llvm-project/llvm/lib/Target/AVR/AVRISelDAGToDAG.cpp

559 lines
17 KiB
C++

//===-- AVRISelDAGToDAG.cpp - A dag to dag inst selector for AVR ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AVR target.
//
//===----------------------------------------------------------------------===//
#include "AVR.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "avr-isel"
namespace llvm {
/// Lowers LLVM IR (in DAG form) to AVR MC instructions (in DAG form).
class AVRDAGToDAGISel : public SelectionDAGISel {
public:
AVRDAGToDAGISel(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel), Subtarget(nullptr) {}
StringRef getPassName() const override {
return "AVR DAG->DAG Instruction Selection";
}
bool runOnMachineFunction(MachineFunction &MF) override;
bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp);
bool selectIndexedLoad(SDNode *N);
unsigned selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT);
bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintCode,
std::vector<SDValue> &OutOps) override;
// Include the pieces autogenerated from the target description.
#include "AVRGenDAGISel.inc"
private:
void Select(SDNode *N) override;
bool trySelect(SDNode *N);
template <unsigned NodeType> bool select(SDNode *N);
bool selectMultiplication(SDNode *N);
const AVRSubtarget *Subtarget;
};
bool AVRDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<AVRSubtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
bool AVRDAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Disp) {
SDLoc dl(Op);
auto DL = CurDAG->getDataLayout();
MVT PtrVT = getTargetLowering()->getPointerTy(DL);
// if the address is a frame index get the TargetFrameIndex.
if (const FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), PtrVT);
Disp = CurDAG->getTargetConstant(0, dl, MVT::i8);
return true;
}
// Match simple Reg + uimm6 operands.
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
!CurDAG->isBaseWithConstantOffset(N)) {
return false;
}
if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
// Convert negative offsets into positives ones.
if (N.getOpcode() == ISD::SUB) {
RHSC = -RHSC;
}
// <#Frame index + const>
// Allow folding offsets bigger than 63 so the frame pointer can be used
// directly instead of copying it around by adjusting and restoring it for
// each access.
if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, PtrVT);
Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i16);
return true;
}
// The value type of the memory instruction determines what is the maximum
// offset allowed.
MVT VT = cast<MemSDNode>(Op)->getMemoryVT().getSimpleVT();
// We only accept offsets that fit in 6 bits (unsigned).
if (isUInt<6>(RHSC) && (VT == MVT::i8 || VT == MVT::i16)) {
Base = N.getOperand(0);
Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i8);
return true;
}
}
return false;
}
bool AVRDAGToDAGISel::selectIndexedLoad(SDNode *N) {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
MVT VT = LD->getMemoryVT().getSimpleVT();
auto PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
// We only care if this load uses a POSTINC or PREDEC mode.
if ((LD->getExtensionType() != ISD::NON_EXTLOAD) ||
(AM != ISD::POST_INC && AM != ISD::PRE_DEC)) {
return false;
}
unsigned Opcode = 0;
bool isPre = (AM == ISD::PRE_DEC);
int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();
switch (VT.SimpleTy) {
case MVT::i8: {
if ((!isPre && Offs != 1) || (isPre && Offs != -1)) {
return false;
}
Opcode = (isPre) ? AVR::LDRdPtrPd : AVR::LDRdPtrPi;
break;
}
case MVT::i16: {
if ((!isPre && Offs != 2) || (isPre && Offs != -2)) {
return false;
}
Opcode = (isPre) ? AVR::LDWRdPtrPd : AVR::LDWRdPtrPi;
break;
}
default:
return false;
}
SDNode *ResNode = CurDAG->getMachineNode(Opcode, SDLoc(N), VT,
PtrVT, MVT::Other,
LD->getBasePtr(), LD->getChain());
ReplaceUses(N, ResNode);
CurDAG->RemoveDeadNode(N);
return true;
}
unsigned AVRDAGToDAGISel::selectIndexedProgMemLoad(const LoadSDNode *LD,
MVT VT) {
ISD::MemIndexedMode AM = LD->getAddressingMode();
// Progmem indexed loads only work in POSTINC mode.
if (LD->getExtensionType() != ISD::NON_EXTLOAD || AM != ISD::POST_INC) {
return 0;
}
unsigned Opcode = 0;
int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();
switch (VT.SimpleTy) {
case MVT::i8: {
if (Offs != 1) {
return 0;
}
Opcode = AVR::LPMRdZPi;
break;
}
case MVT::i16: {
if (Offs != 2) {
return 0;
}
Opcode = AVR::LPMWRdZPi;
break;
}
default:
return 0;
}
return Opcode;
}
bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintCode,
std::vector<SDValue> &OutOps) {
assert((ConstraintCode == InlineAsm::Constraint_m ||
ConstraintCode == InlineAsm::Constraint_Q) &&
"Unexpected asm memory constraint");
MachineRegisterInfo &RI = MF->getRegInfo();
const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
const TargetLowering &TL = *STI.getTargetLowering();
SDLoc dl(Op);
auto DL = CurDAG->getDataLayout();
const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);
// If address operand is of PTRDISPREGS class, all is OK, then.
