llvm-project/compiler-rt/lib/asan/asan_allocator.cc

1066 lines
32 KiB
C++

//===-- asan_allocator.cc ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator.
// Evey piece of memory (AsanChunk) allocated by the allocator
// has a left redzone of REDZONE bytes and
// a right redzone such that the end of the chunk is aligned by REDZONE
// (i.e. the right redzone is between 0 and REDZONE-1).
// The left redzone is always poisoned.
// The right redzone is poisoned on malloc, the body is poisoned on free.
// Once freed, a chunk is moved to a quarantine (fifo list).
// After quarantine, a chunk is returned to freelists.
//
// The left redzone contains ASan's internal data and the stack trace of
// the malloc call.
// Once freed, the body of the chunk contains the stack trace of the free call.
//
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#include "asan_interceptors.h"
#include "asan_interface.h"
#include "asan_internal.h"
#include "asan_lock.h"
#include "asan_mapping.h"
#include "asan_stats.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
#include <sys/mman.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
namespace __asan {
#define REDZONE FLAG_redzone
static const size_t kMinAllocSize = REDZONE * 2;
static const size_t kMinMmapSize = 4UL << 20; // 4M
static const uint64_t kMaxAvailableRam = 128ULL << 30; // 128G
static const size_t kMaxThreadLocalQuarantine = 1 << 20; // 1M
static const size_t kMaxSizeForThreadLocalFreeList = 1 << 17;
// Size classes less than kMallocSizeClassStep are powers of two.
// All other size classes are multiples of kMallocSizeClassStep.
static const size_t kMallocSizeClassStepLog = 26;
static const size_t kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
#if __WORDSIZE == 32
static const size_t kMaxAllowedMallocSize = 3UL << 30; // 3G
#else
static const size_t kMaxAllowedMallocSize = 8UL << 30; // 8G
#endif
static void OutOfMemoryMessage(const char *mem_type, size_t size) {
AsanThread *t = asanThreadRegistry().GetCurrent();
CHECK(t);
Report("ERROR: AddressSanitizer failed to allocate "
"0x%lx (%lu) bytes (%s) in T%d\n",
size, size, mem_type, t->tid());
}
static inline bool IsAligned(uintptr_t a, uintptr_t alignment) {
return (a & (alignment - 1)) == 0;
}
static inline bool IsPowerOfTwo(size_t x) {
return (x & (x - 1)) == 0;
}
static inline size_t Log2(size_t x) {
CHECK(IsPowerOfTwo(x));
return __builtin_ctzl(x);
}
static inline size_t RoundUpTo(size_t size, size_t boundary) {
CHECK(IsPowerOfTwo(boundary));
return (size + boundary - 1) & ~(boundary - 1);
}
static inline size_t RoundUpToPowerOfTwo(size_t size) {
CHECK(size);
if (IsPowerOfTwo(size)) return size;
size_t up = __WORDSIZE - __builtin_clzl(size);
CHECK(size < (1ULL << up));
CHECK(size > (1ULL << (up - 1)));
return 1UL << up;
}
static inline size_t SizeClassToSize(uint8_t size_class) {
CHECK(size_class < kNumberOfSizeClasses);
if (size_class <= kMallocSizeClassStepLog) {
return 1UL << size_class;
} else {
return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
}
}
static inline uint8_t SizeToSizeClass(size_t size) {
uint8_t res = 0;
if (size <= kMallocSizeClassStep) {
size_t rounded = RoundUpToPowerOfTwo(size);
res = Log2(rounded);
} else {
res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
+ kMallocSizeClassStepLog;
}
CHECK(res < kNumberOfSizeClasses);
CHECK(size <= SizeClassToSize(res));
return res;
}
static void PoisonShadow(uintptr_t mem, size_t size, uint8_t poison) {
CHECK(IsAligned(mem, SHADOW_GRANULARITY));
CHECK(IsAligned(mem + size, SHADOW_GRANULARITY));
uintptr_t shadow_beg = MemToShadow(mem);
uintptr_t shadow_end = MemToShadow(mem + size);
real_memset((void*)shadow_beg, poison, shadow_end - shadow_beg);
}
// Given REDZONE bytes, we need to mark first size bytes
// as addressable and the rest REDZONE-size bytes as unaddressable.
