llvm-project/mlir/lib/Reducer/ReductionNode.cpp

155 lines
6.3 KiB
C++

//===- ReductionNode.cpp - Reduction Node Implementation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the reduction nodes which are used to track of the
// metadata for a specific generated variant within a reduction pass and are the
// building blocks of the reduction tree structure. A reduction tree is used to
// keep track of the different generated variants throughout a reduction pass in
// the MLIR Reduce tool.
//
//===----------------------------------------------------------------------===//
#include "mlir/Reducer/ReductionNode.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <limits>
using namespace mlir;
ReductionNode::ReductionNode(
ReductionNode *parentNode, std::vector<Range> ranges,
llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator)
/// Root node will have the parent pointer point to themselves.
: parent(parentNode == nullptr ? this : parentNode),
size(std::numeric_limits<size_t>::max()),
interesting(Tester::Interestingness::Untested), ranges(ranges),
startRanges(ranges), allocator(allocator) {
if (parent != this)
if (failed(initialize(parent->getModule(), parent->getRegion())))
llvm_unreachable("unexpected initialization failure");
}
LogicalResult ReductionNode::initialize(ModuleOp parentModule,
Region &targetRegion) {
// Use the mapper help us find the corresponding region after module clone.
BlockAndValueMapping mapper;
module = cast<ModuleOp>(parentModule->clone(mapper));
// Use the first block of targetRegion to locate the cloned region.
Block *block = mapper.lookup(&*targetRegion.begin());
region = block->getParent();
return success();
}
/// If we haven't explored any variants from this node, we will create N
/// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the
/// max element in `ranges` and create 2 new variants for each call.
ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() {
int oldNumVariant = getVariants().size();
auto createNewNode = [this](std::vector<Range> ranges) {
return new (allocator.Allocate())
ReductionNode(this, std::move(ranges), allocator);
};
// If we haven't created new variant, then we can create varients by removing
// each of them respectively. For example, given {{1, 3}, {4, 9}}, we can
// produce variants with range {{1, 3}} and {{4, 9}}.
if (variants.size() == 0 && getRanges().size() > 1) {
for (const Range &range : getRanges()) {
std::vector<Range> subRanges = getRanges();
llvm::erase_value(subRanges, range);
variants.push_back(createNewNode(std::move(subRanges)));
}
return getVariants().drop_front(oldNumVariant);
}
// At here, we have created the type of variants mentioned above. We would
// like to split the max range into 2 to create 2 new variants. Continue on
// the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and
// create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The
// final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}.
auto maxElement = std::max_element(
ranges.begin(), ranges.end(), [](const Range &lhs, const Range &rhs) {
return (lhs.second - lhs.first) > (rhs.second - rhs.first);
});
// The length of range is less than 1, we can't split it to create new
// variant.
if (maxElement->second - maxElement->first <= 1)
return {};
Range maxRange = *maxElement;
std::vector<Range> subRanges = getRanges();
auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin());
int half = (maxRange.first + maxRange.second) / 2;
*subRangesIter = std::make_pair(maxRange.first, half);
variants.push_back(createNewNode(subRanges));
*subRangesIter = std::make_pair(half, maxRange.second);
variants.push_back(createNewNode(std::move(subRanges)));
auto it = ranges.insert(maxElement, std::make_pair(half, maxRange.second));
it = ranges.insert(it, std::make_pair(maxRange.first, half));
// Remove the range that has been split.
ranges.erase(it + 2);
return getVariants().drop_front(oldNumVariant);
}
void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) {
std::tie(interesting, size) = result;
// After applying reduction, the number of operation in the region may have
// changed. Non-interesting case won't be explored thus it's safe to keep it
// in a stale status.
if (interesting == Tester::Interestingness::True) {
// This module may has been updated. Reset the range.
ranges.clear();
ranges.push_back({0, std::distance(region->op_begin(), region->op_end())});
}
}
ArrayRef<ReductionNode *>
ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) {
// Single Path: Traverses the smallest successful variant at each level until
// no new successful variants can be created at that level.
ArrayRef<ReductionNode *> variantsFromParent =
node->getParent()->getVariants();
// The parent node created several variants and they may be waiting for
// examing interestingness. In Single Path approach, we will select the
// smallest variant to continue our exploration. Thus we should wait until the
// last variant to be examed then do the following traversal decision.
if (!llvm::all_of(variantsFromParent, [](ReductionNode *node) {
return node->isInteresting() != Tester::Interestingness::Untested;
})) {
return {};
}
ReductionNode *smallest = nullptr;
for (ReductionNode *node : variantsFromParent) {
if (node->isInteresting() != Tester::Interestingness::True)
continue;
if (smallest == nullptr || node->getSize() < smallest->getSize())
smallest = node;
}
if (smallest != nullptr &&
smallest->getSize() < node->getParent()->getSize()) {
// We got a smallest one, keep traversing from this node.
node = smallest;
} else {
// None of these variants is interesting, let the parent node to generate
// more variants.
node = node->getParent();
}
return node->generateNewVariants();
}