forked from OSchip/llvm-project
1066 lines
32 KiB
C++
1066 lines
32 KiB
C++
//===-- asan_allocator.cc ---------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
//
|
|
// Implementation of ASan's memory allocator.
|
|
// Evey piece of memory (AsanChunk) allocated by the allocator
|
|
// has a left redzone of REDZONE bytes and
|
|
// a right redzone such that the end of the chunk is aligned by REDZONE
|
|
// (i.e. the right redzone is between 0 and REDZONE-1).
|
|
// The left redzone is always poisoned.
|
|
// The right redzone is poisoned on malloc, the body is poisoned on free.
|
|
// Once freed, a chunk is moved to a quarantine (fifo list).
|
|
// After quarantine, a chunk is returned to freelists.
|
|
//
|
|
// The left redzone contains ASan's internal data and the stack trace of
|
|
// the malloc call.
|
|
// Once freed, the body of the chunk contains the stack trace of the free call.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "asan_allocator.h"
|
|
#include "asan_interceptors.h"
|
|
#include "asan_interface.h"
|
|
#include "asan_internal.h"
|
|
#include "asan_lock.h"
|
|
#include "asan_mapping.h"
|
|
#include "asan_stats.h"
|
|
#include "asan_thread.h"
|
|
#include "asan_thread_registry.h"
|
|
|
|
#include <sys/mman.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <algorithm>
|
|
|
|
namespace __asan {
|
|
|
|
#define REDZONE FLAG_redzone
|
|
static const size_t kMinAllocSize = REDZONE * 2;
|
|
static const size_t kMinMmapSize = 4UL << 20; // 4M
|
|
static const uint64_t kMaxAvailableRam = 128ULL << 30; // 128G
|
|
static const size_t kMaxThreadLocalQuarantine = 1 << 20; // 1M
|
|
static const size_t kMaxSizeForThreadLocalFreeList = 1 << 17;
|
|
|
|
// Size classes less than kMallocSizeClassStep are powers of two.
|
|
// All other size classes are multiples of kMallocSizeClassStep.
|
|
static const size_t kMallocSizeClassStepLog = 26;
|
|
static const size_t kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
|
|
|
|
#if __WORDSIZE == 32
|
|
static const size_t kMaxAllowedMallocSize = 3UL << 30; // 3G
|
|
#else
|
|
static const size_t kMaxAllowedMallocSize = 8UL << 30; // 8G
|
|
#endif
|
|
|
|
static void OutOfMemoryMessage(const char *mem_type, size_t size) {
|
|
AsanThread *t = asanThreadRegistry().GetCurrent();
|
|
CHECK(t);
|
|
Report("ERROR: AddressSanitizer failed to allocate "
|
|
"0x%lx (%lu) bytes (%s) in T%d\n",
|
|
size, size, mem_type, t->tid());
|
|
}
|
|
|
|
static inline bool IsAligned(uintptr_t a, uintptr_t alignment) {
|
|
return (a & (alignment - 1)) == 0;
|
|
}
|
|
|
|
static inline bool IsPowerOfTwo(size_t x) {
|
|
return (x & (x - 1)) == 0;
|
|
}
|
|
|
|
static inline size_t Log2(size_t x) {
|
|
CHECK(IsPowerOfTwo(x));
|
|
return __builtin_ctzl(x);
|
|
}
|
|
|
|
static inline size_t RoundUpTo(size_t size, size_t boundary) {
|
|
CHECK(IsPowerOfTwo(boundary));
|
|
return (size + boundary - 1) & ~(boundary - 1);
|
|
}
|
|
|
|
static inline size_t RoundUpToPowerOfTwo(size_t size) {
|
|
CHECK(size);
|
|
if (IsPowerOfTwo(size)) return size;
|
|
size_t up = __WORDSIZE - __builtin_clzl(size);
|
|
CHECK(size < (1ULL << up));
|
|
CHECK(size > (1ULL << (up - 1)));
|
|
return 1UL << up;
|
|
}
|
|
|
|
static inline size_t SizeClassToSize(uint8_t size_class) {
|
|
CHECK(size_class < kNumberOfSizeClasses);
|
|
if (size_class <= kMallocSizeClassStepLog) {
|
|
return 1UL << size_class;
|
|
} else {
|
|
return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t SizeToSizeClass(size_t size) {
|
|
uint8_t res = 0;
|
|
if (size <= kMallocSizeClassStep) {
|
|
size_t rounded = RoundUpToPowerOfTwo(size);
|
|
res = Log2(rounded);
|
|
} else {
|
|
res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
|
|
+ kMallocSizeClassStepLog;
|
|
}
|
|
CHECK(res < kNumberOfSizeClasses);
|
|
CHECK(size <= SizeClassToSize(res));
|
|
return res;
|
|
}
|
|
|
|
static void PoisonShadow(uintptr_t mem, size_t size, uint8_t poison) {
|
|
CHECK(IsAligned(mem, SHADOW_GRANULARITY));
|
|
CHECK(IsAligned(mem + size, SHADOW_GRANULARITY));
|
|
uintptr_t shadow_beg = MemToShadow(mem);
|
|
uintptr_t shadow_end = MemToShadow(mem + size);
|
|
real_memset((void*)shadow_beg, poison, shadow_end - shadow_beg);
|
|
}
|
|
|
|
// Given REDZONE bytes, we need to mark first size bytes
|
|
// as addressable and the rest REDZONE-size bytes as unaddressable.
