llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.h

865 lines
27 KiB
C++

//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main internal TSan header file.
//
// Ground rules:
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
// function-scope locals)
// - All functions/classes/etc reside in namespace __tsan, except for those
// declared in tsan_interface.h.
// - Platform-specific files should be used instead of ifdefs (*).
// - No system headers included in header files (*).
// - Platform specific headres included only into platform-specific files (*).
//
// (*) Except when inlining is critical for performance.
//===----------------------------------------------------------------------===//
#ifndef TSAN_RTL_H
#define TSAN_RTL_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_asm.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
#include "sanitizer_common/sanitizer_libignore.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "sanitizer_common/sanitizer_vector.h"
#include "tsan_clock.h"
#include "tsan_defs.h"
#include "tsan_flags.h"
#include "tsan_mman.h"
#include "tsan_sync.h"
#include "tsan_trace.h"
#include "tsan_report.h"
#include "tsan_platform.h"
#include "tsan_mutexset.h"
#include "tsan_ignoreset.h"
#include "tsan_stack_trace.h"
#if SANITIZER_WORDSIZE != 64
# error "ThreadSanitizer is supported only on 64-bit platforms"
#endif
namespace __tsan {
#if !SANITIZER_GO
struct MapUnmapCallback;
#if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
static const uptr kAllocatorRegionSizeLog = 20;
static const uptr kAllocatorNumRegions =
SANITIZER_MMAP_RANGE_SIZE >> kAllocatorRegionSizeLog;
typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
MapUnmapCallback> ByteMap;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = 0;
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = kAllocatorRegionSizeLog;
typedef __tsan::ByteMap ByteMap;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#else
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
static const uptr kMetadataSize = 0;
typedef DefaultSizeClassMap SizeClassMap;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
Allocator *allocator();
#endif
void TsanCheckFailed(const char *file, int line, const char *cond,
u64 v1, u64 v2);
const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
// FastState (from most significant bit):
// ignore : 1
// tid : kTidBits
// unused : -
// history_size : 3
// epoch : kClkBits
class FastState {
public:
FastState(u64 tid, u64 epoch) {
x_ = tid << kTidShift;
x_ |= epoch;
DCHECK_EQ(tid, this->tid());
DCHECK_EQ(epoch, this->epoch());
DCHECK_EQ(GetIgnoreBit(), false);
}
explicit FastState(u64 x)
: x_(x) {
}
u64 raw() const {
return x_;
}
u64 tid() const {
u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
return res;
}
u64 TidWithIgnore() const {
u64 res = x_ >> kTidShift;
return res;
}
u64 epoch() const {
u64 res = x_ & ((1ull << kClkBits) - 1);
return res;
}
void IncrementEpoch() {
u64 old_epoch = epoch();
x_ += 1;
DCHECK_EQ(old_epoch + 1, epoch());
(void)old_epoch;
}
void SetIgnoreBit() { x_ |= kIgnoreBit; }
void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
bool GetIgnoreBit() const { return (s64)x_ < 0; }
void SetHistorySize(int hs) {
CHECK_GE(hs, 0);
CHECK_LE(hs, 7);
x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
}
ALWAYS_INLINE
int GetHistorySize() const {
return (int)((x_ >> kHistoryShift) & kHistoryMask);
}
void ClearHistorySize() {
SetHistorySize(0);
}
ALWAYS_INLINE
u64 GetTracePos() const {
const int hs = GetHistorySize();
// When hs == 0, the trace consists of 2 parts.
