. In the GNU atomics, such
|
|
// arguments are actually passed as pointers.
|
|
QualType ByValType = ValType; // 'CP'
|
|
if (!IsC11 && !IsN)
|
|
ByValType = Ptr->getType();
|
|
|
|
// The first argument --- the pointer --- has a fixed type; we
|
|
// deduce the types of the rest of the arguments accordingly. Walk
|
|
// the remaining arguments, converting them to the deduced value type.
|
|
for (unsigned i = 1; i != NumArgs[Form]; ++i) {
|
|
QualType Ty;
|
|
if (i < NumVals[Form] + 1) {
|
|
switch (i) {
|
|
case 1:
|
|
// The second argument is the non-atomic operand. For arithmetic, this
|
|
// is always passed by value, and for a compare_exchange it is always
|
|
// passed by address. For the rest, GNU uses by-address and C11 uses
|
|
// by-value.
|
|
assert(Form != Load);
|
|
if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
|
|
Ty = ValType;
|
|
else if (Form == Copy || Form == Xchg)
|
|
Ty = ByValType;
|
|
else if (Form == Arithmetic)
|
|
Ty = Context.getPointerDiffType();
|
|
else
|
|
Ty = Context.getPointerType(ValType.getUnqualifiedType());
|
|
break;
|
|
case 2:
|
|
// The third argument to compare_exchange / GNU exchange is a
|
|
// (pointer to a) desired value.
|
|
Ty = ByValType;
|
|
break;
|
|
case 3:
|
|
// The fourth argument to GNU compare_exchange is a 'weak' flag.
|
|
Ty = Context.BoolTy;
|
|
break;
|
|
}
|
|
} else {
|
|
// The order(s) are always converted to int.
|
|
Ty = Context.IntTy;
|
|
}
|
|
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(Context, Ty, false);
|
|
ExprResult Arg = TheCall->getArg(i);
|
|
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
TheCall->setArg(i, Arg.get());
|
|
}
|
|
|
|
// Permute the arguments into a 'consistent' order.
|
|
SmallVector<Expr*, 5> SubExprs;
|
|
SubExprs.push_back(Ptr);
|
|
switch (Form) {
|
|
case Init:
|
|
// Note, AtomicExpr::getVal1() has a special case for this atomic.
|
|
SubExprs.push_back(TheCall->getArg(1)); // Val1
|
|
break;
|
|
case Load:
|
|
SubExprs.push_back(TheCall->getArg(1)); // Order
|
|
break;
|
|
case Copy:
|
|
case Arithmetic:
|
|
case Xchg:
|
|
SubExprs.push_back(TheCall->getArg(2)); // Order
|
|
SubExprs.push_back(TheCall->getArg(1)); // Val1
|
|
break;
|
|
case GNUXchg:
|
|
// Note, AtomicExpr::getVal2() has a special case for this atomic.
|
|
SubExprs.push_back(TheCall->getArg(3)); // Order
|
|
SubExprs.push_back(TheCall->getArg(1)); // Val1
|
|
SubExprs.push_back(TheCall->getArg(2)); // Val2
|
|
break;
|
|
case C11CmpXchg:
|
|
SubExprs.push_back(TheCall->getArg(3)); // Order
|
|
SubExprs.push_back(TheCall->getArg(1)); // Val1
|
|
SubExprs.push_back(TheCall->getArg(4)); // OrderFail
|
|
SubExprs.push_back(TheCall->getArg(2)); // Val2
|
|
break;
|
|
case GNUCmpXchg:
|
|
SubExprs.push_back(TheCall->getArg(4)); // Order
|
|
SubExprs.push_back(TheCall->getArg(1)); // Val1
|
|
SubExprs.push_back(TheCall->getArg(5)); // OrderFail
|
|
SubExprs.push_back(TheCall->getArg(2)); // Val2
|
|
SubExprs.push_back(TheCall->getArg(3)); // Weak
|
|
break;
|
|
}
|
|
|
|
return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
|
|
SubExprs, ResultType, Op,
|
|
TheCall->getRParenLoc()));
|
|
}
|
|
|
|
|
|
/// checkBuiltinArgument - Given a call to a builtin function, perform
|
|
/// normal type-checking on the given argument, updating the call in
|
|
/// place. This is useful when a builtin function requires custom
|
|
/// type-checking for some of its arguments but not necessarily all of
|
|
/// them.
|
|
///
|
|
/// Returns true on error.
|
|
static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
|
|
FunctionDecl *Fn = E->getDirectCallee();
|
|
assert(Fn && "builtin call without direct callee!");
|
|
|
|
ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, Param);
|
|
|
|
ExprResult Arg = E->getArg(0);
|
|
Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
|
|
E->setArg(ArgIndex, Arg.take());
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinAtomicOverloaded - We have a call to a function like
|
|
/// __sync_fetch_and_add, which is an overloaded function based on the pointer
|
|
/// type of its first argument. The main ActOnCallExpr routines have already
|
|
/// promoted the types of arguments because all of these calls are prototyped as
|
|
/// void(...).
|
|
///
|
|
/// This function goes through and does final semantic checking for these
|
|
/// builtins,
|
|
ExprResult
|
|
Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
|
|
CallExpr *TheCall = (CallExpr *)TheCallResult.get();
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
|
|
// Ensure that we have at least one argument to do type inference from.
|
|
if (TheCall->getNumArgs() < 1) {
|
|
Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 << 1 << TheCall->getNumArgs()
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Inspect the first argument of the atomic builtin. This should always be
|
|
// a pointer type, whose element is an integral scalar or pointer type.
|
|
// Because it is a pointer type, we don't have to worry about any implicit
|
|
// casts here.
|
|
// FIXME: We don't allow floating point scalars as input.
|
|
Expr *FirstArg = TheCall->getArg(0);
|
|
ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
|
|
if (FirstArgResult.isInvalid())
|
|
return ExprError();
|
|
FirstArg = FirstArgResult.take();
|
|
TheCall->setArg(0, FirstArg);
|
|
|
|
const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
QualType ValType = pointerType->getPointeeType();
|
|
if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
|
|
!ValType->isBlockPointerType()) {
|
|
Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
switch (ValType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// okay
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
|
|
<< ValType << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Strip any qualifiers off ValType.
|
|
ValType = ValType.getUnqualifiedType();
|
|
|
|
// The majority of builtins return a value, but a few have special return
|
|
// types, so allow them to override appropriately below.
|
|
QualType ResultType = ValType;
|
|
|
|
// We need to figure out which concrete builtin this maps onto. For example,
|
|
// __sync_fetch_and_add with a 2 byte object turns into
|
|
// __sync_fetch_and_add_2.
|
|
#define BUILTIN_ROW(x) \
|
|
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
|
|
Builtin::BI##x##_8, Builtin::BI##x##_16 }
|
|
|
|
static const unsigned BuiltinIndices[][5] = {
|
|
BUILTIN_ROW(__sync_fetch_and_add),
|
|
BUILTIN_ROW(__sync_fetch_and_sub),
|
|
BUILTIN_ROW(__sync_fetch_and_or),
|
|
BUILTIN_ROW(__sync_fetch_and_and),
|
|
BUILTIN_ROW(__sync_fetch_and_xor),
|
|
|
|
BUILTIN_ROW(__sync_add_and_fetch),
|
|
BUILTIN_ROW(__sync_sub_and_fetch),
|
|
BUILTIN_ROW(__sync_and_and_fetch),
|
|
BUILTIN_ROW(__sync_or_and_fetch),
|
|
BUILTIN_ROW(__sync_xor_and_fetch),
|
|
|
|
BUILTIN_ROW(__sync_val_compare_and_swap),
|
|
BUILTIN_ROW(__sync_bool_compare_and_swap),
|
|
BUILTIN_ROW(__sync_lock_test_and_set),
|
|
BUILTIN_ROW(__sync_lock_release),
|
|
BUILTIN_ROW(__sync_swap)
|
|
};
|
|
#undef BUILTIN_ROW
|
|
|
|
// Determine the index of the size.
|
|
unsigned SizeIndex;
|
|
switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
|
|
case 1: SizeIndex = 0; break;
|
|
case 2: SizeIndex = 1; break;
|
|
case 4: SizeIndex = 2; break;
|
|
case 8: SizeIndex = 3; break;
|
|
case 16: SizeIndex = 4; break;
|
|
default:
|
|
Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Each of these builtins has one pointer argument, followed by some number of
|
|
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
|
|
// that we ignore. Find out which row of BuiltinIndices to read from as well
|
|
// as the number of fixed args.
|
|
unsigned BuiltinID = FDecl->getBuiltinID();
|
|
unsigned BuiltinIndex, NumFixed = 1;
|
|
switch (BuiltinID) {
|
|
default: llvm_unreachable("Unknown overloaded atomic builtin!");
|
|
case Builtin::BI__sync_fetch_and_add:
|
|
case Builtin::BI__sync_fetch_and_add_1:
|
|
case Builtin::BI__sync_fetch_and_add_2:
|
|
case Builtin::BI__sync_fetch_and_add_4:
|
|
case Builtin::BI__sync_fetch_and_add_8:
|
|
case Builtin::BI__sync_fetch_and_add_16:
|
|
BuiltinIndex = 0;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_sub:
|
|
case Builtin::BI__sync_fetch_and_sub_1:
|
|
case Builtin::BI__sync_fetch_and_sub_2:
|
|
case Builtin::BI__sync_fetch_and_sub_4:
|
|
case Builtin::BI__sync_fetch_and_sub_8:
|
|
case Builtin::BI__sync_fetch_and_sub_16:
|
|
BuiltinIndex = 1;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_or:
|
|
case Builtin::BI__sync_fetch_and_or_1:
|
|
case Builtin::BI__sync_fetch_and_or_2:
|
|
case Builtin::BI__sync_fetch_and_or_4:
|
|
case Builtin::BI__sync_fetch_and_or_8:
|
|
case Builtin::BI__sync_fetch_and_or_16:
|
|
BuiltinIndex = 2;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_and:
|
|
case Builtin::BI__sync_fetch_and_and_1:
|
|
case Builtin::BI__sync_fetch_and_and_2:
|
|
case Builtin::BI__sync_fetch_and_and_4:
|
|
case Builtin::BI__sync_fetch_and_and_8:
|
|
case Builtin::BI__sync_fetch_and_and_16:
|
|
BuiltinIndex = 3;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_xor:
|
|
case Builtin::BI__sync_fetch_and_xor_1:
|
|
case Builtin::BI__sync_fetch_and_xor_2:
|
|
case Builtin::BI__sync_fetch_and_xor_4:
|
|
case Builtin::BI__sync_fetch_and_xor_8:
|
|
case Builtin::BI__sync_fetch_and_xor_16:
|
|
BuiltinIndex = 4;
|
|
break;
|
|
|
|
case Builtin::BI__sync_add_and_fetch:
|
|
case Builtin::BI__sync_add_and_fetch_1:
|
|
case Builtin::BI__sync_add_and_fetch_2:
|
|
case Builtin::BI__sync_add_and_fetch_4:
|
|
case Builtin::BI__sync_add_and_fetch_8:
|
|
case Builtin::BI__sync_add_and_fetch_16:
|
|
BuiltinIndex = 5;
|
|
break;
|
|
|
|
case Builtin::BI__sync_sub_and_fetch:
|
|
case Builtin::BI__sync_sub_and_fetch_1:
|
|
case Builtin::BI__sync_sub_and_fetch_2:
|
|
case Builtin::BI__sync_sub_and_fetch_4:
|
|
case Builtin::BI__sync_sub_and_fetch_8:
|
|
case Builtin::BI__sync_sub_and_fetch_16:
|
|
BuiltinIndex = 6;
|
|
break;
|
|
|
|
case Builtin::BI__sync_and_and_fetch:
|
|
case Builtin::BI__sync_and_and_fetch_1:
|
|
case Builtin::BI__sync_and_and_fetch_2:
|
|
case Builtin::BI__sync_and_and_fetch_4:
|
|
case Builtin::BI__sync_and_and_fetch_8:
|
|
case Builtin::BI__sync_and_and_fetch_16:
|
|
BuiltinIndex = 7;
|
|
break;
|
|
|
|
case Builtin::BI__sync_or_and_fetch:
|
|
case Builtin::BI__sync_or_and_fetch_1:
|
|
case Builtin::BI__sync_or_and_fetch_2:
|
|
case Builtin::BI__sync_or_and_fetch_4:
|
|
case Builtin::BI__sync_or_and_fetch_8:
|
|
case Builtin::BI__sync_or_and_fetch_16:
|
|
BuiltinIndex = 8;
|
|
break;
|
|
|
|
case Builtin::BI__sync_xor_and_fetch:
|
|
case Builtin::BI__sync_xor_and_fetch_1:
|
|
case Builtin::BI__sync_xor_and_fetch_2:
|
|
case Builtin::BI__sync_xor_and_fetch_4:
|
|
case Builtin::BI__sync_xor_and_fetch_8:
|
|
case Builtin::BI__sync_xor_and_fetch_16:
|
|
BuiltinIndex = 9;
|
|
break;
|
|
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
case Builtin::BI__sync_val_compare_and_swap_1:
|
|
case Builtin::BI__sync_val_compare_and_swap_2:
|
|
case Builtin::BI__sync_val_compare_and_swap_4:
|
|
case Builtin::BI__sync_val_compare_and_swap_8:
|
|
case Builtin::BI__sync_val_compare_and_swap_16:
|
|
BuiltinIndex = 10;
|
|
NumFixed = 2;
|
|
break;
|
|
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
case Builtin::BI__sync_bool_compare_and_swap_1:
|
|
case Builtin::BI__sync_bool_compare_and_swap_2:
|
|
case Builtin::BI__sync_bool_compare_and_swap_4:
|
|
case Builtin::BI__sync_bool_compare_and_swap_8:
|
|
case Builtin::BI__sync_bool_compare_and_swap_16:
|
|
BuiltinIndex = 11;
|
|
NumFixed = 2;
|
|
ResultType = Context.BoolTy;
|
|
break;
|
|
|
|
case Builtin::BI__sync_lock_test_and_set:
|
|
case Builtin::BI__sync_lock_test_and_set_1:
|
|
case Builtin::BI__sync_lock_test_and_set_2:
|
|
case Builtin::BI__sync_lock_test_and_set_4:
|
|
case Builtin::BI__sync_lock_test_and_set_8:
|
|
case Builtin::BI__sync_lock_test_and_set_16:
|
|
BuiltinIndex = 12;
|
|
break;
|
|
|
|
case Builtin::BI__sync_lock_release:
|
|
case Builtin::BI__sync_lock_release_1:
|
|
case Builtin::BI__sync_lock_release_2:
|
|
case Builtin::BI__sync_lock_release_4:
|
|
case Builtin::BI__sync_lock_release_8:
|
|
case Builtin::BI__sync_lock_release_16:
|
|
BuiltinIndex = 13;
|
|
NumFixed = 0;
|
|
ResultType = Context.VoidTy;
|
|
break;
|
|
|
|
case Builtin::BI__sync_swap:
|
|
case Builtin::BI__sync_swap_1:
|
|
case Builtin::BI__sync_swap_2:
|
|
case Builtin::BI__sync_swap_4:
|
|
case Builtin::BI__sync_swap_8:
|
|
case Builtin::BI__sync_swap_16:
|
|
BuiltinIndex = 14;
|
|
break;
|
|
}
|
|
|
|
// Now that we know how many fixed arguments we expect, first check that we
|
|
// have at least that many.
|
|
if (TheCall->getNumArgs() < 1+NumFixed) {
|
|
Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 << 1+NumFixed << TheCall->getNumArgs()
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Get the decl for the concrete builtin from this, we can tell what the
|
|
// concrete integer type we should convert to is.
|
|
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
|
|
const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
|
|
IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
|
|
FunctionDecl *NewBuiltinDecl =
|
|
cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
|
|
TUScope, false, DRE->getLocStart()));
|
|
|
|
// The first argument --- the pointer --- has a fixed type; we
|
|
// deduce the types of the rest of the arguments accordingly. Walk
|
|
// the remaining arguments, converting them to the deduced value type.
|
|
for (unsigned i = 0; i != NumFixed; ++i) {
|
|
ExprResult Arg = TheCall->getArg(i+1);
|
|
|
|
// GCC does an implicit conversion to the pointer or integer ValType. This
|
|
// can fail in some cases (1i -> int**), check for this error case now.
|
|
// Initialize the argument.
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
|
|
ValType, /*consume*/ false);
|
|
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return ExprError();
|
|
|
|
// Okay, we have something that *can* be converted to the right type. Check
|
|
// to see if there is a potentially weird extension going on here. This can
|
|
// happen when you do an atomic operation on something like an char* and
|
|
// pass in 42. The 42 gets converted to char. This is even more strange
|
|
// for things like 45.123 -> char, etc.
|
|
// FIXME: Do this check.
|
|
TheCall->setArg(i+1, Arg.take());
|
|
}
|
|
|
|
ASTContext& Context = this->getASTContext();
|
|
|
|
// Create a new DeclRefExpr to refer to the new decl.
|
|
DeclRefExpr* NewDRE = DeclRefExpr::Create(
|
|
Context,
|
|
DRE->getQualifierLoc(),
|
|
SourceLocation(),
|
|
NewBuiltinDecl,
|
|
/*enclosing*/ false,
|
|
DRE->getLocation(),
|
|
Context.BuiltinFnTy,
|
|
DRE->getValueKind());
|
|
|
|
// Set the callee in the CallExpr.
|
|
// FIXME: This loses syntactic information.
|
|
QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
|
|
ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
|
|
CK_BuiltinFnToFnPtr);
|
|
TheCall->setCallee(PromotedCall.take());
|
|
|
|
// Change the result type of the call to match the original value type. This
|
|
// is arbitrary, but the codegen for these builtins ins design to handle it
|
|
// gracefully.
|
|
TheCall->setType(ResultType);
|
|
|
|
return TheCallResult;
|
|
}
|
|
|
|
/// CheckObjCString - Checks that the argument to the builtin
|
|
/// CFString constructor is correct
|
|
/// Note: It might also make sense to do the UTF-16 conversion here (would
|
|
/// simplify the backend).
|
|
bool Sema::CheckObjCString(Expr *Arg) {
|
|
Arg = Arg->IgnoreParenCasts();
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
|
|
|
|
if (!Literal || !Literal->isAscii()) {
|
|
Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
|
|
<< Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (Literal->containsNonAsciiOrNull()) {
|
|
StringRef String = Literal->getString();
|
|
unsigned NumBytes = String.size();
|
|
SmallVector<UTF16, 128> ToBuf(NumBytes);
|
|
const UTF8 *FromPtr = (const UTF8 *)String.data();
|
|
UTF16 *ToPtr = &ToBuf[0];
|
|
|
|
ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
|
|
&ToPtr, ToPtr + NumBytes,
|
|
strictConversion);
|
|
// Check for conversion failure.
|
|
if (Result != conversionOK)
|
|
Diag(Arg->getLocStart(),
|
|
diag::warn_cfstring_truncated) << Arg->getSourceRange();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
|
|
/// Emit an error and return true on failure, return false on success.
|
|
bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
|
|
Expr *Fn = TheCall->getCallee();
|
|
if (TheCall->getNumArgs() > 2) {
|
|
Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << 2 << TheCall->getNumArgs()
|
|
<< Fn->getSourceRange()
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
return true;
|
|
}
|
|
|
|
if (TheCall->getNumArgs() < 2) {
|
|
return Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 /*function call*/ << 2 << TheCall->getNumArgs();
|
|
}
|
|
|
|
// Type-check the first argument normally.
|
|
if (checkBuiltinArgument(*this, TheCall, 0))
|
|
return true;
|
|
|
|
// Determine whether the current function is variadic or not.
|
|
BlockScopeInfo *CurBlock = getCurBlock();
|
|
bool isVariadic;
|
|
if (CurBlock)
|
|
isVariadic = CurBlock->TheDecl->isVariadic();
|
|
else if (FunctionDecl *FD = getCurFunctionDecl())
|
|
isVariadic = FD->isVariadic();
|
|
else
|
|
isVariadic = getCurMethodDecl()->isVariadic();
|
|
|
|
if (!isVariadic) {
|
|
Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
|
|
return true;
|
|
}
|
|
|
|
// Verify that the second argument to the builtin is the last argument of the
|
|
// current function or method.
|
|
bool SecondArgIsLastNamedArgument = false;
|
|
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
|
|
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
|
|
// FIXME: This isn't correct for methods (results in bogus warning).
|
|
// Get the last formal in the current function.
|
|
const ParmVarDecl *LastArg;
|
|
if (CurBlock)
|
|
LastArg = *(CurBlock->TheDecl->param_end()-1);
|
|
else if (FunctionDecl *FD = getCurFunctionDecl())
|
|
LastArg = *(FD->param_end()-1);
|
|
else
|
|
LastArg = *(getCurMethodDecl()->param_end()-1);
|
|
SecondArgIsLastNamedArgument = PV == LastArg;
|
|
}
|
|
}
|
|
|
|
if (!SecondArgIsLastNamedArgument)
|
|
Diag(TheCall->getArg(1)->getLocStart(),
|
|
diag::warn_second_parameter_of_va_start_not_last_named_argument);
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
|
|
/// friends. This is declared to take (...), so we have to check everything.
