llvm-project/llvm/lib/DebugInfo/DWARF/DWARFContext.cpp

1708 lines
63 KiB
C++

//===- DWARFContext.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
#define DEBUG_TYPE "dwarf"
using DWARFLineTable = DWARFDebugLine::LineTable;
using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind;
DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj,
std::string DWPName)
: DIContext(CK_DWARF), DWPName(std::move(DWPName)), DObj(std::move(DObj)) {}
DWARFContext::~DWARFContext() = default;
/// Dump the UUID load command.
static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) {
auto *MachO = dyn_cast<MachOObjectFile>(&Obj);
if (!MachO)
return;
for (auto LC : MachO->load_commands()) {
raw_ostream::uuid_t UUID;
if (LC.C.cmd == MachO::LC_UUID) {
if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) {
OS << "error: UUID load command is too short.\n";
return;
}
OS << "UUID: ";
memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID));
OS.write_uuid(UUID);
Triple T = MachO->getArchTriple();
OS << " (" << T.getArchName() << ')';
OS << ' ' << MachO->getFileName() << '\n';
}
}
}
using ContributionCollection =
std::vector<Optional<StrOffsetsContributionDescriptor>>;
// Collect all the contributions to the string offsets table from all units,
// sort them by their starting offsets and remove duplicates.
static ContributionCollection
collectContributionData(DWARFContext::unit_iterator_range Units) {
ContributionCollection Contributions;
for (const auto &U : Units)
Contributions.push_back(U->getStringOffsetsTableContribution());
// Sort the contributions so that any invalid ones are placed at
// the start of the contributions vector. This way they are reported
// first.
llvm::sort(Contributions,
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base < R->Base;
return R.hasValue();
});
// Uniquify contributions, as it is possible that units (specifically
// type units in dwo or dwp files) share contributions. We don't want
// to report them more than once.
Contributions.erase(
std::unique(Contributions.begin(), Contributions.end(),
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base == R->Base && L->Size == R->Size;
return false;
}),
Contributions.end());
return Contributions;
}
static void dumpDWARFv5StringOffsetsSection(
raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection, StringRef StringSection,
DWARFContext::unit_iterator_range Units, bool LittleEndian) {
auto Contributions = collectContributionData(Units);
DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0);
DataExtractor StrData(StringSection, LittleEndian, 0);
uint64_t SectionSize = StringOffsetsSection.Data.size();
uint32_t Offset = 0;
for (auto &Contribution : Contributions) {
// Report an ill-formed contribution.
if (!Contribution) {
OS << "error: invalid contribution to string offsets table in section ."
<< SectionName << ".\n";
return;
}
dwarf::DwarfFormat Format = Contribution->getFormat();
uint16_t Version = Contribution->getVersion();
uint64_t ContributionHeader = Contribution->Base;
// In DWARF v5 there is a contribution header that immediately precedes
// the string offsets base (the location we have previously retrieved from
// the CU DIE's DW_AT_str_offsets attribute). The header is located either
// 8 or 16 bytes before the base, depending on the contribution's format.
if (Version >= 5)
ContributionHeader -= Format == DWARF32 ? 8 : 16;
// Detect overlapping contributions.
if (Offset > ContributionHeader) {
OS << "error: overlapping contributions to string offsets table in "
"section ."
<< SectionName << ".\n";
return;
}
// Report a gap in the table.
if (Offset < ContributionHeader) {
OS << format("0x%8.8x: Gap, length = ", Offset);
OS << (ContributionHeader - Offset) << "\n";
}
OS << format("0x%8.8x: ", (uint32_t)ContributionHeader);
// In DWARF v5 the contribution size in the descriptor does not equal
// the originally encoded length (it does not contain the length of the
// version field and the padding, a total of 4 bytes). Add them back in
// for reporting.
OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4))
<< ", Format = " << (Format == DWARF32 ? "DWARF32" : "DWARF64")
<< ", Version = " << Version << "\n";
Offset = Contribution->Base;
unsigned EntrySize = Contribution->getDwarfOffsetByteSize();
while (Offset - Contribution->Base < Contribution->Size) {
OS << format("0x%8.8x: ", Offset);
// FIXME: We can only extract strings if the offset fits in 32 bits.
uint64_t StringOffset =
StrOffsetExt.getRelocatedValue(EntrySize, &Offset);
// Extract the string if we can and display it. Otherwise just report
// the offset.
if (StringOffset <= std::numeric_limits<uint32_t>::max()) {
uint32_t StringOffset32 = (uint32_t)StringOffset;
OS << format("%8.8x ", StringOffset32);
const char *S = StrData.getCStr(&StringOffset32);
if (S)
OS << format("\"%s\"", S);
} else
OS << format("%16.16" PRIx64 " ", StringOffset);
OS << "\n";
}
}
// Report a gap at the end of the table.
if (Offset < SectionSize) {
OS << format("0x%8.8x: Gap, length = ", Offset);
OS << (SectionSize - Offset) << "\n";
}
}
// Dump a DWARF string offsets section. This may be a DWARF v5 formatted
// string offsets section, where each compile or type unit contributes a
// number of entries (string offsets), with each contribution preceded by
// a header containing size and version number. Alternatively, it may be a
// monolithic series of string offsets, as generated by the pre-DWARF v5
// implementation of split DWARF.
static void dumpStringOffsetsSection(raw_ostream &OS, StringRef SectionName,
const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection,
StringRef StringSection,
DWARFContext::unit_iterator_range Units,
bool LittleEndian, unsigned MaxVersion) {
// If we have at least one (compile or type) unit with DWARF v5 or greater,
// we assume that the section is formatted like a DWARF v5 string offsets
// section.
if (MaxVersion >= 5)
dumpDWARFv5StringOffsetsSection(OS, SectionName, Obj, StringOffsetsSection,
StringSection, Units, LittleEndian);
else {
DataExtractor strOffsetExt(StringOffsetsSection.Data, LittleEndian, 0);
uint32_t offset = 0;
uint64_t size = StringOffsetsSection.Data.size();
// Ensure that size is a multiple of the size of an entry.
