llvm-project/clang/lib/CodeGen/CodeGenFunction.h

3553 lines
149 KiB
C++

//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#include "CGBuilder.h"
#include "CGDebugInfo.h"
#include "CGLoopInfo.h"
#include "CGValue.h"
#include "CodeGenModule.h"
#include "CodeGenPGO.h"
#include "EHScopeStack.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/SanitizerStats.h"
namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
class CallSite;
}
namespace clang {
class ASTContext;
class BlockDecl;
class CXXDestructorDecl;
class CXXForRangeStmt;
class CXXTryStmt;
class Decl;
class LabelDecl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
class ObjCAutoreleasePoolStmt;
namespace CodeGen {
class CodeGenTypes;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
class CGCXXABI;
class BlockByrefHelpers;
class BlockByrefInfo;
class BlockFlags;
class BlockFieldFlags;
class RegionCodeGenTy;
class TargetCodeGenInfo;
struct OMPTaskDataTy;
struct CGCoroData;
/// The kind of evaluation to perform on values of a particular
/// type. Basically, is the code in CGExprScalar, CGExprComplex, or
/// CGExprAgg?
///
/// TODO: should vectors maybe be split out into their own thing?
enum TypeEvaluationKind {
TEK_Scalar,
TEK_Complex,
TEK_Aggregate
};
/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public CodeGenTypeCache {
CodeGenFunction(const CodeGenFunction &) = delete;
void operator=(const CodeGenFunction &) = delete;
friend class CGCXXABI;
public:
/// A jump destination is an abstract label, branching to which may
/// require a jump out through normal cleanups.
struct JumpDest {
JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
JumpDest(llvm::BasicBlock *Block,
EHScopeStack::stable_iterator Depth,
unsigned Index)
: Block(Block), ScopeDepth(Depth), Index(Index) {}
bool isValid() const { return Block != nullptr; }
llvm::BasicBlock *getBlock() const { return Block; }
EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
unsigned getDestIndex() const { return Index; }
// This should be used cautiously.
void setScopeDepth(EHScopeStack::stable_iterator depth) {
ScopeDepth = depth;
}
private:
llvm::BasicBlock *Block;
EHScopeStack::stable_iterator ScopeDepth;
unsigned Index;
};
CodeGenModule &CGM; // Per-module state.
const TargetInfo &Target;
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
LoopInfoStack LoopStack;
CGBuilderTy Builder;
/// \brief CGBuilder insert helper. This function is called after an
/// instruction is created using Builder.
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
llvm::BasicBlock *BB,
llvm::BasicBlock::iterator InsertPt) const;
/// CurFuncDecl - Holds the Decl for the current outermost
/// non-closure context.
const Decl *CurFuncDecl;
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
const Decl *CurCodeDecl;
const CGFunctionInfo *CurFnInfo;
QualType FnRetTy;
llvm::Function *CurFn;
// Holds coroutine data if the current function is a coroutine. We use a
// wrapper to manage its lifetime, so that we don't have to define CGCoroData
// in this header.
struct CGCoroInfo {
std::unique_ptr<CGCoroData> Data;
CGCoroInfo();
~CGCoroInfo();
};
CGCoroInfo CurCoro;
/// CurGD - The GlobalDecl for the current function being compiled.
GlobalDecl CurGD;
/// PrologueCleanupDepth - The cleanup depth enclosing all the
/// cleanups associated with the parameters.
EHScopeStack::stable_iterator PrologueCleanupDepth;
/// ReturnBlock - Unified return block.
JumpDest ReturnBlock;
/// ReturnValue - The temporary alloca to hold the return
/// value. This is invalid iff the function has no return value.
Address ReturnValue;
/// AllocaInsertPoint - This is an instruction in the entry block before which
/// we prefer to insert allocas.
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
/// \brief API for captured statement code generation.
class CGCapturedStmtInfo {
public:
explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
: Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
explicit CGCapturedStmtInfo(const CapturedStmt &S,
CapturedRegionKind K = CR_Default)
: Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
RecordDecl::field_iterator Field =
S.getCapturedRecordDecl()->field_begin();
for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
E = S.capture_end();
I != E; ++I, ++Field) {
if (I->capturesThis())
CXXThisFieldDecl = *Field;
else if (I->capturesVariable())
CaptureFields[I->getCapturedVar()] = *Field;
else if (I->capturesVariableByCopy())
CaptureFields[I->getCapturedVar()] = *Field;
}
}
virtual ~CGCapturedStmtInfo();
CapturedRegionKind getKind() const { return Kind; }
virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
// \brief Retrieve the value of the context parameter.
virtual llvm::Value *getContextValue() const { return ThisValue; }
/// \brief Lookup the captured field decl for a variable.
virtual const FieldDecl *lookup(const VarDecl *VD) const {
return CaptureFields.lookup(VD);
}
bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
static bool classof(const CGCapturedStmtInfo *) {
return true;
}
/// \brief Emit the captured statement body.
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
CGF.incrementProfileCounter(S);
CGF.EmitStmt(S);
}
/// \brief Get the name of the capture helper.
virtual StringRef getHelperName() const { return "__captured_stmt"; }
private:
/// \brief The kind of captured statement being generated.
CapturedRegionKind Kind;
/// \brief Keep the map between VarDecl and FieldDecl.
llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
/// \brief The base address of the captured record, passed in as the first
/// argument of the parallel region function.
llvm::Value *ThisValue;
/// \brief Captured 'this' type.
FieldDecl *CXXThisFieldDecl;
};
CGCapturedStmtInfo *CapturedStmtInfo;
/// \brief RAII for correct setting/restoring of CapturedStmtInfo.
class CGCapturedStmtRAII {
private:
CodeGenFunction &CGF;
CGCapturedStmtInfo *PrevCapturedStmtInfo;
public:
CGCapturedStmtRAII(CodeGenFunction &CGF,
CGCapturedStmtInfo *NewCapturedStmtInfo)
: CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
CGF.CapturedStmtInfo = NewCapturedStmtInfo;
}
~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
};
/// \brief Sanitizers enabled for this function.
SanitizerSet SanOpts;
/// \brief True if CodeGen currently emits code implementing sanitizer checks.
bool IsSanitizerScope;
/// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
class SanitizerScope {
CodeGenFunction *CGF;
public:
SanitizerScope(CodeGenFunction *CGF);
~SanitizerScope();
};
/// In C++, whether we are code generating a thunk. This controls whether we
/// should emit cleanups.
bool CurFuncIsThunk;
/// In ARC, whether we should autorelease the return value.
bool AutoreleaseResult;
/// Whether we processed a Microsoft-style asm block during CodeGen. These can
/// potentially set the return value.
bool SawAsmBlock;
const FunctionDecl *CurSEHParent = nullptr;
/// True if the current function is an outlined SEH helper. This can be a
/// finally block or filter expression.
bool IsOutlinedSEHHelper;
const CodeGen::CGBlockInfo *BlockInfo;
llvm::Value *BlockPointer;
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField;
/// \brief A mapping from NRVO variables to the flags used to indicate
/// when the NRVO has been applied to this variable.
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
EHScopeStack EHStack;
llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
llvm::Instruction *CurrentFuncletPad = nullptr;
class CallLifetimeEnd final : public EHScopeStack::Cleanup {
llvm::Value *Addr;
llvm::Value *Size;
public:
CallLifetimeEnd(Address addr, llvm::Value *size)
: Addr(addr.getPointer()), Size(size) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitLifetimeEnd(Size, Addr);
}
};
/// Header for data within LifetimeExtendedCleanupStack.
struct LifetimeExtendedCleanupHeader {
/// The size of the following cleanup object.
unsigned Size;
/// The kind of cleanup to push: a value from the CleanupKind enumeration.
CleanupKind Kind;
size_t getSize() const { return Size; }
CleanupKind getKind() const { return Kind; }
};
/// i32s containing the indexes of the cleanup destinations.
llvm::AllocaInst *NormalCleanupDest;
unsigned NextCleanupDestIndex;
/// FirstBlockInfo - The head of a singly-linked-list of block layouts.
CGBlockInfo *FirstBlockInfo;
/// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
llvm::BasicBlock *EHResumeBlock;
/// The exception slot. All landing pads write the current exception pointer
/// into this alloca.
llvm::Value *ExceptionSlot;
/// The selector slot. Under the MandatoryCleanup model, all landing pads
/// write the current selector value into this alloca.
llvm::AllocaInst *EHSelectorSlot;
/// A stack of exception code slots. Entering an __except block pushes a slot
/// on the stack and leaving pops one. The __exception_code() intrinsic loads
/// a value from the top of the stack.
SmallVector<Address, 1> SEHCodeSlotStack;
/// Value returned by __exception_info intrinsic.
llvm::Value *SEHInfo = nullptr;
/// Emits a landing pad for the current EH stack.
llvm::BasicBlock *EmitLandingPad();
llvm::BasicBlock *getInvokeDestImpl();
template <class T>
typename DominatingValue<T>::saved_type saveValueInCond(T value) {
return DominatingValue<T>::save(*this, value);
}
public:
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
/// rethrows.
SmallVector<llvm::Value*, 8> ObjCEHValueStack;
/// A class controlling the emission of a finally block.
class FinallyInfo {
/// Where the catchall's edge through the cleanup should go.
JumpDest RethrowDest;
/// A function to call to enter the catch.
llvm::Constant *BeginCatchFn;
/// An i1 variable indicating whether or not the @finally is
/// running for an exception.
llvm::AllocaInst *ForEHVar;
/// An i8* variable into which the exception pointer to rethrow
/// has been saved.
llvm::AllocaInst *SavedExnVar;
public:
void enter(CodeGenFunction &CGF, const Stmt *Finally,
llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
llvm::Constant *rethrowFn);
void exit(CodeGenFunction &CGF);
};
/// Returns true inside SEH __try blocks.
bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
/// Returns true while emitting a cleanuppad.
bool isCleanupPadScope() const {
return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
}
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class... As>
void pushFullExprCleanup(CleanupKind kind, As... A) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch())
return EHStack.pushCleanup<T>(kind, A...);
// Stash values in a tuple so we can guarantee the order of saves.
typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
SavedTuple Saved{saveValueInCond(A)...};
typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
initFullExprCleanup();
}
/// \brief Queue a cleanup to be pushed after finishing the current
/// full-expression.
template <class T, class... As>
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
assert(!isInConditionalBranch() && "can't defer conditional cleanup");
LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
size_t OldSize = LifetimeExtendedCleanupStack.size();
LifetimeExtendedCleanupStack.resize(
LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
"Cleanup will be allocated on misaligned address");
char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
new (Buffer) LifetimeExtendedCleanupHeader(Header);
new (Buffer + sizeof(Header)) T(A...);
}
/// Set up the last cleaup that was pushed as a conditional
/// full-expression cleanup.
void initFullExprCleanup();
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object destructor of an object of the given type at the
/// given address. Does nothing if T is not a C++ class type with a
/// non-trivial destructor.
void PushDestructorCleanup(QualType T, Address Addr);
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object variant of the given destructor on the object at
/// the given address.
void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
/// process all branch fixups.
void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
/// DeactivateCleanupBlock - Deactivates the given cleanup block.
/// The block cannot be reactivated. Pops it if it's the top of the
/// stack.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// ActivateCleanupBlock - Activates an initially-inactive cleanup.
