llvm-project/mlir/lib/IR/Operation.cpp

1339 lines
49 KiB
C++

//===- Operation.cpp - Operation support code -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Operation.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/FoldInterfaces.h"
#include "llvm/ADT/StringExtras.h"
#include <numeric>
using namespace mlir;
//===----------------------------------------------------------------------===//
// OperationName
//===----------------------------------------------------------------------===//
/// Form the OperationName for an op with the specified string. This either is
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
/// if not.
OperationName::OperationName(StringRef name, MLIRContext *context) {
if (auto *op = AbstractOperation::lookup(name, context))
representation = op;
else
representation = Identifier::get(name, context);
}
/// Return the name of the dialect this operation is registered to.
StringRef OperationName::getDialectNamespace() const {
if (Dialect *dialect = getDialect())
return dialect->getNamespace();
return getStringRef().split('.').first;
}
/// Return the operation name with dialect name stripped, if it has one.
StringRef OperationName::stripDialect() const {
return getStringRef().split('.').second;
}
/// Return the name of this operation. This always succeeds.
StringRef OperationName::getStringRef() const {
return getIdentifier().strref();
}
/// Return the name of this operation as an identifier. This always succeeds.
Identifier OperationName::getIdentifier() const {
if (auto *op = representation.dyn_cast<const AbstractOperation *>())
return op->name;
return representation.get<Identifier>();
}
OperationName OperationName::getFromOpaquePointer(const void *pointer) {
return OperationName(
RepresentationUnion::getFromOpaqueValue(const_cast<void *>(pointer)));
}
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
TypeRange resultTypes, ValueRange operands,
ArrayRef<NamedAttribute> attributes,
BlockRange successors, unsigned numRegions) {
return create(location, name, resultTypes, operands,
DictionaryAttr::get(location.getContext(), attributes),
successors, numRegions);
}
/// Create a new Operation from operation state.
Operation *Operation::create(const OperationState &state) {
return create(state.location, state.name, state.types, state.operands,
state.attributes.getDictionary(state.getContext()),
state.successors, state.regions);
}
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
TypeRange resultTypes, ValueRange operands,
DictionaryAttr attributes, BlockRange successors,
RegionRange regions) {
unsigned numRegions = regions.size();
Operation *op = create(location, name, resultTypes, operands, attributes,
successors, numRegions);
for (unsigned i = 0; i < numRegions; ++i)
if (regions[i])
op->getRegion(i).takeBody(*regions[i]);
return op;
}
/// Overload of create that takes an existing DictionaryAttr to avoid
/// unnecessarily uniquing a list of attributes.
Operation *Operation::create(Location location, OperationName name,
TypeRange resultTypes, ValueRange operands,
DictionaryAttr attributes, BlockRange successors,
unsigned numRegions) {
assert(llvm::all_of(resultTypes, [](Type t) { return t; }) &&
"unexpected null result type");
// We only need to allocate additional memory for a subset of results.
unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
unsigned numInlineResults = OpResult::getNumInline(resultTypes.size());
unsigned numSuccessors = successors.size();
unsigned numOperands = operands.size();
unsigned numResults = resultTypes.size();
// If the operation is known to have no operands, don't allocate an operand
// storage.
bool needsOperandStorage = true;
if (operands.empty()) {
if (const AbstractOperation *abstractOp = name.getAbstractOperation())
needsOperandStorage = !abstractOp->hasTrait<OpTrait::ZeroOperands>();
}
// Compute the byte size for the operation and the operand storage. This takes
// into account the size of the operation, its trailing objects, and its
// prefixed objects.
size_t byteSize =
totalSizeToAlloc<BlockOperand, Region, detail::OperandStorage>(
numSuccessors, numRegions, needsOperandStorage ? 1 : 0) +
detail::OperandStorage::additionalAllocSize(numOperands);
size_t prefixByteSize = llvm::alignTo(
Operation::prefixAllocSize(numTrailingResults, numInlineResults),
alignof(Operation));
char *mallocMem = reinterpret_cast<char *>(malloc(byteSize + prefixByteSize));
void *rawMem = mallocMem + prefixByteSize;
// Create the new Operation.