static void PoisonMemoryPartialRightRedzone(uintptr_t mem, size_t size) {
CHECK(size <= REDZONE);
CHECK(IsAligned(mem, REDZONE));
CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
CHECK(IsPowerOfTwo(REDZONE));
CHECK(REDZONE >= SHADOW_GRANULARITY);
uint8_t *shadow = (uint8_t*)MemToShadow(mem);
PoisonShadowPartialRightRedzone(shadow, size,
REDZONE, SHADOW_GRANULARITY,
kAsanHeapRightRedzoneMagic);
}
static uint8_t *MmapNewPagesAndPoisonShadow(size_t size) {
CHECK(IsAligned(size, kPageSize));
uint8_t *res = (uint8_t*)asan_mmap(0, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
if (res == (uint8_t*)-1) {
OutOfMemoryMessage(__FUNCTION__, size);
PRINT_CURRENT_STACK();
ASAN_DIE;
}
PoisonShadow((uintptr_t)res, size, kAsanHeapLeftRedzoneMagic);
if (FLAG_debug) {
Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
}
return res;
}
// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
//
// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
// the beginning of a AsanChunk (in which case 'next' contains the address
// of the AsanChunk).
//
// The magic numbers for the enum values are taken randomly.
enum {
CHUNK_AVAILABLE = 0x573B,
CHUNK_ALLOCATED = 0x3204,
CHUNK_QUARANTINE = 0x1978,
CHUNK_MEMALIGN = 0xDC68,
};
struct ChunkBase {
uint16_t chunk_state;
uint8_t size_class;
uint32_t offset; // User-visible memory starts at this+offset (beg()).
int32_t alloc_tid;
int32_t free_tid;
size_t used_size; // Size requested by the user.
AsanChunk *next;
uintptr_t beg() { return (uintptr_t)this + offset; }
size_t Size() { return SizeClassToSize(size_class); }
uint8_t SizeClass() { return size_class; }
};
struct AsanChunk: public ChunkBase {
uint32_t *compressed_alloc_stack() {
CHECK(REDZONE >= sizeof(ChunkBase));
return (uint32_t*)((uintptr_t)this + sizeof(ChunkBase));
}
uint32_t *compressed_free_stack() {
CHECK(REDZONE >= sizeof(ChunkBase));
return (uint32_t*)((uintptr_t)this + REDZONE);
}
// The left redzone after the ChunkBase is given to the alloc stack trace.
size_t compressed_alloc_stack_size() {
return (REDZONE - sizeof(ChunkBase)) / sizeof(uint32_t);
}
size_t compressed_free_stack_size() {
return (REDZONE) / sizeof(uint32_t);
}
bool AddrIsInside(uintptr_t addr, size_t access_size, size_t *offset) {
if (addr >= beg() && (addr + access_size) <= (beg() + used_size)) {
*offset = addr - beg();
return true;
}
return false;
}
bool AddrIsAtLeft(uintptr_t addr, size_t access_size, size_t *offset) {
if (addr < beg()) {
*offset = beg() - addr;
return true;
}
return false;
}
bool AddrIsAtRight(uintptr_t addr, size_t access_size, size_t *offset) {
if (addr + access_size >= beg() + used_size) {
if (addr <= beg() + used_size)
*offset = 0;
else
*offset = addr - (beg() + used_size);
return true;
}
return false;
}
void DescribeAddress(uintptr_t addr, size_t access_size) {
size_t offset;
Printf("%p is located ", addr);
if (AddrIsInside(addr, access_size, &offset)) {
Printf("%ld bytes inside of", offset);
} else if (AddrIsAtLeft(addr, access_size, &offset)) {
Printf("%ld bytes to the left of", offset);
} else if (AddrIsAtRight(addr, access_size, &offset)) {
Printf("%ld bytes to the right of", offset);
} else {
Printf(" somewhere around (this is AddressSanitizer bug!)");
}
Printf(" %lu-byte region [%p,%p)\n",
used_size, beg(), beg() + used_size);
}
};
static AsanChunk *PtrToChunk(uintptr_t ptr) {
AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
if (m->chunk_state == CHUNK_MEMALIGN) {
m = m->next;
}
return m;
}
void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
if (last_) {
CHECK(first_);
CHECK(!last_->next);
last_->next = q->first_;
last_ = q->last_;
} else {
CHECK(!first_);
last_ = q->last_;
first_ = q->first_;
}
size_ += q->size();
q->clear();
}
void AsanChunkFifoList::Push(AsanChunk *n) {
CHECK(n->next == NULL);
if (last_) {
CHECK(first_);
CHECK(!last_->next);
last_->next = n;
last_ = n;
} else {
CHECK(!first_);
last_ = first_ = n;
}
size_ += n->Size();
}
// Interesting performance observation: this function takes up to 15% of overal
// allocator time. That's because *first_ has been evicted from cache long time
// ago. Not sure if we can or want to do anything with this.