const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
return epoch() & mask;
}
private:
friend class Shadow;
static const int kTidShift = 64 - kTidBits - 1;
static const u64 kIgnoreBit = 1ull << 63;
static const u64 kFreedBit = 1ull << 63;
static const u64 kHistoryShift = kClkBits;
static const u64 kHistoryMask = 7;
u64 x_;
};
// Shadow (from most significant bit):
// freed : 1
// tid : kTidBits
// is_atomic : 1
// is_read : 1
// size_log : 2
// addr0 : 3
// epoch : kClkBits
class Shadow : public FastState {
public:
explicit Shadow(u64 x)
: FastState(x) {
}
explicit Shadow(const FastState &s)
: FastState(s.x_) {
ClearHistorySize();
}
void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
DCHECK_EQ((x_ >> kClkBits) & 31, 0);
DCHECK_LE(addr0, 7);
DCHECK_LE(kAccessSizeLog, 3);
x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
DCHECK_EQ(kAccessSizeLog, size_log());
DCHECK_EQ(addr0, this->addr0());
}
void SetWrite(unsigned kAccessIsWrite) {
DCHECK_EQ(x_ & kReadBit, 0);
if (!kAccessIsWrite)
x_ |= kReadBit;
DCHECK_EQ(kAccessIsWrite, IsWrite());
}
void SetAtomic(bool kIsAtomic) {
DCHECK(!IsAtomic());
if (kIsAtomic)
x_ |= kAtomicBit;
DCHECK_EQ(IsAtomic(), kIsAtomic);
}
bool IsAtomic() const {
return x_ & kAtomicBit;
}
bool IsZero() const {
return x_ == 0;
}
static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
return shifted_xor == 0;
}
static ALWAYS_INLINE
bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
return masked_xor == 0;
}
static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
unsigned kS2AccessSize) {
bool res = false;
u64 diff = s1.addr0() - s2.addr0();
if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
// if (s1.addr0() + size1) > s2.addr0()) return true;
if (s1.size() > -diff)
res = true;
} else {
// if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
if (kS2AccessSize > diff)
res = true;
}
DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
return res;
}
u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
// The idea behind the freed bit is as follows.
// When the memory is freed (or otherwise unaccessible) we write to the shadow
// values with tid/epoch related to the free and the freed bit set.
// During memory accesses processing the freed bit is considered
// as msb of tid. So any access races with shadow with freed bit set
// (it is as if write from a thread with which we never synchronized before).
// This allows us to detect accesses to freed memory w/o additional
// overheads in memory access processing and at the same time restore
// tid/epoch of free.
void MarkAsFreed() {
x_ |= kFreedBit;
}
bool IsFreed() const {
return x_ & kFreedBit;
}
bool GetFreedAndReset() {
bool res = x_ & kFreedBit;
x_ &= ~kFreedBit;
return res;
}
bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
| (u64(kIsAtomic) << kAtomicShift));
DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
return v;
}
bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
bool v = ((x_ >> kReadShift) & 3)
<= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
(IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
return v;
}
bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
bool v = ((x_ >> kReadShift) & 3)
>= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
(IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
return v;
}
private:
static const u64 kReadShift = 5 + kClkBits;
static const u64 kReadBit = 1ull << kReadShift;
static const u64 kAtomicShift = 6 + kClkBits;
static const u64 kAtomicBit = 1ull << kAtomicShift;
u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
if (s1.addr0() == s2.addr0()) return true;
if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
return true;
if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
return true;
return false;
}
};
struct ThreadSignalContext;
struct JmpBuf {
uptr sp;
uptr mangled_sp;
int int_signal_send;
bool in_blocking_func;
uptr in_signal_handler;
uptr *shadow_stack_pos;
};
// A Processor represents a physical thread, or a P for Go.
// It is used to store internal resources like allocate cache, and does not
// participate in race-detection logic (invisible to end user).
// In C++ it is tied to an OS thread just like ThreadState, however ideally
// it should be tied to a CPU (this way we will have fewer allocator caches).
// In Go it is tied to a P, so there are significantly fewer Processor's than
// ThreadState's (which are tied to Gs).
// A ThreadState must be wired with a Processor to handle events.
struct Processor {
ThreadState *thr; // currently wired thread, or nullptr
#if !SANITIZER_GO
AllocatorCache alloc_cache;
InternalAllocatorCache internal_alloc_cache;
#endif
DenseSlabAllocCache block_cache;
DenseSlabAllocCache sync_cache;
DenseSlabAllocCache clock_cache;
DDPhysicalThread *dd_pt;
};
#if !SANITIZER_GO
// ScopedGlobalProcessor temporary setups a global processor for the current
// thread, if it does not have one. Intended for interceptors that can run
// at the very thread end, when we already destroyed the thread processor.
struct ScopedGlobalProcessor {
ScopedGlobalProcessor();
~ScopedGlobalProcessor();
};
#endif
// This struct is stored in TLS.
struct ThreadState {
FastState fast_state;
// Synch epoch represents the threads's epoch before the last synchronization
// action. It allows to reduce number of shadow state updates.