if (size & ((uint64_t)(sizeof(uint32_t) - 1))) {
OS << "error: size of ." << SectionName << " is not a multiple of "
<< sizeof(uint32_t) << ".\n";
size &= -(uint64_t)sizeof(uint32_t);
}
DataExtractor StrData(StringSection, LittleEndian, 0);
while (offset < size) {
OS << format("0x%8.8x: ", offset);
uint32_t StringOffset = strOffsetExt.getU32(&offset);
OS << format("%8.8x ", StringOffset);
const char *S = StrData.getCStr(&StringOffset);
if (S)
OS << format("\"%s\"", S);
OS << "\n";
}
}
}
// Dump the .debug_addr section.
static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData,
DIDumpOptions DumpOpts, uint16_t Version,
uint8_t AddrSize) {
uint32_t Offset = 0;
while (AddrData.isValidOffset(Offset)) {
DWARFDebugAddrTable AddrTable;
uint32_t TableOffset = Offset;
if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize,
DWARFContext::dumpWarning)) {
WithColor::error() << toString(std::move(Err)) << '\n';
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (!AddrTable.hasValidLength())
break;
uint64_t Length = AddrTable.getLength();
Offset = TableOffset + Length;
} else {
AddrTable.dump(OS, DumpOpts);
}
}
}
// Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5).
static void dumpRnglistsSection(
raw_ostream &OS, DWARFDataExtractor &rnglistData,
llvm::function_ref<Optional<object::SectionedAddress>(uint32_t)>
LookupPooledAddress,
DIDumpOptions DumpOpts) {
uint32_t Offset = 0;
while (rnglistData.isValidOffset(Offset)) {
llvm::DWARFDebugRnglistTable Rnglists;
uint32_t TableOffset = Offset;
if (Error Err = Rnglists.extract(rnglistData, &Offset)) {
WithColor::error() << toString(std::move(Err)) << '\n';
uint64_t Length = Rnglists.length();
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (Length == 0)
break;
Offset = TableOffset + Length;
} else {
Rnglists.dump(OS, LookupPooledAddress, DumpOpts);
}
}
}
static void dumpLoclistsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
DWARFDataExtractor Data,
const MCRegisterInfo *MRI,
Optional<uint64_t> DumpOffset) {
uint32_t Offset = 0;
DWARFDebugLoclists Loclists;
DWARFListTableHeader Header(".debug_loclists", "locations");
if (Error E = Header.extract(Data, &Offset)) {
WithColor::error() << toString(std::move(E)) << '\n';
return;
}
Header.dump(OS, DumpOpts);
DataExtractor LocData(Data.getData().drop_front(Offset),
Data.isLittleEndian(), Header.getAddrSize());
Loclists.parse(LocData, Header.getVersion());
Loclists.dump(OS, 0, MRI, DumpOffset);
}
void DWARFContext::dump(
raw_ostream &OS, DIDumpOptions DumpOpts,
std::array<Optional<uint64_t>, DIDT_ID_Count> DumpOffsets) {
uint64_t DumpType = DumpOpts.DumpType;
StringRef Extension = sys::path::extension(DObj->getFileName());
bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp");
// Print UUID header.
const auto *ObjFile = DObj->getFile();
if (DumpType & DIDT_UUID)
dumpUUID(OS, *ObjFile);
// Print a header for each explicitly-requested section.
// Otherwise just print one for non-empty sections.
// Only print empty .dwo section headers when dumping a .dwo file.
bool Explicit = DumpType != DIDT_All && !IsDWO;
bool ExplicitDWO = Explicit && IsDWO;
auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID,
StringRef Section) -> Optional<uint64_t> * {
unsigned Mask = 1U << ID;
bool Should = (DumpType & Mask) && (Explicit || !Section.empty());
if (!Should)
return nullptr;
OS << "\n" << Name << " contents:\n";
return &DumpOffsets[ID];
};
// Dump individual sections.
if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev,
DObj->getAbbrevSection()))
getDebugAbbrev()->dump(OS);
if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev,
DObj->getAbbrevDWOSection()))
getDebugAbbrevDWO()->dump(OS);
auto dumpDebugInfo = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugInfo])
for (const auto &U : Units)
U->getDIEForOffset(DumpOffset.getValue())
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
for (const auto &U : Units)
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugInfo)) {
if (Explicit || getNumCompileUnits())
dumpDebugInfo(".debug_info", info_section_units());
if (ExplicitDWO || getNumDWOCompileUnits())
dumpDebugInfo(".debug_info.dwo", dwo_info_section_units());
}
auto dumpDebugType = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
for (const auto &U : Units)
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugTypes])
U->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugTypes)) {
if (Explicit || getNumTypeUnits())
dumpDebugType(".debug_types", types_section_units());
if (ExplicitDWO || getNumDWOTypeUnits())
dumpDebugType(".debug_types.dwo", dwo_types_section_units());
}
if (const auto *Off = shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc,
DObj->getLocSection().Data)) {
getDebugLoc()->dump(OS, getRegisterInfo(), *Off);
}
if (const auto *Off =
shouldDump(Explicit, ".debug_loclists", DIDT_ID_DebugLoclists,
DObj->getLoclistsSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLoclistsSection(), isLittleEndian(),
0);
dumpLoclistsSection(OS, DumpOpts, Data, getRegisterInfo(), *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc,
DObj->getLocDWOSection().Data)) {
getDebugLocDWO()->dump(OS, 0, getRegisterInfo(), *Off);
}
if (const auto *Off = shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame,
DObj->getDebugFrameSection()))
getDebugFrame()->dump(OS, getRegisterInfo(), *Off);
if (const auto *Off = shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame,
DObj->getEHFrameSection()))
getEHFrame()->dump(OS, getRegisterInfo(), *Off);
if (DumpType & DIDT_DebugMacro) {
if (Explicit || !getDebugMacro()->empty()) {
OS << "\n.debug_macinfo contents:\n";
getDebugMacro()->dump(OS);
}
}
if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges,
DObj->getARangeSection())) {
uint32_t offset = 0;