|
|
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 2)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << 2 << TheCall->getNumArgs()/*function call*/;
|
|
if (TheCall->getNumArgs() > 2)
|
|
return Diag(TheCall->getArg(2)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << 2 << TheCall->getNumArgs()
|
|
<< SourceRange(TheCall->getArg(2)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
|
|
ExprResult OrigArg0 = TheCall->getArg(0);
|
|
ExprResult OrigArg1 = TheCall->getArg(1);
|
|
|
|
// Do standard promotions between the two arguments, returning their common
|
|
// type.
|
|
QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
|
|
if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
|
|
return true;
|
|
|
|
// Make sure any conversions are pushed back into the call; this is
|
|
// type safe since unordered compare builtins are declared as "_Bool
|
|
// foo(...)".
|
|
TheCall->setArg(0, OrigArg0.get());
|
|
TheCall->setArg(1, OrigArg1.get());
|
|
|
|
if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
|
|
return false;
|
|
|
|
// If the common type isn't a real floating type, then the arguments were
|
|
// invalid for this operation.
|
|
if (Res.isNull() || !Res->isRealFloatingType())
|
|
return Diag(OrigArg0.get()->getLocStart(),
|
|
diag::err_typecheck_call_invalid_ordered_compare)
|
|
<< OrigArg0.get()->getType() << OrigArg1.get()->getType()
|
|
<< SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
|
|
/// __builtin_isnan and friends. This is declared to take (...), so we have
|
|
/// to check everything. We expect the last argument to be a floating point
|
|
/// value.
|
|
bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
|
|
if (TheCall->getNumArgs() < NumArgs)
|
|
return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
|
|
if (TheCall->getNumArgs() > NumArgs)
|
|
return Diag(TheCall->getArg(NumArgs)->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
|
|
<< SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
|
|
(*(TheCall->arg_end()-1))->getLocEnd());
|
|
|
|
Expr *OrigArg = TheCall->getArg(NumArgs-1);
|
|
|
|
if (OrigArg->isTypeDependent())
|
|
return false;
|
|
|
|
// This operation requires a non-_Complex floating-point number.
|
|
if (!OrigArg->getType()->isRealFloatingType())
|
|
return Diag(OrigArg->getLocStart(),
|
|
diag::err_typecheck_call_invalid_unary_fp)
|
|
<< OrigArg->getType() << OrigArg->getSourceRange();
|
|
|
|
// If this is an implicit conversion from float -> double, remove it.
|
|
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
|
|
Expr *CastArg = Cast->getSubExpr();
|
|
if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
|
|
assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
|
|
"promotion from float to double is the only expected cast here");
|
|
Cast->setSubExpr(0);
|
|
TheCall->setArg(NumArgs-1, CastArg);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
|
|
// This is declared to take (...), so we have to check everything.
|
|
ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 2)
|
|
return ExprError(Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 /*function call*/ << 2 << TheCall->getNumArgs()
|
|
<< TheCall->getSourceRange());
|
|
|
|
// Determine which of the following types of shufflevector we're checking:
|
|
// 1) unary, vector mask: (lhs, mask)
|
|
// 2) binary, vector mask: (lhs, rhs, mask)
|
|
// 3) binary, scalar mask: (lhs, rhs, index, ..., index)
|
|
QualType resType = TheCall->getArg(0)->getType();
|
|
unsigned numElements = 0;
|
|
|
|
if (!TheCall->getArg(0)->isTypeDependent() &&
|
|
!TheCall->getArg(1)->isTypeDependent()) {
|
|
QualType LHSType = TheCall->getArg(0)->getType();
|
|
QualType RHSType = TheCall->getArg(1)->getType();
|
|
|
|
if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return ExprError();
|
|
}
|
|
|
|
numElements = LHSType->getAs<VectorType>()->getNumElements();
|
|
unsigned numResElements = TheCall->getNumArgs() - 2;
|
|
|
|
// Check to see if we have a call with 2 vector arguments, the unary shuffle
|
|
// with mask. If so, verify that RHS is an integer vector type with the
|
|
// same number of elts as lhs.
|
|
if (TheCall->getNumArgs() == 2) {
|
|
if (!RHSType->hasIntegerRepresentation() ||
|
|
RHSType->getAs<VectorType>()->getNumElements() != numElements)
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
|
|
<< SourceRange(TheCall->getArg(1)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
numResElements = numElements;
|
|
}
|
|
else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
|
|
Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
|
|
<< SourceRange(TheCall->getArg(0)->getLocStart(),
|
|
TheCall->getArg(1)->getLocEnd());
|
|
return ExprError();
|
|
} else if (numElements != numResElements) {
|
|
QualType eltType = LHSType->getAs<VectorType>()->getElementType();
|
|
resType = Context.getVectorType(eltType, numResElements,
|
|
VectorType::GenericVector);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
|
|
if (TheCall->getArg(i)->isTypeDependent() ||
|
|
TheCall->getArg(i)->isValueDependent())
|
|
continue;
|
|
|
|
llvm::APSInt Result(32);
|
|
if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
|
|
return ExprError(Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_nonconstant_argument)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
|
|
if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
|
|
return ExprError(Diag(TheCall->getLocStart(),
|
|
diag::err_shufflevector_argument_too_large)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
}
|
|
|
|
SmallVector<Expr*, 32> exprs;
|
|
|
|
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
|
|
exprs.push_back(TheCall->getArg(i));
|
|
TheCall->setArg(i, 0);
|
|
}
|
|
|
|
return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
|
|
TheCall->getCallee()->getLocStart(),
|
|
TheCall->getRParenLoc()));
|
|
}
|
|
|
|
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
|
|
// This is declared to take (const void*, ...) and can take two
|
|
// optional constant int args.
|
|
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
|
|
if (NumArgs > 3)
|
|
return Diag(TheCall->getLocEnd(),
|
|
diag::err_typecheck_call_too_many_args_at_most)
|
|
<< 0 /*function call*/ << 3 << NumArgs
|
|
<< TheCall->getSourceRange();
|
|
|
|
// Argument 0 is checked for us and the remaining arguments must be
|
|
// constant integers.
|
|
for (unsigned i = 1; i != NumArgs; ++i) {
|
|
Expr *Arg = TheCall->getArg(i);
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
continue;
|
|
|
|
llvm::APSInt Result;
|
|
if (SemaBuiltinConstantArg(TheCall, i, Result))
|
|
return true;
|
|
|
|
// FIXME: gcc issues a warning and rewrites these to 0. These
|
|
// seems especially odd for the third argument since the default
|
|
// is 3.
|
|
if (i == 1) {
|
|
if (Result.getLimitedValue() > 1)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "1" << Arg->getSourceRange();
|
|
} else {
|
|
if (Result.getLimitedValue() > 3)
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << Arg->getSourceRange();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
|
|
/// TheCall is a constant expression.
|
|
bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
|
|
llvm::APSInt &Result) {
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
|
|
|
|
if (!Arg->isIntegerConstantExpr(Result, Context))
|
|
return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
|
|
<< FDecl->getDeclName() << Arg->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
|
|
/// int type). This simply type checks that type is one of the defined
|
|
/// constants (0-3).
|
|
// For compatibility check 0-3, llvm only handles 0 and 2.
|
|
bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (TheCall->getArg(1)->isTypeDependent() ||
|
|
TheCall->getArg(1)->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (SemaBuiltinConstantArg(TheCall, 1, Result))
|
|
return true;
|
|
|
|
Expr *Arg = TheCall->getArg(1);
|
|
if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
|
|
return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
|
|
<< "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
|
|
/// This checks that val is a constant 1.
|
|
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
|
|
Expr *Arg = TheCall->getArg(1);
|
|
llvm::APSInt Result;
|
|
|
|
// TODO: This is less than ideal. Overload this to take a value.
|
|
if (SemaBuiltinConstantArg(TheCall, 1, Result))
|
|
return true;
|
|
|
|
if (Result != 1)
|
|
return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
|
|
<< SourceRange(Arg->getLocStart(), Arg->getLocEnd());
|
|
|
|
return false;
|
|
}
|
|
|
|
// Determine if an expression is a string literal or constant string.
|
|
// If this function returns false on the arguments to a function expecting a
|
|
// format string, we will usually need to emit a warning.
|
|
// True string literals are then checked by CheckFormatString.
|
|
Sema::StringLiteralCheckType
|
|
Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
|
|
unsigned NumArgs, bool HasVAListArg,
|
|
unsigned format_idx, unsigned firstDataArg,
|
|
FormatStringType Type, VariadicCallType CallType,
|
|
bool inFunctionCall) {
|
|
tryAgain:
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return SLCT_NotALiteral;
|
|
|
|
E = E->IgnoreParenCasts();
|
|
|
|
if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
|
|
// Technically -Wformat-nonliteral does not warn about this case.
|
|
// The behavior of printf and friends in this case is implementation
|
|
// dependent. Ideally if the format string cannot be null then
|
|
// it should have a 'nonnull' attribute in the function prototype.
|
|
return SLCT_CheckedLiteral;
|
|
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// The expression is a literal if both sub-expressions were, and it was
|
|
// completely checked only if both sub-expressions were checked.
|
|
const AbstractConditionalOperator *C =
|
|
cast<AbstractConditionalOperator>(E);
|
|
StringLiteralCheckType Left =
|
|
checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
|
|
HasVAListArg, format_idx, firstDataArg,
|
|
Type, CallType, inFunctionCall);
|
|
if (Left == SLCT_NotALiteral)
|
|
return SLCT_NotALiteral;
|
|
StringLiteralCheckType Right =
|
|
checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
|
|
HasVAListArg, format_idx, firstDataArg,
|
|
Type, CallType, inFunctionCall);
|
|
return Left < Right ? Left : Right;
|
|
}
|
|
|
|
case Stmt::ImplicitCastExprClass: {
|
|
E = cast<ImplicitCastExpr>(E)->getSubExpr();
|
|
goto tryAgain;
|
|
}
|
|
|
|
case Stmt::OpaqueValueExprClass:
|
|
if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
|
|
E = src;
|
|
goto tryAgain;
|
|
}
|
|
return SLCT_NotALiteral;
|
|
|
|
case Stmt::PredefinedExprClass:
|
|
// While __func__, etc., are technically not string literals, they
|
|
// cannot contain format specifiers and thus are not a security
|
|
// liability.
|
|
return SLCT_UncheckedLiteral;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
// As an exception, do not flag errors for variables binding to
|
|
// const string literals.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
|
|
bool isConstant = false;
|
|
QualType T = DR->getType();
|
|
|
|
if (const ArrayType *AT = Context.getAsArrayType(T)) {
|
|
isConstant = AT->getElementType().isConstant(Context);
|
|
} else if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
isConstant = T.isConstant(Context) &&
|
|
PT->getPointeeType().isConstant(Context);
|
|
} else if (T->isObjCObjectPointerType()) {
|
|
// In ObjC, there is usually no "const ObjectPointer" type,
|
|
// so don't check if the pointee type is constant.
|
|
isConstant = T.isConstant(Context);
|
|
}
|
|
|
|
if (isConstant) {
|
|
if (const Expr *Init = VD->getAnyInitializer()) {
|
|
// Look through initializers like const char c[] = { "foo" }
|
|
if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
|
|
if (InitList->isStringLiteralInit())
|
|
Init = InitList->getInit(0)->IgnoreParenImpCasts();
|
|
}
|
|
return checkFormatStringExpr(Init, Args, NumArgs,
|
|
HasVAListArg, format_idx,
|
|
firstDataArg, Type, CallType,
|
|
/*inFunctionCall*/false);
|
|
}
|
|
}
|
|
|
|
// For vprintf* functions (i.e., HasVAListArg==true), we add a
|
|
// special check to see if the format string is a function parameter
|
|
// of the function calling the printf function. If the function
|
|
// has an attribute indicating it is a printf-like function, then we
|
|
// should suppress warnings concerning non-literals being used in a call
|
|
// to a vprintf function. For example:
|
|
//
|
|
// void
|
|
// logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
|
|
// va_list ap;
|
|
// va_start(ap, fmt);
|
|
// vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
|
|
// ...
|
|
//
|
|
if (HasVAListArg) {
|
|
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
|
|
if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
|
|
int PVIndex = PV->getFunctionScopeIndex() + 1;
|
|
for (specific_attr_iterator<FormatAttr>
|
|
i = ND->specific_attr_begin<FormatAttr>(),
|
|
e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
|
|
FormatAttr *PVFormat = *i;
|
|
// adjust for implicit parameter
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
|
|
if (MD->isInstance())
|
|
++PVIndex;
|
|
// We also check if the formats are compatible.
|
|
// We can't pass a 'scanf' string to a 'printf' function.
|
|
if (PVIndex == PVFormat->getFormatIdx() &&
|
|
Type == GetFormatStringType(PVFormat))
|
|
return SLCT_UncheckedLiteral;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXMemberCallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
|
|
if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
|
|
unsigned ArgIndex = FA->getFormatIdx();
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
|
|
if (MD->isInstance())
|
|
--ArgIndex;
|
|
const Expr *Arg = CE->getArg(ArgIndex - 1);
|
|
|
|
return checkFormatStringExpr(Arg, Args, NumArgs,
|
|
HasVAListArg, format_idx, firstDataArg,
|
|
Type, CallType, inFunctionCall);
|
|
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
unsigned BuiltinID = FD->getBuiltinID();
|
|
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
|
|
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
|
|
const Expr *Arg = CE->getArg(0);
|
|
return checkFormatStringExpr(Arg, Args, NumArgs,
|
|
HasVAListArg, format_idx,
|
|
firstDataArg, Type, CallType,
|
|
inFunctionCall);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::StringLiteralClass: {
|
|
const StringLiteral *StrE = NULL;
|
|
|
|
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
|
|
StrE = ObjCFExpr->getString();
|
|
else
|
|
StrE = cast<StringLiteral>(E);
|
|
|
|
if (StrE) {
|
|
CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
|
|
firstDataArg, Type, inFunctionCall, CallType);
|
|
return SLCT_CheckedLiteral;
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
|
|
default:
|
|
return SLCT_NotALiteral;
|
|
}
|
|
}
|
|
|
|
void
|
|
Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
|
|
const Expr * const *ExprArgs,
|
|
SourceLocation CallSiteLoc) {
|
|
for (NonNullAttr::args_iterator i = NonNull->args_begin(),
|
|
e = NonNull->args_end();
|
|
i != e; ++i) {
|
|
const Expr *ArgExpr = ExprArgs[*i];
|
|
if (ArgExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull))
|
|
Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
|
|
return llvm::StringSwitch<FormatStringType>(Format->getType())
|
|
.Case("scanf", FST_Scanf)
|
|
.Cases("printf", "printf0", FST_Printf)
|
|
.Cases("NSString", "CFString", FST_NSString)
|
|
.Case("strftime", FST_Strftime)
|
|
.Case("strfmon", FST_Strfmon)
|
|
.Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
|
|
.Default(FST_Unknown);
|
|
}
|
|
|
|
/// CheckFormatArguments - Check calls to printf and scanf (and similar
|
|
/// functions) for correct use of format strings.
|
|
/// Returns true if a format string has been fully checked.
|
|
bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
|
|
unsigned NumArgs, bool IsCXXMember,
|
|
VariadicCallType CallType,
|
|
SourceLocation Loc, SourceRange Range) {
|
|
FormatStringInfo FSI;
|
|
if (getFormatStringInfo(Format, IsCXXMember, &FSI))
|
|
return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
|
|
FSI.FirstDataArg, GetFormatStringType(Format),
|
|
CallType, Loc, Range);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
|
|
bool HasVAListArg, unsigned format_idx,
|
|
unsigned firstDataArg, FormatStringType Type,
|
|
VariadicCallType CallType,
|
|
SourceLocation Loc, SourceRange Range) {
|
|
// CHECK: printf/scanf-like function is called with no format string.
|
|
if (format_idx >= NumArgs) {
|
|
Diag(Loc, diag::warn_missing_format_string) << Range;
|
|
return false;
|
|
}
|
|
|
|
const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
|
|
|
|
// CHECK: format string is not a string literal.
|
|
//
|
|
// Dynamically generated format strings are difficult to
|
|
// automatically vet at compile time. Requiring that format strings
|
|
// are string literals: (1) permits the checking of format strings by
|
|
// the compiler and thereby (2) can practically remove the source of
|
|
// many format string exploits.
|
|
|
|
// Format string can be either ObjC string (e.g. @"%d") or
|
|
// C string (e.g. "%d")
|
|
// ObjC string uses the same format specifiers as C string, so we can use
|
|
// the same format string checking logic for both ObjC and C strings.
|
|
StringLiteralCheckType CT =
|
|
checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
|
|
format_idx, firstDataArg, Type, CallType);
|
|
if (CT != SLCT_NotALiteral)
|
|
// Literal format string found, check done!
|
|
return CT == SLCT_CheckedLiteral;
|
|
|
|
// Strftime is particular as it always uses a single 'time' argument,
|
|
// so it is safe to pass a non-literal string.
|
|
if (Type == FST_Strftime)
|
|
return false;
|
|
|
|
// Do not emit diag when the string param is a macro expansion and the
|
|
// format is either NSString or CFString. This is a hack to prevent
|
|
// diag when using the NSLocalizedString and CFCopyLocalizedString macros
|
|
// which are usually used in place of NS and CF string literals.
|
|
if (Type == FST_NSString &&
|
|
SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
|
|
return false;
|
|
|
|
// If there are no arguments specified, warn with -Wformat-security, otherwise
|
|
// warn only with -Wformat-nonliteral.
|
|
if (NumArgs == format_idx+1)
|
|
Diag(Args[format_idx]->getLocStart(),
|
|
diag::warn_format_nonliteral_noargs)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
else
|
|
Diag(Args[format_idx]->getLocStart(),
|
|
diag::warn_format_nonliteral)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
|
|
protected:
|
|
Sema &S;
|
|
const StringLiteral *FExpr;
|
|
const Expr *OrigFormatExpr;
|
|
const unsigned FirstDataArg;
|
|
const unsigned NumDataArgs;
|
|
const char *Beg; // Start of format string.
|
|
const bool HasVAListArg;
|
|
const Expr * const *Args;
|
|
const unsigned NumArgs;
|
|
unsigned FormatIdx;
|
|
llvm::BitVector CoveredArgs;
|
|
bool usesPositionalArgs;
|
|
bool atFirstArg;
|
|
bool inFunctionCall;
|
|
Sema::VariadicCallType CallType;
|
|
public:
|
|
CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
|
|
const Expr *origFormatExpr, unsigned firstDataArg,
|
|
unsigned numDataArgs, const char *beg, bool hasVAListArg,
|
|
Expr **args, unsigned numArgs,
|
|
unsigned formatIdx, bool inFunctionCall,
|
|
Sema::VariadicCallType callType)
|
|
: S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
|
|
FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
|
|
Beg(beg), HasVAListArg(hasVAListArg),
|
|
Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
|
|
usesPositionalArgs(false), atFirstArg(true),
|
|
inFunctionCall(inFunctionCall), CallType(callType) {
|
|
CoveredArgs.resize(numDataArgs);
|
|
CoveredArgs.reset();
|
|
}
|
|
|
|
void DoneProcessing();
|
|
|
|
void HandleIncompleteSpecifier(const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
|
|
void HandleInvalidLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
|
|
|
|
void HandleNonStandardLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
|
|
void HandleNonStandardConversionSpecifier(
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
|
|
virtual void HandlePosition(const char *startPos, unsigned posLen);
|
|
|
|
virtual void HandleInvalidPosition(const char *startSpecifier,
|
|
unsigned specifierLen,
|
|
analyze_format_string::PositionContext p);
|
|
|
|
virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
|
|
|
|
void HandleNullChar(const char *nullCharacter);
|
|
|
|
template <typename Range>
|
|
static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
|
|
const Expr *ArgumentExpr,
|
|
PartialDiagnostic PDiag,
|
|
SourceLocation StringLoc,
|
|
bool IsStringLocation, Range StringRange,
|
|
ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
|
|
|
|
protected:
|
|
bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen,
|
|
const char *csStart, unsigned csLen);
|
|
|
|
void HandlePositionalNonpositionalArgs(SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen);
|
|
|
|
SourceRange getFormatStringRange();
|
|
CharSourceRange getSpecifierRange(const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
SourceLocation getLocationOfByte(const char *x);
|
|
|
|
const Expr *getDataArg(unsigned i) const;
|
|
|
|
bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen,
|
|
unsigned argIndex);
|
|
|
|
template <typename Range>
|
|
void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
|
|
bool IsStringLocation, Range StringRange,
|
|
ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
|
|
|
|
void CheckPositionalAndNonpositionalArgs(
|
|
const analyze_format_string::FormatSpecifier *FS);
|
|
};
|
|
}
|
|
|
|
SourceRange CheckFormatHandler::getFormatStringRange() {
|
|
return OrigFormatExpr->getSourceRange();
|
|
}
|
|
|
|
CharSourceRange CheckFormatHandler::
|
|
getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
|
|
SourceLocation Start = getLocationOfByte(startSpecifier);
|
|
SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
|
|
|
|
// Advance the end SourceLocation by one due to half-open ranges.
|
|
End = End.getLocWithOffset(1);
|
|
|
|
return CharSourceRange::getCharRange(Start, End);
|
|
}
|
|
|
|
SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
|
|
return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
|
|
}
|
|
|
|
void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
|
|
unsigned specifierLen){
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
|
|
getLocationOfByte(startSpecifier),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleInvalidLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
|
|
using namespace analyze_format_string;
|
|
|
|
const LengthModifier &LM = FS.getLengthModifier();
|
|
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
|
|
|
|
// See if we know how to fix this length modifier.
|
|
llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
|
|
if (FixedLM) {
|
|
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedLM->toString()
|
|
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
|
|
|
|
} else {
|
|
FixItHint Hint;
|
|
if (DiagID == diag::warn_format_nonsensical_length)
|
|
Hint = FixItHint::CreateRemoval(LMRange);
|
|
|
|
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
Hint);
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNonStandardLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const char *startSpecifier, unsigned specifierLen) {
|
|
using namespace analyze_format_string;
|
|
|
|
const LengthModifier &LM = FS.getLengthModifier();
|
|
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
|
|
|
|
// See if we know how to fix this length modifier.
|
|
llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
|
|
if (FixedLM) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< LM.toString() << 0,
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedLM->toString()
|
|
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
|
|
|
|
} else {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< LM.toString() << 0,
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNonStandardConversionSpecifier(
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen) {
|
|
using namespace analyze_format_string;
|
|
|
|
// See if we know how to fix this conversion specifier.
|
|
llvm::Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
|
|
if (FixedCS) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< CS.toString() << /*conversion specifier*/1,
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
|
|
S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedCS->toString()
|
|
<< FixItHint::CreateReplacement(CSRange, FixedCS->toString());
|
|
} else {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< CS.toString() << /*conversion specifier*/1,
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandlePosition(const char *startPos,
|
|
unsigned posLen) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
|
|
getLocationOfByte(startPos),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startPos, posLen));
|
|
}
|
|
|
|
void
|
|
CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
|
|
analyze_format_string::PositionContext p) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
|
|
<< (unsigned) p,
|
|
getLocationOfByte(startPos), /*IsStringLocation*/true,
|
|
getSpecifierRange(startPos, posLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleZeroPosition(const char *startPos,
|
|
unsigned posLen) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
|
|
getLocationOfByte(startPos),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startPos, posLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
|
|
if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
|
|
// The presence of a null character is likely an error.