|
|
static void PoisonMemoryPartialRightRedzone(uintptr_t mem, size_t size) {
|
|
CHECK(size <= REDZONE);
|
|
CHECK(IsAligned(mem, REDZONE));
|
|
CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
|
|
CHECK(IsPowerOfTwo(REDZONE));
|
|
CHECK(REDZONE >= SHADOW_GRANULARITY);
|
|
uint8_t *shadow = (uint8_t*)MemToShadow(mem);
|
|
PoisonShadowPartialRightRedzone(shadow, size,
|
|
REDZONE, SHADOW_GRANULARITY,
|
|
kAsanHeapRightRedzoneMagic);
|
|
}
|
|
|
|
static uint8_t *MmapNewPagesAndPoisonShadow(size_t size) {
|
|
CHECK(IsAligned(size, kPageSize));
|
|
uint8_t *res = (uint8_t*)asan_mmap(0, size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
if (res == (uint8_t*)-1) {
|
|
OutOfMemoryMessage(__FUNCTION__, size);
|
|
PRINT_CURRENT_STACK();
|
|
ASAN_DIE;
|
|
}
|
|
PoisonShadow((uintptr_t)res, size, kAsanHeapLeftRedzoneMagic);
|
|
if (FLAG_debug) {
|
|
Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Every chunk of memory allocated by this allocator can be in one of 3 states:
|
|
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
|
|
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
|
|
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
|
|
//
|
|
// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
|
|
// the beginning of a AsanChunk (in which case 'next' contains the address
|
|
// of the AsanChunk).
|
|
//
|
|
// The magic numbers for the enum values are taken randomly.
|
|
enum {
|
|
CHUNK_AVAILABLE = 0x573B,
|
|
CHUNK_ALLOCATED = 0x3204,
|
|
CHUNK_QUARANTINE = 0x1978,
|
|
CHUNK_MEMALIGN = 0xDC68,
|
|
};
|
|
|
|
struct ChunkBase {
|
|
uint16_t chunk_state;
|
|
uint8_t size_class;
|
|
uint32_t offset; // User-visible memory starts at this+offset (beg()).
|
|
int32_t alloc_tid;
|
|
int32_t free_tid;
|
|
size_t used_size; // Size requested by the user.
|
|
AsanChunk *next;
|
|
|
|
uintptr_t beg() { return (uintptr_t)this + offset; }
|
|
size_t Size() { return SizeClassToSize(size_class); }
|
|
uint8_t SizeClass() { return size_class; }
|
|
};
|
|
|
|
struct AsanChunk: public ChunkBase {
|
|
uint32_t *compressed_alloc_stack() {
|
|
CHECK(REDZONE >= sizeof(ChunkBase));
|
|
return (uint32_t*)((uintptr_t)this + sizeof(ChunkBase));
|
|
}
|
|
uint32_t *compressed_free_stack() {
|
|
CHECK(REDZONE >= sizeof(ChunkBase));
|
|
return (uint32_t*)((uintptr_t)this + REDZONE);
|
|
}
|
|
|
|
// The left redzone after the ChunkBase is given to the alloc stack trace.
|
|
size_t compressed_alloc_stack_size() {
|
|
return (REDZONE - sizeof(ChunkBase)) / sizeof(uint32_t);
|
|
}
|
|
size_t compressed_free_stack_size() {
|
|
return (REDZONE) / sizeof(uint32_t);
|
|
}
|
|
|
|
bool AddrIsInside(uintptr_t addr, size_t access_size, size_t *offset) {
|
|
if (addr >= beg() && (addr + access_size) <= (beg() + used_size)) {
|
|
*offset = addr - beg();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AddrIsAtLeft(uintptr_t addr, size_t access_size, size_t *offset) {
|
|
if (addr < beg()) {
|
|
*offset = beg() - addr;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AddrIsAtRight(uintptr_t addr, size_t access_size, size_t *offset) {
|
|
if (addr + access_size >= beg() + used_size) {
|
|
if (addr <= beg() + used_size)
|
|
*offset = 0;
|
|
else
|
|
*offset = addr - (beg() + used_size);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DescribeAddress(uintptr_t addr, size_t access_size) {
|
|
size_t offset;
|
|
Printf("%p is located ", addr);
|
|
if (AddrIsInside(addr, access_size, &offset)) {
|
|
Printf("%ld bytes inside of", offset);
|
|
} else if (AddrIsAtLeft(addr, access_size, &offset)) {
|
|
Printf("%ld bytes to the left of", offset);
|
|
} else if (AddrIsAtRight(addr, access_size, &offset)) {
|
|
Printf("%ld bytes to the right of", offset);
|
|
} else {
|
|
Printf(" somewhere around (this is AddressSanitizer bug!)");
|
|
}
|
|
Printf(" %lu-byte region [%p,%p)\n",
|
|
used_size, beg(), beg() + used_size);
|
|
}
|
|
};
|
|
|
|
static AsanChunk *PtrToChunk(uintptr_t ptr) {
|
|
AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
|
|
if (m->chunk_state == CHUNK_MEMALIGN) {
|
|
m = m->next;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
|
|
void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
|
|
if (last_) {
|
|
CHECK(first_);
|
|
CHECK(!last_->next);
|
|
last_->next = q->first_;
|
|
last_ = q->last_;
|
|
} else {
|
|
CHECK(!first_);
|
|
last_ = q->last_;
|
|
first_ = q->first_;
|
|
}
|
|
size_ += q->size();
|
|
q->clear();
|
|
}
|
|
|
|
void AsanChunkFifoList::Push(AsanChunk *n) {
|
|
CHECK(n->next == NULL);
|
|
if (last_) {
|
|
CHECK(first_);
|
|
CHECK(!last_->next);
|
|
last_->next = n;
|
|
last_ = n;
|
|
} else {
|
|
CHECK(!first_);
|
|
last_ = first_ = n;
|
|
}
|
|
size_ += n->Size();
|
|
}
|
|
|
|
// Interesting performance observation: this function takes up to 15% of overal
|
|
// allocator time. That's because *first_ has been evicted from cache long time
|
|
// ago. Not sure if we can or want to do anything with this.