// For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
// if we are processing write to X from the same thread at epoch=200,
// we do nothing, because both writes happen in the same 'synch epoch'.
// That is, if another memory access does not race with the former write,
// it does not race with the latter as well.
// QUESTION: can we can squeeze this into ThreadState::Fast?
// E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
// taken by epoch between synchs.
// This way we can save one load from tls.
u64 fast_synch_epoch;
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
// We do not distinguish beteween ignoring reads and writes
// for better performance.
int ignore_reads_and_writes;
int ignore_sync;
int suppress_reports;
// Go does not support ignores.
#if !SANITIZER_GO
IgnoreSet mop_ignore_set;
IgnoreSet sync_ignore_set;
#endif
// C/C++ uses fixed size shadow stack embed into Trace.
// Go uses malloc-allocated shadow stack with dynamic size.
uptr *shadow_stack;
uptr *shadow_stack_end;
uptr *shadow_stack_pos;
u64 *racy_shadow_addr;
u64 racy_state[2];
MutexSet mset;
ThreadClock clock;
#if !SANITIZER_GO
Vector<JmpBuf> jmp_bufs;
int ignore_interceptors;
#endif
#if TSAN_COLLECT_STATS
u64 stat[StatCnt];
#endif
const int tid;
const int unique_id;
bool in_symbolizer;
bool in_ignored_lib;
bool is_inited;
bool is_dead;
bool is_freeing;
bool is_vptr_access;
const uptr stk_addr;
const uptr stk_size;
const uptr tls_addr;
const uptr tls_size;
ThreadContext *tctx;
#if SANITIZER_DEBUG && !SANITIZER_GO
InternalDeadlockDetector internal_deadlock_detector;
#endif
DDLogicalThread *dd_lt;
// Current wired Processor, or nullptr. Required to handle any events.
Processor *proc1;
#if !SANITIZER_GO
Processor *proc() { return proc1; }
#else
Processor *proc();
#endif
atomic_uintptr_t in_signal_handler;
ThreadSignalContext *signal_ctx;
#if !SANITIZER_GO
u32 last_sleep_stack_id;
ThreadClock last_sleep_clock;
#endif
// Set in regions of runtime that must be signal-safe and fork-safe.
// If set, malloc must not be called.
int nomalloc;
const ReportDesc *current_report;
explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
unsigned reuse_count,
uptr stk_addr, uptr stk_size,
uptr tls_addr, uptr tls_size);
};
#if !SANITIZER_GO
#if SANITIZER_MAC || SANITIZER_ANDROID
ThreadState *cur_thread();
void cur_thread_finalize();
#else
__attribute__((tls_model("initial-exec")))
extern THREADLOCAL char cur_thread_placeholder[];
INLINE ThreadState *cur_thread() {
return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
}
INLINE void cur_thread_finalize() { }
#endif // SANITIZER_MAC || SANITIZER_ANDROID
#endif // SANITIZER_GO
class ThreadContext : public ThreadContextBase {
public:
explicit ThreadContext(int tid);
~ThreadContext();
ThreadState *thr;
u32 creation_stack_id;
SyncClock sync;
// Epoch at which the thread had started.
// If we see an event from the thread stamped by an older epoch,
// the event is from a dead thread that shared tid with this thread.
u64 epoch0;
u64 epoch1;
// Override superclass callbacks.
void OnDead() override;
void OnJoined(void *arg) override;
void OnFinished() override;
void OnStarted(void *arg) override;
void OnCreated(void *arg) override;
void OnReset() override;
void OnDetached(void *arg) override;
};
struct RacyStacks {
MD5Hash hash[2];
bool operator==(const RacyStacks &other) const {
if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
return true;
if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
return true;
return false;
}
};
struct RacyAddress {
uptr addr_min;
uptr addr_max;
};
struct FiredSuppression {
ReportType type;
uptr pc_or_addr;
Suppression *supp;
};
struct Context {
Context();
bool initialized;
bool after_multithreaded_fork;
MetaMap metamap;
Mutex report_mtx;
int nreported;
int nmissed_expected;
atomic_uint64_t last_symbolize_time_ns;
void *background_thread;
atomic_uint32_t stop_background_thread;
ThreadRegistry *thread_registry;
Mutex racy_mtx;
Vector<RacyStacks> racy_stacks;
Vector<RacyAddress> racy_addresses;
// Number of fired suppressions may be large enough.
