llvm-project/lldb/source/Symbol/Symtab.cpp

960 lines
31 KiB
C++

//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <map>
#include "lldb/Core/Module.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Timer.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
using namespace lldb;
using namespace lldb_private;
Symtab::Symtab(ObjectFile *objfile) :
m_objfile (objfile),
m_symbols (),
m_addr_indexes (),
m_name_to_index (),
m_mutex (Mutex::eMutexTypeRecursive),
m_addr_indexes_computed (false),
m_name_indexes_computed (false)
{
}
Symtab::~Symtab()
{
}
void
Symtab::Reserve(uint32_t count)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.reserve (count);
}
Symbol *
Symtab::Resize(uint32_t count)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
m_symbols.resize (count);
return &m_symbols[0];
}
uint32_t
Symtab::AddSymbol(const Symbol& symbol)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
uint32_t symbol_idx = m_symbols.size();
m_name_to_index.Clear();
m_addr_indexes.clear();
m_symbols.push_back(symbol);
m_addr_indexes_computed = false;
m_name_indexes_computed = false;
return symbol_idx;
}
size_t
Symtab::GetNumSymbols() const
{
Mutex::Locker locker (m_mutex);
return m_symbols.size();
}
void
Symtab::Dump (Stream *s, Target *target, SortOrder sort_order)
{
Mutex::Locker locker (m_mutex);
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
const FileSpec &file_spec = m_objfile->GetFileSpec();
const char * object_name = NULL;
if (m_objfile->GetModule())
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
if (file_spec)
s->Printf("Symtab, file = %s/%s%s%s%s, num_symbols = %lu",
file_spec.GetDirectory().AsCString(),
file_spec.GetFilename().AsCString(),
object_name ? "(" : "",
object_name ? object_name : "",
object_name ? ")" : "",
m_symbols.size());
else
s->Printf("Symtab, num_symbols = %lu", m_symbols.size());
if (!m_symbols.empty())
{
switch (sort_order)
{
case eSortOrderNone:
{
s->PutCString (":\n");
DumpSymbolHeader (s);
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos)
{
s->Indent();
pos->Dump(s, target, std::distance(begin, pos));
}
}
break;
case eSortOrderByName:
{
// Although we maintain a lookup by exact name map, the table
// isn't sorted by name. So we must make the ordered symbol list
// up ourselves.
s->PutCString (" (sorted by name):\n");
DumpSymbolHeader (s);
typedef std::multimap<const char*, const Symbol *, CStringCompareFunctionObject> CStringToSymbol;
CStringToSymbol name_map;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos)
{
const char *name = pos->GetMangled().GetName(Mangled::ePreferDemangled).AsCString();
if (name && name[0])
name_map.insert (std::make_pair(name, &(*pos)));
}
for (CStringToSymbol::const_iterator pos = name_map.begin(), end = name_map.end(); pos != end; ++pos)
{
s->Indent();
pos->second->Dump (s, target, pos->second - &m_symbols[0]);
}
}
break;
case eSortOrderByAddress:
s->PutCString (" (sorted by address):\n");
DumpSymbolHeader (s);
if (!m_addr_indexes_computed)
InitAddressIndexes();
const size_t num_symbols = GetNumSymbols();
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = m_addr_indexes.end();
for (pos = m_addr_indexes.begin(); pos != end; ++pos)
{
uint32_t idx = *pos;
if (idx < num_symbols)
{
s->Indent();
m_symbols[idx].Dump(s, target, idx);
}
}
break;
}
}
}
void
Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t>& indexes) const
{
Mutex::Locker locker (m_mutex);
const size_t num_symbols = GetNumSymbols();
//s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
s->Indent();