AsanChunk *AsanChunkFifoList::Pop() {
CHECK(first_);
AsanChunk *res = first_;
first_ = first_->next;
if (first_ == NULL)
last_ = NULL;
CHECK(size_ >= res->Size());
size_ -= res->Size();
if (last_) {
CHECK(!last_->next);
}
return res;
}
// All pages we ever allocated.
struct PageGroup {
uintptr_t beg;
uintptr_t end;
size_t size_of_chunk;
uintptr_t last_chunk;
bool InRange(uintptr_t addr) {
return addr >= beg && addr < end;
}
};
class MallocInfo {
public:
explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
AsanChunk *AllocateChunks(uint8_t size_class, size_t n_chunks) {
AsanChunk *m = NULL;
AsanChunk **fl = &free_lists_[size_class];
{
ScopedLock lock(&mu_);
for (size_t i = 0; i < n_chunks; i++) {
if (!(*fl)) {
*fl = GetNewChunks(size_class);
}
AsanChunk *t = *fl;
*fl = t->next;
t->next = m;
CHECK(t->chunk_state == CHUNK_AVAILABLE);
m = t;
}
}
return m;
}
void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
bool eat_free_lists) {
CHECK(FLAG_quarantine_size > 0);
ScopedLock lock(&mu_);
AsanChunkFifoList *q = &x->quarantine_;
if (q->size() > 0) {
quarantine_.PushList(q);
while (quarantine_.size() > FLAG_quarantine_size) {
QuarantinePop();
}
}
if (eat_free_lists) {
for (size_t size_class = 0; size_class < kNumberOfSizeClasses;
size_class++) {
AsanChunk *m = x->free_lists_[size_class];
while (m) {
AsanChunk *t = m->next;
m->next = free_lists_[size_class];
free_lists_[size_class] = m;
m = t;
}
x->free_lists_[size_class] = 0;
}
}
}
void BypassThreadLocalQuarantine(AsanChunk *chunk) {
ScopedLock lock(&mu_);
quarantine_.Push(chunk);
}
AsanChunk *FindMallocedOrFreed(uintptr_t addr, size_t access_size) {
ScopedLock lock(&mu_);
return FindChunkByAddr(addr);
}
// TODO(glider): AllocationSize() may become very slow if the size of
// page_groups_ grows. This can be fixed by increasing kMinMmapSize,
// but a better solution is to speed up the search somehow.
size_t AllocationSize(uintptr_t ptr) {
ScopedLock lock(&mu_);
// first, check if this is our memory
PageGroup *g = FindPageGroupUnlocked(ptr);
if (!g) return 0;
AsanChunk *m = PtrToChunk(ptr);
if (m->chunk_state == CHUNK_ALLOCATED) {
return m->used_size;
} else {
return 0;
}
}
void ForceLock() {
mu_.Lock();
}
void ForceUnlock() {
mu_.Unlock();
}
void PrintStatus() {
ScopedLock lock(&mu_);
size_t malloced = 0;
Printf(" MallocInfo: in quarantine: %ld malloced: %ld; ",
quarantine_.size() >> 20, malloced >> 20);
for (size_t j = 1; j < kNumberOfSizeClasses; j++) {
AsanChunk *i = free_lists_[j];
if (!i) continue;
size_t t = 0;
for (; i; i = i->next) {
t += i->Size();
}
Printf("%ld:%ld ", j, t >> 20);
}
Printf("\n");
}
PageGroup *FindPageGroup(uintptr_t addr) {
ScopedLock lock(&mu_);
return FindPageGroupUnlocked(addr);
}
private:
PageGroup *FindPageGroupUnlocked(uintptr_t addr) {
for (int i = 0; i < n_page_groups_; i++) {
PageGroup *g = page_groups_[i];
if (g->InRange(addr)) {
return g;
}
}
return NULL;
}
// We have an address between two chunks, and we want to report just one.