/// Cannot be used to resurrect a deactivated cleanup.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// \brief Enters a new scope for capturing cleanups, all of which
/// will be executed once the scope is exited.
class RunCleanupsScope {
EHScopeStack::stable_iterator CleanupStackDepth;
size_t LifetimeExtendedCleanupStackSize;
bool OldDidCallStackSave;
protected:
bool PerformCleanup;
private:
RunCleanupsScope(const RunCleanupsScope &) = delete;
void operator=(const RunCleanupsScope &) = delete;
protected:
CodeGenFunction& CGF;
public:
/// \brief Enter a new cleanup scope.
explicit RunCleanupsScope(CodeGenFunction &CGF)
: PerformCleanup(true), CGF(CGF)
{
CleanupStackDepth = CGF.EHStack.stable_begin();
LifetimeExtendedCleanupStackSize =
CGF.LifetimeExtendedCleanupStack.size();
OldDidCallStackSave = CGF.DidCallStackSave;
CGF.DidCallStackSave = false;
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~RunCleanupsScope() {
if (PerformCleanup) {
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth,
LifetimeExtendedCleanupStackSize);
}
}
/// \brief Determine whether this scope requires any cleanups.
bool requiresCleanups() const {
return CGF.EHStack.stable_begin() != CleanupStackDepth;
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
assert(PerformCleanup && "Already forced cleanup");
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth,
LifetimeExtendedCleanupStackSize);
PerformCleanup = false;
}
};
class LexicalScope : public RunCleanupsScope {
SourceRange Range;
SmallVector<const LabelDecl*, 4> Labels;
LexicalScope *ParentScope;
LexicalScope(const LexicalScope &) = delete;
void operator=(const LexicalScope &) = delete;
public:
/// \brief Enter a new cleanup scope.
explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
: RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
CGF.CurLexicalScope = this;
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
}
void addLabel(const LabelDecl *label) {
assert(PerformCleanup && "adding label to dead scope?");
Labels.push_back(label);
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~LexicalScope() {
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
// If we should perform a cleanup, force them now. Note that
// this ends the cleanup scope before rescoping any labels.
if (PerformCleanup) {
ApplyDebugLocation DL(CGF, Range.getEnd());
ForceCleanup();
}
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
CGF.CurLexicalScope = ParentScope;
RunCleanupsScope::ForceCleanup();
if (!Labels.empty())
rescopeLabels();
}
void rescopeLabels();
};
typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
/// \brief The scope used to remap some variables as private in the OpenMP
/// loop body (or other captured region emitted without outlining), and to
/// restore old vars back on exit.
class OMPPrivateScope : public RunCleanupsScope {
DeclMapTy SavedLocals;
DeclMapTy SavedPrivates;
private:
OMPPrivateScope(const OMPPrivateScope &) = delete;
void operator=(const OMPPrivateScope &) = delete;
public:
/// \brief Enter a new OpenMP private scope.
explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
/// \brief Registers \a LocalVD variable as a private and apply \a
/// PrivateGen function for it to generate corresponding private variable.
/// \a PrivateGen returns an address of the generated private variable.
/// \return true if the variable is registered as private, false if it has
/// been privatized already.
bool
addPrivate(const VarDecl *LocalVD,
llvm::function_ref<Address()> PrivateGen) {
assert(PerformCleanup && "adding private to dead scope");
// Only save it once.
if (SavedLocals.count(LocalVD)) return false;
// Copy the existing local entry to SavedLocals.
auto it = CGF.LocalDeclMap.find(LocalVD);
if (it != CGF.LocalDeclMap.end()) {
SavedLocals.insert({LocalVD, it->second});
} else {
SavedLocals.insert({LocalVD, Address::invalid()});
}
// Generate the private entry.
Address Addr = PrivateGen();
QualType VarTy = LocalVD->getType();
if (VarTy->isReferenceType()) {
Address Temp = CGF.CreateMemTemp(VarTy);
CGF.Builder.CreateStore(Addr.getPointer(), Temp);
Addr = Temp;
}
SavedPrivates.insert({LocalVD, Addr});
return true;
}
/// \brief Privatizes local variables previously registered as private.
/// Registration is separate from the actual privatization to allow
/// initializers use values of the original variables, not the private one.
/// This is important, for example, if the private variable is a class
/// variable initialized by a constructor that references other private
/// variables. But at initialization original variables must be used, not
/// private copies.
/// \return true if at least one variable was privatized, false otherwise.
bool Privatize() {
copyInto(SavedPrivates, CGF.LocalDeclMap);
SavedPrivates.clear();
return !SavedLocals.empty();
}
void ForceCleanup() {
RunCleanupsScope::ForceCleanup();
copyInto(SavedLocals, CGF.LocalDeclMap);
SavedLocals.clear();
}
/// \brief Exit scope - all the mapped variables are restored.
~OMPPrivateScope() {
if (PerformCleanup)
ForceCleanup();
}
/// Checks if the global variable is captured in current function.
bool isGlobalVarCaptured(const VarDecl *VD) const {
return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
}
private:
/// Copy all the entries in the source map over the corresponding
/// entries in the destination, which must exist.
static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
for (auto &pair : src) {
if (!pair.second.isValid()) {
dest.erase(pair.first);
continue;
}
auto it = dest.find(pair.first);
if (it != dest.end()) {
it->second = pair.second;
} else {
dest.insert(pair);
}
}
}
};
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added, then adds all lifetime-extended cleanups from
/// the given position to the stack.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
size_t OldLifetimeExtendedStackSize);
void ResolveBranchFixups(llvm::BasicBlock *Target);
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
return JumpDest(Target,
EHStack.getInnermostNormalCleanup(),
NextCleanupDestIndex++);
}
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
return getJumpDestInCurrentScope(createBasicBlock(Name));
}
/// EmitBranchThroughCleanup - Emit a branch from the current insert
/// block through the normal cleanup handling code (if any) and then
/// on to \arg Dest.
void EmitBranchThroughCleanup(JumpDest Dest);
/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
/// specified destination obviously has no cleanups to run. 'false' is always
/// a conservatively correct answer for this method.
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
/// popCatchScope - Pops the catch scope at the top of the EHScope
/// stack, emitting any required code (other than the catch handlers
/// themselves).
void popCatchScope();
llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
/// An object to manage conditionally-evaluated expressions.
class ConditionalEvaluation {
llvm::BasicBlock *StartBB;
public:
ConditionalEvaluation(CodeGenFunction &CGF)
: StartBB(CGF.Builder.GetInsertBlock()) {}
void begin(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != this);
if (!CGF.OutermostConditional)
CGF.OutermostConditional = this;
}
void end(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != nullptr);
if (CGF.OutermostConditional == this)
CGF.OutermostConditional = nullptr;
}
/// Returns a block which will be executed prior to each
/// evaluation of the conditional code.
llvm::BasicBlock *getStartingBlock() const {
return StartBB;
}
};
/// isInConditionalBranch - Return true if we're currently emitting
/// one branch or the other of a conditional expression.
bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
assert(isInConditionalBranch());
llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
store->setAlignment(addr.getAlignment().getQuantity());
}
/// An RAII object to record that we're evaluating a statement
/// expression.
class StmtExprEvaluation {
CodeGenFunction &CGF;
/// We have to save the outermost conditional: cleanups in a
/// statement expression aren't conditional just because the
/// StmtExpr is.
ConditionalEvaluation *SavedOutermostConditional;
public:
StmtExprEvaluation(CodeGenFunction &CGF)
: CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
CGF.OutermostConditional = nullptr;
}
~StmtExprEvaluation() {
CGF.OutermostConditional = SavedOutermostConditional;
CGF.EnsureInsertPoint();
}
};
/// An object which temporarily prevents a value from being
/// destroyed by aggressive peephole optimizations that assume that
/// all uses of a value have been realized in the IR.
class PeepholeProtection {
llvm::Instruction *Inst;
friend class CodeGenFunction;
public:
PeepholeProtection() : Inst(nullptr) {}
};
/// A non-RAII class containing all the information about a bound
/// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
/// this which makes individual mappings very simple; using this
/// class directly is useful when you have a variable number of
/// opaque values or don't want the RAII functionality for some
/// reason.
class OpaqueValueMappingData {
const OpaqueValueExpr *OpaqueValue;
bool BoundLValue;
CodeGenFunction::PeepholeProtection Protection;
OpaqueValueMappingData(const OpaqueValueExpr *ov,
bool boundLValue)
: OpaqueValue(ov), BoundLValue(boundLValue) {}
public:
OpaqueValueMappingData() : OpaqueValue(nullptr) {}
static bool shouldBindAsLValue(const Expr *expr) {
// gl-values should be bound as l-values for obvious reasons.
// Records should be bound as l-values because IR generation
// always keeps them in memory. Expressions of function type
// act exactly like l-values but are formally required to be
// r-values in C.
return expr->isGLValue() ||
expr->getType()->isFunctionType() ||
hasAggregateEvaluationKind(expr->getType());
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const Expr *e) {
if (shouldBindAsLValue(ov))
return bind(CGF, ov, CGF.EmitLValue(e));
return bind(CGF, ov, CGF.EmitAnyExpr(e));
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const LValue &lv) {
assert(shouldBindAsLValue(ov));
CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
return OpaqueValueMappingData(ov, true);
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const RValue &rv) {
assert(!shouldBindAsLValue(ov));
CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
OpaqueValueMappingData data(ov, false);
// Work around an extremely aggressive peephole optimization in
// EmitScalarConversion which assumes that all other uses of a
// value are extant.
data.Protection = CGF.protectFromPeepholes(rv);
return data;
}
bool isValid() const { return OpaqueValue != nullptr; }
void clear() { OpaqueValue = nullptr; }
void unbind(CodeGenFunction &CGF) {
assert(OpaqueValue && "no data to unbind!");
if (BoundLValue) {
CGF.OpaqueLValues.erase(OpaqueValue);
} else {
CGF.OpaqueRValues.erase(OpaqueValue);
CGF.unprotectFromPeepholes(Protection);
}
}
};
/// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
class OpaqueValueMapping {
CodeGenFunction &CGF;
OpaqueValueMappingData Data;
public:
static bool shouldBindAsLValue(const Expr *expr) {
return OpaqueValueMappingData::shouldBindAsLValue(expr);
}
/// Build the opaque value mapping for the given conditional
/// operator if it's the GNU ?: extension. This is a common
/// enough pattern that the convenience operator is really
/// helpful.
///
OpaqueValueMapping(CodeGenFunction &CGF,
const AbstractConditionalOperator *op) : CGF(CGF) {
if (isa<ConditionalOperator>(op))
// Leave Data empty.
return;
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
e->getCommon());
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
LValue lvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
RValue rvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
}
void pop() {
Data.unbind(CGF);
Data.clear();
}
~OpaqueValueMapping() {
if (Data.isValid()) Data.unbind(CGF);
}
};
private:
CGDebugInfo *DebugInfo;
bool DisableDebugInfo;
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
/// calling llvm.stacksave for multiple VLAs in the same scope.
bool DidCallStackSave;
/// IndirectBranch - The first time an indirect goto is seen we create a block
/// with an indirect branch. Every time we see the address of a label taken,
/// we add the label to the indirect goto. Every subsequent indirect goto is
/// codegen'd as a jump to the IndirectBranch's basic block.
llvm::IndirectBrInst *IndirectBranch;
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
/// decls.