|
|
AsanChunk *AsanChunkFifoList::Pop() {
|
|
CHECK(first_);
|
|
AsanChunk *res = first_;
|
|
first_ = first_->next;
|
|
if (first_ == NULL)
|
|
last_ = NULL;
|
|
CHECK(size_ >= res->Size());
|
|
size_ -= res->Size();
|
|
if (last_) {
|
|
CHECK(!last_->next);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// All pages we ever allocated.
|
|
struct PageGroup {
|
|
uintptr_t beg;
|
|
uintptr_t end;
|
|
size_t size_of_chunk;
|
|
uintptr_t last_chunk;
|
|
bool InRange(uintptr_t addr) {
|
|
return addr >= beg && addr < end;
|
|
}
|
|
};
|
|
|
|
class MallocInfo {
|
|
public:
|
|
|
|
explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
|
|
|
|
AsanChunk *AllocateChunks(uint8_t size_class, size_t n_chunks) {
|
|
AsanChunk *m = NULL;
|
|
AsanChunk **fl = &free_lists_[size_class];
|
|
{
|
|
ScopedLock lock(&mu_);
|
|
for (size_t i = 0; i < n_chunks; i++) {
|
|
if (!(*fl)) {
|
|
*fl = GetNewChunks(size_class);
|
|
}
|
|
AsanChunk *t = *fl;
|
|
*fl = t->next;
|
|
t->next = m;
|
|
CHECK(t->chunk_state == CHUNK_AVAILABLE);
|
|
m = t;
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
|
|
bool eat_free_lists) {
|
|
CHECK(FLAG_quarantine_size > 0);
|
|
ScopedLock lock(&mu_);
|
|
AsanChunkFifoList *q = &x->quarantine_;
|
|
if (q->size() > 0) {
|
|
quarantine_.PushList(q);
|
|
while (quarantine_.size() > FLAG_quarantine_size) {
|
|
QuarantinePop();
|
|
}
|
|
}
|
|
if (eat_free_lists) {
|
|
for (size_t size_class = 0; size_class < kNumberOfSizeClasses;
|
|
size_class++) {
|
|
AsanChunk *m = x->free_lists_[size_class];
|
|
while (m) {
|
|
AsanChunk *t = m->next;
|
|
m->next = free_lists_[size_class];
|
|
free_lists_[size_class] = m;
|
|
m = t;
|
|
}
|
|
x->free_lists_[size_class] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BypassThreadLocalQuarantine(AsanChunk *chunk) {
|
|
ScopedLock lock(&mu_);
|
|
quarantine_.Push(chunk);
|
|
}
|
|
|
|
AsanChunk *FindMallocedOrFreed(uintptr_t addr, size_t access_size) {
|
|
ScopedLock lock(&mu_);
|
|
return FindChunkByAddr(addr);
|
|
}
|
|
|
|
// TODO(glider): AllocationSize() may become very slow if the size of
|
|
// page_groups_ grows. This can be fixed by increasing kMinMmapSize,
|
|
// but a better solution is to speed up the search somehow.
|
|
size_t AllocationSize(uintptr_t ptr) {
|
|
ScopedLock lock(&mu_);
|
|
|
|
// first, check if this is our memory
|
|
PageGroup *g = FindPageGroupUnlocked(ptr);
|
|
if (!g) return 0;
|
|
AsanChunk *m = PtrToChunk(ptr);
|
|
if (m->chunk_state == CHUNK_ALLOCATED) {
|
|
return m->used_size;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void ForceLock() {
|
|
mu_.Lock();
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
mu_.Unlock();
|
|
}
|
|
|
|
void PrintStatus() {
|
|
ScopedLock lock(&mu_);
|
|
size_t malloced = 0;
|
|
|
|
Printf(" MallocInfo: in quarantine: %ld malloced: %ld; ",
|
|
quarantine_.size() >> 20, malloced >> 20);
|
|
for (size_t j = 1; j < kNumberOfSizeClasses; j++) {
|
|
AsanChunk *i = free_lists_[j];
|
|
if (!i) continue;
|
|
size_t t = 0;
|
|
for (; i; i = i->next) {
|
|
t += i->Size();
|
|
}
|
|
Printf("%ld:%ld ", j, t >> 20);
|
|
}
|
|
Printf("\n");
|
|
}
|
|
|
|
PageGroup *FindPageGroup(uintptr_t addr) {
|
|
ScopedLock lock(&mu_);
|
|
return FindPageGroupUnlocked(addr);
|
|
}
|
|
|
|
private:
|
|
PageGroup *FindPageGroupUnlocked(uintptr_t addr) {
|
|
for (int i = 0; i < n_page_groups_; i++) {
|
|
PageGroup *g = page_groups_[i];
|
|
if (g->InRange(addr)) {
|
|
return g;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// We have an address between two chunks, and we want to report just one.