Mutex fired_suppressions_mtx;
InternalMmapVector<FiredSuppression> fired_suppressions;
DDetector *dd;
ClockAlloc clock_alloc;
Flags flags;
u64 stat[StatCnt];
u64 int_alloc_cnt[MBlockTypeCount];
u64 int_alloc_siz[MBlockTypeCount];
};
extern Context *ctx; // The one and the only global runtime context.
ALWAYS_INLINE Flags *flags() {
return &ctx->flags;
}
struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptors() {
#if !SANITIZER_GO
cur_thread()->ignore_interceptors++;
#endif
}
~ScopedIgnoreInterceptors() {
#if !SANITIZER_GO
cur_thread()->ignore_interceptors--;
#endif
}
};
const char *GetObjectTypeFromTag(uptr tag);
const char *GetReportHeaderFromTag(uptr tag);
uptr TagFromShadowStackFrame(uptr pc);
class ScopedReportBase {
public:
void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
const MutexSet *mset);
void AddStack(StackTrace stack, bool suppressable = false);
void AddThread(const ThreadContext *tctx, bool suppressable = false);
void AddThread(int unique_tid, bool suppressable = false);
void AddUniqueTid(int unique_tid);
void AddMutex(const SyncVar *s);
u64 AddMutex(u64 id);
void AddLocation(uptr addr, uptr size);
void AddSleep(u32 stack_id);
void SetCount(int count);
const ReportDesc *GetReport() const;
protected:
ScopedReportBase(ReportType typ, uptr tag);
~ScopedReportBase();
private:
ReportDesc *rep_;
// Symbolizer makes lots of intercepted calls. If we try to process them,
// at best it will cause deadlocks on internal mutexes.
ScopedIgnoreInterceptors ignore_interceptors_;
void AddDeadMutex(u64 id);
ScopedReportBase(const ScopedReportBase &) = delete;
void operator=(const ScopedReportBase &) = delete;
};
class ScopedReport : public ScopedReportBase {
public:
explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
~ScopedReport();
private:
ScopedErrorReportLock lock_;
};
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
MutexSet *mset, uptr *tag = nullptr);
// The stack could look like:
// <start> | <main> | <foo> | tag | <bar>
// This will extract the tag and keep:
// <start> | <main> | <foo> | <bar>
template<typename StackTraceTy>
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
if (stack->size < 2) return;
uptr possible_tag_pc = stack->trace[stack->size - 2];
uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
if (possible_tag == kExternalTagNone) return;
stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
stack->size -= 1;
if (tag) *tag = possible_tag;
}
template<typename StackTraceTy>
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
uptr *tag = nullptr) {
uptr size = thr->shadow_stack_pos - thr->shadow_stack;
uptr start = 0;
if (size + !!toppc > kStackTraceMax) {
start = size + !!toppc - kStackTraceMax;
size = kStackTraceMax - !!toppc;
}
stack->Init(&thr->shadow_stack[start], size, toppc);
ExtractTagFromStack(stack, tag);
}
#if TSAN_COLLECT_STATS
void StatAggregate(u64 *dst, u64 *src);
void StatOutput(u64 *stat);
#endif
void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
#if TSAN_COLLECT_STATS
thr->stat[typ] += n;
#endif
}
void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
#if TSAN_COLLECT_STATS
thr->stat[typ] = n;
#endif
}
void MapShadow(uptr addr, uptr size);
void MapThreadTrace(uptr addr, uptr size, const char *name);
void DontNeedShadowFor(uptr addr, uptr size);
void InitializeShadowMemory();
void InitializeInterceptors();
void InitializeLibIgnore();
void InitializeDynamicAnnotations();
void ForkBefore(ThreadState *thr, uptr pc);
void ForkParentAfter(ThreadState *thr, uptr pc);
void ForkChildAfter(ThreadState *thr, uptr pc);
void ReportRace(ThreadState *thr);
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
bool IsExpectedReport(uptr addr, uptr size);
void PrintMatchedBenignRaces();