DeclMapTy LocalDeclMap;
/// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
/// will contain a mapping from said ParmVarDecl to its implicit "object_size"
/// parameter.
llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
SizeArguments;
/// Track escaped local variables with auto storage. Used during SEH
/// outlining to produce a call to llvm.localescape.
llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
/// LabelMap - This keeps track of the LLVM basic block for each C label.
llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
// BreakContinueStack - This keeps track of where break and continue
// statements should jump to.
struct BreakContinue {
BreakContinue(JumpDest Break, JumpDest Continue)
: BreakBlock(Break), ContinueBlock(Continue) {}
JumpDest BreakBlock;
JumpDest ContinueBlock;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CodeGenPGO PGO;
/// Calculate branch weights appropriate for PGO data
llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
uint64_t LoopCount);
public:
/// Increment the profiler's counter for the given statement.
void incrementProfileCounter(const Stmt *S) {
if (CGM.getCodeGenOpts().hasProfileClangInstr())
PGO.emitCounterIncrement(Builder, S);
PGO.setCurrentStmt(S);
}
/// Get the profiler's count for the given statement.
uint64_t getProfileCount(const Stmt *S) {
Optional<uint64_t> Count = PGO.getStmtCount(S);
if (!Count.hasValue())
return 0;
return *Count;
}
/// Set the profiler's current count.
void setCurrentProfileCount(uint64_t Count) {
PGO.setCurrentRegionCount(Count);
}
/// Get the profiler's current count. This is generally the count for the most
/// recently incremented counter.
uint64_t getCurrentProfileCount() {
return PGO.getCurrentRegionCount();
}
private:
/// SwitchInsn - This is nearest current switch instruction. It is null if
/// current context is not in a switch.
llvm::SwitchInst *SwitchInsn;
/// The branch weights of SwitchInsn when doing instrumentation based PGO.
SmallVector<uint64_t, 16> *SwitchWeights;
/// CaseRangeBlock - This block holds if condition check for last case
/// statement range in current switch instruction.
llvm::BasicBlock *CaseRangeBlock;
/// OpaqueLValues - Keeps track of the current set of opaque value
/// expressions.
llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
// VLASizeMap - This keeps track of the associated size for each VLA type.
// We track this by the size expression rather than the type itself because
// in certain situations, like a const qualifier applied to an VLA typedef,
// multiple VLA types can share the same size expression.
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
// enter/leave scopes.
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
/// A block containing a single 'unreachable' instruction. Created
/// lazily by getUnreachableBlock().
llvm::BasicBlock *UnreachableBlock;
/// Counts of the number return expressions in the function.
unsigned NumReturnExprs;
/// Count the number of simple (constant) return expressions in the function.
unsigned NumSimpleReturnExprs;
/// The last regular (non-return) debug location (breakpoint) in the function.
SourceLocation LastStopPoint;
public:
/// A scope within which we are constructing the fields of an object which
/// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
/// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
class FieldConstructionScope {
public:
FieldConstructionScope(CodeGenFunction &CGF, Address This)
: CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
CGF.CXXDefaultInitExprThis = This;
}
~FieldConstructionScope() {
CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
}
private:
CodeGenFunction &CGF;
Address OldCXXDefaultInitExprThis;
};
/// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
/// is overridden to be the object under construction.
class CXXDefaultInitExprScope {
public:
CXXDefaultInitExprScope(CodeGenFunction &CGF)
: CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
OldCXXThisAlignment(CGF.CXXThisAlignment) {
CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
}
~CXXDefaultInitExprScope() {
CGF.CXXThisValue = OldCXXThisValue;
CGF.CXXThisAlignment = OldCXXThisAlignment;
}
public:
CodeGenFunction &CGF;
llvm::Value *OldCXXThisValue;
CharUnits OldCXXThisAlignment;
};
class InlinedInheritingConstructorScope {
public:
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
: CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
OldCurCodeDecl(CGF.CurCodeDecl),
OldCXXABIThisDecl(CGF.CXXABIThisDecl),
OldCXXABIThisValue(CGF.CXXABIThisValue),
OldCXXThisValue(CGF.CXXThisValue),
OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
OldCXXThisAlignment(CGF.CXXThisAlignment),
OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
OldCXXInheritedCtorInitExprArgs(
std::move(CGF.CXXInheritedCtorInitExprArgs)) {
CGF.CurGD = GD;
CGF.CurFuncDecl = CGF.CurCodeDecl =
cast<CXXConstructorDecl>(GD.getDecl());
CGF.CXXABIThisDecl = nullptr;
CGF.CXXABIThisValue = nullptr;
CGF.CXXThisValue = nullptr;
CGF.CXXABIThisAlignment = CharUnits();
CGF.CXXThisAlignment = CharUnits();
CGF.ReturnValue = Address::invalid();
CGF.FnRetTy = QualType();
CGF.CXXInheritedCtorInitExprArgs.clear();
}
~InlinedInheritingConstructorScope() {
CGF.CurGD = OldCurGD;
CGF.CurFuncDecl = OldCurFuncDecl;
CGF.CurCodeDecl = OldCurCodeDecl;
CGF.CXXABIThisDecl = OldCXXABIThisDecl;
CGF.CXXABIThisValue = OldCXXABIThisValue;
CGF.CXXThisValue = OldCXXThisValue;
CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
CGF.CXXThisAlignment = OldCXXThisAlignment;
CGF.ReturnValue = OldReturnValue;
CGF.FnRetTy = OldFnRetTy;
CGF.CXXInheritedCtorInitExprArgs =
std::move(OldCXXInheritedCtorInitExprArgs);
}
private:
CodeGenFunction &CGF;
GlobalDecl OldCurGD;
const Decl *OldCurFuncDecl;
const Decl *OldCurCodeDecl;
ImplicitParamDecl *OldCXXABIThisDecl;
llvm::Value *OldCXXABIThisValue;
llvm::Value *OldCXXThisValue;
CharUnits OldCXXABIThisAlignment;
CharUnits OldCXXThisAlignment;
Address OldReturnValue;
QualType OldFnRetTy;
CallArgList OldCXXInheritedCtorInitExprArgs;
};
private:
/// CXXThisDecl - When generating code for a C++ member function,
/// this will hold the implicit 'this' declaration.
ImplicitParamDecl *CXXABIThisDecl;
llvm::Value *CXXABIThisValue;
llvm::Value *CXXThisValue;
CharUnits CXXABIThisAlignment;
CharUnits CXXThisAlignment;
/// The value of 'this' to use when evaluating CXXDefaultInitExprs within
/// this expression.
Address CXXDefaultInitExprThis = Address::invalid();
/// The values of function arguments to use when evaluating
/// CXXInheritedCtorInitExprs within this context.
CallArgList CXXInheritedCtorInitExprArgs;
/// CXXStructorImplicitParamDecl - When generating code for a constructor or
/// destructor, this will hold the implicit argument (e.g. VTT).
ImplicitParamDecl *CXXStructorImplicitParamDecl;
llvm::Value *CXXStructorImplicitParamValue;
/// OutermostConditional - Points to the outermost active
/// conditional control. This is used so that we know if a
/// temporary should be destroyed conditionally.
ConditionalEvaluation *OutermostConditional;
/// The current lexical scope.
LexicalScope *CurLexicalScope;
/// The current source location that should be used for exception
/// handling code.
SourceLocation CurEHLocation;
/// BlockByrefInfos - For each __block variable, contains
/// information about the layout of the variable.
llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
llvm::BasicBlock *TerminateLandingPad;
llvm::BasicBlock *TerminateHandler;
llvm::BasicBlock *TrapBB;
/// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
/// In the kernel metadata node, reference the kernel function and metadata
/// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
/// - A node for the vec_type_hint(<type>) qualifier contains string
/// "vec_type_hint", an undefined value of the <type> data type,
/// and a Boolean that is true if the <type> is integer and signed.
/// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
/// "work_group_size_hint", and three 32-bit integers X, Y and Z.
/// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
/// "reqd_work_group_size", and three 32-bit integers X, Y and Z.
void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
llvm::Function *Fn);
public:
CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
~CodeGenFunction();
CodeGenTypes &getTypes() const { return CGM.getTypes(); }
ASTContext &getContext() const { return CGM.getContext(); }
CGDebugInfo *getDebugInfo() {
if (DisableDebugInfo)
return nullptr;
return DebugInfo;
}
void disableDebugInfo() { DisableDebugInfo = true; }
void enableDebugInfo() { DisableDebugInfo = false; }
bool shouldUseFusedARCCalls() {
return CGM.getCodeGenOpts().OptimizationLevel == 0;
}
const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
/// Returns a pointer to the function's exception object and selector slot,
/// which is assigned in every landing pad.
Address getExceptionSlot();
Address getEHSelectorSlot();
/// Returns the contents of the function's exception object and selector
/// slots.
llvm::Value *getExceptionFromSlot();
llvm::Value *getSelectorFromSlot();
Address getNormalCleanupDestSlot();
llvm::BasicBlock *getUnreachableBlock() {
if (!UnreachableBlock) {
UnreachableBlock = createBasicBlock("unreachable");
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
}
return UnreachableBlock;
}
llvm::BasicBlock *getInvokeDest() {
if (!EHStack.requiresLandingPad()) return nullptr;
return getInvokeDestImpl();
}
bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
const TargetInfo &getTarget() const { return Target; }
llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
//===--------------------------------------------------------------------===//
// Cleanups
//===--------------------------------------------------------------------===//
typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
Address arrayEndPointer,
QualType elementType,
CharUnits elementAlignment,
Destroyer *destroyer);
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
llvm::Value *arrayEnd,
QualType elementType,
CharUnits elementAlignment,
Destroyer *destroyer);
void pushDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type);
void pushEHDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type);
void pushDestroy(CleanupKind kind, Address addr, QualType type,
Destroyer *destroyer, bool useEHCleanupForArray);
void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
llvm::Value *CompletePtr,
QualType ElementType);
void pushStackRestore(CleanupKind kind, Address SPMem);
void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
llvm::Function *generateDestroyHelper(Address addr, QualType type,
Destroyer *destroyer,
bool useEHCleanupForArray,
const VarDecl *VD);
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
QualType elementType, CharUnits elementAlign,
Destroyer *destroyer,
bool checkZeroLength, bool useEHCleanup);
Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
/// Determines whether an EH cleanup is required to destroy a type
/// with the given destruction kind.
bool needsEHCleanup(QualType::DestructionKind kind) {
switch (kind) {
case QualType::DK_none:
return false;
case QualType::DK_cxx_destructor:
case QualType::DK_objc_weak_lifetime:
return getLangOpts().Exceptions;
case QualType::DK_objc_strong_lifetime:
return getLangOpts().Exceptions &&
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
}
llvm_unreachable("bad destruction kind");
}
CleanupKind getCleanupKind(QualType::DestructionKind kind) {
return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
}
//===--------------------------------------------------------------------===//
// Objective-C
//===--------------------------------------------------------------------===//
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
const ObjCMethodDecl *GetterMothodDecl,
llvm::Constant *AtomicHelperFn);
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD, bool ctor);
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
/// for the given property.