DataExtractor arangesData(DObj->getARangeSection(), isLittleEndian(), 0);
DWARFDebugArangeSet set;
while (set.extract(arangesData, &offset))
set.dump(OS);
}
auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser,
DIDumpOptions DumpOpts,
Optional<uint64_t> DumpOffset) {
while (!Parser.done()) {
if (DumpOffset && Parser.getOffset() != *DumpOffset) {
Parser.skip(dumpWarning);
continue;
}
OS << "debug_line[" << format("0x%8.8x", Parser.getOffset()) << "]\n";
if (DumpOpts.Verbose) {
Parser.parseNext(dumpWarning, dumpWarning, &OS);
} else {
DWARFDebugLine::LineTable LineTable =
Parser.parseNext(dumpWarning, dumpWarning);
LineTable.dump(OS, DumpOpts);
}
}
};
if (const auto *Off = shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine,
DObj->getLineSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(),
0);
DWARFDebugLine::SectionParser Parser(LineData, *this, compile_units(),
type_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine,
DObj->getLineDWOSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(),
isLittleEndian(), 0);
DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_compile_units(),
dwo_type_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex,
DObj->getCUIndexSection())) {
getCUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex,
DObj->getTUIndexSection())) {
getTUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr,
DObj->getStringSection())) {
DataExtractor strData(DObj->getStringSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strOffset, s);
strOffset = offset;
}
}
if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr,
DObj->getStringDWOSection())) {
DataExtractor strDWOData(DObj->getStringDWOSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strDWOOffset = 0;
while (const char *s = strDWOData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s);
strDWOOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr,
DObj->getLineStringSection())) {
DataExtractor strData(DObj->getLineStringSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8x: \"", strOffset);
OS.write_escaped(s);
OS << "\"\n";
strOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr,
DObj->getAddrSection().Data)) {
DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(),
isLittleEndian(), 0);
dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize());
}
if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges,
DObj->getRangeSection().Data)) {
uint8_t savedAddressByteSize = getCUAddrSize();
DWARFDataExtractor rangesData(*DObj, DObj->getRangeSection(),
isLittleEndian(), savedAddressByteSize);
uint32_t offset = 0;
DWARFDebugRangeList rangeList;
while (rangesData.isValidOffset(offset)) {
if (Error E = rangeList.extract(rangesData, &offset)) {
WithColor::error() << toString(std::move(E)) << '\n';
break;
}
rangeList.dump(OS);
}
}
auto LookupPooledAddress = [&](uint32_t Index) -> Optional<SectionedAddress> {
const auto &CUs = compile_units();
auto I = CUs.begin();
if (I == CUs.end())
return None;
return (*I)->getAddrOffsetSectionItem(Index);
};
if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists,
DObj->getRnglistsSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists,
DObj->getRnglistsDWOSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames,
DObj->getPubNamesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getPubNamesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes,
DObj->getPubTypesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getPubTypesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames,
DObj->getGnuPubNamesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getGnuPubNamesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes,
DObj->getGnuPubTypesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getGnuPubTypesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets,
DObj->getStringOffsetSection().Data))
dumpStringOffsetsSection(OS, "debug_str_offsets", *DObj,
DObj->getStringOffsetSection(),
DObj->getStringSection(), normal_units(),
isLittleEndian(), getMaxVersion());
if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets,
DObj->getStringOffsetDWOSection().Data))
dumpStringOffsetsSection(OS, "debug_str_offsets.dwo", *DObj,
DObj->getStringOffsetDWOSection(),
DObj->getStringDWOSection(), dwo_units(),
isLittleEndian(), getMaxDWOVersion());
if (shouldDump(Explicit, ".gdb_index", DIDT_ID_GdbIndex,
DObj->getGdbIndexSection())) {
getGdbIndex().dump(OS);
}
if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames,
DObj->getAppleNamesSection().Data))
getAppleNames().dump(OS);
if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes,
DObj->getAppleTypesSection().Data))
getAppleTypes().dump(OS);
if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces,
DObj->getAppleNamespacesSection().Data))
getAppleNamespaces().dump(OS);
if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC,
DObj->getAppleObjCSection().Data))
getAppleObjC().dump(OS);
if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames,
DObj->getDebugNamesSection().Data))
getDebugNames().dump(OS);
}
DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) {
parseDWOUnits(LazyParse);
if (const auto &CUI = getCUIndex()) {
if (const auto *R = CUI.getFromHash(Hash))
return dyn_cast_or_null<DWARFCompileUnit>(
DWOUnits.getUnitForIndexEntry(*R));
return nullptr;
}
// If there's no index, just search through the CUs in the DWO - there's
// probably only one unless this is something like LTO - though an in-process
// built/cached lookup table could be used in that case to improve repeated
// lookups of different CUs in the DWO.
for (const auto &DWOCU : dwo_compile_units()) {
// Might not have parsed DWO ID yet.
if (!DWOCU->getDWOId()) {
if (Optional<uint64_t> DWOId =
toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id)))
DWOCU->setDWOId(*DWOId);
else
// No DWO ID?
