llvm-project/lld/COFF/Chunks.cpp

309 lines
10 KiB
C++

//===- Chunks.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Chunks.h"
#include "InputFiles.h"
#include "Writer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
namespace lld {
namespace coff {
SectionChunk::SectionChunk(ObjectFile *F, const coff_section *H)
: Chunk(SectionKind), Ptr(this), File(F), Header(H),
Relocs(File->getCOFFObj()->getRelocations(Header)),
NumRelocs(std::distance(Relocs.begin(), Relocs.end())) {
// Initialize SectionName.
File->getCOFFObj()->getSectionName(Header, SectionName);
// Bit [20:24] contains section alignment. Both 0 and 1 mean alignment 1.
unsigned Shift = (Header->Characteristics >> 20) & 0xF;
if (Shift > 0)
Align = uint32_t(1) << (Shift - 1);
// COMDAT sections are not GC root. Non-text sections are not
// subject of garbage collection (thus they are root).
Root = !isCOMDAT() && !(Header->Characteristics & IMAGE_SCN_CNT_CODE);
}
static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); }
static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); }
static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); }
void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, uint64_t S,
uint64_t P) {
switch (Type) {
case IMAGE_REL_AMD64_ADDR32: add32(Off, S + Config->ImageBase); break;
case IMAGE_REL_AMD64_ADDR64: add64(Off, S + Config->ImageBase); break;
case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break;
case IMAGE_REL_AMD64_REL32: add32(Off, S - P - 4); break;
case IMAGE_REL_AMD64_REL32_1: add32(Off, S - P - 5); break;
case IMAGE_REL_AMD64_REL32_2: add32(Off, S - P - 6); break;
case IMAGE_REL_AMD64_REL32_3: add32(Off, S - P - 7); break;
case IMAGE_REL_AMD64_REL32_4: add32(Off, S - P - 8); break;
case IMAGE_REL_AMD64_REL32_5: add32(Off, S - P - 9); break;
case IMAGE_REL_AMD64_SECTION: add16(Off, Out->SectionIndex); break;
case IMAGE_REL_AMD64_SECREL: add32(Off, S - Out->getRVA()); break;
default:
llvm::report_fatal_error("Unsupported relocation type");
}
}
void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, uint64_t S,
uint64_t P) {
switch (Type) {
case IMAGE_REL_I386_ABSOLUTE: break;
case IMAGE_REL_I386_DIR32: add32(Off, S + Config->ImageBase); break;
case IMAGE_REL_I386_DIR32NB: add32(Off, S); break;
case IMAGE_REL_I386_REL32: add32(Off, S - P - 4); break;
case IMAGE_REL_I386_SECTION: add16(Off, Out->SectionIndex); break;
case IMAGE_REL_I386_SECREL: add32(Off, S - Out->getRVA()); break;
default:
llvm::report_fatal_error("Unsupported relocation type");
}
}
void SectionChunk::writeTo(uint8_t *Buf) {
if (!hasData())
return;
// Copy section contents from source object file to output file.
ArrayRef<uint8_t> A = getContents();
memcpy(Buf + FileOff, A.data(), A.size());
// Apply relocations.
for (const coff_relocation &Rel : Relocs) {
uint8_t *Off = Buf + FileOff + Rel.VirtualAddress;
SymbolBody *Body = File->getSymbolBody(Rel.SymbolTableIndex)->repl();
uint64_t S = cast<Defined>(Body)->getRVA();
uint64_t P = RVA + Rel.VirtualAddress;
switch (Config->MachineType) {
case IMAGE_FILE_MACHINE_AMD64:
applyRelX64(Off, Rel.Type, S, P);
break;
case IMAGE_FILE_MACHINE_I386:
applyRelX86(Off, Rel.Type, S, P);
break;
default:
llvm_unreachable("unknown machine type");
}
}
}
void SectionChunk::addAssociative(SectionChunk *Child) {
AssocChildren.push_back(Child);
// Associative sections are live if their parent COMDATs are live,
// and vice versa, so they are not considered live by themselves.
Child->Root = false;
}
static bool isAbs(const coff_relocation &Rel) {
switch (Config->MachineType) {
case IMAGE_FILE_MACHINE_AMD64:
return Rel.Type == IMAGE_REL_AMD64_ADDR64;
case IMAGE_FILE_MACHINE_I386:
return Rel.Type == IMAGE_REL_I386_DIR32;
default:
llvm_unreachable("unknown machine type");
}
}
// Windows-specific.
// Collect all locations that contain absolute addresses, which need to be
// fixed by the loader if load-time relocation is needed.