s->Printf("Symtab %lu symbol indexes (%lu symbols total):\n", indexes.size(), m_symbols.size());
s->IndentMore();
if (!indexes.empty())
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
DumpSymbolHeader (s);
for (pos = indexes.begin(); pos != end; ++pos)
{
uint32_t idx = *pos;
if (idx < num_symbols)
{
s->Indent();
m_symbols[idx].Dump(s, target, idx);
}
}
}
s->IndentLess ();
}
void
Symtab::DumpSymbolHeader (Stream *s)
{
s->Indent(" Debug symbol\n");
s->Indent(" |Synthetic symbol\n");
s->Indent(" ||Externally Visible\n");
s->Indent(" |||\n");
s->Indent("Index UserID DSX Type File Address/Value Load Address Size Flags Name\n");
s->Indent("------- ------ --- ------------ ------------------ ------------------ ------------------ ---------- ----------------------------------\n");
}
static int
CompareSymbolID (const void *key, const void *p)
{
const user_id_t match_uid = *(user_id_t*) key;
const user_id_t symbol_uid = ((Symbol *)p)->GetID();
if (match_uid < symbol_uid)
return -1;
if (match_uid > symbol_uid)
return 1;
return 0;
}
Symbol *
Symtab::FindSymbolByID (lldb::user_id_t symbol_uid) const
{
Mutex::Locker locker (m_mutex);
Symbol *symbol = (Symbol*)::bsearch (&symbol_uid,
&m_symbols[0],
m_symbols.size(),
(uint8_t *)&m_symbols[1] - (uint8_t *)&m_symbols[0],
CompareSymbolID);
return symbol;
}
Symbol *
Symtab::SymbolAtIndex(uint32_t idx)
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return NULL;
}
const Symbol *
Symtab::SymbolAtIndex(uint32_t idx) const
{
// Clients should grab the mutex from this symbol table and lock it manually
// when calling this function to avoid performance issues.
if (idx < m_symbols.size())
return &m_symbols[idx];
return NULL;
}
//----------------------------------------------------------------------
// InitNameIndexes
//----------------------------------------------------------------------
void
Symtab::InitNameIndexes()
{
// Protected function, no need to lock mutex...
if (!m_name_indexes_computed)
{
m_name_indexes_computed = true;
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Create the name index vector to be able to quickly search by name
const size_t count = m_symbols.size();
#if 1
m_name_to_index.Reserve (count);
#else
// TODO: benchmark this to see if we save any memory. Otherwise we
// will always keep the memory reserved in the vector unless we pull
// some STL swap magic and then recopy...
uint32_t actual_count = 0;
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
pos != end;
++pos)
{
const Mangled &mangled = pos->GetMangled();
if (mangled.GetMangledName())
++actual_count;
if (mangled.GetDemangledName())
++actual_count;
}
m_name_to_index.Reserve (actual_count);
#endif
NameToIndexMap::Entry entry;
for (entry.value = 0; entry.value < count; ++entry.value)
{
const Symbol *symbol = &m_symbols[entry.value];
// Don't let trampolines get into the lookup by name map
// If we ever need the trampoline symbols to be searchable by name
// we can remove this and then possibly add a new bool to any of the
// Symtab functions that lookup symbols by name to indicate if they
// want trampolines.
if (symbol->IsTrampoline())
continue;
const Mangled &mangled = symbol->GetMangled();
entry.cstring = mangled.GetMangledName().GetCString();
if (entry.cstring && entry.cstring[0])
m_name_to_index.Append (entry);
entry.cstring = mangled.GetDemangledName().GetCString();
if (entry.cstring && entry.cstring[0])
m_name_to_index.Append (entry);
// If the demangled name turns out to be an ObjC name, and
// is a category name, add the version without categories to the index too.