continue;
}
if (DWOCU->getDWOId() == Hash)
return dyn_cast<DWARFCompileUnit>(DWOCU.get());
}
return nullptr;
}
DWARFDie DWARFContext::getDIEForOffset(uint32_t Offset) {
parseNormalUnits();
if (auto *CU = NormalUnits.getUnitForOffset(Offset))
return CU->getDIEForOffset(Offset);
return DWARFDie();
}
bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) {
bool Success = true;
DWARFVerifier verifier(OS, *this, DumpOpts);
Success &= verifier.handleDebugAbbrev();
if (DumpOpts.DumpType & DIDT_DebugInfo)
Success &= verifier.handleDebugInfo();
if (DumpOpts.DumpType & DIDT_DebugLine)
Success &= verifier.handleDebugLine();
Success &= verifier.handleAccelTables();
return Success;
}
const DWARFUnitIndex &DWARFContext::getCUIndex() {
if (CUIndex)
return *CUIndex;
DataExtractor CUIndexData(DObj->getCUIndexSection(), isLittleEndian(), 0);
CUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_INFO);
CUIndex->parse(CUIndexData);
return *CUIndex;
}
const DWARFUnitIndex &DWARFContext::getTUIndex() {
if (TUIndex)
return *TUIndex;
DataExtractor TUIndexData(DObj->getTUIndexSection(), isLittleEndian(), 0);
TUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_TYPES);
TUIndex->parse(TUIndexData);
return *TUIndex;
}
DWARFGdbIndex &DWARFContext::getGdbIndex() {
if (GdbIndex)
return *GdbIndex;
DataExtractor GdbIndexData(DObj->getGdbIndexSection(), true /*LE*/, 0);
GdbIndex = llvm::make_unique<DWARFGdbIndex>();
GdbIndex->parse(GdbIndexData);
return *GdbIndex;
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
if (Abbrev)
return Abbrev.get();
DataExtractor abbrData(DObj->getAbbrevSection(), isLittleEndian(), 0);
Abbrev.reset(new DWARFDebugAbbrev());
Abbrev->extract(abbrData);
return Abbrev.get();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
if (AbbrevDWO)
return AbbrevDWO.get();
DataExtractor abbrData(DObj->getAbbrevDWOSection(), isLittleEndian(), 0);
AbbrevDWO.reset(new DWARFDebugAbbrev());
AbbrevDWO->extract(abbrData);
return AbbrevDWO.get();
}
const DWARFDebugLoc *DWARFContext::getDebugLoc() {
if (Loc)
return Loc.get();
Loc.reset(new DWARFDebugLoc);
// Assume all units have the same address byte size.
if (getNumCompileUnits()) {
DWARFDataExtractor LocData(*DObj, DObj->getLocSection(), isLittleEndian(),
getUnitAtIndex(0)->getAddressByteSize());
Loc->parse(LocData);
}
return Loc.get();
}
const DWARFDebugLoclists *DWARFContext::getDebugLocDWO() {
if (LocDWO)
return LocDWO.get();
LocDWO.reset(new DWARFDebugLoclists());
// Assume all compile units have the same address byte size.
// FIXME: We don't need AddressSize for split DWARF since relocatable
// addresses cannot appear there. At the moment DWARFExpression requires it.
DataExtractor LocData(DObj->getLocDWOSection().Data, isLittleEndian(), 4);
// Use version 4. DWO does not support the DWARF v5 .debug_loclists yet and
// that means we are parsing the new style .debug_loc (pre-standatized version
// of the .debug_loclists).
LocDWO->parse(LocData, 4 /* Version */);
return LocDWO.get();
}
const DWARFDebugAranges *DWARFContext::getDebugAranges() {
if (Aranges)
return Aranges.get();
Aranges.reset(new DWARFDebugAranges());
Aranges->generate(this);
return Aranges.get();
}
const DWARFDebugFrame *DWARFContext::getDebugFrame() {
if (DebugFrame)
return DebugFrame.get();
// There's a "bug" in the DWARFv3 standard with respect to the target address
// size within debug frame sections. While DWARF is supposed to be independent
// of its container, FDEs have fields with size being "target address size",
// which isn't specified in DWARF in general. It's only specified for CUs, but
// .eh_frame can appear without a .debug_info section. Follow the example of
// other tools (libdwarf) and extract this from the container (ObjectFile
// provides this information). This problem is fixed in DWARFv4
// See this dwarf-discuss discussion for more details:
// http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
DWARFDataExtractor debugFrameData(DObj->getDebugFrameSection(),
isLittleEndian(), DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(getArch(), false /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugFrame *DWARFContext::getEHFrame() {
if (EHFrame)
return EHFrame.get();
DWARFDataExtractor debugFrameData(DObj->getEHFrameSection(), isLittleEndian(),
DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(getArch(), true /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugMacro *DWARFContext::getDebugMacro() {
if (Macro)
return Macro.get();
DataExtractor MacinfoData(DObj->getMacinfoSection(), isLittleEndian(), 0);
Macro.reset(new DWARFDebugMacro());
Macro->parse(MacinfoData);
return Macro.get();
}
template <typename T>
static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj,
const DWARFSection &Section, StringRef StringSection,
bool IsLittleEndian) {
if (Cache)
return *Cache;
DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0);
DataExtractor StrData(StringSection, IsLittleEndian, 0);
Cache.reset(new T(AccelSection, StrData));
if (Error E = Cache->extract())
llvm::consumeError(std::move(E));
return *Cache;
}
const DWARFDebugNames &DWARFContext::getDebugNames() {
return getAccelTable(Names, *DObj, DObj->getDebugNamesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNames() {
return getAccelTable(AppleNames, *DObj, DObj->getAppleNamesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleTypes() {
return getAccelTable(AppleTypes, *DObj, DObj->getAppleTypesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() {
return getAccelTable(AppleNamespaces, *DObj,
DObj->getAppleNamespacesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleObjC() {
return getAccelTable(AppleObjC, *DObj, DObj->getAppleObjCSection(),
DObj->getStringSection(), isLittleEndian());
}
const DWARFDebugLine::LineTable *
DWARFContext::getLineTableForUnit(DWARFUnit *U) {
Expected<const DWARFDebugLine::LineTable *> ExpectedLineTable =
getLineTableForUnit(U, dumpWarning);
if (!ExpectedLineTable) {
dumpWarning(ExpectedLineTable.takeError());
return nullptr;
}
return *ExpectedLineTable;
}
Expected<const DWARFDebugLine::LineTable *> DWARFContext::getLineTableForUnit(
DWARFUnit *U, std::function<void(Error)> RecoverableErrorCallback) {
if (!Line)
Line.reset(new DWARFDebugLine);
auto UnitDIE = U->getUnitDIE();
if (!UnitDIE)
return nullptr;
auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
if (!Offset)
return nullptr; // No line table for this compile unit.
uint32_t stmtOffset = *Offset + U->getLineTableOffset();
// See if the line table is cached.
if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
return lt;
// Make sure the offset is good before we try to parse.
if (stmtOffset >= U->getLineSection().Data.size())
return nullptr;
// We have to parse it first.