Operation *op =
::new (rawMem) Operation(location, name, numResults, numSuccessors,
numRegions, attributes, needsOperandStorage);
assert((numSuccessors == 0 || op->mightHaveTrait<OpTrait::IsTerminator>()) &&
"unexpected successors in a non-terminator operation");
// Initialize the results.
auto resultTypeIt = resultTypes.begin();
for (unsigned i = 0; i < numInlineResults; ++i, ++resultTypeIt)
new (op->getInlineOpResult(i)) detail::InlineOpResult(*resultTypeIt, i);
for (unsigned i = 0; i < numTrailingResults; ++i, ++resultTypeIt) {
new (op->getOutOfLineOpResult(i))
detail::OutOfLineOpResult(*resultTypeIt, i);
}
// Initialize the regions.
for (unsigned i = 0; i != numRegions; ++i)
new (&op->getRegion(i)) Region(op);
// Initialize the operands.
if (needsOperandStorage)
new (&op->getOperandStorage()) detail::OperandStorage(op, operands);
// Initialize the successors.
auto blockOperands = op->getBlockOperands();
for (unsigned i = 0; i != numSuccessors; ++i)
new (&blockOperands[i]) BlockOperand(op, successors[i]);
return op;
}
Operation::Operation(Location location, OperationName name, unsigned numResults,
unsigned numSuccessors, unsigned numRegions,
DictionaryAttr attributes, bool hasOperandStorage)
: location(location), numResults(numResults), numSuccs(numSuccessors),
numRegions(numRegions), hasOperandStorage(hasOperandStorage), name(name),
attrs(attributes) {
assert(attributes && "unexpected null attribute dictionary");
#ifndef NDEBUG
if (!getDialect() && !getContext()->allowsUnregisteredDialects())
llvm::report_fatal_error(
name.getStringRef() +
" created with unregistered dialect. If this is intended, please call "
"allowUnregisteredDialects() on the MLIRContext, or use "
"-allow-unregistered-dialect with the MLIR tool used.");
#endif
}
// Operations are deleted through the destroy() member because they are
// allocated via malloc.
Operation::~Operation() {
assert(block == nullptr && "operation destroyed but still in a block");
#ifndef NDEBUG
if (!use_empty()) {
{
InFlightDiagnostic diag =
emitOpError("operation destroyed but still has uses");
for (Operation *user : getUsers())
diag.attachNote(user->getLoc()) << "- use: " << *user << "\n";
}
llvm::report_fatal_error("operation destroyed but still has uses");
}
#endif
// Explicitly run the destructors for the operands.
if (hasOperandStorage)
getOperandStorage().~OperandStorage();
// Explicitly run the destructors for the successors.
for (auto &successor : getBlockOperands())
successor.~BlockOperand();
// Explicitly destroy the regions.
for (auto &region : getRegions())
region.~Region();
}
/// Destroy this operation or one of its subclasses.
void Operation::destroy() {
// Operations may have additional prefixed allocation, which needs to be
// accounted for here when computing the address to free.
char *rawMem = reinterpret_cast<char *>(this) -
llvm::alignTo(prefixAllocSize(), alignof(Operation));
this->~Operation();
free(rawMem);
}
/// Return true if this operation is a proper ancestor of the `other`
/// operation.
bool Operation::isProperAncestor(Operation *other) {
while ((other = other->getParentOp()))
if (this == other)
return true;
return false;
}
/// Replace any uses of 'from' with 'to' within this operation.
void Operation::replaceUsesOfWith(Value from, Value to) {
if (from == to)
return;
for (auto &operand : getOpOperands())
if (operand.get() == from)
operand.set(to);
}
/// Replace the current operands of this operation with the ones provided in
/// 'operands'.
void Operation::setOperands(ValueRange operands) {
if (LLVM_LIKELY(hasOperandStorage))
return getOperandStorage().setOperands(this, operands);
assert(operands.empty() && "setting operands without an operand storage");
}
/// Replace the operands beginning at 'start' and ending at 'start' + 'length'
/// with the ones provided in 'operands'. 'operands' may be smaller or larger
/// than the range pointed to by 'start'+'length'.