ConstString objc_base_name;
if (ObjCLanguageRuntime::ParseMethodName (entry.cstring,
NULL,
NULL,
&objc_base_name,
NULL))
{
entry.cstring = objc_base_name.GetCString();
m_name_to_index.Append (entry);
}
}
m_name_to_index.Sort();
m_name_to_index.SizeToFit();
}
}
void
Symtab::AppendSymbolNamesToMap (const IndexCollection &indexes,
bool add_demangled,
bool add_mangled,
NameToIndexMap &name_to_index_map) const
{
if (add_demangled || add_mangled)
{
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
Mutex::Locker locker (m_mutex);
// Create the name index vector to be able to quickly search by name
NameToIndexMap::Entry entry;
const size_t num_indexes = indexes.size();
for (size_t i=0; i<num_indexes; ++i)
{
entry.value = indexes[i];
assert (i < m_symbols.size());
const Symbol *symbol = &m_symbols[entry.value];
const Mangled &mangled = symbol->GetMangled();
if (add_demangled)
{
entry.cstring = mangled.GetDemangledName().GetCString();
if (entry.cstring && entry.cstring[0])
name_to_index_map.Append (entry);
}
if (add_mangled)
{
entry.cstring = mangled.GetMangledName().GetCString();
if (entry.cstring && entry.cstring[0])
name_to_index_map.Append (entry);
}
}
}
}
uint32_t
Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesWithTypeAndFlagsValue (SymbolType symbol_type, uint32_t flags_value, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if ((symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) && m_symbols[i].GetFlags() == flags_value)
indexes.push_back(i);
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes, uint32_t start_idx, uint32_t end_index) const
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
const uint32_t count = std::min<uint32_t> (m_symbols.size(), end_index);
for (uint32_t i = start_idx; i < count; ++i)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
indexes.push_back(i);
}
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::GetIndexForSymbol (const Symbol *symbol) const
{
const Symbol *first_symbol = &m_symbols[0];
if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
return symbol - first_symbol;
return UINT32_MAX;
}
struct SymbolSortInfo
{
const bool sort_by_load_addr;
const Symbol *symbols;
};
namespace {
struct SymbolIndexComparator {
const std::vector<Symbol>& symbols;
SymbolIndexComparator(const std::vector<Symbol>& s) : symbols(s) { }
bool operator()(uint32_t index_a, uint32_t index_b) {
addr_t value_a;
addr_t value_b;
if (symbols[index_a].GetValue().GetSection() == symbols[index_b].GetValue().GetSection()) {
value_a = symbols[index_a].GetValue ().GetOffset();
value_b = symbols[index_b].GetValue ().GetOffset();
} else {
value_a = symbols[index_a].GetValue ().GetFileAddress();
value_b = symbols[index_b].GetValue ().GetFileAddress();
}
if (value_a == value_b) {
// The if the values are equal, use the original symbol user ID
lldb::user_id_t uid_a = symbols[index_a].GetID();
lldb::user_id_t uid_b = symbols[index_b].GetID();
if (uid_a < uid_b)
return true;
if (uid_a > uid_b)
return false;
return false;
} else if (value_a < value_b)
return true;
return false;
}
};
}
void
Symtab::SortSymbolIndexesByValue (std::vector<uint32_t>& indexes, bool remove_duplicates) const
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__,__PRETTY_FUNCTION__);
// No need to sort if we have zero or one items...
if (indexes.size() <= 1)
return;
// Sort the indexes in place using std::stable_sort.
// NOTE: The use of std::stable_sort instead of std::sort here is strictly for performance,
// not correctness. The indexes vector tends to be "close" to sorted, which the
// stable sort handles better.
std::stable_sort(indexes.begin(), indexes.end(), SymbolIndexComparator(m_symbols));
// Remove any duplicates if requested
if (remove_duplicates)
std::unique(indexes.begin(), indexes.end());
}
uint32_t
Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (symbol_name)
{
const char *symbol_cstr = symbol_name.GetCString();
if (!m_name_indexes_computed)
InitNameIndexes();
return m_name_to_index.GetValues (symbol_cstr, indexes);
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (symbol_name)
{
const size_t old_size = indexes.size();
if (!m_name_indexes_computed)
InitNameIndexes();
const char *symbol_cstr = symbol_name.GetCString();
std::vector<uint32_t> all_name_indexes;
const size_t name_match_count = m_name_to_index.GetValues (symbol_cstr, all_name_indexes);
for (size_t i=0; i<name_match_count; ++i)
{
if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, symbol_visibility))
indexes.push_back (all_name_indexes[i]);
}
return indexes.size() - old_size;
}
return 0;
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType (const ConstString& symbol_name, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0)
{
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end())
{
if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type)
++pos;
else
indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t
Symtab::AppendSymbolIndexesWithNameAndType (const ConstString& symbol_name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, symbol_visibility, indexes) > 0)
{
std::vector<uint32_t>::iterator pos = indexes.begin();
while (pos != indexes.end())
{
if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type)
++pos;
else
indexes.erase(pos);
}
}
return indexes.size();
}
uint32_t
Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression &regexp, SymbolType symbol_type, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (int i = 0; i < sym_end; i++)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
const char *name = m_symbols[i].GetMangled().GetName().AsCString();
if (name)
{
if (regexp.Execute (name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
uint32_t
Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression &regexp, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& indexes)
{
Mutex::Locker locker (m_mutex);
uint32_t prev_size = indexes.size();
uint32_t sym_end = m_symbols.size();
for (int i = 0; i < sym_end; i++)
{
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false)
continue;
const char *name = m_symbols[i].GetMangled().GetName().AsCString();
if (name)
{
if (regexp.Execute (name))
indexes.push_back(i);
}
}
}
return indexes.size() - prev_size;
}
Symbol *
Symtab::FindSymbolWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, uint32_t& start_idx)
{
Mutex::Locker locker (m_mutex);
const size_t count = m_symbols.size();
for (uint32_t idx = start_idx; idx < count; ++idx)
{
if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type)
{
if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility))
{
start_idx = idx;
return &m_symbols[idx];
}
}
}
return NULL;
}
size_t
Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Initialize all of the lookup by name indexes before converting NAME
// to a uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_indexes);
}
return symbol_indexes.size();
}
size_t
Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
// Initialize all of the lookup by name indexes before converting NAME
// to a uniqued string NAME_STR below.