|
|
AsanChunk *ChooseChunk(uintptr_t addr,
|
|
AsanChunk *left_chunk, AsanChunk *right_chunk) {
|
|
// Prefer an allocated chunk or a chunk from quarantine.
|
|
if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
|
|
right_chunk->chunk_state != CHUNK_AVAILABLE)
|
|
return right_chunk;
|
|
if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
|
|
left_chunk->chunk_state != CHUNK_AVAILABLE)
|
|
return left_chunk;
|
|
// Choose based on offset.
|
|
uintptr_t l_offset = 0, r_offset = 0;
|
|
CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
|
|
CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
|
|
if (l_offset < r_offset)
|
|
return left_chunk;
|
|
return right_chunk;
|
|
}
|
|
|
|
AsanChunk *FindChunkByAddr(uintptr_t addr) {
|
|
PageGroup *g = FindPageGroupUnlocked(addr);
|
|
if (!g) return 0;
|
|
CHECK(g->size_of_chunk);
|
|
uintptr_t offset_from_beg = addr - g->beg;
|
|
uintptr_t this_chunk_addr = g->beg +
|
|
(offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
|
|
CHECK(g->InRange(this_chunk_addr));
|
|
AsanChunk *m = (AsanChunk*)this_chunk_addr;
|
|
CHECK(m->chunk_state == CHUNK_ALLOCATED ||
|
|
m->chunk_state == CHUNK_AVAILABLE ||
|
|
m->chunk_state == CHUNK_QUARANTINE);
|
|
uintptr_t offset = 0;
|
|
if (m->AddrIsInside(addr, 1, &offset))
|
|
return m;
|
|
|
|
if (m->AddrIsAtRight(addr, 1, &offset)) {
|
|
if (this_chunk_addr == g->last_chunk) // rightmost chunk
|
|
return m;
|
|
uintptr_t right_chunk_addr = this_chunk_addr + g->size_of_chunk;
|
|
CHECK(g->InRange(right_chunk_addr));
|
|
return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
|
|
} else {
|
|
CHECK(m->AddrIsAtLeft(addr, 1, &offset));
|
|
if (this_chunk_addr == g->beg) // leftmost chunk
|
|
return m;
|
|
uintptr_t left_chunk_addr = this_chunk_addr - g->size_of_chunk;
|
|
CHECK(g->InRange(left_chunk_addr));
|
|
return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
|
|
}
|
|
}
|
|
|
|
void QuarantinePop() {
|
|
CHECK(quarantine_.size() > 0);
|
|
AsanChunk *m = quarantine_.Pop();
|
|
CHECK(m);
|
|
// if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
|
|
|
|
CHECK(m->chunk_state == CHUNK_QUARANTINE);
|
|
m->chunk_state = CHUNK_AVAILABLE;
|
|
CHECK(m->alloc_tid >= 0);
|
|
CHECK(m->free_tid >= 0);
|
|
|
|
size_t size_class = m->SizeClass();
|
|
m->next = free_lists_[size_class];
|
|
free_lists_[size_class] = m;
|
|
|
|
if (FLAG_stats) {
|
|
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
|
|
thread_stats.real_frees++;
|
|
thread_stats.really_freed += m->used_size;
|
|
thread_stats.really_freed_redzones += m->Size() - m->used_size;
|
|
thread_stats.really_freed_by_size[m->SizeClass()]++;
|
|
}
|
|
}
|
|
|
|
// Get a list of newly allocated chunks.
|
|
AsanChunk *GetNewChunks(uint8_t size_class) {
|
|
size_t size = SizeClassToSize(size_class);
|
|
CHECK(IsPowerOfTwo(kMinMmapSize));
|
|
CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
|
|
size_t mmap_size = std::max(size, kMinMmapSize);
|
|
size_t n_chunks = mmap_size / size;
|
|
CHECK(n_chunks * size == mmap_size);
|
|
if (size < kPageSize) {
|
|
// Size is small, just poison the last chunk.
|
|
n_chunks--;
|
|
} else {
|
|
// Size is large, allocate an extra page at right and poison it.
|
|
mmap_size += kPageSize;
|
|
}
|
|
CHECK(n_chunks > 0);
|
|
uint8_t *mem = MmapNewPagesAndPoisonShadow(mmap_size);
|
|
if (FLAG_stats) {
|
|
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
|
|
thread_stats.mmaps++;
|
|
thread_stats.mmaped += mmap_size;
|
|
thread_stats.mmaped_by_size[size_class] += n_chunks;
|
|
}
|
|
AsanChunk *res = NULL;
|
|
for (size_t i = 0; i < n_chunks; i++) {
|
|
AsanChunk *m = (AsanChunk*)(mem + i * size);
|
|
m->chunk_state = CHUNK_AVAILABLE;
|
|
m->size_class = size_class;
|
|
m->next = res;
|
|
res = m;
|
|
}
|
|
PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
|
|
// This memory is already poisoned, no need to poison it again.