AsanChunk *ChooseChunk(uintptr_t addr,
AsanChunk *left_chunk, AsanChunk *right_chunk) {
// Prefer an allocated chunk or a chunk from quarantine.
if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
right_chunk->chunk_state != CHUNK_AVAILABLE)
return right_chunk;
if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
left_chunk->chunk_state != CHUNK_AVAILABLE)
return left_chunk;
// Choose based on offset.
uintptr_t l_offset = 0, r_offset = 0;
CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
if (l_offset < r_offset)
return left_chunk;
return right_chunk;
}
AsanChunk *FindChunkByAddr(uintptr_t addr) {
PageGroup *g = FindPageGroupUnlocked(addr);
if (!g) return 0;
CHECK(g->size_of_chunk);
uintptr_t offset_from_beg = addr - g->beg;
uintptr_t this_chunk_addr = g->beg +
(offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
CHECK(g->InRange(this_chunk_addr));
AsanChunk *m = (AsanChunk*)this_chunk_addr;
CHECK(m->chunk_state == CHUNK_ALLOCATED ||
m->chunk_state == CHUNK_AVAILABLE ||
m->chunk_state == CHUNK_QUARANTINE);
uintptr_t offset = 0;
if (m->AddrIsInside(addr, 1, &offset))
return m;
if (m->AddrIsAtRight(addr, 1, &offset)) {
if (this_chunk_addr == g->last_chunk) // rightmost chunk
return m;
uintptr_t right_chunk_addr = this_chunk_addr + g->size_of_chunk;
CHECK(g->InRange(right_chunk_addr));
return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
} else {
CHECK(m->AddrIsAtLeft(addr, 1, &offset));
if (this_chunk_addr == g->beg) // leftmost chunk
return m;
uintptr_t left_chunk_addr = this_chunk_addr - g->size_of_chunk;
CHECK(g->InRange(left_chunk_addr));
return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
}
}
void QuarantinePop() {
CHECK(quarantine_.size() > 0);
AsanChunk *m = quarantine_.Pop();
CHECK(m);
// if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
CHECK(m->chunk_state == CHUNK_QUARANTINE);
m->chunk_state = CHUNK_AVAILABLE;
CHECK(m->alloc_tid >= 0);
CHECK(m->free_tid >= 0);
size_t size_class = m->SizeClass();
m->next = free_lists_[size_class];
free_lists_[size_class] = m;
if (FLAG_stats) {
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.real_frees++;
thread_stats.really_freed += m->used_size;
thread_stats.really_freed_redzones += m->Size() - m->used_size;
thread_stats.really_freed_by_size[m->SizeClass()]++;
}
}
// Get a list of newly allocated chunks.
AsanChunk *GetNewChunks(uint8_t size_class) {
size_t size = SizeClassToSize(size_class);
CHECK(IsPowerOfTwo(kMinMmapSize));
CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
size_t mmap_size = std::max(size, kMinMmapSize);
size_t n_chunks = mmap_size / size;
CHECK(n_chunks * size == mmap_size);
if (size < kPageSize) {
// Size is small, just poison the last chunk.
n_chunks--;
} else {
// Size is large, allocate an extra page at right and poison it.
mmap_size += kPageSize;
}
CHECK(n_chunks > 0);
uint8_t *mem = MmapNewPagesAndPoisonShadow(mmap_size);
if (FLAG_stats) {
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.mmaps++;
thread_stats.mmaped += mmap_size;
thread_stats.mmaped_by_size[size_class] += n_chunks;
}
AsanChunk *res = NULL;
for (size_t i = 0; i < n_chunks; i++) {
AsanChunk *m = (AsanChunk*)(mem + i * size);
m->chunk_state = CHUNK_AVAILABLE;
m->size_class = size_class;
m->next = res;
res = m;
}
PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
// This memory is already poisoned, no need to poison it again.