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_format_string_contains_null_char),
|
|
getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
|
|
getFormatStringRange());
|
|
}
|
|
}
|
|
|
|
// Note that this may return NULL if there was an error parsing or building
|
|
// one of the argument expressions.
|
|
const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
|
|
return Args[FirstDataArg + i];
|
|
}
|
|
|
|
void CheckFormatHandler::DoneProcessing() {
|
|
// Does the number of data arguments exceed the number of
|
|
// format conversions in the format string?
|
|
if (!HasVAListArg) {
|
|
// Find any arguments that weren't covered.
|
|
CoveredArgs.flip();
|
|
signed notCoveredArg = CoveredArgs.find_first();
|
|
if (notCoveredArg >= 0) {
|
|
assert((unsigned)notCoveredArg < NumDataArgs);
|
|
if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
|
|
SourceLocation Loc = E->getLocStart();
|
|
if (!S.getSourceManager().isInSystemMacro(Loc)) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
|
|
Loc, /*IsStringLocation*/false,
|
|
getFormatStringRange());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
|
|
SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen,
|
|
const char *csStart,
|
|
unsigned csLen) {
|
|
|
|
bool keepGoing = true;
|
|
if (argIndex < NumDataArgs) {
|
|
// Consider the argument coverered, even though the specifier doesn't
|
|
// make sense.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
else {
|
|
// If argIndex exceeds the number of data arguments we
|
|
// don't issue a warning because that is just a cascade of warnings (and
|
|
// they may have intended '%%' anyway). We don't want to continue processing
|
|
// the format string after this point, however, as we will like just get
|
|
// gibberish when trying to match arguments.
|
|
keepGoing = false;
|
|
}
|
|
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
|
|
<< StringRef(csStart, csLen),
|
|
Loc, /*IsStringLocation*/true,
|
|
getSpecifierRange(startSpec, specifierLen));
|
|
|
|
return keepGoing;
|
|
}
|
|
|
|
void
|
|
CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen) {
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
|
|
Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
|
|
}
|
|
|
|
bool
|
|
CheckFormatHandler::CheckNumArgs(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
|
|
|
|
if (argIndex >= NumDataArgs) {
|
|
PartialDiagnostic PDiag = FS.usesPositionalArg()
|
|
? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
|
|
<< (argIndex+1) << NumDataArgs)
|
|
: S.PDiag(diag::warn_printf_insufficient_data_args);
|
|
EmitFormatDiagnostic(
|
|
PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename Range>
|
|
void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
|
|
SourceLocation Loc,
|
|
bool IsStringLocation,
|
|
Range StringRange,
|
|
ArrayRef<FixItHint> FixIt) {
|
|
EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
|
|
Loc, IsStringLocation, StringRange, FixIt);
|
|
}
|
|
|
|
/// \brief If the format string is not within the funcion call, emit a note
|
|
/// so that the function call and string are in diagnostic messages.
|
|
///
|
|
/// \param InFunctionCall if true, the format string is within the function
|
|
/// call and only one diagnostic message will be produced. Otherwise, an
|
|
/// extra note will be emitted pointing to location of the format string.
|
|
///
|
|
/// \param ArgumentExpr the expression that is passed as the format string
|
|
/// argument in the function call. Used for getting locations when two
|
|
/// diagnostics are emitted.
|
|
///
|
|
/// \param PDiag the callee should already have provided any strings for the
|
|
/// diagnostic message. This function only adds locations and fixits
|
|
/// to diagnostics.
|
|
///
|
|
/// \param Loc primary location for diagnostic. If two diagnostics are
|
|
/// required, one will be at Loc and a new SourceLocation will be created for
|
|
/// the other one.
|
|
///
|
|
/// \param IsStringLocation if true, Loc points to the format string should be
|
|
/// used for the note. Otherwise, Loc points to the argument list and will
|
|
/// be used with PDiag.
|
|
///
|
|
/// \param StringRange some or all of the string to highlight. This is
|
|
/// templated so it can accept either a CharSourceRange or a SourceRange.
|
|
///
|
|
/// \param FixIt optional fix it hint for the format string.
|
|
template<typename Range>
|
|
void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
|
|
const Expr *ArgumentExpr,
|
|
PartialDiagnostic PDiag,
|
|
SourceLocation Loc,
|
|
bool IsStringLocation,
|
|
Range StringRange,
|
|
ArrayRef<FixItHint> FixIt) {
|
|
if (InFunctionCall) {
|
|
const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
|
|
D << StringRange;
|
|
for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
|
|
I != E; ++I) {
|
|
D << *I;
|
|
}
|
|
} else {
|
|
S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
|
|
<< ArgumentExpr->getSourceRange();
|
|
|
|
const Sema::SemaDiagnosticBuilder &Note =
|
|
S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
|
|
diag::note_format_string_defined);
|
|
|
|
Note << StringRange;
|
|
for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
|
|
I != E; ++I) {
|
|
Note << *I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Printf format string checking ------------------------------===//
|
|
|
|
namespace {
|
|
class CheckPrintfHandler : public CheckFormatHandler {
|
|
bool ObjCContext;
|
|
public:
|
|
CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
|
|
const Expr *origFormatExpr, unsigned firstDataArg,
|
|
unsigned numDataArgs, bool isObjC,
|
|
const char *beg, bool hasVAListArg,
|
|
Expr **Args, unsigned NumArgs,
|
|
unsigned formatIdx, bool inFunctionCall,
|
|
Sema::VariadicCallType CallType)
|
|
: CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
|
|
numDataArgs, beg, hasVAListArg, Args, NumArgs,
|
|
formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
|
|
{}
|
|
|
|
|
|
bool HandleInvalidPrintfConversionSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
|
|
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *StartSpecifier,
|
|
unsigned SpecifierLen,
|
|
const Expr *E);
|
|
|
|
bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalAmount &Amt,
|
|
unsigned type,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &ignoredFlag,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
bool checkForCStrMembers(const analyze_printf::ArgType &AT,
|
|
const Expr *E, const CharSourceRange &CSR);
|
|
|
|
};
|
|
}
|
|
|
|
bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
|
|
getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen,
|
|
CS.getStart(), CS.getLength());
|
|
}
|
|
|
|
bool CheckPrintfHandler::HandleAmount(
|
|
const analyze_format_string::OptionalAmount &Amt,
|
|
unsigned k, const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
|
|
if (Amt.hasDataArgument()) {
|
|
if (!HasVAListArg) {
|
|
unsigned argIndex = Amt.getArgIndex();
|
|
if (argIndex >= NumDataArgs) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
|
|
<< k,
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
// Don't do any more checking. We will just emit
|
|
// spurious errors.
|
|
return false;
|
|
}
|
|
|
|
// Type check the data argument. It should be an 'int'.
|
|
// Although not in conformance with C99, we also allow the argument to be
|
|
// an 'unsigned int' as that is a reasonably safe case. GCC also
|
|
// doesn't emit a warning for that case.
|
|
CoveredArgs.set(argIndex);
|
|
const Expr *Arg = getDataArg(argIndex);
|
|
if (!Arg)
|
|
return false;
|
|
|
|
QualType T = Arg->getType();
|
|
|
|
const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
|
|
assert(AT.isValid());
|
|
|
|
if (!AT.matchesType(S.Context, T)) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
|
|
<< k << AT.getRepresentativeTypeName(S.Context)
|
|
<< T << Arg->getSourceRange(),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
// Don't do any more checking. We will just emit
|
|
// spurious errors.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleInvalidAmount(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalAmount &Amt,
|
|
unsigned type,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
FixItHint fixit =
|
|
Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
|
|
? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
|
|
Amt.getConstantLength()))
|
|
: FixItHint();
|
|
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
|
|
<< type << CS.toString(),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
fixit);
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
// Warn about pointless flag with a fixit removal.
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
|
|
<< flag.toString() << CS.toString(),
|
|
getLocationOfByte(flag.getPosition()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateRemoval(
|
|
getSpecifierRange(flag.getPosition(), 1)));
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleIgnoredFlag(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &ignoredFlag,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
// Warn about ignored flag with a fixit removal.
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
|
|
<< ignoredFlag.toString() << flag.toString(),
|
|
getLocationOfByte(ignoredFlag.getPosition()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateRemoval(
|
|
getSpecifierRange(ignoredFlag.getPosition(), 1)));
|
|
}
|
|
|
|
// Determines if the specified is a C++ class or struct containing
|
|
// a member with the specified name and kind (e.g. a CXXMethodDecl named
|
|
// "c_str()").
|
|
template<typename MemberKind>
|
|
static llvm::SmallPtrSet<MemberKind*, 1>
|
|
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
llvm::SmallPtrSet<MemberKind*, 1> Results;
|
|
|
|
if (!RT)
|
|
return Results;
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD)
|
|
return Results;
|
|
|
|
LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
|
|
Sema::LookupMemberName);
|
|
|
|
// We just need to include all members of the right kind turned up by the
|
|
// filter, at this point.
|
|
if (S.LookupQualifiedName(R, RT->getDecl()))
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *decl = (*I)->getUnderlyingDecl();
|
|
if (MemberKind *FK = dyn_cast<MemberKind>(decl))
|
|
Results.insert(FK);
|
|
}
|
|
return Results;
|
|
}
|
|
|
|
// Check if a (w)string was passed when a (w)char* was needed, and offer a
|
|
// better diagnostic if so. AT is assumed to be valid.
|
|
// Returns true when a c_str() conversion method is found.
|
|
bool CheckPrintfHandler::checkForCStrMembers(
|
|
const analyze_printf::ArgType &AT, const Expr *E,
|
|
const CharSourceRange &CSR) {
|
|
typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
|
|
|
|
MethodSet Results =
|
|
CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
|
|
|
|
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
|
|
MI != ME; ++MI) {
|
|
const CXXMethodDecl *Method = *MI;
|
|
if (Method->getNumParams() == 0 &&
|
|
AT.matchesType(S.Context, Method->getResultType())) {
|
|
// FIXME: Suggest parens if the expression needs them.
|
|
SourceLocation EndLoc =
|
|
S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
|
|
S.Diag(E->getLocStart(), diag::note_printf_c_str)
|
|
<< "c_str()"
|
|
<< FixItHint::CreateInsertion(EndLoc, ".c_str()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
|
|
&FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
|
|
using namespace analyze_format_string;
|
|
using namespace analyze_printf;
|
|
const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
|
|
|
|
if (FS.consumesDataArgument()) {
|
|
if (atFirstArg) {
|
|
atFirstArg = false;
|
|
usesPositionalArgs = FS.usesPositionalArg();
|
|
}
|
|
else if (usesPositionalArgs != FS.usesPositionalArg()) {
|
|
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// First check if the field width, precision, and conversion specifier
|
|
// have matching data arguments.
|
|
if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
|
|
startSpecifier, specifierLen)) {
|
|
return false;
|
|
}
|
|
|
|
if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
|
|
startSpecifier, specifierLen)) {
|
|
return false;
|
|
}
|
|
|
|
if (!CS.consumesDataArgument()) {
|
|
// FIXME: Technically specifying a precision or field width here
|
|
// makes no sense. Worth issuing a warning at some point.
|
|
return true;
|
|
}
|
|
|
|
// Consume the argument.
|
|
unsigned argIndex = FS.getArgIndex();
|
|
if (argIndex < NumDataArgs) {
|
|
// The check to see if the argIndex is valid will come later.
|
|
// We set the bit here because we may exit early from this
|
|
// function if we encounter some other error.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
|
|
// Check for using an Objective-C specific conversion specifier
|
|
// in a non-ObjC literal.
|
|
if (!ObjCContext && CS.isObjCArg()) {
|
|
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
|
|
specifierLen);
|
|
}
|
|
|
|
// Check for invalid use of field width
|
|
if (!FS.hasValidFieldWidth()) {
|
|
HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
|
|
startSpecifier, specifierLen);
|
|
}
|
|
|
|
// Check for invalid use of precision
|
|
if (!FS.hasValidPrecision()) {
|
|
HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
|
|
startSpecifier, specifierLen);
|
|
}
|
|
|
|
// Check each flag does not conflict with any other component.
|
|
if (!FS.hasValidThousandsGroupingPrefix())
|
|
HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidLeadingZeros())
|
|
HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidPlusPrefix())
|
|
HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidSpacePrefix())
|
|
HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidAlternativeForm())
|
|
HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidLeftJustified())
|
|
HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
|
|
|
|
// Check that flags are not ignored by another flag
|
|
if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
|
|
HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
|
|
startSpecifier, specifierLen);
|
|
if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
|
|
HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
|
|
startSpecifier, specifierLen);
|
|
|
|
// Check the length modifier is valid with the given conversion specifier.
|
|
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_nonsensical_length);
|
|
else if (!FS.hasStandardLengthModifier())
|
|
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
|
|
else if (!FS.hasStandardLengthConversionCombination())
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_non_standard_conversion_spec);
|
|
|
|
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
|
|
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
|
|
|
|
// The remaining checks depend on the data arguments.
|
|
if (HasVAListArg)
|
|
return true;
|
|
|
|
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
|
|
return false;
|
|
|
|
const Expr *Arg = getDataArg(argIndex);
|
|
if (!Arg)
|
|
return true;
|
|
|
|
return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
|
|
}
|
|
|
|
static bool requiresParensToAddCast(const Expr *E) {
|
|
// FIXME: We should have a general way to reason about operator
|
|
// precedence and whether parens are actually needed here.
|
|
// Take care of a few common cases where they aren't.
|
|
const Expr *Inside = E->IgnoreImpCasts();
|
|
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
|
|
Inside = POE->getSyntacticForm()->IgnoreImpCasts();
|
|
|
|
switch (Inside->getStmtClass()) {
|
|
case Stmt::ArraySubscriptExprClass:
|
|
case Stmt::CallExprClass:
|
|
case Stmt::DeclRefExprClass:
|
|
case Stmt::MemberExprClass:
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
case Stmt::ObjCMessageExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
case Stmt::ParenExprClass:
|
|
case Stmt::UnaryOperatorClass:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool
|
|
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *StartSpecifier,
|
|
unsigned SpecifierLen,
|
|
const Expr *E) {
|
|
using namespace analyze_format_string;
|
|
using namespace analyze_printf;
|
|
// Now type check the data expression that matches the
|
|
// format specifier.
|
|
const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
|
|
ObjCContext);
|
|
if (!AT.isValid())
|
|
return true;
|
|
|
|
QualType IntendedTy = E->getType();
|
|
if (AT.matchesType(S.Context, IntendedTy))
|
|
return true;
|
|
|
|
// Look through argument promotions for our error message's reported type.
|
|
// This includes the integral and floating promotions, but excludes array
|
|
// and function pointer decay; seeing that an argument intended to be a
|
|
// string has type 'char [6]' is probably more confusing than 'char *'.
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_IntegralCast ||
|
|
ICE->getCastKind() == CK_FloatingCast) {
|
|
E = ICE->getSubExpr();
|
|
IntendedTy = E->getType();
|
|
|
|
// Check if we didn't match because of an implicit cast from a 'char'
|
|
// or 'short' to an 'int'. This is done because printf is a varargs
|
|
// function.
|
|
if (ICE->getType() == S.Context.IntTy ||
|
|
ICE->getType() == S.Context.UnsignedIntTy) {
|
|
// All further checking is done on the subexpression.
|
|
if (AT.matchesType(S.Context, IntendedTy))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
|
|
// Special-case some of Darwin's platform-independence types.
|
|
if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
|
|
StringRef Name = UserTy->getDecl()->getName();
|
|
IntendedTy = llvm::StringSwitch<QualType>(Name)
|
|
.Case("NSInteger", S.Context.LongTy)
|
|
.Case("NSUInteger", S.Context.UnsignedLongTy)
|
|
.Case("SInt32", S.Context.IntTy)
|
|
.Case("UInt32", S.Context.UnsignedIntTy)
|
|
.Default(IntendedTy);
|
|
}
|
|
}
|
|
|
|
// We may be able to offer a FixItHint if it is a supported type.
|
|
PrintfSpecifier fixedFS = FS;
|
|
bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
|
|
S.Context, ObjCContext);
|
|
|
|
if (success) {
|
|
// Get the fix string from the fixed format specifier
|
|
SmallString<16> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
fixedFS.toString(os);
|
|
|
|
CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
|
|
|
|
if (IntendedTy != E->getType()) {
|
|
// The canonical type for formatting this value is different from the
|
|
// actual type of the expression. (This occurs, for example, with Darwin's
|
|
// NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
|
|
// should be printed as 'long' for 64-bit compatibility.)
|
|
// Rather than emitting a normal format/argument mismatch, we want to
|
|
// add a cast to the recommended type (and correct the format string
|
|
// if necessary).
|
|
SmallString<16> CastBuf;
|
|
llvm::raw_svector_ostream CastFix(CastBuf);
|
|
CastFix << "(";
|
|
IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
|
|
CastFix << ")";
|
|
|
|
SmallVector<FixItHint,4> Hints;
|
|
if (!AT.matchesType(S.Context, IntendedTy))
|
|
Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
|
|
|
|
if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
|
|
// If there's already a cast present, just replace it.
|
|
SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
|
|
Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
|
|
|
|
} else if (!requiresParensToAddCast(E)) {
|
|
// If the expression has high enough precedence,
|
|
// just write the C-style cast.
|
|
Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
|
|
CastFix.str()));
|
|
} else {
|
|
// Otherwise, add parens around the expression as well as the cast.
|
|
CastFix << "(";
|
|
Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
|
|
CastFix.str()));
|
|
|
|
SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
|
|
Hints.push_back(FixItHint::CreateInsertion(After, ")"));
|
|
}
|
|
|
|
// We extract the name from the typedef because we don't want to show
|
|
// the underlying type in the diagnostic.
|
|
const TypedefType *UserTy = cast<TypedefType>(E->getType());
|
|
StringRef Name = UserTy->getDecl()->getName();
|
|
|
|
// Finally, emit the diagnostic.