DWARFDataExtractor lineData(*DObj, U->getLineSection(), isLittleEndian(),
U->getAddressByteSize());
return Line->getOrParseLineTable(lineData, stmtOffset, *this, U,
RecoverableErrorCallback);
}
void DWARFContext::parseNormalUnits() {
if (!NormalUnits.empty())
return;
DObj->forEachInfoSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(*this, S, DW_SECT_INFO);
});
NormalUnits.finishedInfoUnits();
DObj->forEachTypesSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(*this, S, DW_SECT_TYPES);
});
}
void DWARFContext::parseDWOUnits(bool Lazy) {
if (!DWOUnits.empty())
return;
DObj->forEachInfoDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_INFO, Lazy);
});
DWOUnits.finishedInfoUnits();
DObj->forEachTypesDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_TYPES, Lazy);
});
}
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) {
parseNormalUnits();
return dyn_cast_or_null<DWARFCompileUnit>(
NormalUnits.getUnitForOffset(Offset));
}
DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
// First, get the offset of the compile unit.
uint32_t CUOffset = getDebugAranges()->findAddress(Address);
// Retrieve the compile unit.
return getCompileUnitForOffset(CUOffset);
}
DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address) {
DIEsForAddress Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Result;
Result.CompileUnit = CU;
Result.FunctionDIE = CU->getSubroutineForAddress(Address);
std::vector<DWARFDie> Worklist;
Worklist.push_back(Result.FunctionDIE);
while (!Worklist.empty()) {
DWARFDie DIE = Worklist.back();
Worklist.pop_back();
if (!DIE.isValid())
continue;
if (DIE.getTag() == DW_TAG_lexical_block &&
DIE.addressRangeContainsAddress(Address)) {
Result.BlockDIE = DIE;
break;
}
for (auto Child : DIE)
Worklist.push_back(Child);
}
return Result;
}
/// TODO: change input parameter from "uint64_t Address"
/// into "SectionedAddress Address"
static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU,
uint64_t Address,
FunctionNameKind Kind,
std::string &FunctionName,
uint32_t &StartLine) {
// The address may correspond to instruction in some inlined function,
// so we have to build the chain of inlined functions and take the
// name of the topmost function in it.
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address, InlinedChain);
if (InlinedChain.empty())
return false;
const DWARFDie &DIE = InlinedChain[0];
bool FoundResult = false;
const char *Name = nullptr;
if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) {
FunctionName = Name;
FoundResult = true;
}
if (auto DeclLineResult = DIE.getDeclLine()) {
StartLine = DeclLineResult;
FoundResult = true;
}
return FoundResult;
}
DILineInfo DWARFContext::getLineInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return Result;
getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
Result.FunctionName, Result.StartLine);
if (Spec.FLIKind != FileLineInfoKind::None) {
if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) {
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Result);
}
}
return Result;
}
DILineInfoTable DWARFContext::getLineInfoForAddressRange(
object::SectionedAddress Address, uint64_t Size, DILineInfoSpecifier Spec) {
DILineInfoTable Lines;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return Lines;
std::string FunctionName = "<invalid>";
uint32_t StartLine = 0;
getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
FunctionName, StartLine);
// If the Specifier says we don't need FileLineInfo, just
// return the top-most function at the starting address.
if (Spec.FLIKind == FileLineInfoKind::None) {
DILineInfo Result;
Result.FunctionName = FunctionName;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Address.Address, Result));
return Lines;
}
const DWARFLineTable *LineTable = getLineTableForUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
if (!LineTable->lookupAddressRange({Address.Address, Address.SectionIndex},
Size, RowVector)) {
return Lines;
}
for (uint32_t RowIndex : RowVector) {
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
Spec.FLIKind, Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Row.Address.Address, Result));
}
return Lines;
}
DIInliningInfo
DWARFContext::getInliningInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DIInliningInfo InliningInfo;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return InliningInfo;
const DWARFLineTable *LineTable = nullptr;
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address.Address, InlinedChain);
if (InlinedChain.size() == 0) {
// If there is no DIE for address (e.g. it is in unavailable .dwo file),
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
LineTable = getLineTableForUnit(CU);
if (LineTable && LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex},
CU->getCompilationDir(), Spec.FLIKind, Frame))
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0;
for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) {
DWARFDie &FunctionDIE = InlinedChain[i];
DILineInfo Frame;
// Get function name if necessary.
if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind))
Frame.FunctionName = Name;
if (auto DeclLineResult = FunctionDIE.getDeclLine())
Frame.StartLine = DeclLineResult;
if (Spec.FLIKind != FileLineInfoKind::None) {
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
LineTable = getLineTableForUnit(CU);
// For the topmost routine, get file/line info from line table.
if (LineTable)
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
if (LineTable)
LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
Spec.FLIKind, Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
Frame.Discriminator = CallDiscriminator;
}
// Get call file/line/column of a current DIE.
if (i + 1 < n) {
FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn,
CallDiscriminator);
}
}
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
std::shared_ptr<DWARFContext>
DWARFContext::getDWOContext(StringRef AbsolutePath) {
if (auto S = DWP.lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath];
if (auto S = Entry->lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
Expected<OwningBinary<ObjectFile>> Obj = [&] {
if (!CheckedForDWP) {
SmallString<128> DWPName;
auto Obj = object::ObjectFile::createObjectFile(
this->DWPName.empty()
? (DObj->getFileName() + ".dwp").toStringRef(DWPName)
: StringRef(this->DWPName));
if (Obj) {
Entry = &DWP;
return Obj;
} else {
CheckedForDWP = true;
// TODO: Should this error be handled (maybe in a high verbosity mode)
// before falling back to .dwo files?
consumeError(Obj.takeError());
}
}
return object::ObjectFile::createObjectFile(AbsolutePath);
}();
if (!Obj) {
// TODO: Actually report errors helpfully.
consumeError(Obj.takeError());
return nullptr;
}
auto S = std::make_shared<DWOFile>();
S->File = std::move(Obj.get());
S->Context = DWARFContext::create(*S->File.getBinary());
*Entry = S;
auto *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
static Error createError(const Twine &Reason, llvm::Error E) {
return make_error<StringError>(Reason + toString(std::move(E)),
inconvertibleErrorCode());
}
/// SymInfo contains information about symbol: it's address
/// and section index which is -1LL for absolute symbols.
struct SymInfo {
uint64_t Address;
uint64_t SectionIndex;
};
/// Returns the address of symbol relocation used against and a section index.