void Operation::setOperands(unsigned start, unsigned length,
ValueRange operands) {
assert((start + length) <= getNumOperands() &&
"invalid operand range specified");
if (LLVM_LIKELY(hasOperandStorage))
return getOperandStorage().setOperands(this, start, length, operands);
assert(operands.empty() && "setting operands without an operand storage");
}
/// Insert the given operands into the operand list at the given 'index'.
void Operation::insertOperands(unsigned index, ValueRange operands) {
if (LLVM_LIKELY(hasOperandStorage))
return setOperands(index, /*length=*/0, operands);
assert(operands.empty() && "inserting operands without an operand storage");
}
//===----------------------------------------------------------------------===//
// Diagnostics
//===----------------------------------------------------------------------===//
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic Operation::emitError(const Twine &message) {
InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic()) {
diag.attachNote(getLoc())
.append("see current operation: ")
.appendOp(*this, OpPrintingFlags().printGenericOpForm());
}
return diag;
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic())
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic())
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
//===----------------------------------------------------------------------===//
// Operation Ordering
//===----------------------------------------------------------------------===//
constexpr unsigned Operation::kInvalidOrderIdx;
constexpr unsigned Operation::kOrderStride;
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool Operation::isBeforeInBlock(Operation *other) {
assert(block && "Operations without parent blocks have no order.");
assert(other && other->block == block &&
"Expected other operation to have the same parent block.");
// If the order of the block is already invalid, directly recompute the
// parent.
if (!block->isOpOrderValid()) {
block->recomputeOpOrder();
} else {
// Update the order either operation if necessary.
updateOrderIfNecessary();
other->updateOrderIfNecessary();
}
return orderIndex < other->orderIndex;
}
/// Update the order index of this operation of this operation if necessary,
/// potentially recomputing the order of the parent block.
void Operation::updateOrderIfNecessary() {
assert(block && "expected valid parent");
// If the order is valid for this operation there is nothing to do.
if (hasValidOrder())
return;
Operation *blockFront = &block->front();
Operation *blockBack = &block->back();
// This method is expected to only be invoked on blocks with more than one
// operation.
assert(blockFront != blockBack && "expected more than one operation");
// If the operation is at the end of the block.
if (this == blockBack) {
Operation *prevNode = getPrevNode();
if (!prevNode->hasValidOrder())
return block->recomputeOpOrder();
// Add the stride to the previous operation.
orderIndex = prevNode->orderIndex + kOrderStride;
return;
}
// If this is the first operation try to use the next operation to compute the
// ordering.
if (this == blockFront) {
Operation *nextNode = getNextNode();
if (!nextNode->hasValidOrder())
return block->recomputeOpOrder();
// There is no order to give this operation.
if (nextNode->orderIndex == 0)
return block->recomputeOpOrder();
// If we can't use the stride, just take the middle value left. This is safe
// because we know there is at least one valid index to assign to.
if (nextNode->orderIndex <= kOrderStride)
orderIndex = (nextNode->orderIndex / 2);
else
orderIndex = kOrderStride;
return;
}
// Otherwise, this operation is between two others. Place this operation in
// the middle of the previous and next if possible.
Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
return block->recomputeOpOrder();
unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
// Check to see if there is a valid order between the two.
if (prevOrder + 1 == nextOrder)
return block->recomputeOpOrder();
orderIndex = prevOrder + ((nextOrder - prevOrder) / 2);
}
//===----------------------------------------------------------------------===//
// ilist_traits for Operation
//===----------------------------------------------------------------------===//
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(const_pointer N)
-> const node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(const node_type *N)
-> const_pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
op->destroy();
}
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
}
/// This is a trait method invoked when an operation is added to a block. We
/// keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
assert(!op->getBlock() && "already in an operation block!");
op->block = getContainingBlock();
// Invalidate the order on the operation.
op->orderIndex = Operation::kInvalidOrderIdx;
}
/// This is a trait method invoked when an operation is removed from a block.