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
llvm::Constant *AtomicHelperFn);
//===--------------------------------------------------------------------===//
// Block Bits
//===--------------------------------------------------------------------===//
llvm::Value *EmitBlockLiteral(const BlockExpr *);
llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
static void destroyBlockInfos(CGBlockInfo *info);
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
const CGBlockInfo &Info,
const DeclMapTy &ldm,
bool IsLambdaConversionToBlock);
llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
class AutoVarEmission;
void emitByrefStructureInit(const AutoVarEmission &emission);
void enterByrefCleanup(const AutoVarEmission &emission);
void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
llvm::Value *ptr);
Address LoadBlockStruct();
Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
/// BuildBlockByrefAddress - Computes the location of the
/// data in a variable which is declared as __block.
Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
bool followForward = true);
Address emitBlockByrefAddress(Address baseAddr,
const BlockByrefInfo &info,
bool followForward,
const llvm::Twine &name);
const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
const CGFunctionInfo &FnInfo);
/// \brief Emit code for the start of a function.
/// \param Loc The location to be associated with the function.
/// \param StartLoc The location of the function body.
void StartFunction(GlobalDecl GD,
QualType RetTy,
llvm::Function *Fn,
const CGFunctionInfo &FnInfo,
const FunctionArgList &Args,
SourceLocation Loc = SourceLocation(),
SourceLocation StartLoc = SourceLocation());
void EmitConstructorBody(FunctionArgList &Args);
void EmitDestructorBody(FunctionArgList &Args);
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
CallArgList &CallArgs);
void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
void EmitLambdaBlockInvokeBody();
void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
void EmitAsanPrologueOrEpilogue(bool Prologue);
/// \brief Emit the unified return block, trying to avoid its emission when
/// possible.
/// \return The debug location of the user written return statement if the
/// return block is is avoided.
llvm::DebugLoc EmitReturnBlock();
/// FinishFunction - Complete IR generation of the current function. It is
/// legal to call this function even if there is no current insertion point.
void FinishFunction(SourceLocation EndLoc=SourceLocation());
void StartThunk(llvm::Function *Fn, GlobalDecl GD,
const CGFunctionInfo &FnInfo);
void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
void FinishThunk();
/// Emit a musttail call for a thunk with a potentially adjusted this pointer.
void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
llvm::Value *Callee);
/// Generate a thunk for the given method.
void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
FunctionArgList &Args);
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
ArrayRef<VarDecl *> ArrayIndexes);
/// Struct with all informations about dynamic [sub]class needed to set vptr.
struct VPtr {
BaseSubobject Base;
const CXXRecordDecl *NearestVBase;
CharUnits OffsetFromNearestVBase;
const CXXRecordDecl *VTableClass;
};
/// Initialize the vtable pointer of the given subobject.
void InitializeVTablePointer(const VPtr &vptr);
typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
CharUnits OffsetFromNearestVBase,
bool BaseIsNonVirtualPrimaryBase,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
/// GetVTablePtr - Return the Value of the vtable pointer member pointed
/// to by This.
llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
const CXXRecordDecl *VTableClass);
enum CFITypeCheckKind {
CFITCK_VCall,
CFITCK_NVCall,
CFITCK_DerivedCast,
CFITCK_UnrelatedCast,
CFITCK_ICall,
};
/// \brief Derived is the presumed address of an object of type T after a
/// cast. If T is a polymorphic class type, emit a check that the virtual
/// table for Derived belongs to a class derived from T.
void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
bool MayBeNull, CFITypeCheckKind TCK,
SourceLocation Loc);
/// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
/// If vptr CFI is enabled, emit a check that VTable is valid.
void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
CFITypeCheckKind TCK, SourceLocation Loc);
/// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
/// RD using llvm.type.test.
void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
CFITypeCheckKind TCK, SourceLocation Loc);
/// If whole-program virtual table optimization is enabled, emit an assumption
/// that VTable is a member of RD's type identifier. Or, if vptr CFI is
/// enabled, emit a check that VTable is a member of RD's type identifier.
void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
llvm::Value *VTable, SourceLocation Loc);
/// Returns whether we should perform a type checked load when loading a
/// virtual function for virtual calls to members of RD. This is generally
/// true when both vcall CFI and whole-program-vtables are enabled.
bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
/// Emit a type checked load from the given vtable.
llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
uint64_t VTableByteOffset);
/// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
/// expr can be devirtualized.
bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
const CXXMethodDecl *MD);
/// EnterDtorCleanups - Enter the cleanups necessary to complete the
/// given phase of destruction for a destructor. The end result
/// should call destructors on members and base classes in reverse
/// order of their construction.
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
/// ShouldInstrumentFunction - Return true if the current function should be
/// instrumented with __cyg_profile_func_* calls
bool ShouldInstrumentFunction();
/// ShouldXRayInstrument - Return true if the current function should be
/// instrumented with XRay nop sleds.
bool ShouldXRayInstrumentFunction() const;
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
/// instrumentation function with the current function and the call site, if
/// function instrumentation is enabled.
void EmitFunctionInstrumentation(const char *Fn);
/// EmitMCountInstrumentation - Emit call to .mcount.
void EmitMCountInstrumentation();
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
/// arguments for the given function. This is also responsible for naming the
/// LLVM function arguments.
void EmitFunctionProlog(const CGFunctionInfo &FI,
llvm::Function *Fn,
const FunctionArgList &Args);
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
/// given temporary.
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
SourceLocation EndLoc);
/// EmitStartEHSpec - Emit the start of the exception spec.
void EmitStartEHSpec(const Decl *D);
/// EmitEndEHSpec - Emit the end of the exception spec.
void EmitEndEHSpec(const Decl *D);
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
llvm::BasicBlock *getTerminateLandingPad();
/// getTerminateHandler - Return a handler (not a landing pad, just
/// a catch handler) that just calls terminate. This is used when
/// a terminate scope encloses a try.
llvm::BasicBlock *getTerminateHandler();
llvm::Type *ConvertTypeForMem(QualType T);
llvm::Type *ConvertType(QualType T);
llvm::Type *ConvertType(const TypeDecl *T) {
return ConvertType(getContext().getTypeDeclType(T));
}
/// LoadObjCSelf - Load the value of self. This function is only valid while
/// generating code for an Objective-C method.
llvm::Value *LoadObjCSelf();
/// TypeOfSelfObject - Return type of object that this self represents.
QualType TypeOfSelfObject();
/// hasAggregateLLVMType - Return true if the specified AST type will map into
/// an aggregate LLVM type or is void.
static TypeEvaluationKind getEvaluationKind(QualType T);
static bool hasScalarEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Scalar;
}
static bool hasAggregateEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Aggregate;
}
/// createBasicBlock - Create an LLVM basic block.
llvm::BasicBlock *createBasicBlock(const Twine &name = "",
llvm::Function *parent = nullptr,
llvm::BasicBlock *before = nullptr) {
#ifdef NDEBUG
return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
#else
return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
#endif
}
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
/// label maps to.
JumpDest getJumpDestForLabel(const LabelDecl *S);
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
/// another basic block, simplify it. This assumes that no other code could
/// potentially reference the basic block.
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
/// adding a fall-through branch from the current insert block if
/// necessary. It is legal to call this function even if there is no current
/// insertion point.
///
/// IsFinished - If true, indicates that the caller has finished emitting
/// branches to the given block and does not expect to emit code into it. This
/// means the block can be ignored if it is unreachable.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
/// EmitBlockAfterUses - Emit the given block somewhere hopefully
/// near its uses, and leave the insertion point in it.
void EmitBlockAfterUses(llvm::BasicBlock *BB);
/// EmitBranch - Emit a branch to the specified basic block from the current
/// insert block, taking care to avoid creation of branches from dummy
/// blocks. It is legal to call this function even if there is no current
/// insertion point.
///
/// This function clears the current insertion point. The caller should follow
/// calls to this function with calls to Emit*Block prior to generation new
/// code.
void EmitBranch(llvm::BasicBlock *Block);
/// HaveInsertPoint - True if an insertion point is defined. If not, this
/// indicates that the current code being emitted is unreachable.
bool HaveInsertPoint() const {
return Builder.GetInsertBlock() != nullptr;
}
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
/// emitted IR has a place to go. Note that by definition, if this function
/// creates a block then that block is unreachable; callers may do better to
/// detect when no insertion point is defined and simply skip IR generation.
void EnsureInsertPoint() {
if (!HaveInsertPoint())
EmitBlock(createBasicBlock());
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void ErrorUnsupported(const Stmt *S, const char *Type);
//===--------------------------------------------------------------------===//
// Helpers
//===--------------------------------------------------------------------===//
LValue MakeAddrLValue(Address Addr, QualType T,
AlignmentSource AlignSource = AlignmentSource::Type) {
return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
CGM.getTBAAInfo(T));
}
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
AlignmentSource AlignSource = AlignmentSource::Type) {
return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
AlignSource, CGM.getTBAAInfo(T));
}
LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
CharUnits getNaturalTypeAlignment(QualType T,
AlignmentSource *Source = nullptr,
bool forPointeeType = false);
CharUnits getNaturalPointeeTypeAlignment(QualType T,
AlignmentSource *Source = nullptr);
Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
AlignmentSource *Source = nullptr);
LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
AlignmentSource *Source = nullptr);
LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block. The caller is responsible for setting an appropriate alignment on
/// the alloca.
llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
const Twine &Name = "tmp");
Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
const Twine &Name = "tmp");
/// CreateDefaultAlignedTempAlloca - This creates an alloca with the
/// default ABI alignment of the given LLVM type.
///
/// IMPORTANT NOTE: This is *not* generally the right alignment for
/// any given AST type that happens to have been lowered to the
/// given IR type. This should only ever be used for function-local,
/// IR-driven manipulations like saving and restoring a value. Do
/// not hand this address off to arbitrary IRGen routines, and especially
/// do not pass it as an argument to a function that might expect a
/// properly ABI-aligned value.
Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
const Twine &Name = "tmp");
/// InitTempAlloca - Provide an initial value for the given alloca which
/// will be observable at all locations in the function.
///
/// The address should be something that was returned from one of
/// the CreateTempAlloca or CreateMemTemp routines, and the
/// initializer must be valid in the entry block (i.e. it must
/// either be a constant or an argument value).
void InitTempAlloca(Address Alloca, llvm::Value *Value);
/// CreateIRTemp - Create a temporary IR object of the given type, with
/// appropriate alignment. This routine should only be used when an temporary
/// value needs to be stored into an alloca (for example, to avoid explicit
/// PHI construction), but the type is the IR type, not the type appropriate
/// for storing in memory.
///
/// That is, this is exactly equivalent to CreateMemTemp, but calling
/// ConvertType instead of ConvertTypeForMem.
Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
/// CreateMemTemp - Create a temporary memory object of the given type, with
/// appropriate alignment.
Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
/// CreateAggTemp - Create a temporary memory object for the given
/// aggregate type.
AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
return AggValueSlot::forAddr(CreateMemTemp(T, Name),
T.getQualifiers(),
AggValueSlot::IsNotDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased);
}
/// Emit a cast to void* in the appropriate address space.
llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *EvaluateExprAsBool(const Expr *E);
/// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
void EmitIgnoredExpr(const Expr *E);
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
///
/// \param ignoreResult True if the resulting value isn't used.
RValue EmitAnyExpr(const Expr *E,
AggValueSlot aggSlot = AggValueSlot::ignored(),
bool ignoreResult = false);
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
// or the value of the expression, depending on how va_list is defined.
Address EmitVAListRef(const Expr *E);
/// Emit a "reference" to a __builtin_ms_va_list; this is
/// always the value of the expression, because a __builtin_ms_va_list is a
/// pointer to a char.