/// Used for futher relocations computation. Symbol's section load address is
static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj,
const RelocationRef &Reloc,
const LoadedObjectInfo *L,
std::map<SymbolRef, SymInfo> &Cache) {
SymInfo Ret = {0, (uint64_t)-1LL};
object::section_iterator RSec = Obj.section_end();
object::symbol_iterator Sym = Reloc.getSymbol();
std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end();
// First calculate the address of the symbol or section as it appears
// in the object file
if (Sym != Obj.symbol_end()) {
bool New;
std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}});
if (!New)
return CacheIt->second;
Expected<uint64_t> SymAddrOrErr = Sym->getAddress();
if (!SymAddrOrErr)
return createError("failed to compute symbol address: ",
SymAddrOrErr.takeError());
// Also remember what section this symbol is in for later
auto SectOrErr = Sym->getSection();
if (!SectOrErr)
return createError("failed to get symbol section: ",
SectOrErr.takeError());
RSec = *SectOrErr;
Ret.Address = *SymAddrOrErr;
} else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) {
RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl());
Ret.Address = RSec->getAddress();
}
if (RSec != Obj.section_end())
Ret.SectionIndex = RSec->getIndex();
// If we are given load addresses for the sections, we need to adjust:
// SymAddr = (Address of Symbol Or Section in File) -
// (Address of Section in File) +
// (Load Address of Section)
// RSec is now either the section being targeted or the section
// containing the symbol being targeted. In either case,
// we need to perform the same computation.
if (L && RSec != Obj.section_end())
if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec))
Ret.Address += SectionLoadAddress - RSec->getAddress();
if (CacheIt != Cache.end())
CacheIt->second = Ret;
return Ret;
}
static bool isRelocScattered(const object::ObjectFile &Obj,
const RelocationRef &Reloc) {
const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj);
if (!MachObj)
return false;
// MachO also has relocations that point to sections and
// scattered relocations.
auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl());
return MachObj->isRelocationScattered(RelocInfo);
}
ErrorPolicy DWARFContext::defaultErrorHandler(Error E) {
WithColor::error() << toString(std::move(E)) << '\n';
return ErrorPolicy::Continue;
}
namespace {
struct DWARFSectionMap final : public DWARFSection {
RelocAddrMap Relocs;
};
class DWARFObjInMemory final : public DWARFObject {
bool IsLittleEndian;
uint8_t AddressSize;
StringRef FileName;
const object::ObjectFile *Obj = nullptr;
std::vector<SectionName> SectionNames;
using InfoSectionMap = MapVector<object::SectionRef, DWARFSectionMap,
std::map<object::SectionRef, unsigned>>;
InfoSectionMap InfoSections;
InfoSectionMap TypesSections;
InfoSectionMap InfoDWOSections;
InfoSectionMap TypesDWOSections;
DWARFSectionMap LocSection;
DWARFSectionMap LocListsSection;
DWARFSectionMap LineSection;
DWARFSectionMap RangeSection;
DWARFSectionMap RnglistsSection;
DWARFSectionMap StringOffsetSection;
DWARFSectionMap LineDWOSection;
DWARFSectionMap LocDWOSection;
DWARFSectionMap StringOffsetDWOSection;
DWARFSectionMap RangeDWOSection;
DWARFSectionMap RnglistsDWOSection;
DWARFSectionMap AddrSection;
DWARFSectionMap AppleNamesSection;
DWARFSectionMap AppleTypesSection;
DWARFSectionMap AppleNamespacesSection;
DWARFSectionMap AppleObjCSection;
DWARFSectionMap DebugNamesSection;
DWARFSectionMap PubNamesSection;
DWARFSectionMap PubTypesSection;
DWARFSectionMap GnuPubNamesSection;
DWARFSectionMap GnuPubTypesSection;
DWARFSectionMap *mapNameToDWARFSection(StringRef Name) {
return StringSwitch<DWARFSectionMap *>(Name)
.Case("debug_loc", &LocSection)
.Case("debug_loclists", &LocListsSection)
.Case("debug_line", &LineSection)
.Case("debug_str_offsets", &StringOffsetSection)
.Case("debug_ranges", &RangeSection)
.Case("debug_rnglists", &RnglistsSection)
.Case("debug_loc.dwo", &LocDWOSection)
.Case("debug_line.dwo", &LineDWOSection)
.Case("debug_names", &DebugNamesSection)
.Case("debug_rnglists.dwo", &RnglistsDWOSection)
.Case("debug_str_offsets.dwo", &StringOffsetDWOSection)
.Case("debug_addr", &AddrSection)
.Case("apple_names", &AppleNamesSection)
.Case("debug_pubnames", &PubNamesSection)
.Case("debug_pubtypes", &PubTypesSection)
.Case("debug_gnu_pubnames", &GnuPubNamesSection)
.Case("debug_gnu_pubtypes", &GnuPubTypesSection)
.Case("apple_types", &AppleTypesSection)
.Case("apple_namespaces", &AppleNamespacesSection)
.Case("apple_namespac", &AppleNamespacesSection)
.Case("apple_objc", &AppleObjCSection)
.Default(nullptr);
}
StringRef AbbrevSection;
StringRef ARangeSection;
StringRef DebugFrameSection;
StringRef EHFrameSection;
StringRef StringSection;
StringRef MacinfoSection;
StringRef AbbrevDWOSection;
StringRef StringDWOSection;
StringRef CUIndexSection;
StringRef GdbIndexSection;
StringRef TUIndexSection;
StringRef LineStringSection;
// A deque holding section data whose iterators are not invalidated when
// new decompressed sections are inserted at the end.