|
|
pg->beg = (uintptr_t)mem;
|
|
pg->end = pg->beg + mmap_size;
|
|
pg->size_of_chunk = size;
|
|
pg->last_chunk = (uintptr_t)(mem + size * (n_chunks - 1));
|
|
int page_group_idx = AtomicInc(&n_page_groups_) - 1;
|
|
CHECK(page_group_idx < (int)ASAN_ARRAY_SIZE(page_groups_));
|
|
page_groups_[page_group_idx] = pg;
|
|
return res;
|
|
}
|
|
|
|
AsanChunk *free_lists_[kNumberOfSizeClasses];
|
|
AsanChunkFifoList quarantine_;
|
|
AsanLock mu_;
|
|
|
|
PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
|
|
int n_page_groups_; // atomic
|
|
};
|
|
|
|
static MallocInfo malloc_info(LINKER_INITIALIZED);
|
|
|
|
void AsanThreadLocalMallocStorage::CommitBack() {
|
|
malloc_info.SwallowThreadLocalMallocStorage(this, true);
|
|
}
|
|
|
|
static void Describe(uintptr_t addr, size_t access_size) {
|
|
AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
|
|
if (!m) return;
|
|
m->DescribeAddress(addr, access_size);
|
|
CHECK(m->alloc_tid >= 0);
|
|
AsanThreadSummary *alloc_thread =
|
|
asanThreadRegistry().FindByTid(m->alloc_tid);
|
|
AsanStackTrace alloc_stack;
|
|
AsanStackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
|
|
m->compressed_alloc_stack_size());
|
|
AsanThread *t = asanThreadRegistry().GetCurrent();
|
|
CHECK(t);
|
|
if (m->free_tid >= 0) {
|
|
AsanThreadSummary *free_thread =
|
|
asanThreadRegistry().FindByTid(m->free_tid);
|
|
Printf("freed by thread T%d here:\n", free_thread->tid());
|
|
AsanStackTrace free_stack;
|
|
AsanStackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
|
|
m->compressed_free_stack_size());
|
|
free_stack.PrintStack();
|
|
Printf("previously allocated by thread T%d here:\n",
|
|
alloc_thread->tid());
|
|
|
|
alloc_stack.PrintStack();
|
|
t->summary()->Announce();
|
|
free_thread->Announce();
|
|
alloc_thread->Announce();
|
|
} else {
|
|
Printf("allocated by thread T%d here:\n", alloc_thread->tid());
|
|
alloc_stack.PrintStack();
|
|
t->summary()->Announce();
|
|
alloc_thread->Announce();
|
|
}
|
|
}
|
|
|
|
static uint8_t *Allocate(size_t alignment, size_t size, AsanStackTrace *stack) {
|
|
__asan_init();
|
|
CHECK(stack);
|
|
if (size == 0) {
|
|
size = 1; // TODO(kcc): do something smarter
|
|
}
|
|
CHECK(IsPowerOfTwo(alignment));
|
|
size_t rounded_size = RoundUpTo(size, REDZONE);
|
|
size_t needed_size = rounded_size + REDZONE;
|
|
if (alignment > REDZONE) {
|
|
needed_size += alignment;
|
|
}
|
|
CHECK(IsAligned(needed_size, REDZONE));
|
|
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
|
|
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", size);
|
|
return 0;
|
|
}
|
|
|
|
uint8_t size_class = SizeToSizeClass(needed_size);
|
|
size_t size_to_allocate = SizeClassToSize(size_class);
|
|
CHECK(size_to_allocate >= kMinAllocSize);
|
|
CHECK(size_to_allocate >= needed_size);
|
|
CHECK(IsAligned(size_to_allocate, REDZONE));
|
|
|
|
if (FLAG_v >= 2) {
|
|
Printf("Allocate align: %ld size: %ld class: %d real: %ld\n",
|
|
alignment, size, size_class, size_to_allocate);
|
|
}
|
|
|
|
AsanThread *t = asanThreadRegistry().GetCurrent();
|
|
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
|
|
if (FLAG_stats) {
|
|
thread_stats.mallocs++;
|
|
thread_stats.malloced += size;
|
|
thread_stats.malloced_redzones += size_to_allocate - size;
|
|
thread_stats.malloced_by_size[size_class]++;
|
|
}
|
|
|
|
AsanChunk *m = NULL;
|
|
if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
|
|
// get directly from global storage.
|
|
m = malloc_info.AllocateChunks(size_class, 1);
|
|
if (FLAG_stats) {
|
|
thread_stats.malloc_large++;
|
|
}
|
|
} else {
|
|
// get from the thread-local storage.