/// We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
assert(op->block && "not already in an operation block!");
op->block = nullptr;
}
/// This is a trait method invoked when an operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
Block *curParent = getContainingBlock();
// Invalidate the ordering of the parent block.
curParent->invalidateOpOrder();
// If we are transferring operations within the same block, the block
// pointer doesn't need to be updated.
if (curParent == otherList.getContainingBlock())
return;
// Update the 'block' member of each operation.
for (; first != last; ++first)
first->block = curParent;
}
/// Remove this operation (and its descendants) from its Block and delete
/// all of them.
void Operation::erase() {
if (auto *parent = getBlock())
parent->getOperations().erase(this);
else
destroy();
}
/// Remove the operation from its parent block, but don't delete it.
void Operation::remove() {
if (Block *parent = getBlock())
parent->getOperations().remove(this);
}
/// Unlink this operation from its current block and insert it right before
/// `existingOp` which may be in the same or another block in the same
/// function.
void Operation::moveBefore(Operation *existingOp) {
moveBefore(existingOp->getBlock(), existingOp->getIterator());
}
/// Unlink this operation from its current basic block and insert it right
/// before `iterator` in the specified basic block.
void Operation::moveBefore(Block *block,
llvm::iplist<Operation>::iterator iterator) {
block->getOperations().splice(iterator, getBlock()->getOperations(),
getIterator());
}
/// Unlink this operation from its current block and insert it right after
/// `existingOp` which may be in the same or another block in the same function.
void Operation::moveAfter(Operation *existingOp) {
moveAfter(existingOp->getBlock(), existingOp->getIterator());
}
/// Unlink this operation from its current block and insert it right after
/// `iterator` in the specified block.
void Operation::moveAfter(Block *block,
llvm::iplist<Operation>::iterator iterator) {
assert(iterator != block->end() && "cannot move after end of block");
moveBefore(&*std::next(iterator));
}
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void Operation::dropAllReferences() {
for (auto &op : getOpOperands())
op.drop();
for (auto &region : getRegions())
region.dropAllReferences();
for (auto &dest : getBlockOperands())
dest.drop();
}
/// This drops all uses of any values defined by this operation or its nested
/// regions, wherever they are located.
void Operation::dropAllDefinedValueUses() {
dropAllUses();
for (auto &region : getRegions())
for (auto &block : region)
block.dropAllDefinedValueUses();
}
void Operation::setSuccessor(Block *block, unsigned index) {
assert(index < getNumSuccessors());
getBlockOperands()[index].set(block);
}
/// Attempt to fold this operation using the Op's registered foldHook.
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// If we have a registered operation definition matching this one, use it to
// try to constant fold the operation.
auto *abstractOp = getAbstractOperation();
if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
return success();
// Otherwise, fall back on the dialect hook to handle it.
Dialect *dialect = getDialect();
if (!dialect)
return failure();
auto *interface = dialect->getRegisteredInterface<DialectFoldInterface>();
if (!interface)
return failure();
return interface->fold(this, operands, results);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
return emitError() << "'" << getName() << "' op " << message;
}
//===----------------------------------------------------------------------===//
// Operation Cloning
//===----------------------------------------------------------------------===//
/// Create a deep copy of this operation but keep the operation regions empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
// Remap the operands.
operands.reserve(getNumOperands());
for (auto opValue : getOperands())
operands.push_back(mapper.lookupOrDefault(opValue));
// Remap the successors.
successors.reserve(getNumSuccessors());
for (Block *successor : getSuccessors())
successors.push_back(mapper.lookupOrDefault(successor));
// Create the new operation.
auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs,
successors, getNumRegions());
// Remember the mapping of any results.
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
mapper.map(getResult(i), newOp->getResult(i));
return newOp;
}
Operation *Operation::cloneWithoutRegions() {
BlockAndValueMapping mapper;
return cloneWithoutRegions(mapper);
}
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *Operation::clone(BlockAndValueMapping &mapper) {
auto *newOp = cloneWithoutRegions(mapper);
// Clone the regions.
for (unsigned i = 0; i != numRegions; ++i)
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
return newOp;
}
Operation *Operation::clone() {
BlockAndValueMapping mapper;
return clone(mapper);
}
//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//
// The fallback for the parser is to reject the custom assembly form.
ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
}
// The fallback for the printer is to print in the generic assembly form.
void OpState::print(Operation *op, OpAsmPrinter &p) { p.printGenericOp(op); }
// The fallback for the printer is to print in the generic assembly form.
void OpState::printOpName(Operation *op, OpAsmPrinter &p,
StringRef defaultDialect) {
StringRef name = op->getName().getStringRef();
if (name.startswith((defaultDialect + ".").str()))
name = name.drop_front(defaultDialect.size() + 1);
// TODO: remove this special case (and update test/IR/parser.mlir)
else if ((defaultDialect.empty() || defaultDialect == "builtin") &&
name.startswith("std."))
name = name.drop_front(4);
p.getStream() << name;
}
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic OpState::emitError(const Twine &message) {
return getOperation()->emitError(message);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
return getOperation()->emitOpError(message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
return getOperation()->emitWarning(message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
return getOperation()->emitRemark(message);
}
//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//
OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) {
auto *argumentOp = op->getOperand(0).getDefiningOp();
if (argumentOp && op->getName() == argumentOp->getName()) {
// Replace the outer operation output with the inner operation.
return op->getOperand(0);
}
return {};
}
OpFoldResult OpTrait::impl::foldInvolution(Operation *op) {
auto *argumentOp = op->getOperand(0).getDefiningOp();
if (argumentOp && op->getName() == argumentOp->getName()) {
// Replace the outer involutions output with inner's input.
return argumentOp->getOperand(0);
}
return {};
}
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
if (op->getNumOperands() != 0)
return op->emitOpError() << "requires zero operands";
return success();
}
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
if (op->getNumOperands() != 1)
return op->emitOpError() << "requires a single operand";
return success();
}
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() != numOperands) {
return op->emitOpError() << "expected " << numOperands
<< " operands, but found " << op->getNumOperands();
}
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more operands, but found "
<< op->getNumOperands();
return success();
}
/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
if (auto vec = type.dyn_cast<VectorType>())
return vec.getElementType();
// Look through tensor<vector<...>> to find the underlying element type.
if (auto tensor = type.dyn_cast<TensorType>())
return getTensorOrVectorElementType(tensor.getElementType());
return type;
}
LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) {
// FIXME: Add back check for no side effects on operation.
// Currently adding it would cause the shared library build
// to fail since there would be a dependency of IR on SideEffectInterfaces
// which is cyclical.
return success();
}
LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) {
// FIXME: Add back check for no side effects on operation.
// Currently adding it would cause the shared library build
// to fail since there would be a dependency of IR on SideEffectInterfaces
// which is cyclical.
return success();
}
LogicalResult
OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isSignlessIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
}
return success();
}
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isa<FloatType>())
return op->emitOpError("requires a float type");
}
return success();
}
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
// Zero or one operand always have the "same" type.
unsigned nOperands = op->getNumOperands();
if (nOperands < 2)
return success();
auto type = op->getOperand(0).getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
if (opType != type)
return op->emitOpError() << "requires all operands to have the same type";
return success();
}
LogicalResult OpTrait::impl::verifyZeroRegion(Operation *op) {
if (op->getNumRegions() != 0)
return op->emitOpError() << "requires zero regions";
return success();
}
LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError() << "requires one region";
return success();
}
LogicalResult OpTrait::impl::verifyNRegions(Operation *op,
unsigned numRegions) {
if (op->getNumRegions() != numRegions)
return op->emitOpError() << "expected " << numRegions << " regions";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op,
unsigned numRegions) {
if (op->getNumRegions() < numRegions)
return op->emitOpError() << "expected " << numRegions << " or more regions";
return success();
}
LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
if (op->getNumResults() != 0)
return op->emitOpError() << "requires zero results";
return success();
}
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
if (op->getNumResults() != 1)
return op->emitOpError() << "requires one result";
return success();
}
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() != numOperands)
return op->emitOpError() << "expected " << numOperands << " results";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more results";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
if (failed(verifyCompatibleShapes(op->getOperandTypes())))
return op->emitOpError() << "requires the same shape for all operands";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
SmallVector<Type, 8> types(op->getOperandTypes());
types.append(llvm::to_vector<4>(op->getResultTypes()));
if (failed(verifyCompatibleShapes(types)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getOperand(0));
for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError("requires the same element type for all operands");
}
return success();
}
LogicalResult
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getResult(0));
// Verify result element type matches first result's element type.