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes);
}
return symbol_indexes.size();
}
size_t
Symtab::FindAllSymbolsMatchingRexExAndType (const RegularExpression &regex, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector<uint32_t>& symbol_indexes)
{
Mutex::Locker locker (m_mutex);
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes);
return symbol_indexes.size();
}
Symbol *
Symtab::FindFirstSymbolWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility)
{
Mutex::Locker locker (m_mutex);
Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
if (!m_name_indexes_computed)
InitNameIndexes();
if (name)
{
std::vector<uint32_t> matching_indexes;
// The string table did have a string that matched, but we need
// to check the symbols and match the symbol_type if any was given.
if (AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, matching_indexes))
{
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
for (pos = matching_indexes.begin(); pos != end; ++pos)
{
Symbol *symbol = SymbolAtIndex(*pos);
if (symbol->Compare(name, symbol_type))
return symbol;
}
}
}
return NULL;
}
typedef struct
{
const Symtab *symtab;
const addr_t file_addr;
Symbol *match_symbol;
const uint32_t *match_index_ptr;
addr_t match_offset;
} SymbolSearchInfo;
static int
SymbolWithFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr)
{
const Symbol *curr_symbol = info->symtab->SymbolAtIndex (index_ptr[0]);
if (curr_symbol == NULL)
return -1;
const addr_t info_file_addr = info->file_addr;
// lldb::Symbol::GetAddressRangePtr() will only return a non NULL address
// range if the symbol has a section!
const AddressRange *curr_range = curr_symbol->GetAddressRangePtr();
if (curr_range)
{
const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress();
if (info_file_addr < curr_file_addr)
return -1;
if (info_file_addr > curr_file_addr)
return +1;
info->match_symbol = const_cast<Symbol *>(curr_symbol);
info->match_index_ptr = index_ptr;
return 0;
}
return -1;
}
static int
SymbolWithClosestFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr)
{
const Symbol *symbol = info->symtab->SymbolAtIndex (index_ptr[0]);
if (symbol == NULL)
return -1;
const addr_t info_file_addr = info->file_addr;
const AddressRange *curr_range = symbol->GetAddressRangePtr();
if (curr_range)
{
const addr_t curr_file_addr = curr_range->GetBaseAddress().GetFileAddress();
if (info_file_addr < curr_file_addr)
return -1;
// Since we are finding the closest symbol that is greater than or equal
// to 'info->file_addr' we set the symbol here. This will get set
// multiple times, but after the search is done it will contain the best
// symbol match
info->match_symbol = const_cast<Symbol *>(symbol);
info->match_index_ptr = index_ptr;
info->match_offset = info_file_addr - curr_file_addr;
if (info_file_addr > curr_file_addr)
return +1;
return 0;
}
return -1;
}
static SymbolSearchInfo
FindIndexPtrForSymbolContainingAddress(Symtab* symtab, addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes)
{
SymbolSearchInfo info = { symtab, file_addr, NULL, NULL, 0 };
::bsearch (&info,
indexes,
num_indexes,
sizeof(uint32_t),
(ComparisonFunction)SymbolWithClosestFileAddress);
return info;
}
void
Symtab::InitAddressIndexes()
{
// Protected function, no need to lock mutex...
if (!m_addr_indexes_computed && !m_symbols.empty())
{
m_addr_indexes_computed = true;
#if 0
// The old was to add only code, trampoline or data symbols...