if (RegNode &&
RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) {
OutOps.push_back(Op);
return false;
}
if (Op->getOpcode() == ISD::FrameIndex) {
SDValue Base, Disp;
if (SelectAddr(Op.getNode(), Op, Base, Disp)) {
OutOps.push_back(Base);
OutOps.push_back(Disp);
return false;
}
return true;
}
// If Op is add 'register, immediate' and
// register is either virtual register or register of PTRDISPREGSRegClass
if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) {
SDValue CopyFromRegOp = Op->getOperand(0);
SDValue ImmOp = Op->getOperand(1);
ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);
unsigned Reg;
bool CanHandleRegImmOpt = true;
CanHandleRegImmOpt &= ImmNode != 0;
CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;
if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) {
RegisterSDNode *RegNode =
cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
Reg = RegNode->getReg();
CanHandleRegImmOpt &= (TargetRegisterInfo::isVirtualRegister(Reg) ||
AVR::PTRDISPREGSRegClass.contains(Reg));
} else {
CanHandleRegImmOpt = false;
}
// If we detect proper case - correct virtual register class
// if needed and go to another inlineasm operand.
if (CanHandleRegImmOpt) {
SDValue Base, Disp;
if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) {
SDLoc dl(CopyFromRegOp);
unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);
SDValue CopyToReg =
CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp);
SDValue NewCopyFromRegOp =
CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));
Base = NewCopyFromRegOp;
} else {
Base = CopyFromRegOp;
}
if (ImmNode->getValueType(0) != MVT::i8) {
Disp = CurDAG->getTargetConstant(ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8);
} else {
Disp = ImmOp;
}
OutOps.push_back(Base);
OutOps.push_back(Disp);
return false;
}
}
// More generic case.
// Create chain that puts Op into pointer register
// and return that register.
unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);
SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
SDValue CopyFromReg =
CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));
OutOps.push_back(CopyFromReg);
return false;
}
template <> bool AVRDAGToDAGISel::select<ISD::FrameIndex>(SDNode *N) {
auto DL = CurDAG->getDataLayout();
// Convert the frameindex into a temp instruction that will hold the
// effective address of the final stack slot.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI =
CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy(DL));
CurDAG->SelectNodeTo(N, AVR::FRMIDX,
getTargetLowering()->getPointerTy(DL), TFI,
CurDAG->getTargetConstant(0, SDLoc(N), MVT::i16));
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::STORE>(SDNode *N) {
// Use the STD{W}SPQRr pseudo instruction when passing arguments through
// the stack on function calls for further expansion during the PEI phase.
const StoreSDNode *ST = cast<StoreSDNode>(N);
SDValue BasePtr = ST->getBasePtr();
// Early exit when the base pointer is a frame index node or a constant.
if (isa<FrameIndexSDNode>(BasePtr) || isa<ConstantSDNode>(BasePtr) ||
BasePtr.isUndef()) {
return false;
}
const RegisterSDNode *RN = dyn_cast<RegisterSDNode>(BasePtr.getOperand(0));
// Only stores where SP is the base pointer are valid.
if (!RN || (RN->getReg() != AVR::SP)) {
return false;
}
int CST = (int)cast<ConstantSDNode>(BasePtr.getOperand(1))->getZExtValue();
SDValue Chain = ST->getChain();
EVT VT = ST->getValue().getValueType();
SDLoc DL(N);
SDValue Offset = CurDAG->getTargetConstant(CST, DL, MVT::i16);
SDValue Ops[] = {BasePtr.getOperand(0), Offset, ST->getValue(), Chain};
unsigned Opc = (VT == MVT::i16) ? AVR::STDWSPQRr : AVR::STDSPQRr;
SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, MVT::Other, Ops);
// Transfer memory operands.
CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {ST->getMemOperand()});
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::LOAD>(SDNode *N) {
const LoadSDNode *LD = cast<LoadSDNode>(N);
if (!AVR::isProgramMemoryAccess(LD)) {
// Check if the opcode can be converted into an indexed load.
return selectIndexedLoad(N);
}
assert(Subtarget->hasLPM() && "cannot load from program memory on this mcu");
// This is a flash memory load, move the pointer into R31R30 and emit
// the lpm instruction.
MVT VT = LD->getMemoryVT().getSimpleVT();
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDNode *ResNode;
SDLoc DL(N);
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Ptr, SDValue());
Ptr = CurDAG->getCopyFromReg(Chain, DL, AVR::R31R30, MVT::i16,
Chain.getValue(1));
SDValue RegZ = CurDAG->getRegister(AVR::R31R30, MVT::i16);
// Check if the opcode can be converted into an indexed load.
if (unsigned LPMOpc = selectIndexedProgMemLoad(LD, VT)) {
// It is legal to fold the load into an indexed load.
ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr,
RegZ);
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
} else {
// Selecting an indexed load is not legal, fallback to a normal load.
switch (VT.SimpleTy) {
case MVT::i8:
ResNode = CurDAG->getMachineNode(AVR::LPMRdZ, DL, MVT::i8, MVT::Other,
Ptr, RegZ);
break;
case MVT::i16:
ResNode = CurDAG->getMachineNode(AVR::LPMWRdZ, DL, MVT::i16,
MVT::Other, Ptr, RegZ);
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
break;
default:
llvm_unreachable("Unsupported VT!");
}
}
// Transfer memory operands.
CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {LD->getMemOperand()});
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<AVRISD::CALL>(SDNode *N) {
SDValue InFlag;
SDValue Chain = N->getOperand(0);
SDValue Callee = N->getOperand(1);
unsigned LastOpNum = N->getNumOperands() - 1;
// Direct calls are autogenerated.
unsigned Op = Callee.getOpcode();
if (Op == ISD::TargetGlobalAddress || Op == ISD::TargetExternalSymbol) {
return false;
}
// Skip the incoming flag if present
if (N->getOperand(LastOpNum).getValueType() == MVT::Glue) {
--LastOpNum;
}
SDLoc DL(N);
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Callee, InFlag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(CurDAG->getRegister(AVR::R31R30, MVT::i16));
// Map all operands into the new node.
for (unsigned i = 2, e = LastOpNum + 1; i != e; ++i) {
Ops.push_back(N->getOperand(i));
}
Ops.push_back(Chain);
Ops.push_back(Chain.getValue(1));
SDNode *ResNode =
CurDAG->getMachineNode(AVR::ICALL, DL, MVT::Other, MVT::Glue, Ops);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
CurDAG->RemoveDeadNode(N);
return true;
}
template <> bool AVRDAGToDAGISel::select<ISD::BRIND>(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue JmpAddr = N->getOperand(1);
SDLoc DL(N);
// Move the destination address of the indirect branch into R31R30.
Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, JmpAddr);
SDNode *ResNode = CurDAG->getMachineNode(AVR::IJMP, DL, MVT::Other, Chain);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
CurDAG->RemoveDeadNode(N);
return true;
}
bool AVRDAGToDAGISel::selectMultiplication(llvm::SDNode *N) {
SDLoc DL(N);
MVT Type = N->getSimpleValueType(0);
assert(Type == MVT::i8 && "unexpected value type");
bool isSigned = N->getOpcode() == ISD::SMUL_LOHI;
unsigned MachineOp = isSigned ? AVR::MULSRdRr : AVR::MULRdRr;
SDValue Lhs = N->getOperand(0);
SDValue Rhs = N->getOperand(1);
SDNode *Mul = CurDAG->getMachineNode(MachineOp, DL, MVT::Glue, Lhs, Rhs);
SDValue InChain = CurDAG->getEntryNode();
SDValue InGlue = SDValue(Mul, 0);
// Copy the low half of the result, if it is needed.
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo =
CurDAG->getCopyFromReg(InChain, DL, AVR::R0, Type, InGlue);
ReplaceUses(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// Copy the high half of the result, if it is needed.
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi =
CurDAG->getCopyFromReg(InChain, DL, AVR::R1, Type, InGlue);
ReplaceUses(SDValue(N, 1), CopyFromHi);
InChain = CopyFromHi.getValue(1);
InGlue = CopyFromHi.getValue(2);
}
CurDAG->RemoveDeadNode(N);
// We need to clear R1. This is currently done (dirtily)
// using a custom inserter.
return true;
}
void AVRDAGToDAGISel::Select(SDNode *N) {
// If we have a custom node, we already have selected!
if (N->isMachineOpcode()) {
LLVM_DEBUG(errs() << "== "; N->dump(CurDAG); errs() << "\n");
N->setNodeId(-1);
return;
}
// See if subclasses can handle this node.
if (trySelect(N))
return;
// Select the default instruction
SelectCode(N);
}
bool AVRDAGToDAGISel::trySelect(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDLoc DL(N);
switch (Opcode) {
// Nodes we fully handle.
case ISD::FrameIndex: return select<ISD::FrameIndex>(N);
case ISD::BRIND: return select<ISD::BRIND>(N);
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: return selectMultiplication(N);
// Nodes we handle partially. Other cases are autogenerated
case ISD::STORE: return select<ISD::STORE>(N);
case ISD::LOAD: return select<ISD::LOAD>(N);
case AVRISD::CALL: return select<AVRISD::CALL>(N);
default: return false;
}
}
FunctionPass *createAVRISelDag(AVRTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new AVRDAGToDAGISel(TM, OptLevel);
}
} // end of namespace llvm