for (auto result : llvm::drop_begin(op->getResults(), 1)) {
if (getElementTypeOrSelf(result) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
// Verify operand's element type matches first result's element type.
for (auto operand : op->getOperands()) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto type = op->getResult(0).getType();
auto elementType = getElementTypeOrSelf(type);
for (auto resultType : llvm::drop_begin(op->getResultTypes())) {
if (getElementTypeOrSelf(resultType) != elementType ||
failed(verifyCompatibleShape(resultType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
}
for (auto opType : op->getOperandTypes()) {
if (getElementTypeOrSelf(opType) != elementType ||
failed(verifyCompatibleShape(opType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
}
return success();
}
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
Block *block = op->getBlock();
// Verify that the operation is at the end of the respective parent block.
if (!block || &block->back() != op)
return op->emitOpError("must be the last operation in the parent block");
return success();
}
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
auto *parent = op->getParentRegion();
// Verify that the operands lines up with the BB arguments in the successor.
for (Block *succ : op->getSuccessors())
if (succ->getParent() != parent)
return op->emitError("reference to block defined in another region");
return success();
}
LogicalResult OpTrait::impl::verifyZeroSuccessor(Operation *op) {
if (op->getNumSuccessors() != 0) {
return op->emitOpError("requires 0 successors but found ")
<< op->getNumSuccessors();
}
return success();
}
LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) {
if (op->getNumSuccessors() != 1) {
return op->emitOpError("requires 1 successor but found ")
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op,
unsigned numSuccessors) {
if (op->getNumSuccessors() != numSuccessors) {
return op->emitOpError("requires ")
<< numSuccessors << " successors but found "
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op,
unsigned numSuccessors) {
if (op->getNumSuccessors() < numSuccessors) {
return op->emitOpError("requires at least ")
<< numSuccessors << " successors but found "
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
for (auto resultType : op->getResultTypes()) {
auto elementType = getTensorOrVectorElementType(resultType);
bool isBoolType = elementType.isInteger(1);
if (!isBoolType)
return op->emitOpError() << "requires a bool result type";
}
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
return op->emitOpError() << "requires a floating point type";
return success();
}
LogicalResult
OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
return success();
}
LogicalResult OpTrait::impl::verifyValueSizeAttr(Operation *op,
StringRef attrName,
StringRef valueGroupName,
size_t expectedCount) {
auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
if (!sizeAttr)
return op->emitOpError("requires 1D i32 elements attribute '")
<< attrName << "'";
auto sizeAttrType = sizeAttr.getType();
if (sizeAttrType.getRank() != 1 ||
!sizeAttrType.getElementType().isInteger(32))
return op->emitOpError("requires 1D i32 elements attribute '")
<< attrName << "'";
if (llvm::any_of(sizeAttr.getValues<APInt>(), [](const APInt &element) {
return !element.isNonNegative();
}))
return op->emitOpError("'")
<< attrName << "' attribute cannot have negative elements";
size_t totalCount = std::accumulate(
sizeAttr.begin(), sizeAttr.end(), 0,
[](unsigned all, APInt one) { return all + one.getZExtValue(); });
if (totalCount != expectedCount)
return op->emitOpError()
<< valueGroupName << " count (" << expectedCount
<< ") does not match with the total size (" << totalCount
<< ") specified in attribute '" << attrName << "'";
return success();
}
LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, "operand", op->getNumOperands());
}
LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, "result", op->getNumResults());
}
LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) {
for (Region &region : op->getRegions()) {
if (region.empty())
continue;
if (region.getNumArguments() != 0) {
if (op->getNumRegions() > 1)
return op->emitOpError("region #")
<< region.getRegionNumber() << " should have no arguments";
else
return op->emitOpError("region should have no arguments");
}
}
return success();
}
LogicalResult OpTrait::impl::verifyElementwise(Operation *op) {
auto isMappableType = [](Type type) {
return type.isa<VectorType, TensorType>();
};
auto resultMappableTypes = llvm::to_vector<1>(
llvm::make_filter_range(op->getResultTypes(), isMappableType));
auto operandMappableTypes = llvm::to_vector<2>(
llvm::make_filter_range(op->getOperandTypes(), isMappableType));
// If the op only has scalar operand/result types, then we have nothing to
// check.