pg->beg = (uintptr_t)mem;
pg->end = pg->beg + mmap_size;
pg->size_of_chunk = size;
pg->last_chunk = (uintptr_t)(mem + size * (n_chunks - 1));
int page_group_idx = AtomicInc(&n_page_groups_) - 1;
CHECK(page_group_idx < (int)ASAN_ARRAY_SIZE(page_groups_));
page_groups_[page_group_idx] = pg;
return res;
}
AsanChunk *free_lists_[kNumberOfSizeClasses];
AsanChunkFifoList quarantine_;
AsanLock mu_;
PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
int n_page_groups_; // atomic
};
static MallocInfo malloc_info(LINKER_INITIALIZED);
void AsanThreadLocalMallocStorage::CommitBack() {
malloc_info.SwallowThreadLocalMallocStorage(this, true);
}
static void Describe(uintptr_t addr, size_t access_size) {
AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
if (!m) return;
m->DescribeAddress(addr, access_size);
CHECK(m->alloc_tid >= 0);
AsanThreadSummary *alloc_thread =
asanThreadRegistry().FindByTid(m->alloc_tid);
AsanStackTrace alloc_stack;
AsanStackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
m->compressed_alloc_stack_size());
AsanThread *t = asanThreadRegistry().GetCurrent();
CHECK(t);
if (m->free_tid >= 0) {
AsanThreadSummary *free_thread =
asanThreadRegistry().FindByTid(m->free_tid);
Printf("freed by thread T%d here:\n", free_thread->tid());
AsanStackTrace free_stack;
AsanStackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
m->compressed_free_stack_size());
free_stack.PrintStack();
Printf("previously allocated by thread T%d here:\n",
alloc_thread->tid());
alloc_stack.PrintStack();
t->summary()->Announce();
free_thread->Announce();
alloc_thread->Announce();
} else {
Printf("allocated by thread T%d here:\n", alloc_thread->tid());
alloc_stack.PrintStack();
t->summary()->Announce();
alloc_thread->Announce();
}
}
static uint8_t *Allocate(size_t alignment, size_t size, AsanStackTrace *stack) {
__asan_init();
CHECK(stack);
if (size == 0) {
size = 1; // TODO(kcc): do something smarter
}
CHECK(IsPowerOfTwo(alignment));
size_t rounded_size = RoundUpTo(size, REDZONE);
size_t needed_size = rounded_size + REDZONE;
if (alignment > REDZONE) {
needed_size += alignment;
}
CHECK(IsAligned(needed_size, REDZONE));
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", size);
return 0;
}
uint8_t size_class = SizeToSizeClass(needed_size);
size_t size_to_allocate = SizeClassToSize(size_class);
CHECK(size_to_allocate >= kMinAllocSize);
CHECK(size_to_allocate >= needed_size);
CHECK(IsAligned(size_to_allocate, REDZONE));
if (FLAG_v >= 2) {
Printf("Allocate align: %ld size: %ld class: %d real: %ld\n",
alignment, size, size_class, size_to_allocate);
}
AsanThread *t = asanThreadRegistry().GetCurrent();
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
if (FLAG_stats) {
thread_stats.mallocs++;
thread_stats.malloced += size;
thread_stats.malloced_redzones += size_to_allocate - size;
thread_stats.malloced_by_size[size_class]++;
}
AsanChunk *m = NULL;
if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
// get directly from global storage.
m = malloc_info.AllocateChunks(size_class, 1);
if (FLAG_stats) {
thread_stats.malloc_large++;
}
} else {
// get from the thread-local storage.
AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
if (!*fl) {
size_t n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
// n_new_chunks = std::min((size_t)32, n_new_chunks);
*fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
if (FLAG_stats) {
thread_stats.malloc_small_slow++;
}
}
m = *fl;
*fl = (*fl)->next;
}
CHECK(m);
CHECK(m->chunk_state == CHUNK_AVAILABLE);
m->chunk_state = CHUNK_ALLOCATED;
m->next = NULL;
CHECK(m->Size() == size_to_allocate);
uintptr_t addr = (uintptr_t)m + REDZONE;
CHECK(addr == (uintptr_t)m->compressed_free_stack());
if (alignment > REDZONE && (addr & (alignment - 1))) {
addr = RoundUpTo(addr, alignment);
CHECK((addr & (alignment - 1)) == 0);
AsanChunk *p = (AsanChunk*)(addr - REDZONE);
p->chunk_state = CHUNK_MEMALIGN;
p->next = m;
}
CHECK(m == PtrToChunk(addr));
m->used_size = size;
m->offset = addr - (uintptr_t)m;
CHECK(m->beg() == addr);
m->alloc_tid = t ? t->tid() : 0;
m->free_tid = AsanThread::kInvalidTid;
AsanStackTrace::CompressStack(stack, m->compressed_alloc_stack(),
m->compressed_alloc_stack_size());
PoisonShadow(addr, rounded_size, 0);
if (size < rounded_size) {
PoisonMemoryPartialRightRedzone(addr + rounded_size - REDZONE,
size & (REDZONE - 1));
}
if (size <= FLAG_max_malloc_fill_size) {
real_memset((void*)addr, 0, rounded_size);
}
return (uint8_t*)addr;
}
static void Deallocate(uint8_t *ptr, AsanStackTrace *stack) {
if (!ptr) return;
CHECK(stack);
if (FLAG_debug) {
CHECK(malloc_info.FindPageGroup((uintptr_t)ptr));
}
// Printf("Deallocate %p\n", ptr);
AsanChunk *m = PtrToChunk((uintptr_t)ptr);
if (m->chunk_state == CHUNK_QUARANTINE) {
Printf("attempting double-free on %p:\n", ptr);
stack->PrintStack();
m->DescribeAddress((uintptr_t)ptr, 1);
ShowStatsAndAbort();
} else if (m->chunk_state != CHUNK_ALLOCATED) {
Printf("attempting free on address which was not malloc()-ed: %p\n", ptr);
stack->PrintStack();
ShowStatsAndAbort();
}
CHECK(m->chunk_state == CHUNK_ALLOCATED);
CHECK(m->free_tid == AsanThread::kInvalidTid);
CHECK(m->alloc_tid >= 0);
AsanThread *t = asanThreadRegistry().GetCurrent();
m->free_tid = t ? t->tid() : 0;
AsanStackTrace::CompressStack(stack, m->compressed_free_stack(),
m->compressed_free_stack_size());
size_t rounded_size = RoundUpTo(m->used_size, REDZONE);
PoisonShadow((uintptr_t)ptr, rounded_size, kAsanHeapFreeMagic);
if (FLAG_stats) {
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.frees++;
thread_stats.freed += m->used_size;
thread_stats.freed_by_size[m->SizeClass()]++;
}
m->chunk_state = CHUNK_QUARANTINE;
if (t) {
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
CHECK(!m->next);
ms->quarantine_.Push(m);
if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
malloc_info.SwallowThreadLocalMallocStorage(ms, false);
}
} else {
CHECK(!m->next);
malloc_info.BypassThreadLocalQuarantine(m);
}
}
static uint8_t *Reallocate(uint8_t *old_ptr, size_t new_size,
AsanStackTrace *stack) {
CHECK(old_ptr && new_size);
if (FLAG_stats) {
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.reallocs++;
thread_stats.realloced += new_size;
}
AsanChunk *m = PtrToChunk((uintptr_t)old_ptr);
CHECK(m->chunk_state == CHUNK_ALLOCATED);
size_t old_size = m->used_size;
size_t memcpy_size = std::min(new_size, old_size);
uint8_t *new_ptr = Allocate(0, new_size, stack);
if (new_ptr) {
real_memcpy(new_ptr, old_ptr, memcpy_size);
Deallocate(old_ptr, stack);
}
return new_ptr;
}
} // namespace __asan
// Malloc hooks declaration.
// ASAN_NEW_HOOK(ptr, size) is called immediately after
// allocation of "size" bytes, which returned "ptr".
// ASAN_DELETE_HOOK(ptr) is called immediately before
// deallocation of "ptr".
// If ASAN_NEW_HOOK or ASAN_DELETE_HOOK is defined, user
// program must provide implementation of this hook.
// If macro is undefined, the hook is no-op.