Address EmitMSVAListRef(const Expr *E);
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue EmitAnyExprToTemp(const Expr *E);
/// EmitAnyExprToMem - Emits the code necessary to evaluate an
/// arbitrary expression into the given memory location.
void EmitAnyExprToMem(const Expr *E, Address Location,
Qualifiers Quals, bool IsInitializer);
void EmitAnyExprToExn(const Expr *E, Address Addr);
/// EmitExprAsInit - Emits the code necessary to initialize a
/// location in memory with the given initializer.
void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
bool capturedByInit);
/// hasVolatileMember - returns true if aggregate type has a volatile
/// member.
bool hasVolatileMember(QualType T) {
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
return RD->hasVolatileMember();
}
return false;
}
/// EmitAggregateCopy - Emit an aggregate assignment.
///
/// The difference to EmitAggregateCopy is that tail padding is not copied.
/// This is required for correctness when assigning non-POD structures in C++.
void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
QualType EltTy) {
bool IsVolatile = hasVolatileMember(EltTy);
EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
}
void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
QualType DestTy, QualType SrcTy) {
EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
/*IsAssignment=*/false);
}
/// EmitAggregateCopy - Emit an aggregate copy.
///
/// \param isVolatile - True iff either the source or the destination is
/// volatile.
/// \param isAssignment - If false, allow padding to be copied. This often
/// yields more efficient.
void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
QualType EltTy, bool isVolatile=false,
bool isAssignment = false);
/// GetAddrOfLocalVar - Return the address of a local variable.
Address GetAddrOfLocalVar(const VarDecl *VD) {
auto it = LocalDeclMap.find(VD);
assert(it != LocalDeclMap.end() &&
"Invalid argument to GetAddrOfLocalVar(), no decl!");
return it->second;
}
/// getOpaqueLValueMapping - Given an opaque value expression (which
/// must be mapped to an l-value), return its mapping.
const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
assert(OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
it = OpaqueLValues.find(e);
assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
return it->second;
}
/// getOpaqueRValueMapping - Given an opaque value expression (which
/// must be mapped to an r-value), return its mapping.
const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
it = OpaqueRValues.find(e);
assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
return it->second;
}
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
llvm::BasicBlock *GetIndirectGotoBlock();
/// EmitNullInitialization - Generate code to set a value of the given type to
/// null, If the type contains data member pointers, they will be initialized
/// to -1 in accordance with the Itanium C++ ABI.
void EmitNullInitialization(Address DestPtr, QualType Ty);
/// Emits a call to an LLVM variable-argument intrinsic, either
/// \c llvm.va_start or \c llvm.va_end.
/// \param ArgValue A reference to the \c va_list as emitted by either
/// \c EmitVAListRef or \c EmitMSVAListRef.
/// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
/// calls \c llvm.va_end.
llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
/// Generate code to get an argument from the passed in pointer
/// and update it accordingly.
/// \param VE The \c VAArgExpr for which to generate code.
/// \param VAListAddr Receives a reference to the \c va_list as emitted by
/// either \c EmitVAListRef or \c EmitMSVAListRef.
/// \returns A pointer to the argument.
// FIXME: We should be able to get rid of this method and use the va_arg
// instruction in LLVM instead once it works well enough.
Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
/// emitArrayLength - Compute the length of an array, even if it's a
/// VLA, and drill down to the base element type.
llvm::Value *emitArrayLength(const ArrayType *arrayType,
QualType &baseType,
Address &addr);
/// EmitVLASize - Capture all the sizes for the VLA expressions in
/// the given variably-modified type and store them in the VLASizeMap.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVariablyModifiedType(QualType Ty);
/// getVLASize - Returns an LLVM value that corresponds to the size,
/// in non-variably-sized elements, of a variable length array type,
/// plus that largest non-variably-sized element type. Assumes that
/// the type has already been emitted with EmitVariablyModifiedType.
std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
/// generating code for an C++ member function.
llvm::Value *LoadCXXThis() {
assert(CXXThisValue && "no 'this' value for this function");
return CXXThisValue;
}
Address LoadCXXThisAddress();
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
/// virtual bases.
// FIXME: Every place that calls LoadCXXVTT is something
// that needs to be abstracted properly.
llvm::Value *LoadCXXVTT() {
assert(CXXStructorImplicitParamValue && "no VTT value for this function");
return CXXStructorImplicitParamValue;
}
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
/// complete class to the given direct base.
Address
GetAddressOfDirectBaseInCompleteClass(Address Value,
const CXXRecordDecl *Derived,
const CXXRecordDecl *Base,
bool BaseIsVirtual);
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
/// GetAddressOfBaseClass - This function will add the necessary delta to the
/// load of 'this' and returns address of the base class.
Address GetAddressOfBaseClass(Address Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue, SourceLocation Loc);
Address GetAddressOfDerivedClass(Address Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue);
/// GetVTTParameter - Return the VTT parameter that should be passed to a
/// base constructor/destructor with virtual bases.
/// FIXME: VTTs are Itanium ABI-specific, so the definition should move
/// to ItaniumCXXABI.cpp together with all the references to VTT.
llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
bool Delegating);
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
const FunctionArgList &Args,
SourceLocation Loc);
// It's important not to confuse this and the previous function. Delegating
// constructors are the C++0x feature. The constructor delegate optimization
// is used to reduce duplication in the base and complete consturctors where
// they are substantially the same.
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
const FunctionArgList &Args);
/// Emit a call to an inheriting constructor (that is, one that invokes a
/// constructor inherited from a base class) by inlining its definition. This
/// is necessary if the ABI does not support forwarding the arguments to the
/// base class constructor (because they're variadic or similar).
void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
bool ForVirtualBase,
bool Delegating,
CallArgList &Args);
/// Emit a call to a constructor inherited from a base class, passing the
/// current constructor's arguments along unmodified (without even making
/// a copy).
void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
bool ForVirtualBase, Address This,
bool InheritedFromVBase,
const CXXInheritedCtorInitExpr *E);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, bool Delegating,
Address This, const CXXConstructExpr *E);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, bool Delegating,
Address This, CallArgList &Args);
/// Emit assumption load for all bases. Requires to be be called only on
/// most-derived class and not under construction of the object.
void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
/// Emit assumption that vptr load == global vtable.
void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
Address This, Address Src,
const CXXConstructExpr *E);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ArrayType *ArrayTy,
Address ArrayPtr,
const CXXConstructExpr *E,
bool ZeroInitialization = false);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
Address ArrayPtr,
const CXXConstructExpr *E,
bool ZeroInitialization = false);
static Destroyer destroyCXXObject;
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
bool ForVirtualBase, bool Delegating,
Address This);
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
llvm::Type *ElementTy, Address NewPtr,
llvm::Value *NumElements,
llvm::Value *AllocSizeWithoutCookie);
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
Address Ptr);
llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
QualType DeleteTy, llvm::Value *NumElements = nullptr,
CharUnits CookieSize = CharUnits());
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
const Expr *Arg, bool IsDelete);
llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
/// \brief Situations in which we might emit a check for the suitability of a
/// pointer or glvalue.
enum TypeCheckKind {
/// Checking the operand of a load. Must be suitably sized and aligned.
TCK_Load,
/// Checking the destination of a store. Must be suitably sized and aligned.
TCK_Store,
/// Checking the bound value in a reference binding. Must be suitably sized
/// and aligned, but is not required to refer to an object (until the
/// reference is used), per core issue 453.
TCK_ReferenceBinding,
/// Checking the object expression in a non-static data member access. Must
/// be an object within its lifetime.
TCK_MemberAccess,
/// Checking the 'this' pointer for a call to a non-static member function.
/// Must be an object within its lifetime.
TCK_MemberCall,
/// Checking the 'this' pointer for a constructor call.
TCK_ConstructorCall,
/// Checking the operand of a static_cast to a derived pointer type. Must be
/// null or an object within its lifetime.
TCK_DowncastPointer,
/// Checking the operand of a static_cast to a derived reference type. Must
/// be an object within its lifetime.
TCK_DowncastReference,
/// Checking the operand of a cast to a base object. Must be suitably sized
/// and aligned.
TCK_Upcast,
/// Checking the operand of a cast to a virtual base object. Must be an
/// object within its lifetime.
TCK_UpcastToVirtualBase
};
/// \brief Whether any type-checking sanitizers are enabled. If \c false,
/// calls to EmitTypeCheck can be skipped.
bool sanitizePerformTypeCheck() const;
/// \brief Emit a check that \p V is the address of storage of the
/// appropriate size and alignment for an object of type \p Type.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
QualType Type, CharUnits Alignment = CharUnits::Zero(),
bool SkipNullCheck = false);
/// \brief Emit a check that \p Base points into an array object, which
/// we can access at index \p Index. \p Accessed should be \c false if we
/// this expression is used as an lvalue, for instance in "&Arr[Idx]".
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
QualType IndexType, bool Accessed);
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
llvm::Value *OffsetValue = nullptr) {
Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
OffsetValue);
}
//===--------------------------------------------------------------------===//
// Declaration Emission
//===--------------------------------------------------------------------===//
/// EmitDecl - Emit a declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitDecl(const Decl &D);
/// EmitVarDecl - Emit a local variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVarDecl(const VarDecl &D);
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
bool capturedByInit);
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
llvm::Value *Address);
/// \brief Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool isTrivialInitializer(const Expr *Init);
/// EmitAutoVarDecl - Emit an auto variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitAutoVarDecl(const VarDecl &D);
class AutoVarEmission {
friend class CodeGenFunction;
const VarDecl *Variable;
/// The address of the alloca. Invalid if the variable was emitted
/// as a global constant.
Address Addr;
llvm::Value *NRVOFlag;
/// True if the variable is a __block variable.
bool IsByRef;
/// True if the variable is of aggregate type and has a constant
/// initializer.
bool IsConstantAggregate;
/// Non-null if we should use lifetime annotations.
llvm::Value *SizeForLifetimeMarkers;
struct Invalid {};
AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
AutoVarEmission(const VarDecl &variable)
: Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
IsByRef(false), IsConstantAggregate(false),
SizeForLifetimeMarkers(nullptr) {}
bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
public:
static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
bool useLifetimeMarkers() const {
return SizeForLifetimeMarkers != nullptr;
}
llvm::Value *getSizeForLifetimeMarkers() const {
assert(useLifetimeMarkers());
return SizeForLifetimeMarkers;
}
/// Returns the raw, allocated address, which is not necessarily
/// the address of the object itself.
Address getAllocatedAddress() const {
return Addr;
}
/// Returns the address of the object within this declaration.
/// Note that this does not chase the forwarding pointer for
/// __block decls.
Address getObjectAddress(CodeGenFunction &CGF) const {
if (!IsByRef) return Addr;
return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
}
};
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
void EmitAutoVarInit(const AutoVarEmission &emission);
void EmitAutoVarCleanups(const AutoVarEmission &emission);
void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
QualType::DestructionKind dtorKind);
void EmitStaticVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage);
class ParamValue {
llvm::Value *Value;
unsigned Alignment;
ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
public:
static ParamValue forDirect(llvm::Value *value) {
return ParamValue(value, 0);
}
static ParamValue forIndirect(Address addr) {
assert(!addr.getAlignment().isZero());
return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
}
bool isIndirect() const { return Alignment != 0; }
llvm::Value *getAnyValue() const { return Value; }
llvm::Value *getDirectValue() const {
assert(!isIndirect());
return Value;
}
Address getIndirectAddress() const {
assert(isIndirect());
return Address(Value, CharUnits::fromQuantity(Alignment));
}
};
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
/// protectFromPeepholes - Protect a value that we're intending to
/// store to the side, but which will probably be used later, from
/// aggressive peepholing optimizations that might delete it.