|
|
AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
|
|
if (!*fl) {
|
|
size_t n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
|
|
// n_new_chunks = std::min((size_t)32, n_new_chunks);
|
|
*fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
|
|
if (FLAG_stats) {
|
|
thread_stats.malloc_small_slow++;
|
|
}
|
|
}
|
|
m = *fl;
|
|
*fl = (*fl)->next;
|
|
}
|
|
CHECK(m);
|
|
CHECK(m->chunk_state == CHUNK_AVAILABLE);
|
|
m->chunk_state = CHUNK_ALLOCATED;
|
|
m->next = NULL;
|
|
CHECK(m->Size() == size_to_allocate);
|
|
uintptr_t addr = (uintptr_t)m + REDZONE;
|
|
CHECK(addr == (uintptr_t)m->compressed_free_stack());
|
|
|
|
if (alignment > REDZONE && (addr & (alignment - 1))) {
|
|
addr = RoundUpTo(addr, alignment);
|
|
CHECK((addr & (alignment - 1)) == 0);
|
|
AsanChunk *p = (AsanChunk*)(addr - REDZONE);
|
|
p->chunk_state = CHUNK_MEMALIGN;
|
|
p->next = m;
|
|
}
|
|
CHECK(m == PtrToChunk(addr));
|
|
m->used_size = size;
|
|
m->offset = addr - (uintptr_t)m;
|
|
CHECK(m->beg() == addr);
|
|
m->alloc_tid = t ? t->tid() : 0;
|
|
m->free_tid = AsanThread::kInvalidTid;
|
|
AsanStackTrace::CompressStack(stack, m->compressed_alloc_stack(),
|
|
m->compressed_alloc_stack_size());
|
|
PoisonShadow(addr, rounded_size, 0);
|
|
if (size < rounded_size) {
|
|
PoisonMemoryPartialRightRedzone(addr + rounded_size - REDZONE,
|
|
size & (REDZONE - 1));
|
|
}
|
|
if (size <= FLAG_max_malloc_fill_size) {
|
|
real_memset((void*)addr, 0, rounded_size);
|
|
}
|
|
return (uint8_t*)addr;
|
|
}
|
|
|
|
static void Deallocate(uint8_t *ptr, AsanStackTrace *stack) {
|
|
if (!ptr) return;
|
|
CHECK(stack);
|
|
|
|
if (FLAG_debug) {
|
|
CHECK(malloc_info.FindPageGroup((uintptr_t)ptr));
|
|
}
|
|
|
|
// Printf("Deallocate %p\n", ptr);
|
|
AsanChunk *m = PtrToChunk((uintptr_t)ptr);
|
|
if (m->chunk_state == CHUNK_QUARANTINE) {
|
|
Printf("attempting double-free on %p:\n", ptr);
|
|
stack->PrintStack();
|
|
m->DescribeAddress((uintptr_t)ptr, 1);
|
|
ShowStatsAndAbort();
|
|
} else if (m->chunk_state != CHUNK_ALLOCATED) {
|
|
Printf("attempting free on address which was not malloc()-ed: %p\n", ptr);
|
|
stack->PrintStack();
|
|
ShowStatsAndAbort();
|
|
}
|
|
CHECK(m->chunk_state == CHUNK_ALLOCATED);
|
|
CHECK(m->free_tid == AsanThread::kInvalidTid);
|
|
CHECK(m->alloc_tid >= 0);
|
|
AsanThread *t = asanThreadRegistry().GetCurrent();
|
|
m->free_tid = t ? t->tid() : 0;
|
|
AsanStackTrace::CompressStack(stack, m->compressed_free_stack(),
|
|
m->compressed_free_stack_size());
|
|
size_t rounded_size = RoundUpTo(m->used_size, REDZONE);
|
|
PoisonShadow((uintptr_t)ptr, rounded_size, kAsanHeapFreeMagic);
|
|
|
|
if (FLAG_stats) {
|
|
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
|
|
thread_stats.frees++;
|
|
thread_stats.freed += m->used_size;
|
|
thread_stats.freed_by_size[m->SizeClass()]++;
|
|
}
|
|
|
|
m->chunk_state = CHUNK_QUARANTINE;
|
|
if (t) {
|
|
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
|
|
CHECK(!m->next);
|
|
ms->quarantine_.Push(m);
|
|
|
|
if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
|
|
malloc_info.SwallowThreadLocalMallocStorage(ms, false);
|
|
}
|
|
} else {
|
|
CHECK(!m->next);
|
|
malloc_info.BypassThreadLocalQuarantine(m);
|
|
}
|
|
}
|
|
|
|
static uint8_t *Reallocate(uint8_t *old_ptr, size_t new_size,
|
|
AsanStackTrace *stack) {
|
|
CHECK(old_ptr && new_size);
|
|
if (FLAG_stats) {
|
|
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
|
|
thread_stats.reallocs++;
|
|
thread_stats.realloced += new_size;
|
|
}
|
|
AsanChunk *m = PtrToChunk((uintptr_t)old_ptr);
|
|
CHECK(m->chunk_state == CHUNK_ALLOCATED);
|
|
size_t old_size = m->used_size;
|
|
size_t memcpy_size = std::min(new_size, old_size);
|
|
uint8_t *new_ptr = Allocate(0, new_size, stack);
|
|
if (new_ptr) {
|
|
real_memcpy(new_ptr, old_ptr, memcpy_size);
|
|
Deallocate(old_ptr, stack);
|
|
}
|
|
return new_ptr;
|
|
}
|
|
|
|
} // namespace __asan
|
|
|
|
// Malloc hooks declaration.
|
|
// ASAN_NEW_HOOK(ptr, size) is called immediately after
|
|
// allocation of "size" bytes, which returned "ptr".
|
|
// ASAN_DELETE_HOOK(ptr) is called immediately before
|
|
// deallocation of "ptr".
|
|
// If ASAN_NEW_HOOK or ASAN_DELETE_HOOK is defined, user
|
|
// program must provide implementation of this hook.
|
|
// If macro is undefined, the hook is no-op.