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
|
|
<< Name << IntendedTy
|
|
<< E->getSourceRange(),
|
|
E->getLocStart(), /*IsStringLocation=*/false,
|
|
SpecRange, Hints);
|
|
} else {
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << IntendedTy
|
|
<< E->getSourceRange(),
|
|
E->getLocStart(),
|
|
/*IsStringLocation*/false,
|
|
SpecRange,
|
|
FixItHint::CreateReplacement(SpecRange, os.str()));
|
|
}
|
|
} else {
|
|
const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
|
|
SpecifierLen);
|
|
// Since the warning for passing non-POD types to variadic functions
|
|
// was deferred until now, we emit a warning for non-POD
|
|
// arguments here.
|
|
if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
|
|
unsigned DiagKind;
|
|
if (E->getType()->isObjCObjectType())
|
|
DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
|
|
else
|
|
DiagKind = diag::warn_non_pod_vararg_with_format_string;
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(DiagKind)
|
|
<< S.getLangOpts().CPlusPlus0x
|
|
<< E->getType()
|
|
<< CallType
|
|
<< AT.getRepresentativeTypeName(S.Context)
|
|
<< CSR
|
|
<< E->getSourceRange(),
|
|
E->getLocStart(), /*IsStringLocation*/false, CSR);
|
|
|
|
checkForCStrMembers(AT, E, CSR);
|
|
} else
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << E->getType()
|
|
<< CSR
|
|
<< E->getSourceRange(),
|
|
E->getLocStart(), /*IsStringLocation*/false, CSR);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===--- CHECK: Scanf format string checking ------------------------------===//
|
|
|
|
namespace {
|
|
class CheckScanfHandler : public CheckFormatHandler {
|
|
public:
|
|
CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
|
|
const Expr *origFormatExpr, unsigned firstDataArg,
|
|
unsigned numDataArgs, const char *beg, bool hasVAListArg,
|
|
Expr **Args, unsigned NumArgs,
|
|
unsigned formatIdx, bool inFunctionCall,
|
|
Sema::VariadicCallType CallType)
|
|
: CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
|
|
numDataArgs, beg, hasVAListArg,
|
|
Args, NumArgs, formatIdx, inFunctionCall, CallType)
|
|
{}
|
|
|
|
bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
|
|
bool HandleInvalidScanfConversionSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
|
|
void HandleIncompleteScanList(const char *start, const char *end);
|
|
};
|
|
}
|
|
|
|
void CheckScanfHandler::HandleIncompleteScanList(const char *start,
|
|
const char *end) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
|
|
getLocationOfByte(end), /*IsStringLocation*/true,
|
|
getSpecifierRange(start, end - start));
|
|
}
|
|
|
|
bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
|
|
const analyze_scanf::ScanfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
|
|
getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen,
|
|
CS.getStart(), CS.getLength());
|
|
}
|
|
|
|
bool CheckScanfHandler::HandleScanfSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
|
|
using namespace analyze_scanf;
|
|
using namespace analyze_format_string;
|
|
|
|
const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
|
|
|
|
// Handle case where '%' and '*' don't consume an argument. These shouldn't
|
|
// be used to decide if we are using positional arguments consistently.
|
|
if (FS.consumesDataArgument()) {
|
|
if (atFirstArg) {
|
|
atFirstArg = false;
|
|
usesPositionalArgs = FS.usesPositionalArg();
|
|
}
|
|
else if (usesPositionalArgs != FS.usesPositionalArg()) {
|
|
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check if the field with is non-zero.
|
|
const OptionalAmount &Amt = FS.getFieldWidth();
|
|
if (Amt.getHowSpecified() == OptionalAmount::Constant) {
|
|
if (Amt.getConstantAmount() == 0) {
|
|
const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
|
|
Amt.getConstantLength());
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true, R,
|
|
FixItHint::CreateRemoval(R));
|
|
}
|
|
}
|
|
|
|
if (!FS.consumesDataArgument()) {
|
|
// FIXME: Technically specifying a precision or field width here
|
|
// makes no sense. Worth issuing a warning at some point.
|
|
return true;
|
|
}
|
|
|
|
// Consume the argument.
|
|
unsigned argIndex = FS.getArgIndex();
|
|
if (argIndex < NumDataArgs) {
|
|
// The check to see if the argIndex is valid will come later.
|
|
// We set the bit here because we may exit early from this
|
|
// function if we encounter some other error.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
|
|
// Check the length modifier is valid with the given conversion specifier.
|
|
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_nonsensical_length);
|
|
else if (!FS.hasStandardLengthModifier())
|
|
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
|
|
else if (!FS.hasStandardLengthConversionCombination())
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_non_standard_conversion_spec);
|
|
|
|
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
|
|
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
|
|
|
|
// The remaining checks depend on the data arguments.
|
|
if (HasVAListArg)
|
|
return true;
|
|
|
|
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
|
|
return false;
|
|
|
|
// Check that the argument type matches the format specifier.
|
|
const Expr *Ex = getDataArg(argIndex);
|
|
if (!Ex)
|
|
return true;
|
|
|
|
const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
|
|
if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
|
|
ScanfSpecifier fixedFS = FS;
|
|
bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
|
|
S.Context);
|
|
|
|
if (success) {
|
|
// Get the fix string from the fixed format specifier.
|
|
SmallString<128> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
fixedFS.toString(os);
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << Ex->getType()
|
|
<< Ex->getSourceRange(),
|
|
Ex->getLocStart(),
|
|
/*IsStringLocation*/false,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateReplacement(
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
os.str()));
|
|
} else {
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << Ex->getType()
|
|
<< Ex->getSourceRange(),
|
|
Ex->getLocStart(),
|
|
/*IsStringLocation*/false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::CheckFormatString(const StringLiteral *FExpr,
|
|
const Expr *OrigFormatExpr,
|
|
Expr **Args, unsigned NumArgs,
|
|
bool HasVAListArg, unsigned format_idx,
|
|
unsigned firstDataArg, FormatStringType Type,
|
|
bool inFunctionCall, VariadicCallType CallType) {
|
|
|
|
// CHECK: is the format string a wide literal?
|
|
if (!FExpr->isAscii() && !FExpr->isUTF8()) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
*this, inFunctionCall, Args[format_idx],
|
|
PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
|
|
/*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
StringRef StrRef = FExpr->getString();
|
|
const char *Str = StrRef.data();
|
|
unsigned StrLen = StrRef.size();
|
|
const unsigned numDataArgs = NumArgs - firstDataArg;
|
|
|
|
// CHECK: empty format string?
|
|
if (StrLen == 0 && numDataArgs > 0) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
*this, inFunctionCall, Args[format_idx],
|
|
PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
|
|
/*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
if (Type == FST_Printf || Type == FST_NSString) {
|
|
CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
|
|
numDataArgs, (Type == FST_NSString),
|
|
Str, HasVAListArg, Args, NumArgs, format_idx,
|
|
inFunctionCall, CallType);
|
|
|
|
if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
|
|
getLangOpts(),
|
|
Context.getTargetInfo()))
|
|
H.DoneProcessing();
|
|
} else if (Type == FST_Scanf) {
|
|
CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
|
|
Str, HasVAListArg, Args, NumArgs, format_idx,
|
|
inFunctionCall, CallType);
|
|
|
|
if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
|
|
getLangOpts(),
|
|
Context.getTargetInfo()))
|
|
H.DoneProcessing();
|
|
} // TODO: handle other formats
|
|
}
|
|
|
|
//===--- CHECK: Standard memory functions ---------------------------------===//
|
|
|
|
/// \brief Determine whether the given type is a dynamic class type (e.g.,
|
|
/// whether it has a vtable).
|
|
static bool isDynamicClassType(QualType T) {
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
|
|
if (CXXRecordDecl *Definition = Record->getDefinition())
|
|
if (Definition->isDynamicClass())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief If E is a sizeof expression, returns its argument expression,
|
|
/// otherwise returns NULL.
|
|
static const Expr *getSizeOfExprArg(const Expr* E) {
|
|
if (const UnaryExprOrTypeTraitExpr *SizeOf =
|
|
dyn_cast<UnaryExprOrTypeTraitExpr>(E))
|
|
if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
|
|
return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief If E is a sizeof expression, returns its argument type.
|
|
static QualType getSizeOfArgType(const Expr* E) {
|
|
if (const UnaryExprOrTypeTraitExpr *SizeOf =
|
|
dyn_cast<UnaryExprOrTypeTraitExpr>(E))
|
|
if (SizeOf->getKind() == clang::UETT_SizeOf)
|
|
return SizeOf->getTypeOfArgument();
|
|
|
|
return QualType();
|
|
}
|
|
|
|
/// \brief Check for dangerous or invalid arguments to memset().
|
|
///
|
|
/// This issues warnings on known problematic, dangerous or unspecified
|
|
/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
|
|
/// function calls.
|
|
///
|
|
/// \param Call The call expression to diagnose.
|
|
void Sema::CheckMemaccessArguments(const CallExpr *Call,
|
|
unsigned BId,
|
|
IdentifierInfo *FnName) {
|
|
assert(BId != 0);
|
|
|
|
// It is possible to have a non-standard definition of memset. Validate
|
|
// we have enough arguments, and if not, abort further checking.
|
|
unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
|
|
if (Call->getNumArgs() < ExpectedNumArgs)
|
|
return;
|
|
|
|
unsigned LastArg = (BId == Builtin::BImemset ||
|
|
BId == Builtin::BIstrndup ? 1 : 2);
|
|
unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
|
|
const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
|
|
|
|
// We have special checking when the length is a sizeof expression.
|
|
QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
|
|
const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
|
|
llvm::FoldingSetNodeID SizeOfArgID;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
|
|
const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
|
|
SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
|
|
|
|
QualType DestTy = Dest->getType();
|
|
if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
|
|
QualType PointeeTy = DestPtrTy->getPointeeType();
|
|
|
|
// Never warn about void type pointers. This can be used to suppress
|
|
// false positives.
|
|
if (PointeeTy->isVoidType())
|
|
continue;
|
|
|
|
// Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
|
|
// actually comparing the expressions for equality. Because computing the
|
|
// expression IDs can be expensive, we only do this if the diagnostic is
|
|
// enabled.
|
|
if (SizeOfArg &&
|
|
Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
|
|
SizeOfArg->getExprLoc())) {
|
|
// We only compute IDs for expressions if the warning is enabled, and
|
|
// cache the sizeof arg's ID.
|
|
if (SizeOfArgID == llvm::FoldingSetNodeID())
|
|
SizeOfArg->Profile(SizeOfArgID, Context, true);
|
|
llvm::FoldingSetNodeID DestID;
|
|
Dest->Profile(DestID, Context, true);
|
|
if (DestID == SizeOfArgID) {
|
|
// TODO: For strncpy() and friends, this could suggest sizeof(dst)
|
|
// over sizeof(src) as well.
|
|
unsigned ActionIdx = 0; // Default is to suggest dereferencing.
|
|
StringRef ReadableName = FnName->getName();
|
|
|
|
if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
|
|
if (UnaryOp->getOpcode() == UO_AddrOf)
|
|
ActionIdx = 1; // If its an address-of operator, just remove it.
|
|
if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
|
|
ActionIdx = 2; // If the pointee's size is sizeof(char),
|
|
// suggest an explicit length.
|
|
|
|
// If the function is defined as a builtin macro, do not show macro
|
|
// expansion.
|
|
SourceLocation SL = SizeOfArg->getExprLoc();
|
|
SourceRange DSR = Dest->getSourceRange();
|
|
SourceRange SSR = SizeOfArg->getSourceRange();
|
|
SourceManager &SM = PP.getSourceManager();
|
|
|
|
if (SM.isMacroArgExpansion(SL)) {
|
|
ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
|
|
SL = SM.getSpellingLoc(SL);
|
|
DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
|
|
SM.getSpellingLoc(DSR.getEnd()));
|
|
SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
|
|
SM.getSpellingLoc(SSR.getEnd()));
|
|
}
|
|
|
|
DiagRuntimeBehavior(SL, SizeOfArg,
|
|
PDiag(diag::warn_sizeof_pointer_expr_memaccess)
|
|
<< ReadableName
|
|
<< PointeeTy
|
|
<< DestTy
|
|
<< DSR
|
|
<< SSR);
|
|
DiagRuntimeBehavior(SL, SizeOfArg,
|
|
PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
|
|
<< ActionIdx
|
|
<< SSR);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Also check for cases where the sizeof argument is the exact same
|
|
// type as the memory argument, and where it points to a user-defined
|
|
// record type.
|
|
if (SizeOfArgTy != QualType()) {
|
|
if (PointeeTy->isRecordType() &&
|
|
Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
|
|
DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
|
|
PDiag(diag::warn_sizeof_pointer_type_memaccess)
|
|
<< FnName << SizeOfArgTy << ArgIdx
|
|
<< PointeeTy << Dest->getSourceRange()
|
|
<< LenExpr->getSourceRange());
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Always complain about dynamic classes.
|
|
if (isDynamicClassType(PointeeTy)) {
|
|
|
|
unsigned OperationType = 0;
|
|
// "overwritten" if we're warning about the destination for any call
|
|
// but memcmp; otherwise a verb appropriate to the call.
|
|
if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
|
|
if (BId == Builtin::BImemcpy)
|
|
OperationType = 1;
|
|
else if(BId == Builtin::BImemmove)
|
|
OperationType = 2;
|
|
else if (BId == Builtin::BImemcmp)
|
|
OperationType = 3;
|
|
}
|
|
|
|
DiagRuntimeBehavior(
|
|
Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_dyn_class_memaccess)
|
|
<< (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
|
|
<< FnName << PointeeTy
|
|
<< OperationType
|
|
<< Call->getCallee()->getSourceRange());
|
|
} else if (PointeeTy.hasNonTrivialObjCLifetime() &&
|
|
BId != Builtin::BImemset)
|
|
DiagRuntimeBehavior(
|
|
Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_arc_object_memaccess)
|
|
<< ArgIdx << FnName << PointeeTy
|
|
<< Call->getCallee()->getSourceRange());
|
|
else
|
|
continue;
|
|
|
|
DiagRuntimeBehavior(
|
|
Dest->getExprLoc(), Dest,
|
|
PDiag(diag::note_bad_memaccess_silence)
|
|
<< FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// A little helper routine: ignore addition and subtraction of integer literals.
|
|
// This intentionally does not ignore all integer constant expressions because
|
|
// we don't want to remove sizeof().
|
|
static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
|
|
Ex = Ex->IgnoreParenCasts();
|
|
|
|
for (;;) {
|
|
const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
|
|
if (!BO || !BO->isAdditiveOp())
|
|
break;
|
|
|
|
const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
|
|
const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
|
|
|
|
if (isa<IntegerLiteral>(RHS))
|
|
Ex = LHS;
|
|
else if (isa<IntegerLiteral>(LHS))
|
|
Ex = RHS;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return Ex;
|
|
}
|
|
|
|
static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
|
|
ASTContext &Context) {
|
|
// Only handle constant-sized or VLAs, but not flexible members.
|
|
if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
|
|
// Only issue the FIXIT for arrays of size > 1.
|
|
if (CAT->getSize().getSExtValue() <= 1)
|
|
return false;
|
|
} else if (!Ty->isVariableArrayType()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Warn if the user has made the 'size' argument to strlcpy or strlcat
|
|
// be the size of the source, instead of the destination.
|
|
void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
|
|
IdentifierInfo *FnName) {
|
|
|
|
// Don't crash if the user has the wrong number of arguments
|
|
if (Call->getNumArgs() != 3)
|
|
return;
|
|
|
|
const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
|
|
const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
|
|
const Expr *CompareWithSrc = NULL;
|
|
|
|
// Look for 'strlcpy(dst, x, sizeof(x))'
|
|
if (const Expr *Ex = getSizeOfExprArg(SizeArg))
|
|
CompareWithSrc = Ex;
|
|
else {
|
|
// Look for 'strlcpy(dst, x, strlen(x))'
|
|
if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
|
|
if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
|
|
&& SizeCall->getNumArgs() == 1)
|
|
CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
|
|
}
|
|
}
|
|
|
|
if (!CompareWithSrc)
|
|
return;
|
|
|
|
// Determine if the argument to sizeof/strlen is equal to the source
|
|
// argument. In principle there's all kinds of things you could do
|
|
// here, for instance creating an == expression and evaluating it with
|
|
// EvaluateAsBooleanCondition, but this uses a more direct technique:
|
|
const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
|
|
if (!SrcArgDRE)
|
|
return;
|
|
|
|
const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
|
|
if (!CompareWithSrcDRE ||
|
|
SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
|
|
return;
|
|
|
|
const Expr *OriginalSizeArg = Call->getArg(2);
|
|
Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
|
|
<< OriginalSizeArg->getSourceRange() << FnName;
|
|
|
|
// Output a FIXIT hint if the destination is an array (rather than a
|
|
// pointer to an array). This could be enhanced to handle some
|
|
// pointers if we know the actual size, like if DstArg is 'array+2'
|
|
// we could say 'sizeof(array)-2'.
|
|
const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
|
|
if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
|
|
return;
|
|
|
|
SmallString<128> sizeString;
|
|
llvm::raw_svector_ostream OS(sizeString);
|
|
OS << "sizeof(";
|
|
DstArg->printPretty(OS, 0, getPrintingPolicy());
|
|
OS << ")";
|
|
|
|
Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
|
|
<< FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
|
|
OS.str());
|
|
}
|
|
|
|
/// Check if two expressions refer to the same declaration.
|
|
static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
|
|
if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
|
|
if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
|
|
return D1->getDecl() == D2->getDecl();
|
|
return false;
|
|
}
|
|
|
|
static const Expr *getStrlenExprArg(const Expr *E) {
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
const FunctionDecl *FD = CE->getDirectCallee();
|
|
if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
|
|
return 0;
|
|
return CE->getArg(0)->IgnoreParenCasts();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Warn on anti-patterns as the 'size' argument to strncat.
|
|
// The correct size argument should look like following:
|
|
// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
|
|
void Sema::CheckStrncatArguments(const CallExpr *CE,
|
|
IdentifierInfo *FnName) {
|
|
// Don't crash if the user has the wrong number of arguments.
|
|
if (CE->getNumArgs() < 3)
|
|
return;
|
|
const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
|
|
const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
|
|
const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
|
|
|
|
// Identify common expressions, which are wrongly used as the size argument
|
|
// to strncat and may lead to buffer overflows.
|
|
unsigned PatternType = 0;
|
|
if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
|
|
// - sizeof(dst)
|
|
if (referToTheSameDecl(SizeOfArg, DstArg))
|
|
PatternType = 1;
|
|
// - sizeof(src)
|
|
else if (referToTheSameDecl(SizeOfArg, SrcArg))
|
|
PatternType = 2;
|
|
} else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
|
|
if (BE->getOpcode() == BO_Sub) {
|
|
const Expr *L = BE->getLHS()->IgnoreParenCasts();
|
|
const Expr *R = BE->getRHS()->IgnoreParenCasts();
|
|
// - sizeof(dst) - strlen(dst)
|
|
if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
|
|
referToTheSameDecl(DstArg, getStrlenExprArg(R)))
|
|
PatternType = 1;
|
|
// - sizeof(src) - (anything)
|
|
else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
|
|
PatternType = 2;
|
|
}
|
|
}
|
|
|
|
if (PatternType == 0)
|
|
return;
|
|
|
|
// Generate the diagnostic.
|
|
SourceLocation SL = LenArg->getLocStart();
|
|
SourceRange SR = LenArg->getSourceRange();
|
|
SourceManager &SM = PP.getSourceManager();
|
|
|
|
// If the function is defined as a builtin macro, do not show macro expansion.
|
|
if (SM.isMacroArgExpansion(SL)) {
|
|
SL = SM.getSpellingLoc(SL);
|
|
SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
|
|
SM.getSpellingLoc(SR.getEnd()));
|
|
}
|
|
|
|
// Check if the destination is an array (rather than a pointer to an array).
|
|
QualType DstTy = DstArg->getType();
|
|
bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
|
|
Context);
|
|
if (!isKnownSizeArray) {
|
|
if (PatternType == 1)
|
|
Diag(SL, diag::warn_strncat_wrong_size) << SR;
|
|
else
|
|
Diag(SL, diag::warn_strncat_src_size) << SR;
|
|
return;
|
|
}
|
|
|
|
if (PatternType == 1)
|
|
Diag(SL, diag::warn_strncat_large_size) << SR;
|
|
else
|
|
Diag(SL, diag::warn_strncat_src_size) << SR;
|
|
|
|
SmallString<128> sizeString;
|
|
llvm::raw_svector_ostream OS(sizeString);
|
|
OS << "sizeof(";
|
|
DstArg->printPretty(OS, 0, getPrintingPolicy());
|
|
OS << ") - ";
|
|
OS << "strlen(";
|
|
DstArg->printPretty(OS, 0, getPrintingPolicy());
|
|
OS << ") - 1";
|
|
|
|
Diag(SL, diag::note_strncat_wrong_size)
|
|
<< FixItHint::CreateReplacement(SR, OS.str());
|
|
}
|
|
|
|
//===--- CHECK: Return Address of Stack Variable --------------------------===//
|
|
|
|
static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
|
|
Decl *ParentDecl);
|
|
static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
|
|
Decl *ParentDecl);
|
|
|
|
/// CheckReturnStackAddr - Check if a return statement returns the address
|
|
/// of a stack variable.