AppendSymbolIndexesWithType (eSymbolTypeCode, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeTrampoline, m_addr_indexes);
AppendSymbolIndexesWithType (eSymbolTypeData, m_addr_indexes);
#else
// The new way adds all symbols with valid addresses that are section
// offset.
const_iterator begin = m_symbols.begin();
const_iterator end = m_symbols.end();
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos)
{
if (pos->GetAddressRangePtr())
m_addr_indexes.push_back (std::distance(begin, pos));
}
#endif
SortSymbolIndexesByValue (m_addr_indexes, false);
m_addr_indexes.push_back (UINT32_MAX); // Terminator for bsearch since we might need to look at the next symbol
}
}
size_t
Symtab::CalculateSymbolSize (Symbol *symbol)
{
Mutex::Locker locker (m_mutex);
if (m_symbols.empty())
return 0;
// Make sure this symbol is from this symbol table...
if (symbol < &m_symbols.front() || symbol > &m_symbols.back())
return 0;
// See if this symbol already has a byte size?
size_t byte_size = symbol->GetByteSize();
if (byte_size)
{
// It does, just return it
return byte_size;
}
// Else if this is an address based symbol, figure out the delta between
// it and the next address based symbol
if (symbol->GetAddressRangePtr())
{
if (!m_addr_indexes_computed)
InitAddressIndexes();
const size_t num_addr_indexes = m_addr_indexes.size();
SymbolSearchInfo info = FindIndexPtrForSymbolContainingAddress(this, symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress(), &m_addr_indexes.front(), num_addr_indexes);
if (info.match_index_ptr != NULL)
{
const lldb::addr_t curr_file_addr = symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress();
// We can figure out the address range of all symbols except the
// last one by taking the delta between the current symbol and
// the next symbol
for (uint32_t addr_index = info.match_index_ptr - &m_addr_indexes.front() + 1;
addr_index < num_addr_indexes;
++addr_index)
{
Symbol *next_symbol = SymbolAtIndex(m_addr_indexes[addr_index]);
if (next_symbol == NULL)
break;
assert (next_symbol->GetAddressRangePtr());
const lldb::addr_t next_file_addr = next_symbol->GetAddressRangePtr()->GetBaseAddress().GetFileAddress();
if (next_file_addr > curr_file_addr)
{
byte_size = next_file_addr - curr_file_addr;
symbol->GetAddressRangePtr()->SetByteSize(byte_size);
symbol->SetSizeIsSynthesized(true);
break;
}
}
}
}
return byte_size;
}
Symbol *
Symtab::FindSymbolWithFileAddress (addr_t file_addr)
{
Mutex::Locker locker (m_mutex);
if (!m_addr_indexes_computed)
InitAddressIndexes();
SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 };
uint32_t* match = (uint32_t*)::bsearch (&info,
&m_addr_indexes[0],
m_addr_indexes.size(),
sizeof(uint32_t),
(ComparisonFunction)SymbolWithFileAddress);
if (match)
return SymbolAtIndex (*match);
return NULL;
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes)
{
Mutex::Locker locker (m_mutex);
SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 };
::bsearch (&info,
indexes,
num_indexes,
sizeof(uint32_t),
(ComparisonFunction)SymbolWithClosestFileAddress);
if (info.match_symbol)
{
if (info.match_offset == 0)
{
// We found an exact match!
return info.match_symbol;
}
const size_t symbol_byte_size = CalculateSymbolSize(info.match_symbol);
if (symbol_byte_size == 0)
{
// We weren't able to find the size of the symbol so lets just go
// with that match we found in our search...
return info.match_symbol;
}
// We were able to figure out a symbol size so lets make sure our
// offset puts "file_addr" in the symbol's address range.
if (info.match_offset < symbol_byte_size)
return info.match_symbol;
}
return NULL;
}
Symbol *
Symtab::FindSymbolContainingFileAddress (addr_t file_addr)
{
Mutex::Locker locker (m_mutex);
if (!m_addr_indexes_computed)
InitAddressIndexes();
return FindSymbolContainingFileAddress (file_addr, &m_addr_indexes[0], m_addr_indexes.size());
}