|
|
#ifdef ASAN_NEW_HOOK
|
|
extern "C" void ASAN_NEW_HOOK(void *ptr, size_t size);
|
|
#else
|
|
static inline void ASAN_NEW_HOOK(void *ptr, size_t size) { }
|
|
#endif
|
|
|
|
#ifdef ASAN_DELETE_HOOK
|
|
extern "C" void ASAN_DELETE_HOOK(void *ptr);
|
|
#else
|
|
static inline void ASAN_DELETE_HOOK(void *ptr) { }
|
|
#endif
|
|
|
|
namespace __asan {
|
|
|
|
void *asan_memalign(size_t alignment, size_t size, AsanStackTrace *stack) {
|
|
void *ptr = (void*)Allocate(alignment, size, stack);
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
return ptr;
|
|
}
|
|
|
|
void asan_free(void *ptr, AsanStackTrace *stack) {
|
|
ASAN_DELETE_HOOK(ptr);
|
|
Deallocate((uint8_t*)ptr, stack);
|
|
}
|
|
|
|
void *asan_malloc(size_t size, AsanStackTrace *stack) {
|
|
void *ptr = (void*)Allocate(0, size, stack);
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
return ptr;
|
|
}
|
|
|
|
void *asan_calloc(size_t nmemb, size_t size, AsanStackTrace *stack) {
|
|
void *ptr = (void*)Allocate(0, nmemb * size, stack);
|
|
if (ptr)
|
|
real_memset(ptr, 0, nmemb * size);
|
|
ASAN_NEW_HOOK(ptr, nmemb * size);
|
|
return ptr;
|
|
}
|
|
|
|
void *asan_realloc(void *p, size_t size, AsanStackTrace *stack) {
|
|
if (p == NULL) {
|
|
void *ptr = (void*)Allocate(0, size, stack);
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
return ptr;
|
|
} else if (size == 0) {
|
|
ASAN_DELETE_HOOK(p);
|
|
Deallocate((uint8_t*)p, stack);
|
|
return NULL;
|
|
}
|
|
return Reallocate((uint8_t*)p, size, stack);
|
|
}
|
|
|
|
void *asan_valloc(size_t size, AsanStackTrace *stack) {
|
|
void *ptr = (void*)Allocate(kPageSize, size, stack);
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
return ptr;
|
|
}
|
|
|
|
void *asan_pvalloc(size_t size, AsanStackTrace *stack) {
|
|
size = RoundUpTo(size, kPageSize);
|
|
if (size == 0) {
|
|
// pvalloc(0) should allocate one page.
|
|
size = kPageSize;
|
|
}
|
|
void *ptr = (void*)Allocate(kPageSize, size, stack);
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
return ptr;
|
|
}
|
|
|
|
int asan_posix_memalign(void **memptr, size_t alignment, size_t size,
|
|
AsanStackTrace *stack) {
|
|
void *ptr = Allocate(alignment, size, stack);
|
|
CHECK(IsAligned((uintptr_t)ptr, alignment));
|
|
ASAN_NEW_HOOK(ptr, size);
|
|
*memptr = ptr;
|
|
return 0;
|
|
}
|
|
|
|
size_t __asan_mz_size(const void *ptr) {
|
|
return malloc_info.AllocationSize((uintptr_t)ptr);
|
|
}
|
|
|
|
void DescribeHeapAddress(uintptr_t addr, uintptr_t access_size) {
|
|
Describe(addr, access_size);
|
|
}
|
|
|
|
void __asan_mz_force_lock() {
|
|
malloc_info.ForceLock();
|
|
}
|
|
|
|
void __asan_mz_force_unlock() {
|
|
malloc_info.ForceUnlock();
|
|
}
|
|
|
|
// ---------------------- Fake stack-------------------- {{{1
|
|
FakeStack::FakeStack() {
|
|
CHECK(real_memset);
|
|
real_memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
bool FakeStack::AddrIsInSizeClass(uintptr_t addr, size_t size_class) {
|
|
uintptr_t mem = allocated_size_classes_[size_class];
|
|
uintptr_t size = ClassMmapSize(size_class);
|
|
bool res = mem && addr >= mem && addr < mem + size;
|
|
return res;
|
|
}
|
|
|
|
uintptr_t FakeStack::AddrIsInFakeStack(uintptr_t addr) {
|
|
if (!alive_) return 0;
|
|
for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
|
|
if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// We may want to compute this during compilation.
|
|
inline size_t FakeStack::ComputeSizeClass(size_t alloc_size) {
|
|
size_t rounded_size = RoundUpToPowerOfTwo(alloc_size);
|
|
size_t log = Log2(rounded_size);
|
|
CHECK(alloc_size <= (1UL << log));
|
|
if (!(alloc_size > (1UL << (log-1)))) {
|
|
Printf("alloc_size %ld log %ld\n", alloc_size, log);
|
|
}
|
|
CHECK(alloc_size > (1UL << (log-1)));
|
|
size_t res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
|
|
CHECK(res < kNumberOfSizeClasses);
|
|
CHECK(ClassSize(res) >= rounded_size);
|
|
return res;
|
|
}
|
|
|
|
void FakeFrameFifo::FifoPush(FakeFrame *node) {
|
|
CHECK(node);
|
|
node->next = 0;
|
|
if (first_ == 0 && last_ == 0) {
|
|
first_ = last_ = node;
|
|
} else {
|
|
CHECK(first_);
|
|
CHECK(last_);
|
|
last_->next = node;
|
|
last_ = node;
|
|
}
|
|
}
|
|
|
|
FakeFrame *FakeFrameFifo::FifoPop() {
|
|
CHECK(first_ && last_ && "Exhausted fake stack");
|
|
FakeFrame *res = 0;
|
|
if (first_ == last_) {
|
|
res = first_;
|
|
first_ = last_ = 0;
|
|
} else {
|
|
res = first_;
|
|