|
|
void
|
|
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc) {
|
|
|
|
Expr *stackE = 0;
|
|
SmallVector<DeclRefExpr *, 8> refVars;
|
|
|
|
// Perform checking for returned stack addresses, local blocks,
|
|
// label addresses or references to temporaries.
|
|
if (lhsType->isPointerType() ||
|
|
(!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
|
|
stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
|
|
} else if (lhsType->isReferenceType()) {
|
|
stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
|
|
}
|
|
|
|
if (stackE == 0)
|
|
return; // Nothing suspicious was found.
|
|
|
|
SourceLocation diagLoc;
|
|
SourceRange diagRange;
|
|
if (refVars.empty()) {
|
|
diagLoc = stackE->getLocStart();
|
|
diagRange = stackE->getSourceRange();
|
|
} else {
|
|
// We followed through a reference variable. 'stackE' contains the
|
|
// problematic expression but we will warn at the return statement pointing
|
|
// at the reference variable. We will later display the "trail" of
|
|
// reference variables using notes.
|
|
diagLoc = refVars[0]->getLocStart();
|
|
diagRange = refVars[0]->getSourceRange();
|
|
}
|
|
|
|
if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
|
|
Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
|
|
: diag::warn_ret_stack_addr)
|
|
<< DR->getDecl()->getDeclName() << diagRange;
|
|
} else if (isa<BlockExpr>(stackE)) { // local block.
|
|
Diag(diagLoc, diag::err_ret_local_block) << diagRange;
|
|
} else if (isa<AddrLabelExpr>(stackE)) { // address of label.
|
|
Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
|
|
} else { // local temporary.
|
|
Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
|
|
: diag::warn_ret_local_temp_addr)
|
|
<< diagRange;
|
|
}
|
|
|
|
// Display the "trail" of reference variables that we followed until we
|
|
// found the problematic expression using notes.
|
|
for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
|
|
VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
|
|
// If this var binds to another reference var, show the range of the next
|
|
// var, otherwise the var binds to the problematic expression, in which case
|
|
// show the range of the expression.
|
|
SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
|
|
: stackE->getSourceRange();
|
|
Diag(VD->getLocation(), diag::note_ref_var_local_bind)
|
|
<< VD->getDeclName() << range;
|
|
}
|
|
}
|
|
|
|
/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
|
|
/// check if the expression in a return statement evaluates to an address
|
|
/// to a location on the stack, a local block, an address of a label, or a
|
|
/// reference to local temporary. The recursion is used to traverse the
|
|
/// AST of the return expression, with recursion backtracking when we
|
|
/// encounter a subexpression that (1) clearly does not lead to one of the
|
|
/// above problematic expressions (2) is something we cannot determine leads to
|
|
/// a problematic expression based on such local checking.
|
|
///
|
|
/// Both EvalAddr and EvalVal follow through reference variables to evaluate
|
|
/// the expression that they point to. Such variables are added to the
|
|
/// 'refVars' vector so that we know what the reference variable "trail" was.
|
|
///
|
|
/// EvalAddr processes expressions that are pointers that are used as
|
|
/// references (and not L-values). EvalVal handles all other values.
|
|
/// At the base case of the recursion is a check for the above problematic
|
|
/// expressions.
|
|
///
|
|
/// This implementation handles:
|
|
///
|
|
/// * pointer-to-pointer casts
|
|
/// * implicit conversions from array references to pointers
|
|
/// * taking the address of fields
|
|
/// * arbitrary interplay between "&" and "*" operators
|
|
/// * pointer arithmetic from an address of a stack variable
|
|
/// * taking the address of an array element where the array is on the stack
|
|
static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
|
|
Decl *ParentDecl) {
|
|
if (E->isTypeDependent())
|
|
return NULL;
|
|
|
|
// We should only be called for evaluating pointer expressions.
|
|
assert((E->getType()->isAnyPointerType() ||
|
|
E->getType()->isBlockPointerType() ||
|
|
E->getType()->isObjCQualifiedIdType()) &&
|
|
"EvalAddr only works on pointers");
|
|
|
|
E = E->IgnoreParens();
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass: {
|
|
DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
|
|
// If this is a reference variable, follow through to the expression that
|
|
// it points to.
|
|
if (V->hasLocalStorage() &&
|
|
V->getType()->isReferenceType() && V->hasInit()) {
|
|
// Add the reference variable to the "trail".
|
|
refVars.push_back(DR);
|
|
return EvalAddr(V->getInit(), refVars, ParentDecl);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is AddrOf. All others don't make sense as pointers.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UO_AddrOf)
|
|
return EvalVal(U->getSubExpr(), refVars, ParentDecl);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
// Handle pointer arithmetic. All other binary operators are not valid
|
|
// in this context.
|
|
BinaryOperator *B = cast<BinaryOperator>(E);
|
|
BinaryOperatorKind op = B->getOpcode();
|
|
|
|
if (op != BO_Add && op != BO_Sub)
|
|
return NULL;
|
|
|
|
Expr *Base = B->getLHS();
|
|
|
|
// Determine which argument is the real pointer base. It could be
|
|
// the RHS argument instead of the LHS.
|
|
if (!Base->getType()->isPointerType()) Base = B->getRHS();
|
|
|
|
assert (Base->getType()->isPointerType());
|
|
return EvalAddr(Base, refVars, ParentDecl);
|
|
}
|
|
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// valid DeclRefExpr*s. If one of them is valid, we return it.
|
|
case Stmt::ConditionalOperatorClass: {
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS()) {
|
|
// In C++, we can have a throw-expression, which has 'void' type.
|
|
if (!lhsExpr->getType()->isVoidType())
|
|
if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
|
|
return LHS;
|
|
}
|
|
|
|
// In C++, we can have a throw-expression, which has 'void' type.
|
|
if (C->getRHS()->getType()->isVoidType())
|
|
return NULL;
|
|
|
|
return EvalAddr(C->getRHS(), refVars, ParentDecl);
|
|
}
|
|
|
|
case Stmt::BlockExprClass:
|
|
if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
|
|
return E; // local block.
|
|
return NULL;
|
|
|
|
case Stmt::AddrLabelExprClass:
|
|
return E; // address of label.
|
|
|
|
case Stmt::ExprWithCleanupsClass:
|
|
return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
|
|
ParentDecl);
|
|
|
|
// For casts, we need to handle conversions from arrays to
|
|
// pointer values, and pointer-to-pointer conversions.
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass:
|
|
case Stmt::ObjCBridgedCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass: {
|
|
Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
|
|
switch (cast<CastExpr>(E)->getCastKind()) {
|
|
case CK_BitCast:
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
case CK_BaseToDerived:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_Dynamic:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
return EvalAddr(SubExpr, refVars, ParentDecl);
|
|
|
|
case CK_ArrayToPointerDecay:
|
|
return EvalVal(SubExpr, refVars, ParentDecl);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
case Stmt::MaterializeTemporaryExprClass:
|
|
if (Expr *Result = EvalAddr(
|
|
cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
|
|
refVars, ParentDecl))
|
|
return Result;
|
|
|
|
return E;
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/// EvalVal - This function is complements EvalAddr in the mutual recursion.
|
|
/// See the comments for EvalAddr for more details.
|
|
static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
|
|
Decl *ParentDecl) {
|
|
do {
|
|
// We should only be called for evaluating non-pointer expressions, or
|
|
// expressions with a pointer type that are not used as references but instead
|
|
// are l-values (e.g., DeclRefExpr with a pointer type).
|
|
|
|
// Our "symbolic interpreter" is just a dispatch off the currently
|
|
// viewed AST node. We then recursively traverse the AST by calling
|
|
// EvalAddr and EvalVal appropriately.
|
|
|
|
E = E->IgnoreParens();
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::ImplicitCastExprClass: {
|
|
ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
|
|
if (IE->getValueKind() == VK_LValue) {
|
|
E = IE->getSubExpr();
|
|
continue;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ExprWithCleanupsClass:
|
|
return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
// When we hit a DeclRefExpr we are looking at code that refers to a
|
|
// variable's name. If it's not a reference variable we check if it has
|
|
// local storage within the function, and if so, return the expression.
|
|
DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
|
|
// Check if it refers to itself, e.g. "int& i = i;".
|
|
if (V == ParentDecl)
|
|
return DR;
|
|
|
|
if (V->hasLocalStorage()) {
|
|
if (!V->getType()->isReferenceType())
|
|
return DR;
|
|
|
|
// Reference variable, follow through to the expression that
|
|
// it points to.
|
|
if (V->hasInit()) {
|
|
// Add the reference variable to the "trail".
|
|
refVars.push_back(DR);
|
|
return EvalVal(V->getInit(), refVars, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is Deref. All others don't resolve to a "name." This includes
|
|
// handling all sorts of rvalues passed to a unary operator.
|
|
UnaryOperator *U = cast<UnaryOperator>(E);
|
|
|
|
if (U->getOpcode() == UO_Deref)
|
|
return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// Array subscripts are potential references to data on the stack. We
|
|
// retrieve the DeclRefExpr* for the array variable if it indeed
|
|
// has local storage.
|
|
return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// For conditional operators we need to see if either the LHS or RHS are
|
|
// non-NULL Expr's. If one is non-NULL, we return it.
|
|
ConditionalOperator *C = cast<ConditionalOperator>(E);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
if (Expr *lhsExpr = C->getLHS())
|
|
if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
|
|
return LHS;
|
|
|
|
return EvalVal(C->getRHS(), refVars, ParentDecl);
|
|
}
|
|
|
|
// Accesses to members are potential references to data on the stack.
|
|
case Stmt::MemberExprClass: {
|
|
MemberExpr *M = cast<MemberExpr>(E);
|
|
|
|
// Check for indirect access. We only want direct field accesses.
|
|
if (M->isArrow())
|
|
return NULL;
|
|
|
|
// Check whether the member type is itself a reference, in which case
|
|
// we're not going to refer to the member, but to what the member refers to.
|
|
if (M->getMemberDecl()->getType()->isReferenceType())
|
|
return NULL;
|
|
|
|
return EvalVal(M->getBase(), refVars, ParentDecl);
|
|
}
|
|
|
|
case Stmt::MaterializeTemporaryExprClass:
|
|
if (Expr *Result = EvalVal(
|
|
cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
|
|
refVars, ParentDecl))
|
|
return Result;
|
|
|
|
return E;
|
|
|
|
default:
|
|
// Check that we don't return or take the address of a reference to a
|
|
// temporary. This is only useful in C++.
|
|
if (!E->isTypeDependent() && E->isRValue())
|
|
return E;
|
|
|
|
// Everything else: we simply don't reason about them.
|
|
return NULL;
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
|
|
|
|
/// Check for comparisons of floating point operands using != and ==.
|
|
/// Issue a warning if these are no self-comparisons, as they are not likely
|
|
/// to do what the programmer intended.
|
|
void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
|
|
Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
|
|
Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
|
|
|
|
// Special case: check for x == x (which is OK).
|
|
// Do not emit warnings for such cases.
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
return;
|
|
|
|
|
|
// Special case: check for comparisons against literals that can be exactly
|
|
// represented by APFloat. In such cases, do not emit a warning. This
|
|
// is a heuristic: often comparison against such literals are used to
|
|
// detect if a value in a variable has not changed. This clearly can
|
|
// lead to false negatives.
|
|
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
|
|
if (FLL->isExact())
|
|
return;
|
|
} else
|
|
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
|
|
if (FLR->isExact())
|
|
return;
|
|
|
|
// Check for comparisons with builtin types.
|
|
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
|
|
if (CL->isBuiltinCall())
|
|
return;
|
|
|
|
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
|
|
if (CR->isBuiltinCall())
|
|
return;
|
|
|
|
// Emit the diagnostic.
|
|
Diag(Loc, diag::warn_floatingpoint_eq)
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
}
|
|
|
|
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
|
|
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
|
|
|
|
namespace {
|
|
|
|
/// Structure recording the 'active' range of an integer-valued
|
|
/// expression.
|
|
struct IntRange {
|
|
/// The number of bits active in the int.
|
|
unsigned Width;
|
|
|
|
/// True if the int is known not to have negative values.
|
|
bool NonNegative;
|
|
|
|
IntRange(unsigned Width, bool NonNegative)
|
|
: Width(Width), NonNegative(NonNegative)
|
|
{}
|
|
|
|
/// Returns the range of the bool type.
|
|
static IntRange forBoolType() {
|
|
return IntRange(1, true);
|
|
}
|
|
|
|
/// Returns the range of an opaque value of the given integral type.
|
|
static IntRange forValueOfType(ASTContext &C, QualType T) {
|
|
return forValueOfCanonicalType(C,
|
|
T->getCanonicalTypeInternal().getTypePtr());
|
|
}
|
|
|
|
/// Returns the range of an opaque value of a canonical integral type.
|
|
static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
|
|
// For enum types, use the known bit width of the enumerators.
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T)) {
|
|
EnumDecl *Enum = ET->getDecl();
|
|
if (!Enum->isCompleteDefinition())
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), false);
|
|
|
|
unsigned NumPositive = Enum->getNumPositiveBits();
|
|
unsigned NumNegative = Enum->getNumNegativeBits();
|
|
|
|
return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
|
|
}
|
|
|
|
const BuiltinType *BT = cast<BuiltinType>(T);
|
|
assert(BT->isInteger());
|
|
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
|
|
}
|
|
|
|
/// Returns the "target" range of a canonical integral type, i.e.
|
|
/// the range of values expressible in the type.
|
|
///
|
|
/// This matches forValueOfCanonicalType except that enums have the
|
|
/// full range of their type, not the range of their enumerators.
|
|
static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
|
T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
|
|
|
|
const BuiltinType *BT = cast<BuiltinType>(T);
|
|
assert(BT->isInteger());
|
|
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
|
|
}
|
|
|
|
/// Returns the supremum of two ranges: i.e. their conservative merge.
|
|
static IntRange join(IntRange L, IntRange R) {
|
|
return IntRange(std::max(L.Width, R.Width),
|
|
L.NonNegative && R.NonNegative);
|
|
}
|
|
|
|
/// Returns the infinum of two ranges: i.e. their aggressive merge.
|
|
static IntRange meet(IntRange L, IntRange R) {
|
|
return IntRange(std::min(L.Width, R.Width),
|
|
L.NonNegative || R.NonNegative);
|
|
}
|
|
};
|
|
|
|
static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
|
|
unsigned MaxWidth) {
|
|
if (value.isSigned() && value.isNegative())
|
|
return IntRange(value.getMinSignedBits(), false);
|
|
|
|
if (value.getBitWidth() > MaxWidth)
|
|
value = value.trunc(MaxWidth);
|
|
|
|
// isNonNegative() just checks the sign bit without considering
|
|
// signedness.
|
|
return IntRange(value.getActiveBits(), true);
|
|
}
|
|
|
|
static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
|
|
unsigned MaxWidth) {
|
|
if (result.isInt())
|
|
return GetValueRange(C, result.getInt(), MaxWidth);
|
|
|
|
if (result.isVector()) {
|
|
IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
|
|
for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
|
|
IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
|
|
R = IntRange::join(R, El);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
if (result.isComplexInt()) {
|
|
IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
|
|
IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
|
|
return IntRange::join(R, I);
|
|
}
|
|
|
|
// This can happen with lossless casts to intptr_t of "based" lvalues.
|
|
// Assume it might use arbitrary bits.
|
|
// FIXME: The only reason we need to pass the type in here is to get
|
|
// the sign right on this one case. It would be nice if APValue
|
|
// preserved this.
|
|
assert(result.isLValue() || result.isAddrLabelDiff());
|
|
return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
|
|
}
|
|
|
|
/// Pseudo-evaluate the given integer expression, estimating the
|
|
/// range of values it might take.
|
|
///
|
|
/// \param MaxWidth - the width to which the value will be truncated
|
|
static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Try a full evaluation first.
|
|
Expr::EvalResult result;
|
|
if (E->EvaluateAsRValue(result, C))
|
|
return GetValueRange(C, result.Val, E->getType(), MaxWidth);
|
|
|
|
// I think we only want to look through implicit casts here; if the
|
|
// user has an explicit widening cast, we should treat the value as
|
|
// being of the new, wider type.
|
|
if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
|
|
return GetExprRange(C, CE->getSubExpr(), MaxWidth);
|
|
|
|
IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
|
|
|
|
bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
|
|
|
|
// Assume that non-integer casts can span the full range of the type.
|
|
if (!isIntegerCast)
|
|
return OutputTypeRange;
|
|
|
|
IntRange SubRange
|
|
= GetExprRange(C, CE->getSubExpr(),
|
|
std::min(MaxWidth, OutputTypeRange.Width));
|
|
|
|
// Bail out if the subexpr's range is as wide as the cast type.
|
|
if (SubRange.Width >= OutputTypeRange.Width)
|
|
return OutputTypeRange;
|
|
|
|
// Otherwise, we take the smaller width, and we're non-negative if
|
|
// either the output type or the subexpr is.
|
|
return IntRange(SubRange.Width,
|
|
SubRange.NonNegative || OutputTypeRange.NonNegative);
|
|
}
|
|
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
// If we can fold the condition, just take that operand.
|
|
bool CondResult;
|
|
if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
|
|
return GetExprRange(C, CondResult ? CO->getTrueExpr()
|
|
: CO->getFalseExpr(),
|
|
MaxWidth);
|
|
|
|
// Otherwise, conservatively merge.
|
|
IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
|
|
IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
|
|
return IntRange::join(L, R);
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
|
|
// Boolean-valued operations are single-bit and positive.
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
return IntRange::forBoolType();
|
|
|
|
// The type of the assignments is the type of the LHS, so the RHS
|
|
// is not necessarily the same type.
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
// TODO: bitfields?
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
|
|
// Simple assignments just pass through the RHS, which will have
|
|
// been coerced to the LHS type.
|
|
case BO_Assign:
|
|
// TODO: bitfields?
|
|
return GetExprRange(C, BO->getRHS(), MaxWidth);
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
|
|
// Bitwise-and uses the *infinum* of the two source ranges.
|
|
case BO_And:
|
|
case BO_AndAssign:
|
|
return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
|
|
GetExprRange(C, BO->getRHS(), MaxWidth));
|
|
|
|
// Left shift gets black-listed based on a judgement call.
|
|
case BO_Shl:
|
|
// ...except that we want to treat '1 << (blah)' as logically
|
|
// positive. It's an important idiom.
|
|
if (IntegerLiteral *I
|
|
= dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
|
|
if (I->getValue() == 1) {
|
|
IntRange R = IntRange::forValueOfType(C, E->getType());
|
|
return IntRange(R.Width, /*NonNegative*/ true);
|
|
}
|
|
}
|
|
// fallthrough
|
|
|
|
case BO_ShlAssign:
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
|
|
// Right shift by a constant can narrow its left argument.
|
|
case BO_Shr:
|
|
case BO_ShrAssign: {
|
|
IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
|
|
|
|
// If the shift amount is a positive constant, drop the width by
|
|
// that much.
|
|
llvm::APSInt shift;
|
|
if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
|
|
shift.isNonNegative()) {
|
|
unsigned zext = shift.getZExtValue();
|
|
if (zext >= L.Width)
|
|
L.Width = (L.NonNegative ? 0 : 1);
|
|
else
|
|
L.Width -= zext;
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
// Comma acts as its right operand.
|
|
case BO_Comma:
|
|
return GetExprRange(C, BO->getRHS(), MaxWidth);
|
|
|
|
// Black-list pointer subtractions.
|
|
case BO_Sub:
|
|
if (BO->getLHS()->getType()->isPointerType())
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
break;
|
|
|
|
// The width of a division result is mostly determined by the size
|
|
// of the LHS.
|
|
case BO_Div: {
|
|
// Don't 'pre-truncate' the operands.
|
|
unsigned opWidth = C.getIntWidth(E->getType());
|
|
IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
|
|
|
|
// If the divisor is constant, use that.
|
|
llvm::APSInt divisor;
|
|
if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
|
|
unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
|
|
if (log2 >= L.Width)
|
|
L.Width = (L.NonNegative ? 0 : 1);
|
|
else
|
|
L.Width = std::min(L.Width - log2, MaxWidth);
|
|
return L;
|
|
}
|
|
|
|
// Otherwise, just use the LHS's width.
|
|
IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
|
|
return IntRange(L.Width, L.NonNegative && R.NonNegative);
|
|
}
|
|
|
|
// The result of a remainder can't be larger than the result of
|
|
// either side.
|
|
case BO_Rem: {
|
|
// Don't 'pre-truncate' the operands.
|
|
unsigned opWidth = C.getIntWidth(E->getType());
|
|
IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
|
|
IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
|
|
|
|
IntRange meet = IntRange::meet(L, R);
|
|
meet.Width = std::min(meet.Width, MaxWidth);
|
|
return meet;
|
|
}
|
|
|
|
// The default behavior is okay for these.
|
|
case BO_Mul:
|
|
case BO_Add:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
break;
|
|
}
|
|
|
|
// The default case is to treat the operation as if it were closed
|
|
// on the narrowest type that encompasses both operands.
|
|
IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
|
|
IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
|
|
return IntRange::join(L, R);
|
|
}
|
|
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
// Boolean-valued operations are white-listed.
|
|
case UO_LNot:
|
|
return IntRange::forBoolType();
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case UO_Deref:
|
|
case UO_AddrOf: // should be impossible
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
|
|
default:
|
|
return GetExprRange(C, UO->getSubExpr(), MaxWidth);
|
|
}
|
|
}
|
|
|
|
if (dyn_cast<OffsetOfExpr>(E)) {
|
|
IntRange::forValueOfType(C, E->getType());
|
|
}
|
|
|
|
if (FieldDecl *BitField = E->getBitField())
|
|
return IntRange(BitField->getBitWidthValue(C),
|
|
BitField->getType()->isUnsignedIntegerOrEnumerationType());
|
|
|
|
return IntRange::forValueOfType(C, E->getType());
|
|
}
|
|
|
|
static IntRange GetExprRange(ASTContext &C, Expr *E) {
|
|
return GetExprRange(C, E, C.getIntWidth(E->getType()));
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
llvm::APFloat truncated = value;
|
|
|
|
bool ignored;
|
|
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
|
|
return truncated.bitwiseIsEqual(value);
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
///
|
|
/// The value might be a vector of floats (or a complex number).
|
|
static bool IsSameFloatAfterCast(const APValue &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
if (value.isFloat())
|
|
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
|
|
|
|
if (value.isVector()) {
|
|
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
|
|
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
assert(value.isComplexFloat());
|
|
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
|
|
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
|
|
}
|
|
|
|
static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
|
|
|
|
static bool IsZero(Sema &S, Expr *E) {
|
|
// Suppress cases where we are comparing against an enum constant.
|
|
if (const DeclRefExpr *DR =
|
|
dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
|
|
if (isa<EnumConstantDecl>(DR->getDecl()))
|
|
return false;
|
|
|
|
// Suppress cases where the '0' value is expanded from a macro.
|
|
if (E->getLocStart().isMacroID())
|
|
return false;
|
|
|
|
llvm::APSInt Value;
|
|
return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
|
|
}
|
|
|
|
static bool HasEnumType(Expr *E) {
|
|
// Strip off implicit integral promotions.