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
# define DPrintf Printf
#else
# define DPrintf(...)
#endif
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
# define DPrintf2 Printf
#else
# define DPrintf2(...)
#endif
u32 CurrentStackId(ThreadState *thr, uptr pc);
ReportStack *SymbolizeStackId(u32 stack_id);
void PrintCurrentStack(ThreadState *thr, uptr pc);
void PrintCurrentStackSlow(uptr pc); // uses libunwind
void Initialize(ThreadState *thr);
void MaybeSpawnBackgroundThread();
int Finalize(ThreadState *thr);
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
void MemoryAccessImpl(ThreadState *thr, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
u64 *shadow_mem, Shadow cur);
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
uptr size, bool is_write);
void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
uptr size, uptr step, bool is_write);
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
int size, bool kAccessIsWrite, bool kIsAtomic);
const int kSizeLog1 = 0;
const int kSizeLog2 = 1;
const int kSizeLog4 = 2;
const int kSizeLog8 = 3;
void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
}
void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
}
void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
}
void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
uptr addr, int kAccessSizeLog) {
MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
}
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
void FuncEntry(ThreadState *thr, uptr pc);
void FuncExit(ThreadState *thr);
int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
void ThreadStart(ThreadState *thr, int tid, tid_t os_id, bool workerthread);
void ThreadFinish(ThreadState *thr);
int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
void ThreadJoin(ThreadState *thr, uptr pc, int tid);
void ThreadDetach(ThreadState *thr, uptr pc, int tid);
void ThreadFinalize(ThreadState *thr);
void ThreadSetName(ThreadState *thr, const char *name);
int ThreadCount(ThreadState *thr);
void ProcessPendingSignals(ThreadState *thr);
Processor *ProcCreate();
void ProcDestroy(Processor *proc);
void ProcWire(Processor *proc, ThreadState *thr);
void ProcUnwire(Processor *proc, ThreadState *thr);
// Note: the parameter is called flagz, because flags is already taken
// by the global function that returns flags.
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
int rec = 1);
int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
void Acquire(ThreadState *thr, uptr pc, uptr addr);
// AcquireGlobal synchronizes the current thread with all other threads.
// In terms of happens-before relation, it draws a HB edge from all threads
// (where they happen to execute right now) to the current thread. We use it to
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
// right before executing finalizers. This provides a coarse, but simple
// approximation of the actual required synchronization.
void AcquireGlobal(ThreadState *thr, uptr pc);
void Release(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
void AfterSleep(ThreadState *thr, uptr pc);
void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
// The hacky call uses custom calling convention and an assembly thunk.
// It is considerably faster that a normal call for the caller
// if it is not executed (it is intended for slow paths from hot functions).
// The trick is that the call preserves all registers and the compiler
// does not treat it as a call.
// If it does not work for you, use normal call.
#if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
// The caller may not create the stack frame for itself at all,
// so we create a reserve stack frame for it (1024b must be enough).
#define HACKY_CALL(f) \
__asm__ __volatile__("sub $1024, %%rsp;" \
CFI_INL_ADJUST_CFA_OFFSET(1024) \
".hidden " #f "_thunk;" \
"call " #f "_thunk;" \
"add $1024, %%rsp;" \
CFI_INL_ADJUST_CFA_OFFSET(-1024) \
::: "memory", "cc");
#else
#define HACKY_CALL(f) f()
#endif
void TraceSwitch(ThreadState *thr);
uptr TraceTopPC(ThreadState *thr);
uptr TraceSize();
uptr TraceParts();
Trace *ThreadTrace(int tid);
extern "C" void __tsan_trace_switch();
void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
EventType typ, u64 addr) {
if (!kCollectHistory)
return;
DCHECK_GE((int)typ, 0);
DCHECK_LE((int)typ, 7);
DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
StatInc(thr, StatEvents);
u64 pos = fs.GetTracePos();
if (UNLIKELY((pos % kTracePartSize) == 0)) {
#if !SANITIZER_GO
HACKY_CALL(__tsan_trace_switch);
#else
TraceSwitch(thr);
#endif
}
Event *trace = (Event*)GetThreadTrace(fs.tid());
Event *evp = &trace[pos];
Event ev = (u64)addr | ((u64)typ << kEventPCBits);
*evp = ev;
}
#if !SANITIZER_GO
uptr ALWAYS_INLINE HeapEnd() {
return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
}
#endif
} // namespace __tsan
#endif // TSAN_RTL_H