if (resultMappableTypes.empty() && operandMappableTypes.empty())
return success();
if (!resultMappableTypes.empty() && operandMappableTypes.empty())
return op->emitOpError("if a result is non-scalar, then at least one "
"operand must be non-scalar");
assert(!operandMappableTypes.empty());
if (resultMappableTypes.empty())
return op->emitOpError("if an operand is non-scalar, then there must be at "
"least one non-scalar result");
if (resultMappableTypes.size() != op->getNumResults())
return op->emitOpError(
"if an operand is non-scalar, then all results must be non-scalar");
SmallVector<Type, 4> types = llvm::to_vector<2>(
llvm::concat<Type>(operandMappableTypes, resultMappableTypes));
TypeID expectedBaseTy = types.front().getTypeID();
if (!llvm::all_of(types,
[&](Type t) { return t.getTypeID() == expectedBaseTy; }) ||
failed(verifyCompatibleShapes(types))) {
return op->emitOpError() << "all non-scalar operands/results must have the "
"same shape and base type";
}
return success();
}
/// Check for any values used by operations regions attached to the
/// specified "IsIsolatedFromAbove" operation defined outside of it.
LogicalResult OpTrait::impl::verifyIsIsolatedFromAbove(Operation *isolatedOp) {
assert(isolatedOp->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
"Intended to check IsolatedFromAbove ops");
// List of regions to analyze. Each region is processed independently, with
// respect to the common `limit` region, so we can look at them in any order.
// Therefore, use a simple vector and push/pop back the current region.
SmallVector<Region *, 8> pendingRegions;
for (auto &region : isolatedOp->getRegions()) {
pendingRegions.push_back(&region);
// Traverse all operations in the region.
while (!pendingRegions.empty()) {
for (Operation &op : pendingRegions.pop_back_val()->getOps()) {
for (Value operand : op.getOperands()) {
// operand should be non-null here if the IR is well-formed. But
// we don't assert here as this function is called from the verifier
// and so could be called on invalid IR.
if (!operand)
return op.emitOpError("operation's operand is null");
// Check that any value that is used by an operation is defined in the
// same region as either an operation result.
auto *operandRegion = operand.getParentRegion();
if (!region.isAncestor(operandRegion)) {
return op.emitOpError("using value defined outside the region")
.attachNote(isolatedOp->getLoc())
<< "required by region isolation constraints";
}
}
// Schedule any regions in the operation for further checking. Don't
// recurse into other IsolatedFromAbove ops, because they will check
// themselves.
if (op.getNumRegions() &&
!op.hasTrait<OpTrait::IsIsolatedFromAbove>()) {
for (Region &subRegion : op.getRegions())
pendingRegions.push_back(&subRegion);
}
}
}
}
return success();
}
bool OpTrait::hasElementwiseMappableTraits(Operation *op) {
return op->hasTrait<Elementwise>() && op->hasTrait<Scalarizable>() &&
op->hasTrait<Vectorizable>() && op->hasTrait<Tensorizable>();
}
//===----------------------------------------------------------------------===//
// BinaryOp implementation
//===----------------------------------------------------------------------===//
// These functions are out-of-line implementations of the methods in BinaryOp,
// which avoids them being template instantiated/duplicated.
void impl::buildBinaryOp(OpBuilder &builder, OperationState &result, Value lhs,
Value rhs) {
assert(lhs.getType() == rhs.getType());
result.addOperands({lhs, rhs});
result.types.push_back(lhs.getType());
}
ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
// If the operand list is in-between parentheses, then we have a generic form.