std::deque<SmallString<0>> UncompressedSections;
StringRef *mapSectionToMember(StringRef Name) {
if (DWARFSection *Sec = mapNameToDWARFSection(Name))
return &Sec->Data;
return StringSwitch<StringRef *>(Name)
.Case("debug_abbrev", &AbbrevSection)
.Case("debug_aranges", &ARangeSection)
.Case("debug_frame", &DebugFrameSection)
.Case("eh_frame", &EHFrameSection)
.Case("debug_str", &StringSection)
.Case("debug_macinfo", &MacinfoSection)
.Case("debug_abbrev.dwo", &AbbrevDWOSection)
.Case("debug_str.dwo", &StringDWOSection)
.Case("debug_cu_index", &CUIndexSection)
.Case("debug_tu_index", &TUIndexSection)
.Case("gdb_index", &GdbIndexSection)
.Case("debug_line_str", &LineStringSection)
// Any more debug info sections go here.
.Default(nullptr);
}
/// If Sec is compressed section, decompresses and updates its contents
/// provided by Data. Otherwise leaves it unchanged.
Error maybeDecompress(const object::SectionRef &Sec, StringRef Name,
StringRef &Data) {
if (!Decompressor::isCompressed(Sec))
return Error::success();
Expected<Decompressor> Decompressor =
Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8);
if (!Decompressor)
return Decompressor.takeError();
SmallString<0> Out;
if (auto Err = Decompressor->resizeAndDecompress(Out))
return Err;
UncompressedSections.push_back(std::move(Out));
Data = UncompressedSections.back();
return Error::success();
}
public:
DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool IsLittleEndian)
: IsLittleEndian(IsLittleEndian) {
for (const auto &SecIt : Sections) {
if (StringRef *SectionData = mapSectionToMember(SecIt.first()))
*SectionData = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info")
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
InfoSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info.dwo")
InfoDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types")
TypesSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types.dwo")
TypesDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
}
}
DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<ErrorPolicy(Error)> HandleError)
: IsLittleEndian(Obj.isLittleEndian()),
AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()),
Obj(&Obj) {
StringMap<unsigned> SectionAmountMap;
for (const SectionRef &Section : Obj.sections()) {
StringRef Name;
Section.getName(Name);
++SectionAmountMap[Name];
SectionNames.push_back({ Name, true });
// Skip BSS and Virtual sections, they aren't interesting.
if (Section.isBSS() || Section.isVirtual())
continue;
// Skip sections stripped by dsymutil.
if (Section.isStripped())
continue;
StringRef Data;
section_iterator RelocatedSection = Section.getRelocatedSection();
// Try to obtain an already relocated version of this section.
// Else use the unrelocated section from the object file. We'll have to
// apply relocations ourselves later.
if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data))
Section.getContents(Data);
if (auto Err = maybeDecompress(Section, Name, Data)) {
ErrorPolicy EP = HandleError(createError(
"failed to decompress '" + Name + "', ", std::move(Err)));
if (EP == ErrorPolicy::Halt)
return;
continue;
}
// Compressed sections names in GNU style starts from ".z",
// at this point section is decompressed and we drop compression prefix.
Name = Name.substr(
Name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes.
// Map platform specific debug section names to DWARF standard section
// names.
Name = Obj.mapDebugSectionName(Name);
if (StringRef *SectionData = mapSectionToMember(Name)) {
*SectionData = Data;
if (Name == "debug_ranges") {
// FIXME: Use the other dwo range section when we emit it.
RangeDWOSection.Data = Data;
}
} else if (Name == "debug_info") {
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
InfoSections[Section].Data = Data;
} else if (Name == "debug_info.dwo") {
InfoDWOSections[Section].Data = Data;
} else if (Name == "debug_types") {
TypesSections[Section].Data = Data;
} else if (Name == "debug_types.dwo") {
TypesDWOSections[Section].Data = Data;
}
if (RelocatedSection == Obj.section_end())
continue;
StringRef RelSecName;
StringRef RelSecData;
RelocatedSection->getName(RelSecName);
// If the section we're relocating was relocated already by the JIT,
// then we used the relocated version above, so we do not need to process
// relocations for it now.
if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData))
continue;
// In Mach-o files, the relocations do not need to be applied if
// there is no load offset to apply. The value read at the
// relocation point already factors in the section address
// (actually applying the relocations will produce wrong results
// as the section address will be added twice).
if (!L && isa<MachOObjectFile>(&Obj))
continue;
RelSecName = RelSecName.substr(
RelSecName.find_first_not_of("._z")); // Skip . and _ prefixes.
// TODO: Add support for relocations in other sections as needed.
// Record relocations for the debug_info and debug_line sections.
DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName);
RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr;
if (!Map) {
// Find debug_info and debug_types relocs by section rather than name
// as there are multiple, comdat grouped, of these sections.
if (RelSecName == "debug_info")
Map = &static_cast<DWARFSectionMap &>(InfoSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_info.dwo")
Map = &static_cast<DWARFSectionMap &>(
InfoDWOSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types")
Map =
&static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types.dwo")
Map = &static_cast<DWARFSectionMap &>(
TypesDWOSections[*RelocatedSection])
.Relocs;
else
continue;
}
if (Section.relocation_begin() == Section.relocation_end())
continue;
// Symbol to [address, section index] cache mapping.
std::map<SymbolRef, SymInfo> AddrCache;
bool (*Supports)(uint64_t);
RelocationResolver Resolver;
std::tie(Supports, Resolver) = getRelocationResolver(Obj);
for (const RelocationRef &Reloc : Section.relocations()) {
// FIXME: it's not clear how to correctly handle scattered
// relocations.
if (isRelocScattered(Obj, Reloc))
continue;
Expected<SymInfo> SymInfoOrErr =
getSymbolInfo(Obj, Reloc, L, AddrCache);
if (!SymInfoOrErr) {
if (HandleError(SymInfoOrErr.takeError()) == ErrorPolicy::Halt)
return;
continue;
}
// Check if Resolver can handle this relocation type early so as not to
// handle invalid cases in DWARFDataExtractor.