///
/// Pass the result to unprotectFromPeepholes to declare that
/// protection is no longer required.
///
/// There's no particular reason why this shouldn't apply to
/// l-values, it's just that no existing peepholes work on pointers.
PeepholeProtection protectFromPeepholes(RValue rvalue);
void unprotectFromPeepholes(PeepholeProtection protection);
//===--------------------------------------------------------------------===//
// Statement Emission
//===--------------------------------------------------------------------===//
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
void EmitStopPoint(const Stmt *S);
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
/// this function even if there is no current insertion point.
///
/// This function may clear the current insertion point; callers should use
/// EnsureInsertPoint if they wish to subsequently generate code without first
/// calling EmitBlock, EmitBranch, or EmitStmt.
void EmitStmt(const Stmt *S);
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
/// necessarily require an insertion point or debug information; typically
/// because the statement amounts to a jump or a container of other
/// statements.
///
/// \return True if the statement was handled.
bool EmitSimpleStmt(const Stmt *S);
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
AggValueSlot AVS = AggValueSlot::ignored());
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
bool GetLast = false,
AggValueSlot AVS =
AggValueSlot::ignored());
/// EmitLabel - Emit the block for the given label. It is legal to call this
/// function even if there is no current insertion point.
void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
void EmitLabelStmt(const LabelStmt &S);
void EmitAttributedStmt(const AttributedStmt &S);
void EmitGotoStmt(const GotoStmt &S);
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
void EmitIfStmt(const IfStmt &S);
void EmitWhileStmt(const WhileStmt &S,
ArrayRef<const Attr *> Attrs = None);
void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
void EmitForStmt(const ForStmt &S,
ArrayRef<const Attr *> Attrs = None);
void EmitReturnStmt(const ReturnStmt &S);
void EmitDeclStmt(const DeclStmt &S);
void EmitBreakStmt(const BreakStmt &S);
void EmitContinueStmt(const ContinueStmt &S);
void EmitSwitchStmt(const SwitchStmt &S);
void EmitDefaultStmt(const DefaultStmt &S);
void EmitCaseStmt(const CaseStmt &S);
void EmitCaseStmtRange(const CaseStmt &S);
void EmitAsmStmt(const AsmStmt &S);
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void EmitCXXTryStmt(const CXXTryStmt &S);
void EmitSEHTryStmt(const SEHTryStmt &S);
void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
void EnterSEHTryStmt(const SEHTryStmt &S);
void ExitSEHTryStmt(const SEHTryStmt &S);
void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
const Stmt *OutlinedStmt);
llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
const SEHExceptStmt &Except);
llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
const SEHFinallyStmt &Finally);
void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
llvm::Value *ParentFP,
llvm::Value *EntryEBP);
llvm::Value *EmitSEHExceptionCode();
llvm::Value *EmitSEHExceptionInfo();
llvm::Value *EmitSEHAbnormalTermination();
/// Scan the outlined statement for captures from the parent function. For
/// each capture, mark the capture as escaped and emit a call to
/// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
bool IsFilter);
/// Recovers the address of a local in a parent function. ParentVar is the
/// address of the variable used in the immediate parent function. It can
/// either be an alloca or a call to llvm.localrecover if there are nested
/// outlined functions. ParentFP is the frame pointer of the outermost parent
/// frame.
Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
Address ParentVar,
llvm::Value *ParentFP);
void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
ArrayRef<const Attr *> Attrs = None);
/// Returns calculated size of the specified type.
llvm::Value *getTypeSize(QualType Ty);
LValue InitCapturedStruct(const CapturedStmt &S);
llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
Address GenerateCapturedStmtArgument(const CapturedStmt &S);
llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
void GenerateOpenMPCapturedVars(const CapturedStmt &S,
SmallVectorImpl<llvm::Value *> &CapturedVars);
void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
SourceLocation Loc);
/// \brief Perform element by element copying of arrays with type \a
/// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
/// generated by \a CopyGen.
///
/// \param DestAddr Address of the destination array.
/// \param SrcAddr Address of the source array.
/// \param OriginalType Type of destination and source arrays.
/// \param CopyGen Copying procedure that copies value of single array element
/// to another single array element.
void EmitOMPAggregateAssign(
Address DestAddr, Address SrcAddr, QualType OriginalType,
const llvm::function_ref<void(Address, Address)> &CopyGen);
/// \brief Emit proper copying of data from one variable to another.
///
/// \param OriginalType Original type of the copied variables.
/// \param DestAddr Destination address.
/// \param SrcAddr Source address.
/// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
/// type of the base array element).
/// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
/// the base array element).
/// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
/// DestVD.
void EmitOMPCopy(QualType OriginalType,
Address DestAddr, Address SrcAddr,
const VarDecl *DestVD, const VarDecl *SrcVD,
const Expr *Copy);
/// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
/// \a X = \a E \a BO \a E.
///
/// \param X Value to be updated.
/// \param E Update value.
/// \param BO Binary operation for update operation.
/// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
/// expression, false otherwise.
/// \param AO Atomic ordering of the generated atomic instructions.
/// \param CommonGen Code generator for complex expressions that cannot be
/// expressed through atomicrmw instruction.
/// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
/// generated, <false, RValue::get(nullptr)> otherwise.
std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
llvm::AtomicOrdering AO, SourceLocation Loc,
const llvm::function_ref<RValue(RValue)> &CommonGen);
bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
void EmitOMPPrivateClause(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
void EmitOMPUseDevicePtrClause(
const OMPClause &C, OMPPrivateScope &PrivateScope,
const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
/// \brief Emit code for copyin clause in \a D directive. The next code is
/// generated at the start of outlined functions for directives:
/// \code
/// threadprivate_var1 = master_threadprivate_var1;
/// operator=(threadprivate_var2, master_threadprivate_var2);
/// ...
/// __kmpc_barrier(&loc, global_tid);
/// \endcode
///
/// \param D OpenMP directive possibly with 'copyin' clause(s).
/// \returns true if at least one copyin variable is found, false otherwise.
bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
/// \brief Emit initial code for lastprivate variables. If some variable is
/// not also firstprivate, then the default initialization is used. Otherwise
/// initialization of this variable is performed by EmitOMPFirstprivateClause
/// method.
///
/// \param D Directive that may have 'lastprivate' directives.
/// \param PrivateScope Private scope for capturing lastprivate variables for
/// proper codegen in internal captured statement.
///
/// \returns true if there is at least one lastprivate variable, false
/// otherwise.
bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
/// \brief Emit final copying of lastprivate values to original variables at
/// the end of the worksharing or simd directive.
///
/// \param D Directive that has at least one 'lastprivate' directives.
/// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
/// it is the last iteration of the loop code in associated directive, or to
/// 'i1 false' otherwise. If this item is nullptr, no final check is required.
void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
bool NoFinals,
llvm::Value *IsLastIterCond = nullptr);
/// Emit initial code for linear clauses.
void EmitOMPLinearClause(const OMPLoopDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope);
/// Emit final code for linear clauses.
/// \param CondGen Optional conditional code for final part of codegen for
/// linear clause.
void EmitOMPLinearClauseFinal(
const OMPLoopDirective &D,
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
/// \brief Emit initial code for reduction variables. Creates reduction copies
/// and initializes them with the values according to OpenMP standard.
///
/// \param D Directive (possibly) with the 'reduction' clause.
/// \param PrivateScope Private scope for capturing reduction variables for
/// proper codegen in internal captured statement.
///
void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
OMPPrivateScope &PrivateScope);
/// \brief Emit final update of reduction values to original variables at
/// the end of the directive.
///
/// \param D Directive that has at least one 'reduction' directives.
void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
/// \brief Emit initial code for linear variables. Creates private copies
/// and initializes them with the values according to OpenMP standard.
///
/// \param D Directive (possibly) with the 'linear' clause.
void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
llvm::Value * /*OutlinedFn*/,
const OMPTaskDataTy & /*Data*/)>
TaskGenTy;
void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
const RegionCodeGenTy &BodyGen,
const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
void EmitOMPParallelDirective(const OMPParallelDirective &S);
void EmitOMPSimdDirective(const OMPSimdDirective &S);
void EmitOMPForDirective(const OMPForDirective &S);
void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
void EmitOMPSectionDirective(const OMPSectionDirective &S);
void EmitOMPSingleDirective(const OMPSingleDirective &S);
void EmitOMPMasterDirective(const OMPMasterDirective &S);
void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
void EmitOMPTaskDirective(const OMPTaskDirective &S);
void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
void EmitOMPFlushDirective(const OMPFlushDirective &S);
void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
void EmitOMPTargetDirective(const OMPTargetDirective &S);
void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
void
EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
void
EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
void EmitOMPCancelDirective(const OMPCancelDirective &S);
void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
void EmitOMPDistributeParallelForDirective(
const OMPDistributeParallelForDirective &S);
void EmitOMPDistributeParallelForSimdDirective(
const OMPDistributeParallelForSimdDirective &S);
void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
void EmitOMPTargetParallelForSimdDirective(
const OMPTargetParallelForSimdDirective &S);
void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
/// Emit outlined function for the target directive.
static std::pair<llvm::Function * /*OutlinedFn*/,
llvm::Constant * /*OutlinedFnID*/>
EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
const OMPTargetDirective &S,
StringRef ParentName,
bool IsOffloadEntry);
/// \brief Emit inner loop of the worksharing/simd construct.
///
/// \param S Directive, for which the inner loop must be emitted.
/// \param RequiresCleanup true, if directive has some associated private
/// variables.
/// \param LoopCond Bollean condition for loop continuation.
/// \param IncExpr Increment expression for loop control variable.
/// \param BodyGen Generator for the inner body of the inner loop.
/// \param PostIncGen Genrator for post-increment code (required for ordered
/// loop directvies).
void EmitOMPInnerLoop(
const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
const Expr *IncExpr,
const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
/// Emit initial code for loop counters of loop-based directives.
void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
OMPPrivateScope &LoopScope);
private:
/// Helpers for the OpenMP loop directives.
void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
void EmitOMPSimdFinal(
const OMPLoopDirective &D,
const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
/// \brief Emit code for the worksharing loop-based directive.
/// \return true, if this construct has any lastprivate clause, false -
/// otherwise.
bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
bool IsMonotonic, const OMPLoopDirective &S,
OMPPrivateScope &LoopScope, bool Ordered, Address LB,
Address UB, Address ST, Address IL,
llvm::Value *Chunk);
void EmitOMPDistributeOuterLoop(
OpenMPDistScheduleClauseKind ScheduleKind,
const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
/// \brief Emit code for sections directive.
void EmitSections(const OMPExecutableDirective &S);
public:
//===--------------------------------------------------------------------===//
// LValue Expression Emission
//===--------------------------------------------------------------------===//
/// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
RValue GetUndefRValue(QualType Ty);
/// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
/// and issue an ErrorUnsupported style diagnostic (using the
/// provided Name).
RValue EmitUnsupportedRValue(const Expr *E,
const char *Name);
/// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
/// an ErrorUnsupported style diagnostic (using the provided Name).