// (see the fallback in `printOneResultOp`).
llvm::SMLoc loc = parser.getCurrentLocation();
if (!parser.parseOptionalLParen()) {
if (parser.parseOperandList(ops) || parser.parseRParen() ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColon() || parser.parseType(type))
return failure();
auto fnType = type.dyn_cast<FunctionType>();
if (!fnType) {
parser.emitError(loc, "expected function type");
return failure();
}
if (parser.resolveOperands(ops, fnType.getInputs(), loc, result.operands))
return failure();
result.addTypes(fnType.getResults());
return success();
}
return failure(parser.parseOperandList(ops) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands) ||
parser.addTypeToList(type, result.types));
}
void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumResults() == 1 && "op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (llvm::any_of(op->getOperandTypes(),
[&](Type type) { return type != resultType; })) {
p.printGenericOp(op, /*printOpName=*/false);
return;
}
p << ' ';
p.printOperands(op->getOperands());
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << resultType;
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
/// Attempt to fold the given cast operation.
LogicalResult
impl::foldCastInterfaceOp(Operation *op, ArrayRef<Attribute> attrOperands,
SmallVectorImpl<OpFoldResult> &foldResults) {
OperandRange operands = op->getOperands();
if (operands.empty())
return failure();
ResultRange results = op->getResults();
// Check for the case where the input and output types match 1-1.
if (operands.getTypes() == results.getTypes()) {
foldResults.append(operands.begin(), operands.end());
return success();
}
return failure();
}
/// Attempt to verify the given cast operation.
LogicalResult impl::verifyCastInterfaceOp(
Operation *op, function_ref<bool(TypeRange, TypeRange)> areCastCompatible) {
auto resultTypes = op->getResultTypes();
if (llvm::empty(resultTypes))
return op->emitOpError()
<< "expected at least one result for cast operation";
auto operandTypes = op->getOperandTypes();
if (!areCastCompatible(operandTypes, resultTypes)) {
InFlightDiagnostic diag = op->emitOpError("operand type");
if (llvm::empty(operandTypes))
diag << "s []";
else if (llvm::size(operandTypes) == 1)
diag << " " << *operandTypes.begin();
else
diag << "s " << operandTypes;
return diag << " and result type" << (resultTypes.size() == 1 ? " " : "s ")
<< resultTypes << " are cast incompatible";
}
return success();
}
void impl::buildCastOp(OpBuilder &builder, OperationState &result, Value source,
Type destType) {
result.addOperands(source);
result.addTypes(destType);
}
ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
Type srcType, dstType;
return failure(parser.parseOperand(srcInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
void impl::printCastOp(Operation *op, OpAsmPrinter &p) {
p << ' ' << op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
Value impl::foldCastOp(Operation *op) {
// Identity cast
if (op->getOperand(0).getType() == op->getResult(0).getType())
return op->getOperand(0);
return nullptr;
}
LogicalResult
impl::verifyCastOp(Operation *op,
function_ref<bool(Type, Type)> areCastCompatible) {
auto opType = op->getOperand(0).getType();
auto resType = op->getResult(0).getType();
if (!areCastCompatible(opType, resType))
return op->emitError("operand type ")
<< opType << " and result type " << resType
<< " are cast incompatible";
return success();
}
//===----------------------------------------------------------------------===//
// Misc. utils
//===----------------------------------------------------------------------===//
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
/// region's only block if it does not have a terminator already. If the region
/// is empty, insert a new block first. `buildTerminatorOp` should return the
/// terminator operation to insert.
void impl::ensureRegionTerminator(
Region &region, OpBuilder &builder, Location loc,
function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
OpBuilder::InsertionGuard guard(builder);
if (region.empty())
builder.createBlock(&region);
Block &block = region.back();
if (!block.empty() && block.back().hasTrait<OpTrait::IsTerminator>())
return;
builder.setInsertionPointToEnd(&block);
builder.insert(buildTerminatorOp(builder, loc));
}
/// Create a simple OpBuilder and forward to the OpBuilder version of this
/// function.
void impl::ensureRegionTerminator(
Region &region, Builder &builder, Location loc,
function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
OpBuilder opBuilder(builder.getContext());
ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp);
}