// Only called when base relocation is enabled.
void SectionChunk::getBaserels(std::vector<uint32_t> *Res, Defined *ImageBase) {
for (const coff_relocation &Rel : Relocs) {
// Symbol __ImageBase is special -- it's an absolute symbol, but its
// address never changes even if image is relocated.
if (!isAbs(Rel))
continue;
SymbolBody *Body = File->getSymbolBody(Rel.SymbolTableIndex)->repl();
if (Body == ImageBase)
continue;
Res->push_back(RVA + Rel.VirtualAddress);
}
}
bool SectionChunk::hasData() const {
return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
}
uint32_t SectionChunk::getPermissions() const {
return Header->Characteristics & PermMask;
}
bool SectionChunk::isCOMDAT() const {
return Header->Characteristics & IMAGE_SCN_LNK_COMDAT;
}
void SectionChunk::printDiscardedMessage() const {
if (this == Ptr) {
// Removed by dead-stripping.
llvm::dbgs() << "Discarded " << Sym->getName() << "\n";
} else {
// Removed by ICF.
llvm::dbgs() << "Replaced " << Sym->getName() << "\n";
}
}
StringRef SectionChunk::getDebugName() {
return Sym->getName();
}
uint64_t SectionChunk::getHash() const {
ArrayRef<uint8_t> A = getContents();
return hash_combine(getPermissions(),
llvm::hash_value(SectionName),
NumRelocs,
uint32_t(Header->SizeOfRawData),
std::distance(Relocs.end(), Relocs.begin()),
hash_combine_range(A.data(), A.data() + A.size()));
}
// Returns true if this and a given chunk are identical COMDAT sections.
bool SectionChunk::equals(const SectionChunk *X) const {
// Compare headers
if (getPermissions() != X->getPermissions())
return false;
if (SectionName != X->SectionName)
return false;
if (Header->SizeOfRawData != X->Header->SizeOfRawData)
return false;
if (NumRelocs != X->NumRelocs)
return false;
// Compare data
if (getContents() != X->getContents())
return false;
// Compare associative sections
if (AssocChildren.size() != X->AssocChildren.size())
return false;
for (size_t I = 0, E = AssocChildren.size(); I != E; ++I)
if (AssocChildren[I]->Ptr != X->AssocChildren[I]->Ptr)
return false;
// Compare relocations
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
if (R1.Type != R2.Type)
return false;
if (R1.VirtualAddress != R2.VirtualAddress)
return false;
SymbolBody *B1 = File->getSymbolBody(R1.SymbolTableIndex)->repl();
SymbolBody *B2 = X->File->getSymbolBody(R2.SymbolTableIndex)->repl();
if (B1 == B2)
return true;
auto *D1 = dyn_cast<DefinedRegular>(B1);
auto *D2 = dyn_cast<DefinedRegular>(B2);
return (D1 && D2 &&
D1->getValue() == D2->getValue() &&
D1->getChunk() == D2->getChunk());
};
return std::equal(Relocs.begin(), Relocs.end(), X->Relocs.begin(), Eq);
}
ArrayRef<uint8_t> SectionChunk::getContents() const {
ArrayRef<uint8_t> A;
File->getCOFFObj()->getSectionContents(Header, A);
return A;
}
void SectionChunk::replaceWith(SectionChunk *Other) {
Ptr = Other->Ptr;
Live = false;
}
CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) {
// Common symbols are aligned on natural boundaries up to 32 bytes.
// This is what MSVC link.exe does.
Align = std::min(uint64_t(32), NextPowerOf2(Sym.getValue()));
}
uint32_t CommonChunk::getPermissions() const {
return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE;
}
void StringChunk::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, Str.data(), Str.size());
}
ImportThunkChunk::ImportThunkChunk(Defined *S) : ImpSymbol(S) {
// Intel Optimization Manual says that all branch targets
// should be 16-byte aligned. MSVC linker does this too.
Align = 16;
}
void ImportThunkChunk::getBaserels(std::vector<uint32_t> *Res,
Defined *ImageBase) {
if (!Config->is64())
Res->push_back(getRVA() + 2);
}
void ImportThunkChunk::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, ImportThunkData, sizeof(ImportThunkData));
// The first two bytes is a JMP instruction. Fill its operand.
uint32_t Operand = Config->is64()
? ImpSymbol->getRVA() - RVA - getSize()
: ImpSymbol->getRVA() + Config->ImageBase;
write32le(Buf + FileOff + 2, Operand);
}
void LocalImportChunk::getBaserels(std::vector<uint32_t> *Res,
Defined *ImageBase) {
Res->push_back(getRVA());
}
size_t LocalImportChunk::getSize() const {
return Config->is64() ? 8 : 4;
}
void LocalImportChunk::writeTo(uint8_t *Buf) {
if (Config->is64()) {
write64le(Buf + FileOff, Sym->getRVA() + Config->ImageBase);
} else {
write32le(Buf + FileOff, Sym->getRVA() + Config->ImageBase);
}
}
// Windows-specific.
// This class represents a block in .reloc section.
BaserelChunk::BaserelChunk(uint32_t Page, uint32_t *Begin, uint32_t *End) {
// Block header consists of 4 byte page RVA and 4 byte block size.
// Each entry is 2 byte. Last entry may be padding.
Data.resize(RoundUpToAlignment((End - Begin) * 2 + 8, 4));
uint8_t *P = Data.data();
write32le(P, Page);
write32le(P + 4, Data.size());
P += 8;
for (uint32_t *I = Begin; I != End; ++I) {
write16le(P, (IMAGE_REL_BASED_DIR64 << 12) | (*I - Page));
P += 2;
}
}
void BaserelChunk::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, Data.data(), Data.size());
}
} // namespace coff
} // namespace lld