LValue EmitUnsupportedLValue(const Expr *E,
const char *Name);
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue EmitLValue(const Expr *E);
/// \brief Same as EmitLValue but additionally we generate checking code to
/// guard against undefined behavior. This is only suitable when we know
/// that the address will be used to access the object.
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
RValue convertTempToRValue(Address addr, QualType type,
SourceLocation Loc);
void EmitAtomicInit(Expr *E, LValue lvalue);
bool LValueIsSuitableForInlineAtomic(LValue Src);
RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
AggValueSlot Slot = AggValueSlot::ignored());
RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
llvm::AtomicOrdering AO, bool IsVolatile = false,
AggValueSlot slot = AggValueSlot::ignored());
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
bool IsVolatile, bool isInit);
std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
llvm::AtomicOrdering Success =
llvm::AtomicOrdering::SequentiallyConsistent,
llvm::AtomicOrdering Failure =
llvm::AtomicOrdering::SequentiallyConsistent,
bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
const llvm::function_ref<RValue(RValue)> &UpdateOp,
bool IsVolatile);
/// EmitToMemory - Change a scalar value from its value
/// representation to its in-memory representation.
llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
/// EmitFromMemory - Change a scalar value from its memory
/// representation to its value representation.
llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
/// EmitLoadOfScalar - Load a scalar value from an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
SourceLocation Loc,
AlignmentSource AlignSource =
AlignmentSource::Type,
llvm::MDNode *TBAAInfo = nullptr,
QualType TBAABaseTy = QualType(),
uint64_t TBAAOffset = 0,
bool isNontemporal = false);
/// EmitLoadOfScalar - Load a scalar value from an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation. The l-value must be a simple
/// l-value.
llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
/// EmitStoreOfScalar - Store a scalar value to an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
bool Volatile, QualType Ty,
AlignmentSource AlignSource = AlignmentSource::Type,
llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
QualType TBAABaseTy = QualType(),
uint64_t TBAAOffset = 0, bool isNontemporal = false);
/// EmitStoreOfScalar - Store a scalar value to an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation. The l-value must be a simple
/// l-value. The isInit flag indicates whether this is an initialization.
/// If so, atomic qualifiers are ignored and the store is always non-atomic.
void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
RValue EmitLoadOfExtVectorElementLValue(LValue V);
RValue EmitLoadOfBitfieldLValue(LValue LV);
RValue EmitLoadOfGlobalRegLValue(LValue LV);
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
/// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
/// as EmitStoreThroughLValue.
///
/// \param Result [out] - If non-null, this will be set to a Value* for the
/// bit-field contents after the store, appropriate for use as the result of
/// an assignment to the bit-field.
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
llvm::Value **Result=nullptr);
/// Emit an l-value for an assignment (simple or compound) of complex type.
LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
llvm::Value *&Result);
// Note: only available for agg return types
LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
// Note: only available for agg return types
LValue EmitCallExprLValue(const CallExpr *E);
// Note: only available for agg return types
LValue EmitVAArgExprLValue(const VAArgExpr *E);
LValue EmitDeclRefLValue(const DeclRefExpr *E);
LValue EmitStringLiteralLValue(const StringLiteral *E);
LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
LValue EmitPredefinedLValue(const PredefinedExpr *E);
LValue EmitUnaryOpLValue(const UnaryOperator *E);
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
bool Accessed = false);
LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
bool IsLowerBound = true);
LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
LValue EmitMemberExpr(const MemberExpr *E);
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
LValue EmitInitListLValue(const InitListExpr *E);
LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
LValue EmitCastLValue(const CastExpr *E);
LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
Address EmitExtVectorElementLValue(LValue V);
RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
Address EmitArrayToPointerDecay(const Expr *Array,
AlignmentSource *AlignSource = nullptr);
class ConstantEmission {
llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
ConstantEmission(llvm::Constant *C, bool isReference)
: ValueAndIsReference(C, isReference) {}
public:
ConstantEmission() {}
static ConstantEmission forReference(llvm::Constant *C) {
return ConstantEmission(C, true);
}
static ConstantEmission forValue(llvm::Constant *C) {
return ConstantEmission(C, false);
}
explicit operator bool() const {
return ValueAndIsReference.getOpaqueValue() != nullptr;
}
bool isReference() const { return ValueAndIsReference.getInt(); }
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
assert(isReference());
return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
refExpr->getType());
}
llvm::Constant *getValue() const {
assert(!isReference());
return ValueAndIsReference.getPointer();
}
};
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
AggValueSlot slot = AggValueSlot::ignored());
LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
LValue EmitLValueForLambdaField(const FieldDecl *Field);
/// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
/// if the Field is a reference, this will return the address of the reference
/// and not the address of the value stored in the reference.
LValue EmitLValueForFieldInitialization(LValue Base,
const FieldDecl* Field);
LValue EmitLValueForIvar(QualType ObjectTy,
llvm::Value* Base, const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers);
LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
LValue EmitLambdaLValue(const LambdaExpr *E);
LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
LValue EmitStmtExprLValue(const StmtExpr *E);
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
//===--------------------------------------------------------------------===//
// Scalar Expression Emission
//===--------------------------------------------------------------------===//
/// EmitCall - Generate a call of the given function, expecting the given
/// result type, and using the given argument list which specifies both the
/// LLVM arguments and the types they were derived from.
RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
ReturnValueSlot ReturnValue, const CallArgList &Args,
CGCalleeInfo CalleeInfo = CGCalleeInfo(),
llvm::Instruction **callOrInvoke = nullptr);
RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
ReturnValueSlot ReturnValue,
CGCalleeInfo CalleeInfo = CGCalleeInfo(),
llvm::Value *Chain = nullptr);
RValue EmitCallExpr(const CallExpr *E,
ReturnValueSlot ReturnValue = ReturnValueSlot());
void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
const Twine &name = "");
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
const Twine &name = "");
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
ArrayRef<llvm::Value *> Args,
const Twine &Name = "");
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
const Twine &name = "");
void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
ArrayRef<llvm::Value*> args);
llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
NestedNameSpecifier *Qual,
llvm::Type *Ty);
llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
CXXDtorType Type,
const CXXRecordDecl *RD);
RValue
EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
ReturnValueSlot ReturnValue, llvm::Value *This,
llvm::Value *ImplicitParam,
QualType ImplicitParamTy, const CallExpr *E,
CallArgList *RtlArgs);
RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee,
llvm::Value *This, llvm::Value *ImplicitParam,
QualType ImplicitParamTy, const CallExpr *E,
StructorType Type);
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue,
bool HasQualifier,
NestedNameSpecifier *Qualifier,
bool IsArrow, const Expr *Base);
// Compute the object pointer.
Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
llvm::Value *memberPtr,
const MemberPointerType *memberPtrType,
AlignmentSource *AlignSource = nullptr);
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue);
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
/// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
/// is unhandled by the current target.
llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
const llvm::CmpInst::Predicate Fp,
const llvm::CmpInst::Predicate Ip,
const llvm::Twine &Name = "");
llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
unsigned LLVMIntrinsic,
unsigned AltLLVMIntrinsic,
const char *NameHint,
unsigned Modifier,
const CallExpr *E,
SmallVectorImpl<llvm::Value *> &Ops,
Address PtrOp0, Address PtrOp1);
llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
unsigned Modifier, llvm::Type *ArgTy,
const CallExpr *E);
llvm::Value *EmitNeonCall(llvm::Function *F,
SmallVectorImpl<llvm::Value*> &O,
const char *name,
unsigned shift = 0, bool rightshift = false);
llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
bool negateForRightShift);
llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
llvm::Type *Ty, bool usgn, const char *name);
llvm::Value *vectorWrapScalar16(llvm::Value *Op);
llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
const CallExpr *E);
private:
enum class MSVCIntrin;
public:
llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
const ObjCMethodDecl *MethodWithObjects);
llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
ReturnValueSlot Return = ReturnValueSlot());
/// Retrieves the default cleanup kind for an ARC cleanup.
/// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
CleanupKind getARCCleanupKind() {
return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
? NormalAndEHCleanup : NormalCleanup;
}
// ARC primitives.
void EmitARCInitWeak(Address addr, llvm::Value *value);
void EmitARCDestroyWeak(Address addr);
llvm::Value *EmitARCLoadWeak(Address addr);
llvm::Value *EmitARCLoadWeakRetained(Address addr);
llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
void EmitARCCopyWeak(Address dst, Address src);
void EmitARCMoveWeak(Address dst, Address src);
llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
bool resultIgnored);
llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
bool resultIgnored);
llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
llvm::Value *EmitARCAutorelease(llvm::Value *value);
llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator *e);
std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
llvm::Value *EmitObjCThrowOperand(const Expr *expr);
llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
bool allowUnsafeClaim);
llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
static Destroyer destroyARCStrongImprecise;
static Destroyer destroyARCStrongPrecise;
static Destroyer destroyARCWeak;
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
llvm::Value *EmitObjCAutoreleasePoolPush();
llvm::Value *EmitObjCMRRAutoreleasePoolPush();
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
/// \brief Emits a reference binding to the passed in expression.
RValue EmitReferenceBindingToExpr(const Expr *E);
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
// Expressions are broken into three classes: scalar, complex, aggregate.
/// EmitScalarExpr - Emit the computation of the specified expression of LLVM
/// scalar type, returning the result.
llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
/// Emit a conversion from the specified type to the specified destination
/// type, both of which are LLVM scalar types.
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
QualType DstTy, SourceLocation Loc);
/// Emit a conversion from the specified complex type to the specified
/// destination type, where the destination type is an LLVM scalar type.
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
QualType DstTy,
SourceLocation Loc);
/// EmitAggExpr - Emit the computation of the specified expression
/// of aggregate type. The result is computed into the given slot,
/// which may be null to indicate that the value is not needed.
void EmitAggExpr(const Expr *E, AggValueSlot AS);
/// EmitAggExprToLValue - Emit the computation of the specified expression of
/// aggregate type into a temporary LValue.
LValue EmitAggExprToLValue(const Expr *E);
/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
/// make sure it survives garbage collection until this point.
void EmitExtendGCLifetime(llvm::Value *object);
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, returning the result.
ComplexPairTy EmitComplexExpr(const Expr *E,
bool IgnoreReal = false,
bool IgnoreImag = false);
/// EmitComplexExprIntoLValue - Emit the given expression of complex
/// type and place its result into the specified l-value.
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
/// EmitLoadOfComplex - Load a complex number from the specified l-value.
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
Address emitAddrOfRealComponent(Address complex, QualType complexType);
Address emitAddrOfImagComponent(Address complex, QualType complexType);
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it. If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one. Otherwise it just returns GV.
llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl &D,
llvm::GlobalVariable *GV);
/// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
/// variable with global storage.
void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
bool PerformInit);
llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
llvm::Constant *Addr);
/// Call atexit() with a function that passes the given argument to
/// the given function.
void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
llvm::Constant *addr);
/// Emit code in this function to perform a guarded variable
/// initialization. Guarded initializations are used when it's not
/// possible to prove that an initialization will be done exactly
/// once, e.g. with a static local variable or a static data member
/// of a class template.