first_ = first_->next;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void FakeStack::Init(size_t stack_size) {
|
|
stack_size_ = stack_size;
|
|
alive_ = true;
|
|
}
|
|
|
|
void FakeStack::Cleanup() {
|
|
alive_ = false;
|
|
for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
|
|
uintptr_t mem = allocated_size_classes_[i];
|
|
if (mem) {
|
|
PoisonShadow(mem, ClassMmapSize(i), 0);
|
|
allocated_size_classes_[i] = 0;
|
|
int munmap_res = munmap((void*)mem, ClassMmapSize(i));
|
|
CHECK(munmap_res == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t FakeStack::ClassMmapSize(size_t size_class) {
|
|
return RoundUpToPowerOfTwo(stack_size_);
|
|
}
|
|
|
|
void FakeStack::AllocateOneSizeClass(size_t size_class) {
|
|
CHECK(ClassMmapSize(size_class) >= kPageSize);
|
|
uintptr_t new_mem = (uintptr_t)asan_mmap(0, ClassMmapSize(size_class),
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
CHECK(new_mem != (uintptr_t)-1);
|
|
// Printf("T%d new_mem[%ld]: %p-%p mmap %ld\n",
|
|
// asanThreadRegistry().GetCurrent()->tid(),
|
|
// size_class, new_mem, new_mem + ClassMmapSize(size_class),
|
|
// ClassMmapSize(size_class));
|
|
size_t i;
|
|
for (i = 0; i < ClassMmapSize(size_class);
|
|
i += ClassSize(size_class)) {
|
|
size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
|
|
}
|
|
CHECK(i == ClassMmapSize(size_class));
|
|
allocated_size_classes_[size_class] = new_mem;
|
|
}
|
|
|
|
uintptr_t FakeStack::AllocateStack(size_t size, size_t real_stack) {
|
|
CHECK(alive_);
|
|
CHECK(size <= kMaxStackMallocSize && size > 1);
|
|
size_t size_class = ComputeSizeClass(size);
|
|
if (!allocated_size_classes_[size_class]) {
|
|
AllocateOneSizeClass(size_class);
|
|
}
|
|
FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
|
|
CHECK(fake_frame);
|
|
fake_frame->size_minus_one = size - 1;
|
|
fake_frame->real_stack = real_stack;
|
|
while (FakeFrame *top = call_stack_.top()) {
|
|
if (top->real_stack > real_stack) break;
|
|
call_stack_.LifoPop();
|
|
DeallocateFrame(top);
|
|
}
|
|
call_stack_.LifoPush(fake_frame);
|
|
uintptr_t ptr = (uintptr_t)fake_frame;
|
|
PoisonShadow(ptr, size, 0);
|
|
return ptr;
|
|
}
|
|
|
|
void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
|
|
CHECK(alive_);
|
|
size_t size = fake_frame->size_minus_one + 1;
|
|
size_t size_class = ComputeSizeClass(size);
|
|
CHECK(allocated_size_classes_[size_class]);
|
|
uintptr_t ptr = (uintptr_t)fake_frame;
|
|
CHECK(AddrIsInSizeClass(ptr, size_class));
|
|
CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
|
|
size_classes_[size_class].FifoPush(fake_frame);
|
|
}
|
|
|
|
void FakeStack::OnFree(size_t ptr, size_t size, size_t real_stack) {
|
|
FakeFrame *fake_frame = (FakeFrame*)ptr;
|
|
CHECK(fake_frame->magic = kRetiredStackFrameMagic);
|
|
CHECK(fake_frame->descr != 0);
|
|
CHECK(fake_frame->size_minus_one == size - 1);
|
|
PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
|
|
}
|
|
|
|
} // namespace __asan
|
|
|
|
// ---------------------- Interface ---------------- {{{1
|
|
using namespace __asan; // NOLINT
|
|
|
|
size_t __asan_stack_malloc(size_t size, size_t real_stack) {
|
|
if (!FLAG_use_fake_stack) return real_stack;
|
|
AsanThread *t = asanThreadRegistry().GetCurrent();
|
|
if (!t) {
|
|
// TSD is gone, use the real stack.
|
|
return real_stack;
|
|
}
|
|
size_t ptr = t->fake_stack().AllocateStack(size, real_stack);
|
|
// Printf("__asan_stack_malloc %p %ld %p\n", ptr, size, real_stack);
|
|
return ptr;
|
|
}
|
|
|
|
void __asan_stack_free(size_t ptr, size_t size, size_t real_stack) {
|
|
if (!FLAG_use_fake_stack) return;
|
|
if (ptr != real_stack) {
|
|
FakeStack::OnFree(ptr, size, real_stack);
|
|
}
|
|
}
|
|
|
|
// ASan allocator doesn't reserve extra bytes, so normally we would
|
|
// just return "size".
|
|
size_t __asan_get_estimated_allocated_size(size_t size) {
|
|
if (size == 0) return 1;
|
|
return std::min(size, kMaxAllowedMallocSize);
|
|
}
|
|
|
|
bool __asan_get_ownership(const void *p) {
|
|
return (p == NULL) ||
|
|
(malloc_info.AllocationSize((uintptr_t)p) > 0);
|
|
}
|
|
|
|
size_t __asan_get_allocated_size(const void *p) {
|
|
if (p == NULL) return 0;
|
|
size_t allocated_size = malloc_info.AllocationSize((uintptr_t)p);
|
|
// Die if p is not malloced or if it is already freed.
|
|
if (allocated_size == 0) {
|
|
Printf("__asan_get_allocated_size failed, ptr=%p is not owned\n", p);
|
|
PRINT_CURRENT_STACK();
|
|
ShowStatsAndAbort();
|
|
}
|
|
return allocated_size;
|
|
}
|