#ifdef ASAN_NEW_HOOK
extern "C" void ASAN_NEW_HOOK(void *ptr, size_t size);
#else
static inline void ASAN_NEW_HOOK(void *ptr, size_t size) { }
#endif
#ifdef ASAN_DELETE_HOOK
extern "C" void ASAN_DELETE_HOOK(void *ptr);
#else
static inline void ASAN_DELETE_HOOK(void *ptr) { }
#endif
namespace __asan {
void *asan_memalign(size_t alignment, size_t size, AsanStackTrace *stack) {
void *ptr = (void*)Allocate(alignment, size, stack);
ASAN_NEW_HOOK(ptr, size);
return ptr;
}
void asan_free(void *ptr, AsanStackTrace *stack) {
ASAN_DELETE_HOOK(ptr);
Deallocate((uint8_t*)ptr, stack);
}
void *asan_malloc(size_t size, AsanStackTrace *stack) {
void *ptr = (void*)Allocate(0, size, stack);
ASAN_NEW_HOOK(ptr, size);
return ptr;
}
void *asan_calloc(size_t nmemb, size_t size, AsanStackTrace *stack) {
void *ptr = (void*)Allocate(0, nmemb * size, stack);
if (ptr)
real_memset(ptr, 0, nmemb * size);
ASAN_NEW_HOOK(ptr, nmemb * size);
return ptr;
}
void *asan_realloc(void *p, size_t size, AsanStackTrace *stack) {
if (p == NULL) {
void *ptr = (void*)Allocate(0, size, stack);
ASAN_NEW_HOOK(ptr, size);
return ptr;
} else if (size == 0) {
ASAN_DELETE_HOOK(p);
Deallocate((uint8_t*)p, stack);
return NULL;
}
return Reallocate((uint8_t*)p, size, stack);
}
void *asan_valloc(size_t size, AsanStackTrace *stack) {
void *ptr = (void*)Allocate(kPageSize, size, stack);
ASAN_NEW_HOOK(ptr, size);
return ptr;
}
void *asan_pvalloc(size_t size, AsanStackTrace *stack) {
size = RoundUpTo(size, kPageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = kPageSize;
}
void *ptr = (void*)Allocate(kPageSize, size, stack);
ASAN_NEW_HOOK(ptr, size);
return ptr;
}
int asan_posix_memalign(void **memptr, size_t alignment, size_t size,
AsanStackTrace *stack) {
void *ptr = Allocate(alignment, size, stack);
CHECK(IsAligned((uintptr_t)ptr, alignment));
ASAN_NEW_HOOK(ptr, size);
*memptr = ptr;
return 0;
}
size_t __asan_mz_size(const void *ptr) {
return malloc_info.AllocationSize((uintptr_t)ptr);
}
void DescribeHeapAddress(uintptr_t addr, uintptr_t access_size) {
Describe(addr, access_size);
}
void __asan_mz_force_lock() {
malloc_info.ForceLock();
}
void __asan_mz_force_unlock() {
malloc_info.ForceUnlock();
}
// ---------------------- Fake stack-------------------- {{{1
FakeStack::FakeStack() {
CHECK(real_memset);
real_memset(this, 0, sizeof(*this));
}
bool FakeStack::AddrIsInSizeClass(uintptr_t addr, size_t size_class) {
uintptr_t mem = allocated_size_classes_[size_class];
uintptr_t size = ClassMmapSize(size_class);
bool res = mem && addr >= mem && addr < mem + size;
return res;
}
uintptr_t FakeStack::AddrIsInFakeStack(uintptr_t addr) {
if (!alive_) return 0;
for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
}
return 0;
}
// We may want to compute this during compilation.