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() != CK_IntegralCast &&
|
|
ICE->getCastKind() != CK_NoOp)
|
|
break;
|
|
E = ICE->getSubExpr();
|
|
}
|
|
|
|
return E->getType()->isEnumeralType();
|
|
}
|
|
|
|
static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
|
|
BinaryOperatorKind op = E->getOpcode();
|
|
if (E->isValueDependent())
|
|
return;
|
|
|
|
if (op == BO_LT && IsZero(S, E->getRHS())) {
|
|
S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
|
|
<< "< 0" << "false" << HasEnumType(E->getLHS())
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
} else if (op == BO_GE && IsZero(S, E->getRHS())) {
|
|
S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
|
|
<< ">= 0" << "true" << HasEnumType(E->getLHS())
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
} else if (op == BO_GT && IsZero(S, E->getLHS())) {
|
|
S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
|
|
<< "0 >" << "false" << HasEnumType(E->getRHS())
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
} else if (op == BO_LE && IsZero(S, E->getLHS())) {
|
|
S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
|
|
<< "0 <=" << "true" << HasEnumType(E->getRHS())
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
}
|
|
}
|
|
|
|
/// Analyze the operands of the given comparison. Implements the
|
|
/// fallback case from AnalyzeComparison.
|
|
static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
|
|
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
|
|
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
|
|
}
|
|
|
|
/// \brief Implements -Wsign-compare.
|
|
///
|
|
/// \param E the binary operator to check for warnings
|
|
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
|
|
// The type the comparison is being performed in.
|
|
QualType T = E->getLHS()->getType();
|
|
assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
|
|
&& "comparison with mismatched types");
|
|
|
|
// We don't do anything special if this isn't an unsigned integral
|
|
// comparison: we're only interested in integral comparisons, and
|
|
// signed comparisons only happen in cases we don't care to warn about.
|
|
//
|
|
// We also don't care about value-dependent expressions or expressions
|
|
// whose result is a constant.
|
|
if (!T->hasUnsignedIntegerRepresentation()
|
|
|| E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
|
|
Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
|
|
Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
|
|
|
|
// Check to see if one of the (unmodified) operands is of different
|
|
// signedness.
|
|
Expr *signedOperand, *unsignedOperand;
|
|
if (LHS->getType()->hasSignedIntegerRepresentation()) {
|
|
assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
|
|
"unsigned comparison between two signed integer expressions?");
|
|
signedOperand = LHS;
|
|
unsignedOperand = RHS;
|
|
} else if (RHS->getType()->hasSignedIntegerRepresentation()) {
|
|
signedOperand = RHS;
|
|
unsignedOperand = LHS;
|
|
} else {
|
|
CheckTrivialUnsignedComparison(S, E);
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
}
|
|
|
|
// Otherwise, calculate the effective range of the signed operand.
|
|
IntRange signedRange = GetExprRange(S.Context, signedOperand);
|
|
|
|
// Go ahead and analyze implicit conversions in the operands. Note
|
|
// that we skip the implicit conversions on both sides.
|
|
AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
|
|
AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
|
|
|
|
// If the signed range is non-negative, -Wsign-compare won't fire,
|
|
// but we should still check for comparisons which are always true
|
|
// or false.
|
|
if (signedRange.NonNegative)
|
|
return CheckTrivialUnsignedComparison(S, E);
|
|
|
|
// For (in)equality comparisons, if the unsigned operand is a
|
|
// constant which cannot collide with a overflowed signed operand,
|
|
// then reinterpreting the signed operand as unsigned will not
|
|
// change the result of the comparison.
|
|
if (E->isEqualityOp()) {
|
|
unsigned comparisonWidth = S.Context.getIntWidth(T);
|
|
IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
|
|
|
|
// We should never be unable to prove that the unsigned operand is
|
|
// non-negative.
|
|
assert(unsignedRange.NonNegative && "unsigned range includes negative?");
|
|
|
|
if (unsignedRange.Width < comparisonWidth)
|
|
return;
|
|
}
|
|
|
|
S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
|
|
S.PDiag(diag::warn_mixed_sign_comparison)
|
|
<< LHS->getType() << RHS->getType()
|
|
<< LHS->getSourceRange() << RHS->getSourceRange());
|
|
}
|
|
|
|
/// Analyzes an attempt to assign the given value to a bitfield.
|
|
///
|
|
/// Returns true if there was something fishy about the attempt.
|
|
static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
|
|
SourceLocation InitLoc) {
|
|
assert(Bitfield->isBitField());
|
|
if (Bitfield->isInvalidDecl())
|
|
return false;
|
|
|
|
// White-list bool bitfields.
|
|
if (Bitfield->getType()->isBooleanType())
|
|
return false;
|
|
|
|
// Ignore value- or type-dependent expressions.
|
|
if (Bitfield->getBitWidth()->isValueDependent() ||
|
|
Bitfield->getBitWidth()->isTypeDependent() ||
|
|
Init->isValueDependent() ||
|
|
Init->isTypeDependent())
|
|
return false;
|
|
|
|
Expr *OriginalInit = Init->IgnoreParenImpCasts();
|
|
|
|
llvm::APSInt Value;
|
|
if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
|
|
return false;
|
|
|
|
unsigned OriginalWidth = Value.getBitWidth();
|
|
unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
|
|
|
|
if (OriginalWidth <= FieldWidth)
|
|
return false;
|
|
|
|
// Compute the value which the bitfield will contain.
|
|
llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
|
|
TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
|
|
|
|
// Check whether the stored value is equal to the original value.
|
|
TruncatedValue = TruncatedValue.extend(OriginalWidth);
|
|
if (llvm::APSInt::isSameValue(Value, TruncatedValue))
|
|
return false;
|
|
|
|
// Special-case bitfields of width 1: booleans are naturally 0/1, and
|
|
// therefore don't strictly fit into a signed bitfield of width 1.
|
|
if (FieldWidth == 1 && Value == 1)
|
|
return false;
|
|
|
|
std::string PrettyValue = Value.toString(10);
|
|
std::string PrettyTrunc = TruncatedValue.toString(10);
|
|
|
|
S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
|
|
<< PrettyValue << PrettyTrunc << OriginalInit->getType()
|
|
<< Init->getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Analyze the given simple or compound assignment for warning-worthy
|
|
/// operations.
|
|
static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
|
|
// Just recurse on the LHS.
|
|
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
|
|
|
|
// We want to recurse on the RHS as normal unless we're assigning to
|
|
// a bitfield.
|
|
if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
|
|
if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
|
|
E->getOperatorLoc())) {
|
|
// Recurse, ignoring any implicit conversions on the RHS.
|
|
return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
|
|
E->getOperatorLoc());
|
|
}
|
|
}
|
|
|
|
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
|
|
SourceLocation CContext, unsigned diag,
|
|
bool pruneControlFlow = false) {
|
|
if (pruneControlFlow) {
|
|
S.DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
S.PDiag(diag)
|
|
<< SourceType << T << E->getSourceRange()
|
|
<< SourceRange(CContext));
|
|
return;
|
|
}
|
|
S.Diag(E->getExprLoc(), diag)
|
|
<< SourceType << T << E->getSourceRange() << SourceRange(CContext);
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CContext, unsigned diag,
|
|
bool pruneControlFlow = false) {
|
|
DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
|
|
}
|
|
|
|
/// Diagnose an implicit cast from a literal expression. Does not warn when the
|
|
/// cast wouldn't lose information.
|
|
void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
|
|
SourceLocation CContext) {
|
|
// Try to convert the literal exactly to an integer. If we can, don't warn.
|
|
bool isExact = false;
|
|
const llvm::APFloat &Value = FL->getValue();
|
|
llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
|
|
T->hasUnsignedIntegerRepresentation());
|
|
if (Value.convertToInteger(IntegerValue,
|
|
llvm::APFloat::rmTowardZero, &isExact)
|
|
== llvm::APFloat::opOK && isExact)
|
|
return;
|
|
|
|
SmallString<16> PrettySourceValue;
|
|
Value.toString(PrettySourceValue);
|
|
SmallString<16> PrettyTargetValue;
|
|
if (T->isSpecificBuiltinType(BuiltinType::Bool))
|
|
PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
|
|
else
|
|
IntegerValue.toString(PrettyTargetValue);
|
|
|
|
S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
|
|
<< FL->getType() << T.getUnqualifiedType() << PrettySourceValue
|
|
<< PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
|
|
}
|
|
|
|
std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
|
|
if (!Range.Width) return "0";
|
|
|
|
llvm::APSInt ValueInRange = Value;
|
|
ValueInRange.setIsSigned(!Range.NonNegative);
|
|
ValueInRange = ValueInRange.trunc(Range.Width);
|
|
return ValueInRange.toString(10);
|
|
}
|
|
|
|
static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
|
|
if (!isa<ImplicitCastExpr>(Ex))
|
|
return false;
|
|
|
|
Expr *InnerE = Ex->IgnoreParenImpCasts();
|
|
const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
|
|
const Type *Source =
|
|
S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
|
|
if (Target->isDependentType())
|
|
return false;
|
|
|
|
const BuiltinType *FloatCandidateBT =
|
|
dyn_cast<BuiltinType>(ToBool ? Source : Target);
|
|
const Type *BoolCandidateType = ToBool ? Target : Source;
|
|
|
|
return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
|
|
FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
|
|
}
|
|
|
|
void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
|
|
SourceLocation CC) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
for (unsigned i = 0; i < NumArgs; ++i) {
|
|
Expr *CurrA = TheCall->getArg(i);
|
|
if (!IsImplicitBoolFloatConversion(S, CurrA, true))
|
|
continue;
|
|
|
|
bool IsSwapped = ((i > 0) &&
|
|
IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
|
|
IsSwapped |= ((i < (NumArgs - 1)) &&
|
|
IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
|
|
if (IsSwapped) {
|
|
// Warn on this floating-point to bool conversion.
|
|
DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
|
|
CurrA->getType(), CC,
|
|
diag::warn_impcast_floating_point_to_bool);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CC, bool *ICContext = 0) {
|
|
if (E->isTypeDependent() || E->isValueDependent()) return;
|
|
|
|
const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
|
|
const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
|
|
if (Source == Target) return;
|
|
if (Target->isDependentType()) return;
|
|
|
|
// If the conversion context location is invalid don't complain. We also
|
|
// don't want to emit a warning if the issue occurs from the expansion of
|
|
// a system macro. The problem is that 'getSpellingLoc()' is slow, so we
|
|
// delay this check as long as possible. Once we detect we are in that
|
|
// scenario, we just return.
|
|
if (CC.isInvalid())
|
|
return;
|
|
|
|
// Diagnose implicit casts to bool.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
|
|
if (isa<StringLiteral>(E))
|
|
// Warn on string literal to bool. Checks for string literals in logical
|
|
// expressions, for instances, assert(0 && "error here"), is prevented
|
|
// by a check in AnalyzeImplicitConversions().
|
|
return DiagnoseImpCast(S, E, T, CC,
|
|
diag::warn_impcast_string_literal_to_bool);
|
|
if (Source->isFunctionType()) {
|
|
// Warn on function to bool. Checks free functions and static member
|
|
// functions. Weakly imported functions are excluded from the check,
|
|
// since it's common to test their value to check whether the linker
|
|
// found a definition for them.
|
|
ValueDecl *D = 0;
|
|
if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
|
|
D = R->getDecl();
|
|
} else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
|
|
D = M->getMemberDecl();
|
|
}
|
|
|
|
if (D && !D->isWeak()) {
|
|
if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
|
|
S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
|
|
<< F << E->getSourceRange() << SourceRange(CC);
|
|
S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
|
|
<< FixItHint::CreateInsertion(E->getExprLoc(), "&");
|
|
QualType ReturnType;
|
|
UnresolvedSet<4> NonTemplateOverloads;
|
|
S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
|
|
if (!ReturnType.isNull()
|
|
&& ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
|
|
S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
|
|
<< FixItHint::CreateInsertion(
|
|
S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Strip vector types.
|
|
if (isa<VectorType>(Source)) {
|
|
if (!isa<VectorType>(Target)) {
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
|
|
}
|
|
|
|
// If the vector cast is cast between two vectors of the same size, it is
|
|
// a bitcast, not a conversion.
|
|
if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
|
|
return;
|
|
|
|
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
// Strip complex types.
|
|
if (isa<ComplexType>(Source)) {
|
|
if (!isa<ComplexType>(Target)) {
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
|
|
}
|
|
|
|
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
|
|
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
|
|
|
|
// If the source is floating point...
|
|
if (SourceBT && SourceBT->isFloatingPoint()) {
|
|
// ...and the target is floating point...
|
|
if (TargetBT && TargetBT->isFloatingPoint()) {
|
|
// ...then warn if we're dropping FP rank.
|
|
|
|
// Builtin FP kinds are ordered by increasing FP rank.
|
|
if (SourceBT->getKind() > TargetBT->getKind()) {
|
|
// Don't warn about float constants that are precisely
|
|
// representable in the target type.
|
|
Expr::EvalResult result;
|
|
if (E->EvaluateAsRValue(result, S.Context)) {
|
|
// Value might be a float, a float vector, or a float complex.
|
|
if (IsSameFloatAfterCast(result.Val,
|
|
S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
|
|
S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
|
|
return;
|
|
}
|
|
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the target is integral, always warn.
|
|
if (TargetBT && TargetBT->isInteger()) {
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
Expr *InnerE = E->IgnoreParenImpCasts();
|
|
// We also want to warn on, e.g., "int i = -1.234"
|
|
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
|
|
if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
|
|
InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
|
|
|
|
if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
|
|
DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
|
|
} else {
|
|
DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
|
|
}
|
|
}
|
|
|
|
// If the target is bool, warn if expr is a function or method call.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
|
|
isa<CallExpr>(E)) {
|
|
// Check last argument of function call to see if it is an
|
|
// implicit cast from a type matching the type the result
|
|
// is being cast to.
|
|
CallExpr *CEx = cast<CallExpr>(E);
|
|
unsigned NumArgs = CEx->getNumArgs();
|
|
if (NumArgs > 0) {
|
|
Expr *LastA = CEx->getArg(NumArgs - 1);
|
|
Expr *InnerE = LastA->IgnoreParenImpCasts();
|
|
const Type *InnerType =
|
|
S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
|
|
if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
|
|
// Warn on this floating-point to bool conversion
|
|
DiagnoseImpCast(S, E, T, CC,
|
|
diag::warn_impcast_floating_point_to_bool);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
|
|
== Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
|
|
&& !Target->isBlockPointerType() && !Target->isMemberPointerType()) {
|
|
SourceLocation Loc = E->getSourceRange().getBegin();
|
|
if (Loc.isMacroID())
|
|
Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
|
|
if (!Loc.isMacroID() || CC.isMacroID())
|
|
S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
|
|
<< T << clang::SourceRange(CC)
|
|
<< FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
|
|
}
|
|
|
|
if (!Source->isIntegerType() || !Target->isIntegerType())
|
|
return;
|
|
|
|
// TODO: remove this early return once the false positives for constant->bool
|
|
// in templates, macros, etc, are reduced or removed.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
|
|
return;
|
|
|
|
IntRange SourceRange = GetExprRange(S.Context, E);
|
|
IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
|
|
|
|
if (SourceRange.Width > TargetRange.Width) {
|
|
// If the source is a constant, use a default-on diagnostic.
|
|
// TODO: this should happen for bitfield stores, too.
|
|
llvm::APSInt Value(32);
|
|
if (E->isIntegerConstantExpr(Value, S.Context)) {
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
std::string PrettySourceValue = Value.toString(10);
|
|
std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
|
|
|
|
S.DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
S.PDiag(diag::warn_impcast_integer_precision_constant)
|
|
<< PrettySourceValue << PrettyTargetValue
|
|
<< E->getType() << T << E->getSourceRange()
|
|
<< clang::SourceRange(CC));
|
|
return;
|
|
}
|
|
|
|
// People want to build with -Wshorten-64-to-32 and not -Wconversion.