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
bool PerformInit);
/// GenerateCXXGlobalInitFunc - Generates code for initializing global
/// variables.
void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
ArrayRef<llvm::Function *> CXXThreadLocals,
Address Guard = Address::invalid());
/// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
/// variables.
void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
const std::vector<std::pair<llvm::WeakVH,
llvm::Constant*> > &DtorsAndObjects);
void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
const VarDecl *D,
llvm::GlobalVariable *Addr,
bool PerformInit);
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
void enterFullExpression(const ExprWithCleanups *E) {
if (E->getNumObjects() == 0) return;
enterNonTrivialFullExpression(E);
}
void enterNonTrivialFullExpression(const ExprWithCleanups *E);
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
RValue EmitAtomicExpr(AtomicExpr *E);
//===--------------------------------------------------------------------===//
// Annotations Emission
//===--------------------------------------------------------------------===//
/// Emit an annotation call (intrinsic or builtin).
llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
llvm::Value *AnnotatedVal,
StringRef AnnotationStr,
SourceLocation Location);
/// Emit local annotations for the local variable V, declared by D.
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
/// Emit field annotations for the given field & value. Returns the
/// annotation result.
Address EmitFieldAnnotations(const FieldDecl *D, Address V);
//===--------------------------------------------------------------------===//
// Internal Helpers
//===--------------------------------------------------------------------===//
/// ContainsLabel - Return true if the statement contains a label in it. If
/// this statement is not executed normally, it not containing a label means
/// that we can just remove the code.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
/// containsBreak - Return true if the statement contains a break out of it.
/// If the statement (recursively) contains a switch or loop with a break
/// inside of it, this is fine.
static bool containsBreak(const Stmt *S);
/// Determine if the given statement might introduce a declaration into the
/// current scope, by being a (possibly-labelled) DeclStmt.
static bool mightAddDeclToScope(const Stmt *S);
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false. If it
/// constant folds return true and set the boolean result in Result.
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
bool AllowLabels = false);
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false. If it
/// constant folds return true and set the folded value.
bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
bool AllowLabels = false);
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
/// if statement) to the specified blocks. Based on the condition, this might
/// try to simplify the codegen of the conditional based on the branch.
/// TrueCount should be the number of times we expect the condition to
/// evaluate to true based on PGO data.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
/// \brief Emit a description of a type in a format suitable for passing to
/// a runtime sanitizer handler.
llvm::Constant *EmitCheckTypeDescriptor(QualType T);
/// \brief Convert a value into a format suitable for passing to a runtime
/// sanitizer handler.
llvm::Value *EmitCheckValue(llvm::Value *V);
/// \brief Emit a description of a source location in a format suitable for
/// passing to a runtime sanitizer handler.
llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
/// \brief Create a basic block that will call a handler function in a
/// sanitizer runtime with the provided arguments, and create a conditional
/// branch to it.
void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
ArrayRef<llvm::Value *> DynamicArgs);
/// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
/// if Cond if false.
void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
llvm::ConstantInt *TypeId, llvm::Value *Ptr,
ArrayRef<llvm::Constant *> StaticArgs);
/// \brief Create a basic block that will call the trap intrinsic, and emit a
/// conditional branch to it, for the -ftrapv checks.
void EmitTrapCheck(llvm::Value *Checked);
/// \brief Emit a call to trap or debugtrap and attach function attribute
/// "trap-func-name" if specified.
llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
/// \brief Emit a cross-DSO CFI failure handling function.
void EmitCfiCheckFail();
/// \brief Create a check for a function parameter that may potentially be
/// declared as non-null.
void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
const FunctionDecl *FD, unsigned ParmNum);
/// EmitCallArg - Emit a single call argument.
void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
/// EmitDelegateCallArg - We are performing a delegate call; that
/// is, the current function is delegating to another one. Produce
/// a r-value suitable for passing the given parameter.
void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
SourceLocation loc);
/// SetFPAccuracy - Set the minimum required accuracy of the given floating
/// point operation, expressed as the maximum relative error in ulp.
void SetFPAccuracy(llvm::Value *Val, float Accuracy);
private:
llvm::MDNode *getRangeForLoadFromType(QualType Ty);
void EmitReturnOfRValue(RValue RV, QualType Ty);
void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
DeferredReplacements;
/// Set the address of a local variable.
void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
LocalDeclMap.insert({VD, Addr});
}
/// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
/// from function arguments into \arg Dst. See ABIArgInfo::Expand.
///
/// \param AI - The first function argument of the expansion.
void ExpandTypeFromArgs(QualType Ty, LValue Dst,
SmallVectorImpl<llvm::Value *>::iterator &AI);
/// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
/// Ty, into individual arguments on the provided vector \arg IRCallArgs,
/// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
SmallVectorImpl<llvm::Value *> &IRCallArgs,
unsigned &IRCallArgPos);
llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
const Expr *InputExpr, std::string &ConstraintStr);
llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
LValue InputValue, QualType InputType,
std::string &ConstraintStr,
SourceLocation Loc);
/// \brief Attempts to statically evaluate the object size of E. If that
/// fails, emits code to figure the size of E out for us. This is
/// pass_object_size aware.
llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType);
/// \brief Emits the size of E, as required by __builtin_object_size. This
/// function is aware of pass_object_size parameters, and will act accordingly
/// if E is a parameter with the pass_object_size attribute.
llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType);
public:
#ifndef NDEBUG
// Determine whether the given argument is an Objective-C method
// that may have type parameters in its signature.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
const DeclContext *dc = method->getDeclContext();
if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
return classDecl->getTypeParamListAsWritten();
}
if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
return catDecl->getTypeParamList();
}
return false;
}
template<typename T>
static bool isObjCMethodWithTypeParams(const T *) { return false; }
#endif
enum class EvaluationOrder {
///! No language constraints on evaluation order.
Default,
///! Language semantics require left-to-right evaluation.
ForceLeftToRight,
///! Language semantics require right-to-left evaluation.
ForceRightToLeft
};
/// EmitCallArgs - Emit call arguments for a function.
template <typename T>
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
const FunctionDecl *CalleeDecl = nullptr,
unsigned ParamsToSkip = 0,
EvaluationOrder Order = EvaluationOrder::Default) {
SmallVector<QualType, 16> ArgTypes;
CallExpr::const_arg_iterator Arg = ArgRange.begin();
assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
"Can't skip parameters if type info is not provided");
if (CallArgTypeInfo) {
#ifndef NDEBUG
bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
#endif
// First, use the argument types that the type info knows about
for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
E = CallArgTypeInfo->param_type_end();
I != E; ++I, ++Arg) {
assert(Arg != ArgRange.end() && "Running over edge of argument list!");
assert((isGenericMethod ||
((*I)->isVariablyModifiedType() ||
(*I).getNonReferenceType()->isObjCRetainableType() ||
getContext()
.getCanonicalType((*I).getNonReferenceType())
.getTypePtr() ==
getContext()
.getCanonicalType((*Arg)->getType())
.getTypePtr())) &&
"type mismatch in call argument!");
ArgTypes.push_back(*I);
}
}
// Either we've emitted all the call args, or we have a call to variadic
// function.
assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
CallArgTypeInfo->isVariadic()) &&
"Extra arguments in non-variadic function!");
// If we still have any arguments, emit them using the type of the argument.
for (auto *A : llvm::make_range(Arg, ArgRange.end()))
ArgTypes.push_back(getVarArgType(A));
EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order);
}
void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
const FunctionDecl *CalleeDecl = nullptr,
unsigned ParamsToSkip = 0,
EvaluationOrder Order = EvaluationOrder::Default);
/// EmitPointerWithAlignment - Given an expression with a pointer
/// type, emit the value and compute our best estimate of the
/// alignment of the pointee.
///
/// Note that this function will conservatively fall back on the type
/// when it doesn't
///
/// \param Source - If non-null, this will be initialized with
/// information about the source of the alignment. Note that this
/// function will conservatively fall back on the type when it
/// doesn't recognize the expression, which means that sometimes
///
/// a worst-case One
/// reasonable way to use this information is when there's a
/// language guarantee that the pointer must be aligned to some
/// stricter value, and we're simply trying to ensure that
/// sufficiently obvious uses of under-aligned objects don't get
/// miscompiled; for example, a placement new into the address of
/// a local variable. In such a case, it's quite reasonable to
/// just ignore the returned alignment when it isn't from an
/// explicit source.
Address EmitPointerWithAlignment(const Expr *Addr,
AlignmentSource *Source = nullptr);
void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
private:
QualType getVarArgType(const Expr *Arg);
const TargetCodeGenInfo &getTargetHooks() const {
return CGM.getTargetCodeGenInfo();
}
void EmitDeclMetadata();
BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
const AutoVarEmission &emission);
void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
llvm::Value *GetValueForARMHint(unsigned BuiltinID);
};
/// Helper class with most of the code for saving a value for a
/// conditional expression cleanup.
struct DominatingLLVMValue {
typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
/// Answer whether the given value needs extra work to be saved.
static bool needsSaving(llvm::Value *value) {
// If it's not an instruction, we don't need to save.
if (!isa<llvm::Instruction>(value)) return false;
// If it's an instruction in the entry block, we don't need to save.
llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
return (block != &block->getParent()->getEntryBlock());
}
/// Try to save the given value.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
if (!needsSaving(value)) return saved_type(value, false);
// Otherwise, we need an alloca.
auto align = CharUnits::fromQuantity(
CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
Address alloca =
CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
CGF.Builder.CreateStore(value, alloca);
return saved_type(alloca.getPointer(), true);
}
static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
// If the value says it wasn't saved, trust that it's still dominating.
if (!value.getInt()) return value.getPointer();
// Otherwise, it should be an alloca instruction, as set up in save().
auto alloca = cast<llvm::AllocaInst>(value.getPointer());
return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
}
};
/// A partial specialization of DominatingValue for llvm::Values that
/// might be llvm::Instructions.
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
typedef T *type;
static type restore(CodeGenFunction &CGF, saved_type value) {
return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
}
};
/// A specialization of DominatingValue for Address.
template <> struct DominatingValue<Address> {
typedef Address type;
struct saved_type {
DominatingLLVMValue::saved_type SavedValue;
CharUnits Alignment;
};
static bool needsSaving(type value) {
return DominatingLLVMValue::needsSaving(value.getPointer());
}
static saved_type save(CodeGenFunction &CGF, type value) {
return { DominatingLLVMValue::save(CGF, value.getPointer()),
value.getAlignment() };
}
static type restore(CodeGenFunction &CGF, saved_type value) {
return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
value.Alignment);
}
};
/// A specialization of DominatingValue for RValue.
template <> struct DominatingValue<RValue> {
typedef RValue type;
class saved_type {
enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
AggregateAddress, ComplexAddress };
llvm::Value *Value;
unsigned K : 3;
unsigned Align : 29;
saved_type(llvm::Value *v, Kind k, unsigned a = 0)
: Value(v), K(k), Align(a) {}
public:
static bool needsSaving(RValue value);
static saved_type save(CodeGenFunction &CGF, RValue value);
RValue restore(CodeGenFunction &CGF);
// implementations in CGCleanup.cpp
};
static bool needsSaving(type value) {
return saved_type::needsSaving(value);
}
static saved_type save(CodeGenFunction &CGF, type value) {
return saved_type::save(CGF, value);
}
static type restore(CodeGenFunction &CGF, saved_type value) {
return value.restore(CGF);
}
};
} // end namespace CodeGen
} // end namespace clang
#endif