inline size_t FakeStack::ComputeSizeClass(size_t alloc_size) {
size_t rounded_size = RoundUpToPowerOfTwo(alloc_size);
size_t log = Log2(rounded_size);
CHECK(alloc_size <= (1UL << log));
if (!(alloc_size > (1UL << (log-1)))) {
Printf("alloc_size %ld log %ld\n", alloc_size, log);
}
CHECK(alloc_size > (1UL << (log-1)));
size_t res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
CHECK(res < kNumberOfSizeClasses);
CHECK(ClassSize(res) >= rounded_size);
return res;
}
void FakeFrameFifo::FifoPush(FakeFrame *node) {
CHECK(node);
node->next = 0;
if (first_ == 0 && last_ == 0) {
first_ = last_ = node;
} else {
CHECK(first_);
CHECK(last_);
last_->next = node;
last_ = node;
}
}
FakeFrame *FakeFrameFifo::FifoPop() {
CHECK(first_ && last_ && "Exhausted fake stack");
FakeFrame *res = 0;
if (first_ == last_) {
res = first_;
first_ = last_ = 0;
} else {
res = first_;
first_ = first_->next;
}
return res;
}
void FakeStack::Init(size_t stack_size) {
stack_size_ = stack_size;
alive_ = true;
}
void FakeStack::Cleanup() {
alive_ = false;
for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
uintptr_t mem = allocated_size_classes_[i];
if (mem) {
PoisonShadow(mem, ClassMmapSize(i), 0);
allocated_size_classes_[i] = 0;
int munmap_res = munmap((void*)mem, ClassMmapSize(i));
CHECK(munmap_res == 0);
}
}
}
size_t FakeStack::ClassMmapSize(size_t size_class) {
return RoundUpToPowerOfTwo(stack_size_);
}
void FakeStack::AllocateOneSizeClass(size_t size_class) {
CHECK(ClassMmapSize(size_class) >= kPageSize);
uintptr_t new_mem = (uintptr_t)asan_mmap(0, ClassMmapSize(size_class),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
CHECK(new_mem != (uintptr_t)-1);
// Printf("T%d new_mem[%ld]: %p-%p mmap %ld\n",
// asanThreadRegistry().GetCurrent()->tid(),
// size_class, new_mem, new_mem + ClassMmapSize(size_class),
// ClassMmapSize(size_class));
size_t i;
for (i = 0; i < ClassMmapSize(size_class);
i += ClassSize(size_class)) {
size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
}
CHECK(i == ClassMmapSize(size_class));
allocated_size_classes_[size_class] = new_mem;
}
uintptr_t FakeStack::AllocateStack(size_t size, size_t real_stack) {
CHECK(alive_);
CHECK(size <= kMaxStackMallocSize && size > 1);
size_t size_class = ComputeSizeClass(size);
if (!allocated_size_classes_[size_class]) {
AllocateOneSizeClass(size_class);
}
FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
CHECK(fake_frame);
fake_frame->size_minus_one = size - 1;
fake_frame->real_stack = real_stack;
while (FakeFrame *top = call_stack_.top()) {
if (top->real_stack > real_stack) break;
call_stack_.LifoPop();
DeallocateFrame(top);
}
call_stack_.LifoPush(fake_frame);
uintptr_t ptr = (uintptr_t)fake_frame;
PoisonShadow(ptr, size, 0);
return ptr;
}
void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
CHECK(alive_);
size_t size = fake_frame->size_minus_one + 1;
size_t size_class = ComputeSizeClass(size);
CHECK(allocated_size_classes_[size_class]);
uintptr_t ptr = (uintptr_t)fake_frame;
CHECK(AddrIsInSizeClass(ptr, size_class));
CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
size_classes_[size_class].FifoPush(fake_frame);
}
void FakeStack::OnFree(size_t ptr, size_t size, size_t real_stack) {
FakeFrame *fake_frame = (FakeFrame*)ptr;
CHECK(fake_frame->magic = kRetiredStackFrameMagic);
CHECK(fake_frame->descr != 0);
CHECK(fake_frame->size_minus_one == size - 1);
PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
size_t __asan_stack_malloc(size_t size, size_t real_stack) {
if (!FLAG_use_fake_stack) return real_stack;
AsanThread *t = asanThreadRegistry().GetCurrent();
if (!t) {
// TSD is gone, use the real stack.
return real_stack;
}
size_t ptr = t->fake_stack().AllocateStack(size, real_stack);
// Printf("__asan_stack_malloc %p %ld %p\n", ptr, size, real_stack);
return ptr;
}
void __asan_stack_free(size_t ptr, size_t size, size_t real_stack) {
if (!FLAG_use_fake_stack) return;
if (ptr != real_stack) {
FakeStack::OnFree(ptr, size, real_stack);
}
}
// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size".
size_t __asan_get_estimated_allocated_size(size_t size) {
if (size == 0) return 1;
return std::min(size, kMaxAllowedMallocSize);
}
bool __asan_get_ownership(const void *p) {
return (p == NULL) ||
(malloc_info.AllocationSize((uintptr_t)p) > 0);
}
size_t __asan_get_allocated_size(const void *p) {
if (p == NULL) return 0;
size_t allocated_size = malloc_info.AllocationSize((uintptr_t)p);
// Die if p is not malloced or if it is already freed.
if (allocated_size == 0) {
Printf("__asan_get_allocated_size failed, ptr=%p is not owned\n", p);
PRINT_CURRENT_STACK();
ShowStatsAndAbort();
}
return allocated_size;
}