//
// TODO Don't store Resolver in every RelocAddrEntry.
if (Supports && Supports(Reloc.getType())) {
Map->try_emplace(Reloc.getOffset(),
RelocAddrEntry{SymInfoOrErr->SectionIndex, Reloc,
Resolver, SymInfoOrErr->Address});
} else {
SmallString<32> Type;
Reloc.getTypeName(Type);
ErrorPolicy EP = HandleError(
createError("failed to compute relocation: " + Type + ", ",
errorCodeToError(object_error::parse_failed)));
if (EP == ErrorPolicy::Halt)
return;
}
}
}
for (SectionName &S : SectionNames)
if (SectionAmountMap[S.Name] > 1)
S.IsNameUnique = false;
}
Optional<RelocAddrEntry> find(const DWARFSection &S,
uint64_t Pos) const override {
auto &Sec = static_cast<const DWARFSectionMap &>(S);
RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos);
if (AI == Sec.Relocs.end())
return None;
return AI->second;
}
const object::ObjectFile *getFile() const override { return Obj; }
ArrayRef<SectionName> getSectionNames() const override {
return SectionNames;
}
bool isLittleEndian() const override { return IsLittleEndian; }
StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; }
const DWARFSection &getLineDWOSection() const override {
return LineDWOSection;
}
const DWARFSection &getLocDWOSection() const override {
return LocDWOSection;
}
StringRef getStringDWOSection() const override { return StringDWOSection; }
const DWARFSection &getStringOffsetDWOSection() const override {
return StringOffsetDWOSection;
}
const DWARFSection &getRangeDWOSection() const override {
return RangeDWOSection;
}
const DWARFSection &getRnglistsDWOSection() const override {
return RnglistsDWOSection;
}
const DWARFSection &getAddrSection() const override { return AddrSection; }
StringRef getCUIndexSection() const override { return CUIndexSection; }
StringRef getGdbIndexSection() const override { return GdbIndexSection; }
StringRef getTUIndexSection() const override { return TUIndexSection; }
// DWARF v5
const DWARFSection &getStringOffsetSection() const override {
return StringOffsetSection;
}
StringRef getLineStringSection() const override { return LineStringSection; }
// Sections for DWARF5 split dwarf proposal.
void forEachInfoDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoDWOSections)
F(P.second);
}
void forEachTypesDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesDWOSections)
F(P.second);
}
StringRef getAbbrevSection() const override { return AbbrevSection; }
const DWARFSection &getLocSection() const override { return LocSection; }
const DWARFSection &getLoclistsSection() const override { return LocListsSection; }
StringRef getARangeSection() const override { return ARangeSection; }
StringRef getDebugFrameSection() const override { return DebugFrameSection; }
StringRef getEHFrameSection() const override { return EHFrameSection; }
const DWARFSection &getLineSection() const override { return LineSection; }
StringRef getStringSection() const override { return StringSection; }
const DWARFSection &getRangeSection() const override { return RangeSection; }
const DWARFSection &getRnglistsSection() const override {
return RnglistsSection;
}
StringRef getMacinfoSection() const override { return MacinfoSection; }
const DWARFSection &getPubNamesSection() const override { return PubNamesSection; }
const DWARFSection &getPubTypesSection() const override { return PubTypesSection; }
const DWARFSection &getGnuPubNamesSection() const override {
return GnuPubNamesSection;
}
const DWARFSection &getGnuPubTypesSection() const override {
return GnuPubTypesSection;
}
const DWARFSection &getAppleNamesSection() const override {
return AppleNamesSection;
}
const DWARFSection &getAppleTypesSection() const override {
return AppleTypesSection;
}
const DWARFSection &getAppleNamespacesSection() const override {
return AppleNamespacesSection;
}
const DWARFSection &getAppleObjCSection() const override {
return AppleObjCSection;
}
const DWARFSection &getDebugNamesSection() const override {
return DebugNamesSection;
}
StringRef getFileName() const override { return FileName; }
uint8_t getAddressSize() const override { return AddressSize; }
void forEachInfoSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoSections)
F(P.second);
}
void forEachTypesSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesSections)
F(P.second);
}
};
} // namespace
std::unique_ptr<DWARFContext>
DWARFContext::create(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<ErrorPolicy(Error)> HandleError,
std::string DWPName) {
auto DObj = llvm::make_unique<DWARFObjInMemory>(Obj, L, HandleError);
return llvm::make_unique<DWARFContext>(std::move(DObj), std::move(DWPName));
}
std::unique_ptr<DWARFContext>
DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool isLittleEndian) {
auto DObj =
llvm::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian);
return llvm::make_unique<DWARFContext>(std::move(DObj), "");
}
Error DWARFContext::loadRegisterInfo(const object::ObjectFile &Obj) {
// Detect the architecture from the object file. We usually don't need OS
// info to lookup a target and create register info.
Triple TT;
TT.setArch(Triple::ArchType(Obj.getArch()));
TT.setVendor(Triple::UnknownVendor);
TT.setOS(Triple::UnknownOS);
std::string TargetLookupError;
const Target *TheTarget =
TargetRegistry::lookupTarget(TT.str(), TargetLookupError);
if (!TargetLookupError.empty())
return createStringError(errc::invalid_argument,
TargetLookupError.c_str());
RegInfo.reset(TheTarget->createMCRegInfo(TT.str()));
return Error::success();
}
uint8_t DWARFContext::getCUAddrSize() {
// In theory, different compile units may have different address byte
// sizes, but for simplicity we just use the address byte size of the
// last compile unit. In practice the address size field is repeated across
// various DWARF headers (at least in version 5) to make it easier to dump
// them independently, not to enable varying the address size.
uint8_t Addr = 0;
for (const auto &CU : compile_units()) {
Addr = CU->getAddressByteSize();
break;
}
return Addr;
}
void DWARFContext::dumpWarning(Error Warning) {
handleAllErrors(std::move(Warning), [](ErrorInfoBase &Info) {
WithColor::warning() << Info.message() << '\n';
});
}