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
|
|
return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
|
|
/* pruneControlFlow */ true);
|
|
return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
|
|
}
|
|
|
|
if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
|
|
(!TargetRange.NonNegative && SourceRange.NonNegative &&
|
|
SourceRange.Width == TargetRange.Width)) {
|
|
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
unsigned DiagID = diag::warn_impcast_integer_sign;
|
|
|
|
// Traditionally, gcc has warned about this under -Wsign-compare.
|
|
// We also want to warn about it in -Wconversion.
|
|
// So if -Wconversion is off, use a completely identical diagnostic
|
|
// in the sign-compare group.
|
|
// The conditional-checking code will
|
|
if (ICContext) {
|
|
DiagID = diag::warn_impcast_integer_sign_conditional;
|
|
*ICContext = true;
|
|
}
|
|
|
|
return DiagnoseImpCast(S, E, T, CC, DiagID);
|
|
}
|
|
|
|
// Diagnose conversions between different enumeration types.
|
|
// In C, we pretend that the type of an EnumConstantDecl is its enumeration
|
|
// type, to give us better diagnostics.
|
|
QualType SourceType = E->getType();
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
|
|
EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
|
|
SourceType = S.Context.getTypeDeclType(Enum);
|
|
Source = S.Context.getCanonicalType(SourceType).getTypePtr();
|
|
}
|
|
}
|
|
|
|
if (const EnumType *SourceEnum = Source->getAs<EnumType>())
|
|
if (const EnumType *TargetEnum = Target->getAs<EnumType>())
|
|
if ((SourceEnum->getDecl()->getIdentifier() ||
|
|
SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
|
|
(TargetEnum->getDecl()->getIdentifier() ||
|
|
TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
|
|
SourceEnum != TargetEnum) {
|
|
if (S.SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
return DiagnoseImpCast(S, E, SourceType, T, CC,
|
|
diag::warn_impcast_different_enum_types);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
|
|
SourceLocation CC, QualType T);
|
|
|
|
void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CC, bool &ICContext) {
|
|
E = E->IgnoreParenImpCasts();
|
|
|
|
if (isa<ConditionalOperator>(E))
|
|
return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
|
|
|
|
AnalyzeImplicitConversions(S, E, CC);
|
|
if (E->getType() != T)
|
|
return CheckImplicitConversion(S, E, T, CC, &ICContext);
|
|
return;
|
|
}
|
|
|
|
void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
|
|
SourceLocation CC, QualType T) {
|
|
AnalyzeImplicitConversions(S, E->getCond(), CC);
|
|
|
|
bool Suspicious = false;
|
|
CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
|
|
CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
|
|
|
|
// If -Wconversion would have warned about either of the candidates
|
|
// for a signedness conversion to the context type...
|
|
if (!Suspicious) return;
|
|
|
|
// ...but it's currently ignored...
|
|
if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
|
|
CC))
|
|
return;
|
|
|
|
// ...then check whether it would have warned about either of the
|
|
// candidates for a signedness conversion to the condition type.
|
|
if (E->getType() == T) return;
|
|
|
|
Suspicious = false;
|
|
CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
|
|
E->getType(), CC, &Suspicious);
|
|
if (!Suspicious)
|
|
CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
|
|
E->getType(), CC, &Suspicious);
|
|
}
|
|
|
|
/// AnalyzeImplicitConversions - Find and report any interesting
|
|
/// implicit conversions in the given expression. There are a couple
|
|
/// of competing diagnostics here, -Wconversion and -Wsign-compare.
|
|
void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
|
|
QualType T = OrigE->getType();
|
|
Expr *E = OrigE->IgnoreParenImpCasts();
|
|
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return;
|
|
|
|
// For conditional operators, we analyze the arguments as if they
|
|
// were being fed directly into the output.
|
|
if (isa<ConditionalOperator>(E)) {
|
|
ConditionalOperator *CO = cast<ConditionalOperator>(E);
|
|
CheckConditionalOperator(S, CO, CC, T);
|
|
return;
|
|
}
|
|
|
|
// Check implicit argument conversions for function calls.
|
|
if (CallExpr *Call = dyn_cast<CallExpr>(E))
|
|
CheckImplicitArgumentConversions(S, Call, CC);
|
|
|
|
// Go ahead and check any implicit conversions we might have skipped.
|
|
// The non-canonical typecheck is just an optimization;
|
|
// CheckImplicitConversion will filter out dead implicit conversions.
|
|
if (E->getType() != T)
|
|
CheckImplicitConversion(S, E, T, CC);
|
|
|
|
// Now continue drilling into this expression.
|
|
|
|
// Skip past explicit casts.
|
|
if (isa<ExplicitCastExpr>(E)) {
|
|
E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
|
|
return AnalyzeImplicitConversions(S, E, CC);
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
// Do a somewhat different check with comparison operators.
|
|
if (BO->isComparisonOp())
|
|
return AnalyzeComparison(S, BO);
|
|
|
|
// And with simple assignments.
|
|
if (BO->getOpcode() == BO_Assign)
|
|
return AnalyzeAssignment(S, BO);
|
|
}
|
|
|
|
// These break the otherwise-useful invariant below. Fortunately,
|
|
// we don't really need to recurse into them, because any internal
|
|
// expressions should have been analyzed already when they were
|
|
// built into statements.
|
|
if (isa<StmtExpr>(E)) return;
|
|
|
|
// Don't descend into unevaluated contexts.
|
|
if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
|
|
|
|
// Now just recurse over the expression's children.
|
|
CC = E->getExprLoc();
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
|
|
bool IsLogicalOperator = BO && BO->isLogicalOp();
|
|
for (Stmt::child_range I = E->children(); I; ++I) {
|
|
Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
|
|
if (!ChildExpr)
|
|
continue;
|
|
|
|
if (IsLogicalOperator &&
|
|
isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
|
|
// Ignore checking string literals that are in logical operators.
|
|
continue;
|
|
AnalyzeImplicitConversions(S, ChildExpr, CC);
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Diagnoses "dangerous" implicit conversions within the given
|
|
/// expression (which is a full expression). Implements -Wconversion
|
|
/// and -Wsign-compare.
|
|
///
|
|
/// \param CC the "context" location of the implicit conversion, i.e.
|
|
/// the most location of the syntactic entity requiring the implicit
|
|
/// conversion
|
|
void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
|
|
// Don't diagnose in unevaluated contexts.
|
|
if (isUnevaluatedContext())
|
|
return;
|
|
|
|
// Don't diagnose for value- or type-dependent expressions.
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return;
|
|
|
|
// Check for array bounds violations in cases where the check isn't triggered
|
|
// elsewhere for other Expr types (like BinaryOperators), e.g. when an
|
|
// ArraySubscriptExpr is on the RHS of a variable initialization.
|
|
CheckArrayAccess(E);
|
|
|
|
// This is not the right CC for (e.g.) a variable initialization.
|
|
AnalyzeImplicitConversions(*this, E, CC);
|
|
}
|
|
|
|
void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
|
|
FieldDecl *BitField,
|
|
Expr *Init) {
|
|
(void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
|
|
}
|
|
|
|
/// CheckParmsForFunctionDef - Check that the parameters of the given
|
|
/// function are appropriate for the definition of a function. This
|
|
/// takes care of any checks that cannot be performed on the
|
|
/// declaration itself, e.g., that the types of each of the function
|
|
/// parameters are complete.
|
|
bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
|
|
bool CheckParameterNames) {
|
|
bool HasInvalidParm = false;
|
|
for (; P != PEnd; ++P) {
|
|
ParmVarDecl *Param = *P;
|
|
|
|
// C99 6.7.5.3p4: the parameters in a parameter type list in a
|
|
// function declarator that is part of a function definition of
|
|
// that function shall not have incomplete type.
|
|
//
|
|
// This is also C++ [dcl.fct]p6.
|
|
if (!Param->isInvalidDecl() &&
|
|
RequireCompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
Param->setInvalidDecl();
|
|
HasInvalidParm = true;
|
|
}
|
|
|
|
// C99 6.9.1p5: If the declarator includes a parameter type list, the
|
|
// declaration of each parameter shall include an identifier.
|
|
if (CheckParameterNames &&
|
|
Param->getIdentifier() == 0 &&
|
|
!Param->isImplicit() &&
|
|
!getLangOpts().CPlusPlus)
|
|
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
|
|
|
|
// C99 6.7.5.3p12:
|
|
// If the function declarator is not part of a definition of that
|
|
// function, parameters may have incomplete type and may use the [*]
|
|
// notation in their sequences of declarator specifiers to specify
|
|
// variable length array types.
|
|
QualType PType = Param->getOriginalType();
|
|
if (const ArrayType *AT = Context.getAsArrayType(PType)) {
|
|
if (AT->getSizeModifier() == ArrayType::Star) {
|
|
// FIXME: This diagnosic should point the '[*]' if source-location
|
|
// information is added for it.
|
|
Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
|
|
}
|
|
}
|
|
}
|
|
|
|
return HasInvalidParm;
|
|
}
|
|
|
|
/// CheckCastAlign - Implements -Wcast-align, which warns when a
|
|
/// pointer cast increases the alignment requirements.
|
|
void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
|
|
// This is actually a lot of work to potentially be doing on every
|
|
// cast; don't do it if we're ignoring -Wcast_align (as is the default).
|
|
if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
|
|
TRange.getBegin())
|
|
== DiagnosticsEngine::Ignored)
|
|
return;
|
|
|
|
// Ignore dependent types.
|
|
if (T->isDependentType() || Op->getType()->isDependentType())
|
|
return;
|
|
|
|
// Require that the destination be a pointer type.
|
|
const PointerType *DestPtr = T->getAs<PointerType>();
|
|
if (!DestPtr) return;
|
|
|
|
// If the destination has alignment 1, we're done.
|
|
QualType DestPointee = DestPtr->getPointeeType();
|
|
if (DestPointee->isIncompleteType()) return;
|
|
CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
|
|
if (DestAlign.isOne()) return;
|
|
|
|
// Require that the source be a pointer type.
|
|
const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
|
|
if (!SrcPtr) return;
|
|
QualType SrcPointee = SrcPtr->getPointeeType();
|
|
|
|
// Whitelist casts from cv void*. We already implicitly
|
|
// whitelisted casts to cv void*, since they have alignment 1.
|
|
// Also whitelist casts involving incomplete types, which implicitly
|
|
// includes 'void'.
|
|
if (SrcPointee->isIncompleteType()) return;
|
|
|
|
CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
|
|
if (SrcAlign >= DestAlign) return;
|
|
|
|
Diag(TRange.getBegin(), diag::warn_cast_align)
|
|
<< Op->getType() << T
|
|
<< static_cast<unsigned>(SrcAlign.getQuantity())
|
|
<< static_cast<unsigned>(DestAlign.getQuantity())
|
|
<< TRange << Op->getSourceRange();
|
|
}
|
|
|
|
static const Type* getElementType(const Expr *BaseExpr) {
|
|
const Type* EltType = BaseExpr->getType().getTypePtr();
|
|
if (EltType->isAnyPointerType())
|
|
return EltType->getPointeeType().getTypePtr();
|
|
else if (EltType->isArrayType())
|
|
return EltType->getBaseElementTypeUnsafe();
|
|
return EltType;
|
|
}
|
|
|
|
/// \brief Check whether this array fits the idiom of a size-one tail padded
|
|
/// array member of a struct.
|
|
///
|
|
/// We avoid emitting out-of-bounds access warnings for such arrays as they are
|
|
/// commonly used to emulate flexible arrays in C89 code.
|
|
static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
|
|
const NamedDecl *ND) {
|
|
if (Size != 1 || !ND) return false;
|
|
|
|
const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
|
|
if (!FD) return false;
|
|
|
|
// Don't consider sizes resulting from macro expansions or template argument
|
|
// substitution to form C89 tail-padded arrays.
|
|
|
|
TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
|
|
while (TInfo) {
|
|
TypeLoc TL = TInfo->getTypeLoc();
|
|
// Look through typedefs.
|
|
const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
|
|
if (TTL) {
|
|
const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
|
|
TInfo = TDL->getTypeSourceInfo();
|
|
continue;
|
|
}
|
|
ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
|
|
const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
|
|
if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
|
|
if (!RD) return false;
|
|
if (RD->isUnion()) return false;
|
|
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!CRD->isStandardLayout()) return false;
|
|
}
|
|
|
|
// See if this is the last field decl in the record.
|
|
const Decl *D = FD;
|
|
while ((D = D->getNextDeclInContext()))
|
|
if (isa<FieldDecl>(D))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
|
|
const ArraySubscriptExpr *ASE,
|
|
bool AllowOnePastEnd, bool IndexNegated) {
|
|
IndexExpr = IndexExpr->IgnoreParenImpCasts();
|
|
if (IndexExpr->isValueDependent())
|
|
return;
|
|
|
|
const Type *EffectiveType = getElementType(BaseExpr);
|
|
BaseExpr = BaseExpr->IgnoreParenCasts();
|
|
const ConstantArrayType *ArrayTy =
|
|
Context.getAsConstantArrayType(BaseExpr->getType());
|
|
if (!ArrayTy)
|
|
return;
|
|
|
|
llvm::APSInt index;
|
|
if (!IndexExpr->EvaluateAsInt(index, Context))
|
|
return;
|
|
if (IndexNegated)
|
|
index = -index;
|
|
|
|
const NamedDecl *ND = NULL;
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
|
|
ND = dyn_cast<NamedDecl>(DRE->getDecl());
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
|
|
ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
|
|
|
|
if (index.isUnsigned() || !index.isNegative()) {
|
|
llvm::APInt size = ArrayTy->getSize();
|
|
if (!size.isStrictlyPositive())
|
|
return;
|
|
|
|
const Type* BaseType = getElementType(BaseExpr);
|
|
if (BaseType != EffectiveType) {
|
|
// Make sure we're comparing apples to apples when comparing index to size
|
|
uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
|
|
uint64_t array_typesize = Context.getTypeSize(BaseType);
|
|
// Handle ptrarith_typesize being zero, such as when casting to void*
|
|
if (!ptrarith_typesize) ptrarith_typesize = 1;
|
|
if (ptrarith_typesize != array_typesize) {
|
|
// There's a cast to a different size type involved
|
|
uint64_t ratio = array_typesize / ptrarith_typesize;
|
|
// TODO: Be smarter about handling cases where array_typesize is not a
|
|
// multiple of ptrarith_typesize
|
|
if (ptrarith_typesize * ratio == array_typesize)
|
|
size *= llvm::APInt(size.getBitWidth(), ratio);
|
|
}
|
|
}
|
|
|
|
if (size.getBitWidth() > index.getBitWidth())
|
|
index = index.zext(size.getBitWidth());
|
|
else if (size.getBitWidth() < index.getBitWidth())
|
|
size = size.zext(index.getBitWidth());
|
|
|
|
// For array subscripting the index must be less than size, but for pointer
|
|
// arithmetic also allow the index (offset) to be equal to size since
|
|
// computing the next address after the end of the array is legal and
|
|
// commonly done e.g. in C++ iterators and range-based for loops.
|
|
if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
|
|
return;
|
|
|
|
// Also don't warn for arrays of size 1 which are members of some
|
|
// structure. These are often used to approximate flexible arrays in C89
|
|
// code.
|
|
if (IsTailPaddedMemberArray(*this, size, ND))
|
|
return;
|
|
|
|
// Suppress the warning if the subscript expression (as identified by the
|
|
// ']' location) and the index expression are both from macro expansions
|
|
// within a system header.
|
|
if (ASE) {
|
|
SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
|
|
ASE->getRBracketLoc());
|
|
if (SourceMgr.isInSystemHeader(RBracketLoc)) {
|
|
SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
|
|
IndexExpr->getLocStart());
|
|
if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
|
|
if (ASE)
|
|
DiagID = diag::warn_array_index_exceeds_bounds;
|
|
|
|
DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
|
|
PDiag(DiagID) << index.toString(10, true)
|
|
<< size.toString(10, true)
|
|
<< (unsigned)size.getLimitedValue(~0U)
|
|
<< IndexExpr->getSourceRange());
|
|
} else {
|
|
unsigned DiagID = diag::warn_array_index_precedes_bounds;
|
|
if (!ASE) {
|
|
DiagID = diag::warn_ptr_arith_precedes_bounds;
|
|
if (index.isNegative()) index = -index;
|
|
}
|
|
|
|
DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
|
|
PDiag(DiagID) << index.toString(10, true)
|
|
<< IndexExpr->getSourceRange());
|
|
}
|
|
|
|
if (!ND) {
|
|
// Try harder to find a NamedDecl to point at in the note.
|
|
while (const ArraySubscriptExpr *ASE =
|
|
dyn_cast<ArraySubscriptExpr>(BaseExpr))
|
|
BaseExpr = ASE->getBase()->IgnoreParenCasts();
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
|
|
ND = dyn_cast<NamedDecl>(DRE->getDecl());
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
|
|
ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
|
|
}
|
|
|
|
if (ND)
|
|
DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
|
|
PDiag(diag::note_array_index_out_of_bounds)
|
|
<< ND->getDeclName());
|
|
}
|
|
|
|
void Sema::CheckArrayAccess(const Expr *expr) {
|
|
int AllowOnePastEnd = 0;
|
|
while (expr) {
|
|
expr = expr->IgnoreParenImpCasts();
|
|
switch (expr->getStmtClass()) {
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
|
|
CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
|
|
AllowOnePastEnd > 0);
|
|
return;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
// Only unwrap the * and & unary operators
|
|
const UnaryOperator *UO = cast<UnaryOperator>(expr);
|
|
expr = UO->getSubExpr();
|
|
switch (UO->getOpcode()) {
|
|
case UO_AddrOf:
|
|
AllowOnePastEnd++;
|
|
break;
|
|
case UO_Deref:
|
|
AllowOnePastEnd--;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
|
|
if (const Expr *lhs = cond->getLHS())
|
|
CheckArrayAccess(lhs);
|
|
if (const Expr *rhs = cond->getRHS())
|
|
CheckArrayAccess(rhs);
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Objective-C retain cycles ----------------------------------//
|
|
|
|
namespace {
|
|
struct RetainCycleOwner {
|
|
RetainCycleOwner() : Variable(0), Indirect(false) {}
|
|
VarDecl *Variable;
|
|
SourceRange Range;
|
|
SourceLocation Loc;
|
|
bool Indirect;
|
|
|
|
void setLocsFrom(Expr *e) {
|
|
Loc = e->getExprLoc();
|
|
Range = e->getSourceRange();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Consider whether capturing the given variable can possibly lead to
|
|
/// a retain cycle.
|
|
static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
|
|
// In ARC, it's captured strongly iff the variable has __strong
|
|
// lifetime. In MRR, it's captured strongly if the variable is
|
|
// __block and has an appropriate type.
|
|
if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
|
|
return false;
|
|
|
|
owner.Variable = var;
|
|
owner.setLocsFrom(ref);
|
|
return true;
|
|
}
|
|
|
|
static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
|
|
while (true) {
|
|
e = e->IgnoreParens();
|
|
if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
|
|
switch (cast->getCastKind()) {
|
|
case CK_BitCast:
|
|
case CK_LValueBitCast:
|
|
case CK_LValueToRValue:
|
|
case CK_ARCReclaimReturnedObject:
|
|
e = cast->getSubExpr();
|
|
continue;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
|
|
ObjCIvarDecl *ivar = ref->getDecl();
|
|
if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
|
|
return false;
|
|
|
|
// Try to find a retain cycle in the base.
|
|
if (!findRetainCycleOwner(S, ref->getBase(), owner))
|
|
return false;
|
|
|
|
if (ref->isFreeIvar()) owner.setLocsFrom(ref);
|
|
owner.Indirect = true;
|
|
return true;
|
|
}
|
|
|
|
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
|
|
VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
|
|
if (!var) return false;
|
|
return considerVariable(var, ref, owner);
|
|
}
|
|
|
|
if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
|
|
if (member->isArrow()) return false;
|
|
|
|
// Don't count this as an indirect ownership.
|
|
e = member->getBase();
|
|
continue;
|
|
}
|
|
|
|
if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
|
|
// Only pay attention to pseudo-objects on property references.
|
|
ObjCPropertyRefExpr *pre
|
|
= dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
|
|
->IgnoreParens());
|
|
if (!pre) return false;
|
|
if (pre->isImplicitProperty()) return false;
|
|
ObjCPropertyDecl *property = pre->getExplicitProperty();
|
|
if (!property->isRetaining() &&
|
|
!(property->getPropertyIvarDecl() &&
|
|
property->getPropertyIvarDecl()->getType()
|
|
.getObjCLifetime() == Qualifiers::OCL_Strong))
|
|
return false;
|
|
|
|
owner.Indirect = true;
|
|
if (pre->isSuperReceiver()) {
|
|
owner.Variable = S.getCurMethodDecl()->getSelfDecl();
|
|
if (!owner.Variable)
|
|
return false;
|
|
owner.Loc = pre->getLocation();
|
|
owner.Range = pre->getSourceRange();
|
|
return true;
|
|
}
|
|
e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
|
|
->getSourceExpr());
|
|
continue;
|
|
}
|
|
|
|
// Array ivars?
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
|
|
FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
|
|
: EvaluatedExprVisitor<FindCaptureVisitor>(Context),
|
|
Variable(variable), Capturer(0) {}
|
|
|
|
VarDecl *Variable;
|
|
Expr *Capturer;
|
|
|
|
void VisitDeclRefExpr(DeclRefExpr *ref) {
|
|
if (ref->getDecl() == Variable && !Capturer)
|
|
Capturer = ref;
|
|
}
|
|
|
|
void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
|
|
if (Capturer) return;
|
|
Visit(ref->getBase());
|
|
if (Capturer && ref->isFreeIvar())
|
|
Capturer = ref;
|
|
}
|
|
|
|
void VisitBlockExpr(BlockExpr *block) {
|
|
// Look inside nested blocks
|
|
if (block->getBlockDecl()->capturesVariable(Variable))
|
|
Visit(block->getBlockDecl()->getBody());
|
|
}
|
|
|
|
void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
|
|
if (Capturer) return;
|
|
if (OVE->getSourceExpr())
|
|
Visit(OVE->getSourceExpr());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Check whether the given argument is a block which captures a
|
|
/// variable.
|
|
static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
|
|
assert(owner.Variable && owner.Loc.isValid());
|
|
|
|
e = e->IgnoreParenCasts();
|
|
BlockExpr *block = dyn_cast<BlockExpr>(e);
|
|
if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
|
|
return 0;
|
|
|
|
FindCaptureVisitor visitor(S.Context, owner.Variable);
|
|
visitor.Visit(block->getBlockDecl()->getBody());
|
|
return visitor.Capturer;
|
|
}
|
|
|
|
static void diagnoseRetainCycle(Sema &S, Expr *capturer,
|
|
RetainCycleOwner &owner) {
|
|
assert(capturer);
|
|
assert(owner.Variable && owner.Loc.isValid());
|
|
|
|
S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
|
|
<< owner.Variable << capturer->getSourceRange();
|
|
S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
|
|
<< owner.Indirect << owner.Range;
|
|
}
|
|
|
|
/// Check for a keyword selector that starts with the word 'add' or
|
|
/// 'set'.
|
|
static bool isSetterLikeSelector(Selector sel) {
|
|
if (sel.isUnarySelector()) return false;
|
|
|
|
StringRef str = sel.getNameForSlot(0);
|
|
while (!str.empty() && str.front() == '_') str = str.substr(1);
|
|
if (str.startswith("set"))
|
|
str = str.substr(3);
|
|
else if (str.startswith("add")) {
|
|
// Specially whitelist 'addOperationWithBlock:'.
|
|
if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
|
|
return false;
|
|
str = str.substr(3);
|
|
}
|
|
else
|
|
return false;
|
|
|
|
if (str.empty()) return true;
|
|
return !islower(str.front());
|
|
}
|
|
|
|
/// Check a message send to see if it's likely to cause a retain cycle.
|
|
void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
|
|
// Only check instance methods whose selector looks like a setter.
|
|
if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
|
|
return;
|
|
|
|
// Try to find a variable that the receiver is strongly owned by.
|
|
RetainCycleOwner owner;
|
|
if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
|
|
if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
|
|
return;
|
|
} else {
|
|
assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
|
|
owner.Variable = getCurMethodDecl()->getSelfDecl();
|
|
owner.Loc = msg->getSuperLoc();
|
|
owner.Range = msg->getSuperLoc();
|
|
}
|
|
|
|
// Check whether the receiver is captured by any of the arguments.
|
|
for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
|
|
if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
|
|
return diagnoseRetainCycle(*this, capturer, owner);
|
|
}
|
|
|
|
/// Check a property assign to see if it's likely to cause a retain cycle.
|
|
void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
|
|
RetainCycleOwner owner;
|
|
if (!findRetainCycleOwner(*this, receiver, owner))
|
|
return;
|
|
|
|
if (Expr *capturer = findCapturingExpr(*this, argument, owner))
|
|
diagnoseRetainCycle(*this, capturer, owner);
|
|
}
|
|
|
|
bool Sema::checkUnsafeAssigns(SourceLocation Loc,
|
|
QualType LHS, Expr *RHS) {
|
|
Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
|
|
if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
|
|
return false;
|
|
// strip off any implicit cast added to get to the one arc-specific
|
|
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
|
|
if (cast->getCastKind() == CK_ARCConsumeObject) {
|
|
Diag(Loc, diag::warn_arc_retained_assign)
|
|
<< (LT == Qualifiers::OCL_ExplicitNone) << 1
|
|
<< RHS->getSourceRange();
|
|
return true;
|
|
}
|
|
RHS = cast->getSubExpr();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
|
|
Expr *LHS, Expr *RHS) {
|
|
QualType LHSType;
|
|
// PropertyRef on LHS type need be directly obtained from
|
|
// its declaration as it has a PsuedoType.
|
|
ObjCPropertyRefExpr *PRE
|
|
= dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
|
|
if (PRE && !PRE->isImplicitProperty()) {
|
|
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
|
|
if (PD)
|
|
LHSType = PD->getType();
|
|
}
|
|
|
|
if (LHSType.isNull())
|
|
LHSType = LHS->getType();
|
|
if (checkUnsafeAssigns(Loc, LHSType, RHS))
|
|
return;
|
|
Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
|
|
// FIXME. Check for other life times.
|
|
if (LT != Qualifiers::OCL_None)
|
|
return;
|
|
|
|
if (PRE) {
|
|
if (PRE->isImplicitProperty())
|
|
return;
|
|
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
|
|
if (!PD)
|
|
return;
|
|
|
|
unsigned Attributes = PD->getPropertyAttributes();
|
|
if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
|
|
// when 'assign' attribute was not explicitly specified
|
|
// by user, ignore it and rely on property type itself
|
|
// for lifetime info.
|
|
unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
|
|
if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
|
|
LHSType->isObjCRetainableType())
|
|
return;
|
|
|
|
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
|
|
if (cast->getCastKind() == CK_ARCConsumeObject) {
|
|
Diag(Loc, diag::warn_arc_retained_property_assign)
|
|
<< RHS->getSourceRange();
|
|
return;
|
|
}
|
|
RHS = cast->getSubExpr();
|
|
}
|
|
}
|
|
else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
|
|
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
|
|
if (cast->getCastKind() == CK_ARCConsumeObject) {
|
|
Diag(Loc, diag::warn_arc_retained_assign)
|
|
<< 0 << 0<< RHS->getSourceRange();
|
|
return;
|
|
}
|
|
RHS = cast->getSubExpr();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
|
|
|
|
namespace {
|
|
bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
|
|
SourceLocation StmtLoc,
|
|
const NullStmt *Body) {
|
|
// Do not warn if the body is a macro that expands to nothing, e.g:
|
|
//
|
|
// #define CALL(x)
|
|
// if (condition)
|
|
// CALL(0);
|
|
//
|
|
if (Body->hasLeadingEmptyMacro())
|
|
return false;
|
|
|
|
// Get line numbers of statement and body.
|
|
bool StmtLineInvalid;
|
|
unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
|
|
&StmtLineInvalid);
|
|
if (StmtLineInvalid)
|
|
return false;
|
|
|
|
bool BodyLineInvalid;
|
|
unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
|
|
&BodyLineInvalid);
|
|
if (BodyLineInvalid)
|
|
return false;
|
|
|
|
// Warn if null statement and body are on the same line.
|
|
if (StmtLine != BodyLine)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
} // Unnamed namespace
|
|
|
|
void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
|
|
const Stmt *Body,
|
|
unsigned DiagID) {
|
|
// Since this is a syntactic check, don't emit diagnostic for template
|
|
// instantiations, this just adds noise.
|
|
if (CurrentInstantiationScope)
|
|
return;
|
|
|
|
// The body should be a null statement.
|
|
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
|
|
if (!NBody)
|
|
return;
|
|
|
|
// Do the usual checks.
|
|
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
|
|
return;
|
|
|
|
Diag(NBody->getSemiLoc(), DiagID);
|
|
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
|
|
}
|
|
|
|
void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
|
|
const Stmt *PossibleBody) {
|
|
assert(!CurrentInstantiationScope); // Ensured by caller
|
|
|
|
SourceLocation StmtLoc;
|
|
const Stmt *Body;
|
|
unsigned DiagID;
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
|
|
StmtLoc = FS->getRParenLoc();
|
|
Body = FS->getBody();
|
|
DiagID = diag::warn_empty_for_body;
|
|
} else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
|
|
StmtLoc = WS->getCond()->getSourceRange().getEnd();
|
|
Body = WS->getBody();
|
|
DiagID = diag::warn_empty_while_body;
|
|
} else
|
|
return; // Neither `for' nor `while'.
|
|
|
|
// The body should be a null statement.
|
|
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
|
|
if (!NBody)
|
|
return;
|
|
|
|
// Skip expensive checks if diagnostic is disabled.
|
|
if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
|
|
DiagnosticsEngine::Ignored)
|
|
return;
|
|
|
|
// Do the usual checks.
|
|
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
|
|
return;
|
|
|
|
// `for(...);' and `while(...);' are popular idioms, so in order to keep
|
|
// noise level low, emit diagnostics only if for/while is followed by a
|
|
// CompoundStmt, e.g.:
|
|
// for (int i = 0; i < n; i++);
|
|
// {
|
|
// a(i);
|
|
// }
|
|
// or if for/while is followed by a statement with more indentation
|
|
// than for/while itself:
|
|
// for (int i = 0; i < n; i++);
|
|
// a(i);
|
|
bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
|
|
if (!ProbableTypo) {
|
|
bool BodyColInvalid;
|
|
unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
|
|
PossibleBody->getLocStart(),
|
|
&BodyColInvalid);
|
|
if (BodyColInvalid)
|
|
return;
|
|
|
|
bool StmtColInvalid;
|
|
unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
|
|
S->getLocStart(),
|
|
&StmtColInvalid);
|
|
if (StmtColInvalid)
|
|
return;
|
|
|
|
if (BodyCol > StmtCol)
|
|
ProbableTypo = true;
|
|
}
|
|
|
|
if (ProbableTypo) {
|
|
Diag(NBody->getSemiLoc(), DiagID);
|
|
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
|
|
}
|
|
}
|
|
|
|
//===--- Layout compatibility ----------------------------------------------//
|
|
|
|
namespace {
|
|
|
|
bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
|
|
|
|
/// \brief Check if two enumeration types are layout-compatible.
|
|
bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
|
|
// C++11 [dcl.enum] p8:
|
|
// Two enumeration types are layout-compatible if they have the same
|
|
// underlying type.
|
|
return ED1->isComplete() && ED2->isComplete() &&
|
|
C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
|
|
}
|
|
|
|
/// \brief Check if two fields are layout-compatible.
|
|
bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
|
|
if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
|
|
return false;
|
|
|
|
if (Field1->isBitField() != Field2->isBitField())
|
|
return false;
|
|
|
|
if (Field1->isBitField()) {
|
|
// Make sure that the bit-fields are the same length.
|
|
unsigned Bits1 = Field1->getBitWidthValue(C);
|
|
unsigned Bits2 = Field2->getBitWidthValue(C);
|
|
|
|
if (Bits1 != Bits2)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if two standard-layout structs are layout-compatible.
|
|
/// (C++11 [class.mem] p17)
|
|
bool isLayoutCompatibleStruct(ASTContext &C,
|
|
RecordDecl *RD1,
|
|
RecordDecl *RD2) {
|
|
// If both records are C++ classes, check that base classes match.
|
|
if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
|
|
// If one of records is a CXXRecordDecl we are in C++ mode,
|
|
// thus the other one is a CXXRecordDecl, too.
|
|
const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
|
|
// Check number of base classes.
|
|
if (D1CXX->getNumBases() != D2CXX->getNumBases())
|
|
return false;
|
|
|
|
// Check the base classes.
|
|
for (CXXRecordDecl::base_class_const_iterator
|
|
Base1 = D1CXX->bases_begin(),
|
|
BaseEnd1 = D1CXX->bases_end(),
|
|
Base2 = D2CXX->bases_begin();
|
|
Base1 != BaseEnd1;
|
|
++Base1, ++Base2) {
|
|
if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
|
|
return false;
|
|
}
|
|
} else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
|
|
// If only RD2 is a C++ class, it should have zero base classes.
|
|
if (D2CXX->getNumBases() > 0)
|
|
return false;
|
|
}
|
|
|
|
// Check the fields.
|
|
RecordDecl::field_iterator Field2 = RD2->field_begin(),
|
|
Field2End = RD2->field_end(),
|
|
Field1 = RD1->field_begin(),
|
|
Field1End = RD1->field_end();
|
|
for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
|
|
if (!isLayoutCompatible(C, *Field1, *Field2))
|
|
return false;
|
|
}
|
|
if (Field1 != Field1End || Field2 != Field2End)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check if two standard-layout unions are layout-compatible.
|
|
/// (C++11 [class.mem] p18)
|
|
bool isLayoutCompatibleUnion(ASTContext &C,
|
|
RecordDecl *RD1,
|
|
RecordDecl *RD2) {
|
|
llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
|
|
for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
|
|
Field2End = RD2->field_end();
|
|
Field2 != Field2End; ++Field2) {
|
|
UnmatchedFields.insert(*Field2);
|
|
}
|
|
|
|
for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
|
|
Field1End = RD1->field_end();
|
|
Field1 != Field1End; ++Field1) {
|
|
llvm::SmallPtrSet<FieldDecl *, 8>::iterator
|
|
I = UnmatchedFields.begin(),
|
|
E = UnmatchedFields.end();
|
|
|
|
for ( ; I != E; ++I) {
|
|
if (isLayoutCompatible(C, *Field1, *I)) {
|
|
bool Result = UnmatchedFields.erase(*I);
|
|
(void) Result;
|
|
assert(Result);
|
|
break;
|
|
}
|
|
}
|
|
if (I == E)
|
|
return false;
|
|
}
|
|
|
|
return UnmatchedFields.empty();
|
|
}
|
|
|
|
bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
|
|
if (RD1->isUnion() != RD2->isUnion())
|
|
return false;
|
|
|
|
if (RD1->isUnion())
|
|
return isLayoutCompatibleUnion(C, RD1, RD2);
|
|
else
|
|
return isLayoutCompatibleStruct(C, RD1, RD2);
|
|
}
|
|
|
|
/// \brief Check if two types are layout-compatible in C++11 sense.
|
|
bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
|
|
if (T1.isNull() || T2.isNull())
|
|
return false;
|
|
|
|
// C++11 [basic.types] p11:
|
|
// If two types T1 and T2 are the same type, then T1 and T2 are
|
|
// layout-compatible types.
|
|
if (C.hasSameType(T1, T2))
|
|
return true;
|
|
|
|
T1 = T1.getCanonicalType().getUnqualifiedType();
|
|
T2 = T2.getCanonicalType().getUnqualifiedType();
|
|
|
|
const Type::TypeClass TC1 = T1->getTypeClass();
|
|
const Type::TypeClass TC2 = T2->getTypeClass();
|
|
|
|
if (TC1 != TC2)
|
|
return false;
|
|
|
|
if (TC1 == Type::Enum) {
|
|
return isLayoutCompatible(C,
|
|
cast<EnumType>(T1)->getDecl(),
|
|
cast<EnumType>(T2)->getDecl());
|
|
} else if (TC1 == Type::Record) {
|
|
if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
|
|
return false;
|
|
|
|
return isLayoutCompatible(C,
|
|
cast<RecordType>(T1)->getDecl(),
|
|
cast<RecordType>(T2)->getDecl());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
|
|
|
|
namespace {
|
|
/// \brief Given a type tag expression find the type tag itself.
|
|
///
|
|
/// \param TypeExpr Type tag expression, as it appears in user's code.
|
|
///
|
|
/// \param VD Declaration of an identifier that appears in a type tag.
|
|
///
|
|
/// \param MagicValue Type tag magic value.
|
|
bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
|
|
const ValueDecl **VD, uint64_t *MagicValue) {
|
|
while(true) {
|
|
if (!TypeExpr)
|
|
return false;
|
|
|
|
TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
|
|
|
|
switch (TypeExpr->getStmtClass()) {
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
|
|
if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
|
|
TypeExpr = UO->getSubExpr();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
|
|
*VD = DRE->getDecl();
|
|
return true;
|
|
}
|
|
|
|
case Stmt::IntegerLiteralClass: {
|
|
const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
|
|
llvm::APInt MagicValueAPInt = IL->getValue();
|
|
if (MagicValueAPInt.getActiveBits() <= 64) {
|
|
*MagicValue = MagicValueAPInt.getZExtValue();
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const AbstractConditionalOperator *ACO =
|
|
cast<AbstractConditionalOperator>(TypeExpr);
|
|
bool Result;
|
|
if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
|
|
if (Result)
|
|
TypeExpr = ACO->getTrueExpr();
|
|
else
|
|
TypeExpr = ACO->getFalseExpr();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
TypeExpr = BO->getRHS();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Retrieve the C type corresponding to type tag TypeExpr.
|
|
///
|
|
/// \param TypeExpr Expression that specifies a type tag.
|
|
///
|
|
/// \param MagicValues Registered magic values.
|
|
///
|
|
/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
|
|
/// kind.
|
|
///
|
|
/// \param TypeInfo Information about the corresponding C type.
|
|
///
|
|
/// \returns true if the corresponding C type was found.
|
|
bool GetMatchingCType(
|
|
const IdentifierInfo *ArgumentKind,
|
|
const Expr *TypeExpr, const ASTContext &Ctx,
|
|
const llvm::DenseMap<Sema::TypeTagMagicValue,
|
|
Sema::TypeTagData> *MagicValues,
|
|
bool &FoundWrongKind,
|
|
Sema::TypeTagData &TypeInfo) {
|
|
FoundWrongKind = false;
|
|
|
|
// Variable declaration that has type_tag_for_datatype attribute.
|
|
const ValueDecl *VD = NULL;
|
|
|
|
uint64_t MagicValue;
|
|
|
|
if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
|
|
return false;
|
|
|
|
if (VD) {
|
|
for (specific_attr_iterator<TypeTagForDatatypeAttr>
|
|
I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
|
|
E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
|
|
I != E; ++I) {
|
|
if (I->getArgumentKind() != ArgumentKind) {
|
|
FoundWrongKind = true;
|
|
return false;
|
|
}
|
|
TypeInfo.Type = I->getMatchingCType();
|
|
TypeInfo.LayoutCompatible = I->getLayoutCompatible();
|
|
TypeInfo.MustBeNull = I->getMustBeNull();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!MagicValues)
|
|
return false;
|
|
|
|
llvm::DenseMap<Sema::TypeTagMagicValue,
|
|
Sema::TypeTagData>::const_iterator I =
|
|
MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
|
|
if (I == MagicValues->end())
|
|
return false;
|
|
|
|
TypeInfo = I->second;
|
|
return true;
|
|
}
|
|
} // unnamed namespace
|
|
|
|
void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
|
|
uint64_t MagicValue, QualType Type,
|
|
bool LayoutCompatible,
|
|
bool MustBeNull) {
|
|
if (!TypeTagForDatatypeMagicValues)
|
|
TypeTagForDatatypeMagicValues.reset(
|
|
new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
|
|
|
|
TypeTagMagicValue Magic(ArgumentKind, MagicValue);
|
|
(*TypeTagForDatatypeMagicValues)[Magic] =
|
|
TypeTagData(Type, LayoutCompatible, MustBeNull);
|
|
}
|
|
|
|
namespace {
|
|
bool IsSameCharType(QualType T1, QualType T2) {
|
|
const BuiltinType *BT1 = T1->getAs<BuiltinType>();
|
|
if (!BT1)
|
|
return false;
|
|
|
|
const BuiltinType *BT2 = T2->getAs<BuiltinType>();
|
|
if (!BT2)
|
|
return false;
|
|
|
|
BuiltinType::Kind T1Kind = BT1->getKind();
|
|
BuiltinType::Kind T2Kind = BT2->getKind();
|
|
|
|
return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
|
|
(T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
|
|
(T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
|
|
(T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
|
|
}
|
|
} // unnamed namespace
|
|
|
|
void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
|
|
const Expr * const *ExprArgs) {
|
|
const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
|
|
bool IsPointerAttr = Attr->getIsPointer();
|
|
|
|
const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
|
|
bool FoundWrongKind;
|
|
TypeTagData TypeInfo;
|
|
if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
|
|
TypeTagForDatatypeMagicValues.get(),
|
|
FoundWrongKind, TypeInfo)) {
|
|
if (FoundWrongKind)
|
|
Diag(TypeTagExpr->getExprLoc(),
|
|
diag::warn_type_tag_for_datatype_wrong_kind)
|
|
<< TypeTagExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
|
|
if (IsPointerAttr) {
|
|
// Skip implicit cast of pointer to `void *' (as a function argument).
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
|
|
if (ICE->getType()->isVoidPointerType())
|
|
ArgumentExpr = ICE->getSubExpr();
|
|
}
|
|
QualType ArgumentType = ArgumentExpr->getType();
|
|
|
|
// Passing a `void*' pointer shouldn't trigger a warning.
|
|
if (IsPointerAttr && ArgumentType->isVoidPointerType())
|
|
return;
|
|
|
|
if (TypeInfo.MustBeNull) {
|
|
// Type tag with matching void type requires a null pointer.
|
|
if (!ArgumentExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull)) {
|
|
Diag(ArgumentExpr->getExprLoc(),
|
|
diag::warn_type_safety_null_pointer_required)
|
|
<< ArgumentKind->getName()
|
|
<< ArgumentExpr->getSourceRange()
|
|
<< TypeTagExpr->getSourceRange();
|
|
}
|
|
return;
|
|
}
|
|
|
|
QualType RequiredType = TypeInfo.Type;
|
|
if (IsPointerAttr)
|
|
RequiredType = Context.getPointerType(RequiredType);
|
|
|
|
bool mismatch = false;
|
|
if (!TypeInfo.LayoutCompatible) {
|
|
mismatch = !Context.hasSameType(ArgumentType, RequiredType);
|
|
|
|
// C++11 [basic.fundamental] p1:
|
|
// Plain char, signed char, and unsigned char are three distinct types.
|
|
//
|
|
// But we treat plain `char' as equivalent to `signed char' or `unsigned
|
|
// char' depending on the current char signedness mode.
|
|
if (mismatch)
|
|
if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
|
|
RequiredType->getPointeeType())) ||
|
|
(!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
|
|
mismatch = false;
|
|
} else
|
|
if (IsPointerAttr)
|
|
mismatch = !isLayoutCompatible(Context,
|
|
ArgumentType->getPointeeType(),
|
|
RequiredType->getPointeeType());
|
|
else
|
|
mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
|
|
|
|
if (mismatch)
|
|
Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
|
|
<< ArgumentType << ArgumentKind->getName()
|
|
<< TypeInfo.LayoutCompatible << RequiredType
|
|
<< ArgumentExpr->getSourceRange()
|
|
<< TypeTagExpr->getSourceRange();
|
|
}
|
|
|